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1. Introduction. Our purpose herein is to introduce a model for quality

control, and to characterize a policy which maximizes the given payoff
function. Envisage a machine with two internal states, 0 and 1. Starting

at state 0 at time zero, it manufactures an item which is either defective
or non-defective and then in unit time, either remains in state 0 or goes

to state 1 according to the scheme.
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Note that 1 is an absorbing state. After every transition the machine
manufactures another item. There are different probabilities of the item
being defective or non-defective according as the state of the machine,
and given by:

p non-defective P non-defective

q defective q defective

where po > pl, a< 1.
After any number of itemshave been turned out, the machine
may be stopped for an integer time T, and when this repair period T
is over it is in state 0 and the manufacturing process begins again.
If there is profit C for every non-defective item, cost D for
every defective itemn and a charge G for every time unit that the machine is
in repair, then roughly, we wish to maximize the long run profit per unit

time.



By a policy is meant some method of deciding when to stop the
machine and repair it. The difficulty, of course, is that we cannot
directly observe the state of the machine, but only the condition of
the manufactured items. If our stop and repair policy is too erratic, it
may be that the limiting cost per unit time does not exist. We extricate
ourselves from this difficulty by considering only ''sensible" policies
Our main result is, that among these latter, the optimum is of the

%
form: there is a number X suchthat whenthe conditional probability

that the machine is currently in state 1, given all the observed items

%k
up to the present, exceeds \ , stop and repair. This policy does not

seem to reduce to any of the standard quality control techniques.

This problem is similar to those treated by Howard [1], except
that the pertinent Markov chain has an infinite number of states. We were
led to it by our work on stopping rules, and the treatment is an interesting
example of some of the techniques mentioned in [2]. In the section to
follow we reduce the problem to a stopping rule problem. Following that éroce—
dure we show that the stopping rule problem has solutions of the desired

form. This result is summarized in Theorern 2 of section 4.

2. Notations and Reduction of Problem. The class S of policies we will

work within are defined by: a policy is in S if

i) it leads to stop and repair infinitely often with probability-one.

ii) the decision as to whether to stop and repair is based only on
the sequence of items turned out since the end of the previous
repair period.

iii) if a sequence of items, following some repair period; leadsto
a decision to stop and repair, then this same sequence following
any repair period leads to that decision.

(iv) the expected duration of running time between repair periods is

finite.



There is possible here an alternative approach which starts from a
much larger class of policies and shows that for each policy in the
larger class there is a policy in S that is at least as good. See Blackwell
[3], for instance. But this would take us into theory far afield from the
present example.

Under a policy in S, define the first cycle of the machine to
be its history from time zero to the end of the first repair period,
but not including the first item manufactured after repair. The second
cycle begins with this latter item and extends similarly to the end
of the second repair period, and so on. Let Rk be the total profit during

the k‘th period, N. the iength of the kth period. Then the profit per unit

k
time over the first n cycles is

R, +... 4R
1 n
N.+...+N
1 n

Under a policy in S, R Rn are independent, identically distributed,

L
with E |R1| < o0, and similarly for the Nl’ e ,Nn. The law of large number

is thus in force so that with probability one

R.+...+R ER
lim — L
N.+...+N T EN
1 n 1

This relationship reduces the problem to an analysis of only the
first cycle, i.e., to find a policy which maximizes ERI/ENI' For the real

valued parameter f, define

4(8) = sup(ER, - BEN))
where the sup is over all policies in S. Note that ¢(B) is decreasing

in B, since ERI-BEN is decreasing in B for every fixed policy. Also

1
¢(B) > - 0, all B, since ER1 -ﬁEN1 > -oo for the policy: stop and repair

after one item. Let ﬁo = inf {ﬁ;(b(ﬁ) < oo} , then



Proposition 1: ﬁ < w. There is a unique number ﬁ > ﬁ such that

<1>(f3 )=0and ﬁ > C-(C+D)q;.

Proof: Suppose § > C, then the maximum amount we can make in any
period is C, but because we are being charged an amount B for every
period (because of the term ~ﬁEN1) it follows that ¢(B) < 0, p > C. For

each policy in S, ERl-ﬁEN is linear in B, hence ¢(B) is concave on (ﬁo, )

1
and thus continuous. Since ¢>(ﬁo) = o, for any given number M there is a

policy such that ER, -B_EN, >2M. By continuity, there is an € > 0 such

1
that ER1~(;3°+€)EN1 > M, so that ¢(f30+ £€) > 0. Since ¢(B) is decreasing
and concave there must be a unique solution 8 * of ¢(B) = 0.
g
Now assume that "< C-(C+D)q1 and considera policy that continues for

n items, n large, and then stops and repairs. Since the machine is in state

1 with probability tending to unity as more and more transitions go by, ER1

is equal to (Cp:l Dql)n plus terms of lower order in n. But Cp1 Dq1 =C- (C+D)q1

so that ER -p EN is equal to [C- (C+D)q1 B In plus terms of lower order,

)
contrad1ct1ng SR )=0.
* *
For this number f , we have sup(ERl-ﬁ EN1)=0, so that

)
ERl-‘ﬁ EN1 < 0 for all policies in S. Hence

ER ,

sup —_—1 = ﬁl”‘ .

EN
Further, if there is a pohcy which achieves the optimization of ER 13 EN
then this same policy optimizes ERI/ENI'
Let f{ be the profit from the items manufactured under a given
policy and N the number of items manufactured.
A
R] = R - GT

A
N N+ (T-1)

1

B N o N 2
and Eleﬁ EN1 = ER ~ ﬁﬂ(EN - [GT +B (T-1)]. Define random variables Xk by



C if kth item is non-defective

X =
k -D if kth item is defective

—~
and using J to denote R-p ‘kﬁ, we write
~
N
sk
EJ=E z (Xk—ﬁ )
k-1

-+ ~
By an interchange of summation and integration, valid since EN < o

(see Doob [5], for instance), this becomes

BI= A [}(xk-ﬁ*)dp

k=1 {N Sk

. 1 . o
= : se ey N >
Define U] E(X.k 'Xk-l' Xl) then since the sets {N k} depend only on

Xk—-l’ ey Xl' We rewrite again
@
i
EJ = ) {Uk~ﬁ } dP
k-1 {N>k}
if we put Vk = P(Xk= -Dle_l, .++), then
Uk = C(I:\Vk) mDVk,
so N
sk
EJ =E z (-(C+D)Vk+C-[3 )
k=1

The situation of maximizing EJ may be described as follows: for the kth

item we receive a fee
A&
f(Vk) = -(C+D)Vk + C-B

and are free to stop at this point or to go one more item.



Parts of the above reduction, using cycles, to a stopping rule
problem have been used before in other contexts, and the appropriate

references are in [2].

3. Reduction to a Functional Equation

The next pertinent fact is:

Proposition 3: The V

form a stationary Markov chain on [qo, ql] such

k
that if
F () - v(q, + aq )-aq,q
1V - v
F(v)- v( apo-ql)+q1(1-apo)
2 vi= l-v

then if Vk =v, Vk+1 is either Fl(v) or Fz(v) with probabilities v, 1-v.

Proof: We have that

Vi = Py = -D|Xk,...,X1)
P(Xk+l = -D|Xk = =Dy X} preees Xl), probability Vi
P(X,, = -D|X, =C, X,_,,--+,X]), probability 1-V,

* We intrcduce variables Yk’ Uk defined by: Yk is the state of the machine

, X th . -
just prior to the manufacture of the k =~ item, and Uk— P(Yk| xk-l’ oo, Xl).

Denoting vy . P(X = -D|Xk = -D, Xk-l’ cee )y Y, = P(xk+1 = _D,{xk=c,

k+1
o Xl), there follows

¥y = P(Xy = -De X = DX )V

y,=P(X , =-D, X

4] =ClX, ;o )1V .

k

Thus,



V)V = P(Xpyy = -D. X, = -D|Y, =)U, + P(X, ) = D, X =-D|¥, =0)1-U})

2
ql Uk + qO[ uqO + (l'a)ql ] (I-Uk)

2
(9, +taq )(q,~q )U, +aq_+(l-a)q,q

v,(1-V,) = P(X, ,=-D, X, =C |Yk=1)Uk+P(Xk+1= -D, Xk=C|Yk=0)(1-Uk)

™

= P4V, *p [aq +(l-a)q, | (1-U,)

= (ap _-q,(q,q )U, +ap_q +(1-a)p q .

We have, to boot, the relation

and solving this for U, and substituting above yields the given expression

k
for Fl’ FZ' For ve [qo, ql]. consider the functional equation for H
(A) H(v) = max {O, E[H(VZ) + f(Vz) |V1 = v]}

where f(v) = -(C+D)v + C~B*. This equation may be derived in a fashion
similar to that used by Bellman in dynamic programming problems.
Heuristically, let H (v) be the maximum payoff starting from Y1=v. We
have our choice of stopping and receiving zero or of making the transition
to V2 where we receive the amount f(Vz) plus our maximum expected payoff
starting from VZ’ this latter being H(VZ)'

However, the above heuristic does not establish any optimality
properties, and while the connection between functional equations and

optimal policies has been investigated, (see [4], for example) none of

the results seem appropriate for the present problem. Therefore, we



must delve into the theory with the following theorem.

Theorem 1: If equation (A) has a bounded solution on [qo, ql]. let a* denote

* %
the policy: stop when V_ ¢ {V;H(v) =0} .Ifs €S, thens is optimal in §

k
(where here S denotes all policies with finite expected stopping time).

Proof: Let s be any policy in S with stopping variable f\\l such that
A A

the set {N=k} depends only on the values of Xl, e ,Xk and EN < co.

For any £€>0, we may take n so large that

n

IEJ-E A[ (v, )dP - ] H(Vk)dPl <E

1 {Nzk} {/I\\I_>_n}

Thus,
n-l
ET<E + Z [ €V, )dP + f [H(V, )+(V, ) JaP.
1 {1’\‘1 > k} {1’\3 > n}
A
The set {Nz n} depends only on X], ceay xn-l so we may replace the

last integrand above by E[H(Vn) + f(Vn)IVn_l] and by (A) then

-1
EJ <f + nz / £(V, )P + [ H(V__MP
N
1

i {fzn)

But {§_>_ n}C {ﬁin—l} and H(v) > 0, so

n-1
EJ Esz [ f(Vk)dP + [ H(Vn_l)dP.

1 {ﬁik} {ﬁin-«l}

Continuing to proceed this way, and noting that V1 =q, we get

EI <& +H(g )+ ).

* * *
On the other hand, let N be the stopping variable given by s , and J , the
payoff. Then,



_ n-1
EIN > -+ £(V. )dP E[H(V.)+£V )|V .]dP
2-e+ > [ avgers [ ommG v IV, )
1 {N>K {N >n}

by (A), on {N >n- 1} , the last integrand is equal to H(V 1), yielding
*
> -E+Z [ f(Vk)dP + [ H(V _)4P.
b %
(N> {N">n}

*
Furthermore, on the set {N =n-1} ’ H(Vn_1)=0, giving

n-1
EJ*z -E+ Z [ £(V,)dP + [ H(V__)dP.
1 {NT>x " >n-3

Continuing, we conclude EJ 2 -E,+H(q°)+f(qo), which proves the theorem.

4. Solution of the Function Equation

To investigate the solution of (A}, We first prove:

Proposition 2; If 6(v) is monotonic nonincreasing on 4,0 9 then so is

E(G(VZ)|V1=V).

Proof: Let ev (v) be defined as
o
1 <v<
9, V=V,
6, (v) =

(o]
() v <‘7<q
o] 1

Then,

E( evo(vz) |V, =v)= evo(Fl(v) v+ BVO(FZ(V) )(1-v).

It is easy to verify that Fl(v), Fz(v) are monotonically increasing in v and that

on [qo, ql]. Fl(v) > Fz(v). Therefore,



' <
1 Fl(v) v,

E(evo(vz)lvlw) ={l-v, F(v)>v , Fplv)<v,
0, FZ(V) > v,

and is decreasing. Since every nonincreasing function can be arbitrarily
closely approximated by finite sums with positive coefficients of functions
of the type 9v , the proposition follows.

To t19y and solve (A) we use an approximation procedure, defined
by

g™ (y) = max {O,E[H(n)(V2)+f(VZ)|V1=v]}
with H(l)(v) = 0.

Proposition 3. The H(n)(v) are a nondecreasing sequence of continuous

functions on IqO,qll: .

Proof: Assume that H(n)(v) > H(nnl)(v). Then,

H(n+1)(v) max iO, E[H(n)(VZ) + f(Vz) l V1 = v]}

> max {0, g[u®Y

(V,) +(V,) |V, =v]]
- 1Y)

(n+1) {n}

2
And since H( )(v) >0, we have always H (v)>H (v). Furthermore, if
H(n)(v) is continuous, then since E(e(V2)|V1=v) is continuous if 9 is continuous,
the proposition holds.

Proposition 4. H(v) =lim Hn(v) is a bounded solution of (A).
n

Proof: Consider the function av+b, where

a
a = i a (C+D)

and b is taken so that av+b>0, all ve [qo, ql]. By a quick computation
E(V2|V1=v) = av+(l-a)q

80

-10--



%
EfaVv, +b+{(V,)[V,=v] = (a-C-D)E(V,|V,sv)+b+C-B

*
(a-C-D)[av+ (1--a)q1] +b+C-B

¢
av+b+C -(C+D)q1 - B

< av+b
This last by Proposition 1. Therefore, if H(n)(v) < av+b, then

gt - maix§o,E[H(“)(v2)+f(v2)]vl=v]} ‘

< max {0, av+b2 = av+b.

This establishes that H(v) is bounded. That it is a solution is quite evident.

At this point, we have all the material necessary for our main result.

Theorem 2: Either the policy: never stop and repair, yields a larger ERI/EN1

then any policy in S, or there is a number )\* <1 such that the policy: stop

and repair when

%k

= e >\
P(Y, =1{X ..., X)) >\

is in S and is optimal in S.

Proof: Let SnC [qo,ql] be defined by

Sn= EV;H(n)(v) =0} .
By Propésitions 2 and 3, Sn is of the form [vn, ql], v < q,» or empty.
Since Fl(ql) = Fz(ql) =.q1, (A) gives H(ql) = max[O,H(q1)+g(31)] and since
g(ql) = C-(C+D)\:11 -~ <0, Sn is non-emptyunless poss’i‘blyr87’=c--(C+D)q1 .
Leaving this latter case for the nonce, S= ‘v; H(v) =0J'- =M Sn is thus
a set of the form [y, q ]. By Theorem 1, if the policy: stop when V_ ¢ [y, q) 1,
is in S, then it is optimum in S. Assume first that y< ql, and let N be the

stopping variable. Then

%
P(N >n) <P(V_e'[v,q]) -

-11 -~



To continue this inequality, we use’

EV <qP(V e[y, ,ql)+yP(V eclq ,v))

To get
ql-EVn

P(Vn"[Y »qp 1) < -_Q;'T

By their definitions,
EVn = qIP(Yn=1) +qu(Yn=0)
and since P(Yn=0)= an, this gives

n
EV = ql-(ql-qo)u .

n
Substituting,
q, ~q
I
PN >n)< —2 o®
- ql' Y ]

% £
so EN < . Now we show that if B > C-(C+D)q1, then y < 9 For taking,

limits in (A) as v goes up to 9 yields

H(q -) = max [ 0,H(q,) +g(q))]

and g(ql) < 0 implies H(q1~) = 0. Therefore, we can certainly find a neighbor-
hood of q;, say [ql-E,ql], € >0, on which
H(F(v))v +H(F, (v) )(1-v) +g(v) < 0,

and in this neighborhood, then, H(v)=0.
*
Now for the case B = C-(C+D)q1. In this case,

sup ERI/ENI = C~(C+D)q1.
But this is exactly the payoff from the policy that never stops.

12 -



The theorem is stated in terms of the variables P(Yl:1| Xk, xk-l’ )

These are related to the Vk variables by

Vin = 4PV X - )+ [ql-a) +q a) ][ 1-P(Y =1 X, .. -)]

= a(q1 v~-q°)P(Yk=l |Xk’ eee)+ ql(l-a) + qoa.

%*
This transformation takes q intol and y <q1 into some number \ <1,

concluding the proof of the theorem.

5. The Character of the Optimal Policy

We first give a more explicit form of the optimal policy by evaluating

P(Y, =1 |xk, ..). Note that

X, -

P(Y,. Yk_l,...,Yl,xk,...,xl)=p(xk,...,xllyk....,yl)p(yk,...,Yl)
k

;ﬂ' P, | Y)P(Yy, o0 X))

j:

Define Qj by

Q= P(Y, =l ou, Y 0 Yi=0,...,Y20), jol... Kk

8o 1-a)d L, j<k
Q = k-1
J a , J=k.
Then k-1 j k
P(Yk=1,xk,...,x1)=z‘ H p(xrer=0)|| P(X_ |Yr=l) Qj
j=1  r=l r=j+l
Let Nj=no. of defectives in the first j trials, so
k+1 .
Nj J-Nj Nkr«N‘j k-j~(Nk-NJ)
P(Y, =L Xy oo 00 X)) =z 9% Py Y P -y
=1

~13..



Denoting z = qopllpoql. W=poQ/p1-

k-1
N N
_ x4 1-a i
P(Y, =L X, X)) = pl(gl-) —= z )W
=1
Similarly
k-1
q, N N, . N
.k 17k 1l-a i 1 k k
P(Xk,...,xl)—pl(pl) = z w+1_‘1 z w
=1
The optimal policy becomes: stop when
k-1
N, . N
ook
z z 0w 2N oz k wk
=1

K’k % *
where A =\ /(l-a)(1-\ ), Or, if Jj is the no. of defectives in the last

j trials, stop when

k-1 3

155 1. %ok
> @z
j=1

Or, if Ij is the no. of non-defectives in the last j trials, stop when

k-1

W PG e e

(=) " (=)7a" 2N .

o Py
)71

While this above expression may or may not be interesting, a more illuminating
form of the optimal policy was suggested by Roy Radner. This is: stop when
P(Y, =1 | Xiro e s X))

seokesi
D

P(Y, =0 | Xpreoo 0 X)
The expression on the left is a likelihood ratio, and the policy may be stated
as: at every step, test the hypothesis that the machine is in state one vs
state 0, given all the relevant information. When the hypothesis can be accepted

at a certain level, stop and repair.

14 -



%
The parameter A seems difficult to compute, although some
approximation methods are useful. As to the shortcomings of the model,
they are more or less apparent, and it is our hope that more realistic

models will follow.

-15..
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