

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

44

UNEDITED ROUGH DRAFT TRANSLATION

ON THE FEASIBILITY OF THE ANODE-JET METHOD OF PROCESSING METALLIC SURFACES

BY: S. A. Dovnar

English Pages: 5

SOURCE: Russian Periodical, Doklady Akademii Nauk BSSR, Vol. 6, Nr. 8, 1962, pp 494-496

s/250-62-6-8

.

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-TT- 63-49/1+2

.

Date 28 March 19 63

ON THE FRASIBILITY OF THE ANODE-JET METHOD OF PRO-

CESSING METALLIC SURFACES

37

S. A. Downar

In analyzing the structural formulas of the jet liquid-abrasive processing of metallic surfaces there was revealed a new method of conducting the process. Its essence consists in the constant formation on the surface of the part being processed of an anode film and products of anode solution and their removal by a jet of abrasive electrolyte (1). Meanwhile it was

Fig. 1. Scheme of experiment 1--specimen; 2--electrical insulation

film; 3--cathode with jet apparatus; 4--air; 5--cutting electrolyte; 6-precipitate of abrasive. noted that such a unique anode-mechamical processing can be accomplished by various argangements: 1) V-EA-EA, 2) EA-EA-EA, 3) EA-V-V, etc. [V = air;E = electrolyte; A = abrasive_7.

In this paper we explain the results on an experimental check of the anode-jet method of processing for the purpose of determining the feasibility of its accomplianment.

The experiments were conducted by the arrangement EA-V-V (Fig. 1) on specimens of steel 9KhS tempered to a hardness $R_c = 58-62$. Before submerging

in the abrasive electrolyte each specimen is subjected to electrical insulation by means of the application of a thin layer of celluloid on its surfaces, which in the electrolytic bath are in contact with the electrolyte. At the initial moment of the process the protective coating was locally broxen by the action of a cutting jet of electrolyte, and the electrical field being formed took on high uniformity.

The pressure of the air brought to the jet apparatus in all the experiments amounted to 4.5 excess atm and the length of the jet was 20 mm. The diameter of the output opening of the nozzle-cathode was 0.8 mm. Such a dimension of the opening made it possible with sufficient intensity to take off the anode film without cutting the basic metal, which was established experimentally by cutting out the source of the electrical current.

As an abrasive material there was used the powder of electrically produced corundum of varying granularity: 60, 100, 220, M28 and M7. The volumetric concentration of the abrasive in the electroZytes, independently of the kind of experiment, amounted to about 50%. The duration of the experiment was 5 min.

The compositions of the electrolytes used are given in Table 1. In selecting their concentration consideration was given to the condition of least electrical resistance, assuring, as is known high productivity of solution (2).

The process of the experiment was accompanied by the formation on the surface of the specimen being tested of a ring-shaped craterlet, by the greatest depth of which the effectiveness of the process was evaluated. The density of the current was calculated by dividing the strength of the current I by the area of the craterlet free from the celluloid film.

The results of the experimental researches are presented in Table 1. Part of the most essential material in evaluated form is shown in the form of graphics in Fig. 2. By analyzing these experimental data one can come

JTD-TT-63-49/1+2

2

Table 1

	Электриче- ские пара- метры (Д)		Глубина лунки, мл. (9)				
Нанменование электролита, его, концентрация в с на 1 с воды СС			зернистость вбразина (4)				
	!.a	V.•	60	100	220	M28	M7
NaH_POa - KNO	0.5	20	42	42	39	30	15
(фосфорнокислый натрий (5)	1.0	30	51	48	45	39	30
и азотнокислый калий), 31 и 16	3.0	40	69	60	57	45	38
	6,0	75	127	123	117	66	56
NaCl	0,5	15	27	24	23	22	18
(хлористый натрий), 11 (С)	1,0	30	42	39	30	30	27
	3.0	50	57	45	42	36	33
	6,0	65	96	87	84	51	27 33 38
NaS	0,5	50	37	18	. 16	11	9
(серинстый матрий), 16 (7)	1.0	75	39	27	21	20	18
Na ₂ SiO ₂	0,5	55	38	36	33	24*	Образова-
Na _s SiO _s (жидкое стекло). уд. шес (б) 1,24 г/см ³	1.0	80	м	52	45	27**	ние электро- фореза

*Area of craterlet 0.14 cm². **Area of craterlet 0.29 cm². In the re-

Key: (1) name of electrolyte, its concentration in w for 1 liter of water; (2) electrical parameters; (3) depth of craterlet, microns; (4) gramularity of abrasive; (5)(sodium phosphate and calcium nitrate), 31 and 16; (6)(sodium chloride), 11; (7) (sodium sulfide), 16; (8)(water glass), Spec. Wt. 1.24 g/cm³; (9) electrophoresis.

Fig. 2. Dependence of the rate of formation of the craterlet (micron/min) on the density of the current (amp/cm²) and the granularity of the abrasive or electrolyte: a-Ma₂SiO₃; b-MaH₂PO₄ + KNO₃; c-MaCl

The processing of metallic surfaces by means of combining an anode

solution with the mechanical action of a cutting electrolyte represents a feasible process, which can be made the basis of machining the parts of machines and instruments.

The proposed process in its essence represents the sum of electrical, chemical, and mechanical phenomena. It has been shown that the rate of formation and the removal of the products of anode solution depends on the kind of electrolyte used, the density of the current, and the granularity of the abrasive. By means of change in the listed factors it is possible to regulate the productivity and quality of the processing. With a density of the current up to 2 amp/cm² the amount of metal removed, as compared with anode-mechanical working, is less by a factor of two or three, and less by a factor of ten as compared with the hydro-abrasive jet process. With a density of the current above 6 amp/cm² the productivity exceeds the two compared methods of working.

Institute of Machine Science and Entered September 25, 1961 Automation of the Academy of Sciences of the Belorussian SSR

Literature Cited

1. S. A. Downar, DAN BSSR (reports of the Academy of Sciences of the Belorussian SSR, No. 4, 19 61.

2. B. I. Kan and I. G. Kosmachev, Anode-mechanical Polishing Process, Mashgis (state scientific and technical publishing office of literature on machinery), 1952.

DISTRIBUTION LIST

.

.

DEPARTMENT OF DEFENSE	Nr. Copies	MAJOR AIR COMMANDS	Nr. Copies
		AFSC	,
		SCFDD ASTIA	1
HEADQUARTERS USAF		TDBTL	25 5 5
The Constant of the		TDBDP ·	5
AFCIN-3D2	٦	ASD (ASYIM)	1
AFL (ARB)	1 1	KSD (KSIINY	I
OTHER AGENCIES	•		
CIA	1		
NSA	6		
DIA	9		
AID	9 2 2 2		
ots	2		
AEC	2		
PWS	1		
NASA	1		
ARMY	3		
XAVI	3		
RAND	1		
NAFEC	1	•	

ARMY	
. NAVI Rand	
NAFEC	

.

¥

,

ł

۲

.

FTD-TT- 63-49/1+2

5

.

.

.