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OPTIMAL GAMBLING SYSTEMS FOR
FAVORABLE GAMES

L. BREIMAN
UNIVERSITY OF CALIFORNIA, LOS ANGELES

1. Introduction

Assume that we are hardened and unscrupulous types with an infinitely
wealthy friend. We induce him to match any bet we wish to make on the event
that a coin biased in our favor will turn up heads. That is, at every toss we have
probability p > 1/2 of doubling the amount of our bet. If we are clever, as well
as unscrupulous, we soon begin to worry about how much of our available for-
tune to bet at every toss. Betting everything we have on heads on every toss
will lead to almost certain bankruptcy. On the other hand, if we bet a small,
but fixed, fraction (we assume throughout that money is infinitely divisible) of
our available fortune at every toss, then the law of large numbers informs us
that our fortune converges almost surely to plus infinity. What to do?

More generally, let X be a random variable taking values in the set
I ={1,..-,s} such that P{X = 1} = p, and let there be a class € of subsets
Aj of I, where € = {4,,---, A}, with U, 4, = I, together with positive
numbers (o, - -+, 0,). We play this game by betting amounts 8y, -« - , 8. on the
events {X € A,} and if the event {X = ¢} is realized, we receive back the
amount ¥ ic4, 8,0, where the sum is over all j such that ¢ € A;. We may assume
that our e tire fortune is distributed at every play over the betting sets @,
because the possibility of holding part of our fortune in reserve is realized by
taking A,, say, such that 4, = I, and 0, = 1. Let 8, be the fortune after n plays;
we say that the game is favorable if there is a gambling strategy such that almost
surely S, — . We give in the next section a simple necessary and sufficient
condition for a game to be favorable.

How much to bet on the various alternatives in a sequence of independent
repetitions of a favorable game depends, of course, on what our goal utility is.
There are two criterions, among the many possibilities, that seem pre-eminently
reasonable. One is the minimal time requirement, that is, we fix an amount z
we wish to win and inquire after that gambling strategy which will minimize the
expected number of trials needed to win or exceed z. The other is a magnitude
condition; we fix at n the number of trials we are going to play and examine the
size of our fortune after the n plays.

This research was supported in part by the Office of Naval Research under Contract
Nonr-222(53).
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66 FOURTH BERKELEY SYMPOSIUM: BREIMAN

In this work, we are especially interested in the asymptotic point of view.
We show that in the long run, from either of the two above criterions, there is
one strategy A* which is optimal. This strategy is found as that system of betting
(essentially unique) which maximizes E(log S.). The reason for this result is
heuristically clear. Under reasonable betting systems S, increases exponentially
and maximizing E(log S,) maximizes the rate of growth.

In the second section we investigate the nature of A*. It is a conservative
policy which consists in betting fized fractions of the available fortune on the
various A;. For example, in the coin-tossing game A* is: bet a fraction p — ¢ of
our fortune on heads at every game. It is also, in general, a policy of diversifice-
tion involving the placing of bets on many of the A4, rather than the single one
with the largest expected return.

The minimal expected time property is covered in the third section. We show,
by an examination of the excess in Wald’s formula, that the desired fortune x
becomes infinite, that the expected time under A* to amass z becomes less than
that under any other strategy.

Section four is involved with the magnitude problem. The content here is that
A* magnitudewise, does as well as any other strategy, and that if one picks a
policy which in the long run does not become close to A*, then we are asymptot-
ically infinitely worse off.

Finally, in section five, we discuss the finite (nonasymptotic) case for the
coin-tossing game. We have been unsuccessful in our efforts to find a strategy
which minimizes the expected time for x fixed, but we state a conjecture which
expresses a moderate faith in the simplicity of things. It is not difficult, however,
to find a strategy which maximizes P{S, 2 z} for fixed n, z and we state the
results with only a scant indication of proof, and then launch into a comparison
with the strategy A* for large n.

The conclusion of these investigations is that the strategy A* seems by all
reasonable standards to be asymptotically best, and that, in the finite case, it is
suboptimal in the sense of providing a uniformly good approximation to the
optimal results.

Since completing this work we have been allowed to examine the most sig-
nificant manuscript of L. Dubins and L. J. Savage [1], which will soon be pub-
lished. Although gambling has been associated with probability since its birth,
only quite recently has the question of gambling systems optimal with respect
to some goal utility been investigated carefully. To the beautiful and deep results
of Dubins and Savage, upon which work was commenced in 1956, must be given
priority as the first to formulate systematically and solve the problems of optimal
gambling strategies. We strongly recommend their work to every student of
probability 'heory.

Although our original impetus came from a different source, and although
their manuscript is almost wholly concerned with unfavorable and fair games,
there are a few small areas of overlap which I should like to point out and
acknowledge priority. Dubins and Savage did, of course, formulate the concept



OPTIMAL GAMBLING BYSTEMS 67

of a favorable game. For these games they considered the class of ““fractionalizing
strategies,” which consist in betting a fixed fraction of one’s fortune at every
play, and noticed the interesting phenomenon that there was a critical fraction
such that if one bets a fixed fraction less than this critical value, then S, — = a.s.
and if one bets a fixed fraction greater than this critical value, then S, — 0 a.s.
In addition, our proposition 3 is an almost exact duplication of one of their
theorems. In their work, also, will be found the solution to maximizing P {S, = x}
for an unfavorable game, and it is interesting to observe here the abrupt dis-
continuity in strategies as the game changes from unfavorable to favorable.

My original curiosity concerning favorable games dates from a paper of
J. L. Kelly, Jr. [2] in which there is an intriguing interpretation of information
theory from a gambling point of view. Finally, some of the last section, in prob-
lem and solution, is closely related to the theory of dynamic programming as
originated by R. Bellman [3].

'

- 7The nature of A*

. . Y. We introduce some notation. Let the outcome of the kth game be X, and
4 I},. = (Xn, ++- , X1). Take the initial fortune So to be unity, and S, the fortune
» ¢ ~after n games. To specify a strategy A we specify for every =, the fractions

WP - ARTY] = X, of our available fortune after the nth game, S,, that
»we will bet on alternative 4,, - -+ , 4, in the (n + 1)st game. Hence
@2.1) TP = 1,

=1

Note that A»+) may depend on R,. Denote A = (X, Xz, * - +). Define the random
variables V, by

(2.2) Ve= 2 N0, X,=4,
=X T

so that S, = V.18, Let W, = log V,, so we have

2.3) logS, =W,.+ -+ + W,

To define A*, consider the set of vectors X = (A, -+ -, ;) with r nonnegative
components such that A, + -+- 4+ X\, = 1 and define a function W(X) on this
space § by
(2.4) W) = 2 pilog (‘Z Mo,-)-

1 l(_:.Ay

The function W(X) achieves its maximum on § and we denote W = maxzes W(R).
ProrosiTioN 1. Let XD, X® be in F such that W = WQR®) = WQR®), then
f()T all ‘l:, we have ZtEAi)\/u) 0; = ZfeAi )V(Z) 0.
Proor. Let a, 8 be positive numbers such that a + 8 = 1. Then if
X = aA® + BA®, we have W(X) £ W. But by the concavity of log

(2.5) W) 2 aW@R®) + gWR?)

with equality if and only if the conclusion of the proposition holds.
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Now let A* be such that W = W(X*) and define A* as (X*, X*, - - -). Although
X* may not be unique, the random variables W, W3, - - - arising from A* are by
proposition 1 uniquely defined, and form a sequence of independent, identically
distributed random variables.

Questions of uniqueness and description of X* are complicated in the general
case. But some insight into the type of strategy we get using A* is afforded by

ProposITION 2.  Let the sets A,, -+, A, be disjoint, then no matler what the
odds o; are, \* is given by \} = P{X E A;}

The proof is a simple computation and is omitted.

From now on we restrict attention to favorable games and give the following
criterion.

ProrosiTiON 3. A game is favorable if and only iof W > 0.

Proor. We have

(2.6) log S% = ; W,

If W = EW3}is positive, then the strong law of large numbers yields St — a}. '" &
Conversely, if there is a strategy A such that S, — « a.s. we use the result of .
section 4, which says that for any strategy A, lim, S,/S3 exists a.s. finite. Hence s
S% — = a.s. and therefore W = 0. Suppose W = 0, then the law of the 1terated”‘ Y, -

-

logarithm comes to our rescue and provides a contradiction to 8§ — . -“.v ¢ ‘
-

3. The asymptotic time minimization problem

For any strategy A and any number z > 1, define the random variable 7'(z) by
3.1) T(x) = {smallest n such that S, = 2},

and T*(z) the corresponding random variable using the strategy A*. That is,
T'(z) is the number of plays needed under A to amass or exceed the fortune x.
This section is concerned with the proof of the following theorem.

THEOREM 1. If the random variables W1, W3, -« are nonlatlice, then for any
strategy
(3.2) lim [ET(z) — ET*(x)] = %Z:: (W - EW,)

and there is a constant a, indepeadent of A and x such that
(3.3) ET*(z) — ET(z) £ a.

Notice that the right side of (3.2) is always nonnegative and is zero only if A
is equivalent to A* in the sense that for every n, we have W, = W4. The reason
for the restriction that W} be nonlattice is fairly apparent. But as this restriction
is on log V3 rather than on V3 itself, the common games with rational values of
the odds o; and probabilities p, usually will be nonlattice. For instance, a little
number-theoretic juggling proves that in the coin-tossing case the countable set
of values of p for which W3 is lattice consists only of irrationals.
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The proof of the above theorem is long and will be carried out in a sequence
of propositions. The heart is an asymptotic estimate of the excess in Wald's
identity [4].

ProrosiTioN 4. Let X, X3, - - - be a sequence of identically distributed, inde-
pendcnt nonlattice random variables with0 < EX; < 0. LetY, = X1 4 -+ + X,.
For any real numbers x, £, with £ > 0, let Fu(§) = P{first Y, 2z is <z + £}.
Then there is a continnous distribution G(£) such that for every value of &,

(3.4) ,“3‘.} F.(§) = G(®).

Proor. The above statement is contained in known results concerning the
renewal theorem. If X; > 0 a.s. and has the distribution function F, it is known

(see, for example, [5]) that lims—. Fa() = (1/EX)) L F11 = P(O)] dt. If X, is

not positive, we use a device due to Blackwell [6]. Define the integer-valued
random variablesn, < ny < + - byn; = {first nsuchthat X; + .-+ + X, > 0},
ny = {first n such that Xp,41 + --- + X, > 0}, and so forth. Then the random
variables X = X, + -+ 4+ Xu, X3 = Xp41+ -+ + Xy, « - - areindependent,
identically distributed, positive, and EX{ < = (see [6]). Letting Y5 = X1+ - -
+ X, note that P{first Y, 2z is <z + & = P{first Yi 2z is <z + §},
which completes the proof.

We find it useful to transform this problem by defining for any strategy A,
a random variable N(y},

(3.5) N(y) = {smallest n such that W, + --- + W, 2 y}

with N*(y) the analogous thing for A*. To prove (3.2) we need to prove
. 1 &

(3.6) lim [EN(y) — EN*(y)] = 35 £ (W — EW.),
nd 1

and we use & result very close to Wald’s identity.
ProrosiTioN 5. For any strategy A such that S, — © a.s. and any y

@7 ENG) = 2E{3 W - EWJR) + L E[ Y W, ]
W= = w Fe1

Proor. The above identity is derived in a very similar fashion to Doob’s
derivation [6] of Wald's identity. The difficult point is an integrability condition
and we get around this by using, instead of the strategy A, a modification Ay
which consists in using A for the first J plays and then switching to A*. The
condition S, — % a.s. implies that none of the W, may take on the value —
and that N(y) is well defined. Let N,(y) be the random variable analogous to
N(y) under As and W{” to W,. Define a sequence of random variables Z, by

n

(3.8) Z, = L (W& — E(WE|Re)]:

This sequence is a martingale with EZ, = 0. By Wald’s identity, EN,(y) < =
and it is seen that the conditions of the optional sampling theorem ([7], theorem
2.2-C,) are validated with the conclusion that EZy, = 0. Therefore
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Ns
39)  WEN, =E I:ky_;l w]
Ny Ny
- E{kz1 W — E(W.‘,”|Rk_,)]} +E [kzl W”]

'min(N,J) Ns
- E{ - E(Wkle_l)]} +E [kz:l Wi”]-
The second term on the right satisfies
Ny
(3.10) ysE[Z WP ]sv+a

where o = max; (logo;). Hence, if EN = «, then lim; EN; = «, so that
E{T¥ [W — E(W:|R:)]} = = and (3.7) is degenerately true. Now assume
that KN < «, and let J — . The first term on the right in (3.9) converges to
E{YY [W — E(WiRi—)]} monotonically. The random variables > W{"
converge a.s. to 2.7 W, and are bounded below and above by y and ¥ + a so
that the expectations converge. It remains to show that lim; EN; = EN. Since

@3.11) ENs = [y NP+ [ ., NsdP,

we need to show that the extreme right term converges to zero. Let
(3.12) U; = :Z Wi, N(Us) = {first n such thatfg:: W zy— Ust
so that

(3.13) Jixsg NodP = JPON > D)+ [ N(U5) aP.

Since EN < o, we have lim; JP{N > J} = 0. We write the second term as
E{E[N(UN|U,JIN > J} P{N > J}. By Wald’s identity,

(3.14) BIN(U)|U) s LSt

On the other hand, since the most we can win at any play is «, the inequality
(3.15) Nz y:a—U—’ +J

holds on the set {N > J}. Putting together the pieces,

(3.16) ﬁNMN(U,) iP5 AWX (N = J)dP + 2 P(N > J).

The right side converges to zero and the proposition is proven.
If we subtract from (3.7) the analogous result for A* we get

(3.17) EN(y) — EN*(y)

= %E{él (W — E(Wkle—l)]} + %’/E[,‘IZ:’:I Wi _kg W;:l ’
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This last result establishes inequality (3.3) of the theorem, As we let y — «,
then N(y) — « a.s. and we see that

N r.
(3.18) 31{:: E{kz_l W - E(Wkle—l)]} = kgl (W — EWy).

By proposition 4, the distribution F of 3V W} — y converges, as y — «©, to
some continuous distribution F* and we finish by proving that the distribution
Fyof ¥ W — y also converges to F*,

PROPOSITION 6. Let Y,, ¢, be two sequences of random variables such that
Yoo, Y+ e, — o as If Z is any random variable, if € = sup,xi ||, and
if we define

(3.19) Hy(§) =Pl{firstYo2Z+yis<Z+y+¢E,
(3.20) D) =PlfirstYn+e2Z+yis<Z4+y+§,
then for any u > 0,

(3.21)

Foru(( — 2u) — Ple 2 u} S Dy() = Dy(§) £ Hy-u(f + 2u) + Ple 2 u}.
Proor.
(3.22)

D) sP{first Y, +e=2Z2+yis<Z+y+te<u +Plezu}
SPirstY, >Z+ty—~uis<Z+y+t+u,e<ul +Plezu}
SH,_((t+2u)+ Ple = u}.

(3.23)
Dy§) 2 Plfirst Yo+ eaZZ+yis<Z4y+Ee<u
2P{firstY,2Z+4+ytuis<Z4y+t—ue<u}
2 Hypu(t8 — 2u) ~ Ple 2 u}.
ProrosiTioN 7. Let Xy, Xs, - -+ be a scquence of independent identically dis-
tributed nonlattice random variables, 0 < EX, < o, with Y, = X; + -+ + X..

If Z is any random variable independent of X\, Xy, - - - , G the limiting distribu-
tion of proposttion 4, and

(3.24) Fyz)) =P{first Y. 2 Z +yis <Z+y+ &,

then lim, Fy z(§) = G(§).
Proor.

(3.25) Fy 2(8)

EP{first Y. 2 Z+yis <Z +y+ £2}]
= E[Fy42(8)],

where Fy(t) = P{first Y. 2 yis <y + £&. But lim, F,,2(§) = G(§) a.c. which,
together with the boundedness of F,z(§), establishes the result.
We start putting things together with
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ProrosItioN 8. Let T3 W, — X% W§ converge a.s. to an everywhere finite limit.
If the Wt are nonlattice, if F,(£) is the distribution function for T W, — y, then

lim, Fy(¢) = F*(§).
Proor. Fix m, let

m—1 n ‘ n
(326) Z,=-— EWy aa=XWimXL WL  en=5up|enal,
and by assumption ¢, — 0 a.s. Now

(3.27)  F,(t) = P{first 12 Wezyis <y+ 8

= P{first (Zn', W:+e,,.,..) Z2Zntyis<Zm+y+ ¢t
If
(328)  Hy) = P{first SWi2 Za+yis <Zn+y+8,

then by proposition 6, for any u > 0,

(329)  Hyu(t — 2u) — Plen 2 u} S Fu(f) S Hy—u(t + 2u) + Plem 2 u}.
Letting y — » and applying proposition 7,

(3.30)

F*¢ — 2u) — Plewn 2 u} SlimF (¥) S @Fu(f) S F*E+ 2u) + P{em 2 u}.

v

Taking first m — « and then u — 0 we get
(3.31) lim Fy(¢) = lim Fy(§) = F*(§).
v v

To finish the proof, we invoke theorems 2 and 3 of section 4. The content we use
is that if 3.} Wi — 3.7 W} does not converge a.s. to an everywhere finite limit,
then 3°F [W — E(WiRi—1)] = + on a set of positive probability. Therefore,
if the conditions of propositions 5 and 8 are not validated, then by (3.17) both
sides of (3.2) are infinite. Thus the theorem is proved.

3. Asymptotic magnitude problem

The main results of this section can be stated roughly as: asymptotically, Sh
is as large as the S, provided by any strategy A, and if A is not asymptotically
close to A*, then S} is infinitely larger than S,. The results are valid whether or
not the games are favorable.

THEOREM 2. Let A be any strategy leading to the fortune S, after n plays. Then
lim, S./S% exists a.s. and E(lim, S./8%) = 1.

For the statement of theorem 3 we need

DEFINITION. A i3 a nonlerminating stralegy if there are no values of X, such
that Yica, MVo; = 0, for any n.

o
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THEOREM 3. If A is a nonterminaling strategy, then almost surely
0 J&

@.1) =W = BWiRi)] = = cslimg—“ = .

Proors. We present the theorems together as their proofs are similar and
hinge on the martingale theorems. For every n

Sa Va S,

4.2) E <§ R,._‘) -E (7 R,_l) =L
If we prove that E(V./ViRa_t) S 1 as., then S,/S% is a decreasing semi-
martingale with lim, S,/S} existing a.s. and

 Se _ pSe_
(4.3) E h:n S <E 5=
By the definition of A*, for every ¢ > 0,
(4.4) E{log [((1 — e)Vi+ V,] — log Va|R.—1} S 0.
Manipulating gives

1, A 1 :
4.5) lp [log(l + V:)R,._l:l < 2log T
By Fatou’s lemma, as e — 0

Va _ . 1 e Vi

(4.6) E( RH) y [h_m <e log 1 + —— V:) Ruci |

.1 1
< lim : log1 — =1

Theorem 3 resembles a martingale theorem given by Doob ([6], pp. 323-324),
but integrability conditions get in our way and force some deviousness. Fix a
number M > 0 and take A to be the event {W — E(W.|RBua) 2 M i0.}. If
p = min; p;, then E(W3 — W,|Ra1) =2 M implies P{W3 — Wo 2 M|Ras} 2 p.
By the conditional version of the Borel-Cantelli lemma ([7], p. 324), the
set on which >°7 P{W% — W, 2 M|R.,} = © and the set {W3s — W, =2 Mi.0.}
are a.8. the same. Therefore, a.s. on A, we have Wi — W, 2 M io. and
log (S4/8.) = 2.1 (Wi — W,) cannot converge. We conclude that both sides of
(4.1) diverge a.s. on A.

Starting with a strategy A, define an amended strategy Ay by: if W —
E(W,!R.,1)) < M, use A on the nth play, otherwise use A* on the nth play. The
random variables

@) U = log 5*?—,.7, = X W = BEWE|Ru)]

form a martingale sequeilce with
4.8) U= Upa = Wi — W} — [W - E(WP|R,1)].
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For Ay, we have E(W3 — W|R..1) < M, leading to the inequalities,

4.9 sup (Wi — W) < %, Up = Una S 1';!

On the other side, if

(4.10) a = min log( > )\70;), B = max log o;,
i iCA j

then U, — U,_1 2 a — 8 — M. These bounds allow the use of a known martin-
gale theorem ([7], pp. 319-320) to conclude that lim, U, exists a.s. whenever
one of Tim U, < «, lim U, > —= is satisfied. This implies the statement

@.11) lim 27 < = e 5[0 = BV |Re)] < .
However, on the complement of the set A the convergence or divergence of the
above expressions involves the convergence or divergence of the corresponding
quantities in (4.1) which proves the theorem.

CoROLLARY 1. If for some strategy A, we have 37 [W — E(Wi|Riy)] = »
with probability v > 0, then for every ¢ > 0, there is a stralegy A such that with
probability at leasty — ¢, im S./8. = 0 and except for a set of probability at most ¢,
im 8,/8, = 1.

Proor. Let E be the set on which lim S,/S% = 0, with P{E} = 4. For any
¢ > 0, for N sufficiently large, there is a set Ey, measurable with respect to the
field generated by Ry such that P {Ey AE} < ¢, where A denotes the symmetric
set difference. Define A as follows: if n < N, use A, if R,, with n = N, is such
that the first N outcomes (X7, -+- , Xy) is not in Ey, use A, otherwise use A*.
On Ey, we have Y7 [W — E(WRi_)] < , hence lim S,./S2 > 0 so that
lim 8,/8. = 0 on Ex N E. Further, P{Ey N E} 2 P{E} — ¢ = v — ¢. On the
complement of Ey, we have S, = ., leading to [im S./8. £ 1, except for a set
with probability at most e.

6. Problems with finite goals in coin tossing

In this section we consider first the problem: fix an integer n > 0, and two
numbers y > z > 0, find a strategy which maximizes P{S, = y|Sy = z}. In
this situation, then, only n plays of the game are allowed and we wish to maxi-
mize the probability of exceeding a certain return. We will also be interested in
what happens as n, y become large. By changing the unit of money, note that

(5.1) sup P{S. 2 ylS = 2} = sup P {S" z 118 = f}
where the supremum is over all strategies. Thus, the problem reduces to the
unit interval, and we may evidently translate back to the general case if we find
an optimum strategy in the reduced case. Define, for £ 2 0,n 2 1,
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sup P{S, 2 118 = ¢}, £<1,
5.2 " =
(5.2) $u(8) {], el
and

0, £ < 1’

(53) wl) = {1, o
In addition ¢.(¢) satisfies
(5.4) ¢.(¢) = sup E[P{S, 2 1|8, So}|So = £]

< sup Ef¢n1(8)[So = £]
< o2Up, [Phnar(t + 2) + gdunr(t — 2)].

To find ¢.(£) and an optimal strategy, we define functions ¢.(¢) by
(55)  dol®) = 4(®),  $a®) = sup [Pt +2) + @bna(E — 2)]

having the property ¢.(¢) £ é.(¢), for all n, £, If we can find a strategy A such
that under A we have $.(§) = P{S, = 1|S, = £}, then, evidently, A is optimum,
and ¢, = ¢,. But, if for every n 2 1, and £ there is a z,(£), with 0 < 2.(§) = ¢
such that

(5.6) 4;1»(5) = M»—n[E + z.(8)] + Q‘f‘n—-l[f - z(8)],

then we assert that the optimum strategy is A defined as: if there are m plays
left and we have fortune ¢, bet the amount z.(¢). Because, suppose that under A,
forn=0,1, ---, m we have ¢.(¢) = P{S. 2 1|8, = ¢}, then

(5.7) P{Sun z S = § = E[P{Snu Z 1|5y, So}|So = ]
= E[$n(S)|S0 = £] = $mn(f).

Hence, we need only solve recursively the functional equation (5.5) and then
look for solutions of (5.6) in order to find an optimal strategy. We will not go
through the complicated but straightforward computation of é,(§). It can be
described by dividing the unit interval into 2" equal intervals I, « - -, I, such
that I, = [k/2# (k + 1)/2"]. In tossing a coin with P{H} = p, rank the prob-

abilities of the 2" outcomes of n tosses in descending order I’y = Py = - 2 Poa,

that is, P; = p*, pe- = ¢*. Then, as shown in figure 1,

(5.8) a(§) = Z P, te L,
i<k

Note that if p > 1/2, then lim, ¢.(¢) = 1, with § > 0; and in the limiting case
p = 1/2, then lim, ¢.(§) = ¢, with £ £ 1, in agreement with the Dubins-Savage
result [2].

There are many different optimum strategies, and we describe the one which
seems simplest. Divide the unit interval into n + 1 subintervals I{¥, ..., I®,

such that the length of I is 2‘"(',:) here the (7’2) are binomial coefficients. On
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$,(6) o .

pqt
pq

p'q

o

Fiaure 1

Graph of ¢a(£) for the case n = 3. H

each I{” as base, erect a 45°—45° isosceles triangle. Then the graph of z,41(¢) is
formed by the sides of these triangles, as shown in figure 2. Roughly, this .
strategy calls for a preliminary “jockeying for position,” with the preferred posi-
tions with m plays remaining being the midpoints of the intervals If™. Notice
that the endpoints of the intervals {I{"} form the midpoints of the intervals
{If#~V}. So that if with n plays remaining we are at a midpoint of {I{}, then
at all remaining plays we will be at midpoints of the appropriate system of
intervals. Very interestingly, this strategy is independent of the values of p so

z, (§)
1

Iy

Ll L T
| ' 3
° 1 z 4 ¢ '
FIGURE 2 2

Graph of 2s41(8) for the case n = 3.
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long as p > 1/2. The strategy A* in this case is: bet a fraction p — ¢ of our
fortune at every play. Let ¢a(¢) = P{Ss 2 1|So = £. In light of the above
remark, the following result is not without gratification.

THEOREM 4. lim, sup; [¢a(§) ~ #4()] = 0.

Proor. The proof is somewhat tedious, using the central limit theorem and
tail estimates. However, some interesting properties of ¢.(¢) will be discovered
along the way. Let P{k|1/2} be the probability of k or fewer tails in tossing a
fair coin n times, P {k|p} the probability of k or fewer tails in n tosses of a coin
with P_{_H} =p If ¢=P{k|1/2} + 2™, note that ¢.((—) = P{k|p}. Let
¢ = Vpq, by the central limit theorem, if £, = P{gn + toVn|1/2} + 2,
then

t
(56.9) li’x'n on(Een—) = —1\/5—_1; N e~ dg,
uniformly in ¢. Thus, if we establish that

t
(5.10) lim ¢3(¢1) = _\./12__' /_” e~2/2 dx

uniformly for ¢ in any bounded interval, then by the monotonicity of ¢.(£), ¢a(¢),
the theorem will follow.
By definition,

(6.11) o) = P{Wi+ --- + Wi 2 O|W,
=logt =P{(Wi+ --- + Wiz ~log},
where the W} are independent, and identically distributed with probabilities

P{Wt = log 2p} = p and P{W} = log 2¢} = ¢. Again using the central limit
theorem, the problem reduces to showing that

. log & + nEWY
5.12 )} =
(512) T V(WY

uniformly in any bounded interval. By a theorem on tail estimates [8], if
Xy, X,, +++ are independent random variables with P{X; = 1} = 1/2 and
P{X, = 0} = 1/2, then

(6.13) log P{X; + .-+ + X, 2 na} = nb(a) + u(n, a) logn,

where u(n, a) is bounded for all n, with 1/2+3£a <1 -3, and 6(a) =
—alog (2a) — (1 — a)log [2(1 — a)]. Now

(5.14) 10g £n.e = log [P{X1 4+ -+ + Xu 2 np — toVn} + 2]
so that the appropriate a = p — to/V'n with

lo q (1)
5.15 9 =0 - — =)
(5.15) (a) (») Vn log P +0 n
Since 6(p) > ~log 2, we may ignore the 2-* term and estimate
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(5.16) 10g £ne = n8(p) — toVn log g + O(log n).

But 8(p) = —EW4}, and the left-hand expression in (5.12) becomes
to log £

(5.17) il (log n)_
a(W1) Vn

Now the short computation resulting, (W) = o log (p/q), completes the proof
of the theorem.

There is one final problem we wish to discuss. Fix ¢, with 0 < £ < 1, and let
(5.18) T(¢) = E(first n with S, 2 1|8, = §),

find the strategy which provides a minimum value of 7'(¢§). We have not been
able to solve this problem, but we hopefully conjecture that an optimal strategy
is: there is & number &, with 0 < & < 1, such that if our fortune is less than &,
we use A*, and if our fortune is greater than or equal to &, we bet to 1, that is,
we bet an amount such that, upon winning, our fortune would be unity.
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