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SINGLE-NUCLEON DAMPING OF COLLECTIVE VIaRATIONS*

Richard A, Ferrell

University of Maryland, College Park, Maryland

This paper reports on a Ph.D. thesis by M. Bauer at the

University of Maryland. Further details can be found in the

1thesis , which has been carried out along lirnes already

sketched by the present author 2 o Similar coisiderations have

also been expressed by N0 Austern3d C. Shakin3 , G. Opat 3 and

others. In order best to motivate the present discussion it

is useful to look at some recent data which has been obtained

at the University of Virginia by Bolen and Whitehead4 iast

summer. They have measured the (y'.n) cross section in 016

over the giant dipole range of energy and ihe results are

shown in Figure 1, which is taken directly from their paper.

One notes that the cross section has pronounced maxima in the

region between 20 and 25 MeV, where most of the cross section

is located. This is, of course, the giant dipoie resonance,

but it is interesting to note that in oxygen the giant dipole

resonance is split into two peaks0  (This results from the spin-

orbit force and not from surface deformation.) These two maxima

fall at about 22 and 24 MeV. Customary calculations of the shell

model have as a goal the computation of these numbers, which are

associated with presumed stationary states of the nucleus.

Clearly from Figure I the situation is more complicated than this

and what we are dealing with is a function of the y-ray energy

and not simply a discrete set of nunbers. Therefore we must

specify more about the function than simply the locations of its

maxima. What we set for ourselves then is the next step in the
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specification of the function, namely the calculation of the

breadths of the various maxima.

The extended shell model 5 can be applied directly to this

calculation, which actually is not much mure ;omplicated than

the more familiar calculations which limit themselves to the

eigenvalues themselves. We are dealing with a situation where

the basis states in the shell model are of two different typest

(a) bound states, shown in Figure 2 as lying below the threshold

at zero energy for particle emission and (b) unbound, shown in

Figure 2 as lying in continua associated with the various angu-

lar momenta s, p, d, etc. (Here for the moment we neglect the

spin-orbit coupling.) Now the first s-state in 016 is so

tightly bound that it does not enter into aiscussion, so that

we are dealing with excitations out of the filled p level into

s•- or d-states. The usual shell model calculations concern them-

selves only with excitations into the first unoccupied s- or into

the first d-state. These are the lowest lying states, and are

bound to the nucleus.

In order to take into acccunt the damping, all we have to do

is to include excitations into all of the different possible s-

and d-states. Thus we should consider Feynman diagrams for the

time history of the nucleus, such as shown in Figure 3. Here the

excitation of a particle into a bound state is shown by a light

forward-going line in the direction of increasing time, whereas

an excitation into a continuum state is shown by a heavy forward-

going line. The chain of bubbles -expresses, of course, the well-

known picture that the oscillation consists of a resonance among

the various relatively degenerate single-particle excitations.
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Any one particle may happen to possess the excitation of the

nucleus and then pass the excitation on to another particle at

the same time jumping back into its natural state and annihilat-

ing the associated hole of the particle-hole bubble. Thus we

see that the difference between the present. approach and the

more conventional calculations lies in the iiclusion of bubbles

containing a heavy line. This changes the problem sufficiently

that one might be inclined to abandon all of the previous work

on the shell model treatment of the giant d.pole resonance in
016 and start afresh. However, we prefer a more conservative

perturbation-type treatment which starts with the conventional

wave function omitting the effect of the continuum single.-

particle states, and then including them ii the next step as a

weak perturbation.

This procedure is illustrated in Figure 4, where we

schematically indicate the Hamiltonian matrix as acting in two

different portions of Hilbert space. The portion of the matrix

labeled Som. includes all matrix elements within the subspace of

Hilbert space spanned by the bound state wave functions. H' con-

sists of off-diagonal niatrix elements coupling the bound states

with the continuum states. The remaining portion of the matrix

consists of diagonal and off-diagonal elements relative to the

continuum states, Here we make the simplifying approximation of

setting all of the off-diagonal elements between continuum states

equal to zero. This can be justified on physical grounds. Once

a nucleon is excited into a free state, we can expect it to leave

the nucleus and not to react again. This situation is expressed

by vanishing off-diagonal matrix elements.
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To begin the calculation we at first imaoine H' to equal

zero, and diagonalize the S.M. portion of the Hamiltonian matrix.

This is, of course, just the work of Elliott and Flowers 6 and gives

us five eigenstates of angular momentum unit', with five correspond-

ing eigenvalues. Two of these fall at about 22 and 25 MeV and are

associated with the prominent maxima shown in Figure 1. Having

now explicit eigenstates, and for the sake cf definiteness let us

restrict ourselves to the 22-MeV eigenstate we must compute the

rate of transition resulting from the non-v3nishing values of H'

between the 22--MeV eigenstate of S.M. and the continuum single-

particle excitations.

The rate of decay of transition is given by the standard

golden rule of time-dependent perturbation theory:

r = 2w p I<H,>1 2 9 (1)

where p is the density of final states and <H'> is the bound-free

matrix element of H'. This formula has been applied to the compu-

tation of all of the various partial breadths of the damping, using

a square well nuclear potential for the single-nucleon wave func-

tions. The results of the computations of Bauer are given in

Table 1 for the 22-MeV state. It will be noted that the total

neutron breadth is of Lhe order of 0.6 MeV and the total proton

breadth about twice that. Thus the total breadth of the line

comes out to be 1.8 MeV, in encouragingly good agreement with the

breadth estimated by Bolen and Whitehead of 1.7 MeV. It is worth-

while to note that this is just twice the imaginary part of the

complex energy eigenvalue of the excited state of the nucleus.

Thus the 22-MeV state, because of the continuum wave functions, is

__ _ _ __ _ _ _
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shifted by an imaginary amount of 0.9 MeV. Now we should remember

a general property of perturbation theory and of Feynman diagrams:

the real and imaginary parts of the second-order energy shift are

generally of the same order of magnitude. Thus we may expect that

second-order perturbation theory, passing through the virtually

excited continuum states and back down to the* bound states, will

give a real shift in the energy eigenvalue also of the order of

I MeV. Thus one should take the results of the work of Elliott

and Flowers 6 and of Brown and collaborators', where a good fit is

found to the photonuclear maxima, with a griin of salt. Clearly

much ef this success has been achieved simply by varying para-

meters until a good fit was obtained, and the inclusion of higher

order effects, such as discussed here, can be expected to spoil

the fit by the order of i MeV.

At this point it is necessary to take note of the fact that

the cross section curve such as shown in Figure i is a more com-

plicated one than can be described by the term "Lorentzian line.*

The low energy side does not have the usual Lorentzian tail and

therefore Bolen and Whitehead were forced to estimate the width

from the full-width at half maximum, measured on a Gaussian fit

since a Lorentzian fit was not possible. The lack of the Lorent-

zian tail can be attributed to an interference between the out-

going single-nucleon wave coming from the damping of the collec-

tive state (excited by having the y-ray first cause a p-shell

nucleon to Jump into one of the bound d.- or s-waves) and the

single-nucleon waves resulting from direct transitions from the

p-shell into one of the continuum s- or d-waves. Let us designate

the matrix element of the dipole operator for the excitation of the

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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collective state by D and for the direct excitation into the continuum

by D'. If the reai part of the energy eigenvalue is E and the imagi-

nary part -r/2, then we have the following resonance formula

a(y,n)a D' + <H> D , 2 (2)hco-E+ir/2

In this equation, if there is no direct transition into the continuum

(D'0O), then we have a pure Lorentzian shape for the cross section,

or the standard Breit-Wigner formula. On the other hand we have no

reason to expect D' to vanish, and we have a situation already studied

in the atomic case by Fano and Prats8 o As they showed~considerable

distortion can result from the interference between direct and in-

termediate transitions. We can see this from Eq. (2) if we imagine

a y-ray energy hc considerably below the collective resonance. Then

the second term inside the absolute value signs is negative and we

have a destructive interference, giving rise to the low energy cut-

off of the resonance line. This is illustrated in Figure 5, taken

from their paper, for energy-independent matrix elements. On the

other hand, for y-ray energies above resonance, we have construc-

tive interference leading to a very strong tail extending up to

higher frequencies. This seems to be evident in connection with

the 25-MeV resonance which we see does not come down to 0 above

25 MeV but instead extends on up to 30 MeV. At this energy the

cross section still retains a strength of about one-half to one-

third of its maximum value.

Now we come to the most controversial part of the work, in

which we must distinguish clearly between the resonance effect for

y-rays, or in other words the collective resonance arising from the

interactions among all the particles in the nucleus, and on the
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other hand the standard quantum mechanical resonance of a single

nucleon in a potential well. If we look at Eq. (2), we see that

we should expect maxima for both of these cases, namely whenever

hN= E and we strike a collective resonance of the system, or also

when D' is especially large. We can expect D' to be large when

the continuum particle has the right energy to be in single- "

particle resonance for the attractive well ir which it moves.

For this case its wave function inside the nucleus will be maxi-

mum and all matrix elements computed with this wave function,

such as D', will also exhibit a maximum. Thus we should expect an

additional bump in the (y-n) cross section, and some recent ex-

periments seem to exhibit such a feature. This would be especially

true for the (y-p) reaction, since all three partial waves

(sl/2, d5/ 2 , and d3 / 2 ) should have resonances in the continuum,

and thus give three additional bumps in the cross section curve

for (y-p).

It is worthwhile at this point to describe an analogy which

is sometimes employed as evidence against the correctness of the

idea in the preceding paragraph. One imagines that the zero-order

single-particle excitations are analogous to the natural vibrational

excitations of a set of uncoupled oscillators. The interaction of

the nucleons in the nucleus which produces a mixing of the zero-

order states and a shift of the collective resonance line is

imagined to correspond to the introduction of coupling among the

oscillators. Consequently the normal mode frequencies of the

oscillators are shifted. This is illustrated in Fig. 6 which

shows a typical behavior of some linear response function for a

system of two osc$llators. The solid curves show the unperturbed

- 4[1 .
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resonances at a) and 022, while the dashed cur'es show the shifted

positions at Wi and c. Now the essential point of the analogy

is that the number of degrees of'freedom of the system remains

conserved during the introduction of the per~urbation, and con-

sequently there can remain no vestige of the unperturbed resonances;

they have to disappear completely. While ttis analogy is suggestive

that in the nuclear case one should not exp,)ct maxima in the cross

section at both the collective and single-particle resonances,

we believe that there is an essential difference in the two systems.

This is that in the nuclear case there is i. dense continuum of

single-particle eigenstates, or effectively an infinite number of

degrees of freedom in the language of the analogy. Consequently

it is possible to conserve degrees of frefdom" and at the same time

to introduce extra structure into the cro;s section.

The fact .that the single-nucleon bound states are pushed up

into the continuum and become virtual states is a result of the

repulsion of the remaining hole in the 016 core. This shows the

importance of including the diagonal continuum-continuum matrix

elements of the interaction. The question may properly be raised

at this point as to the effect on the collective resonanres of

the change of the bound single-particle states into virtual levels

in the continuum, In the standard shell-mcdel treatments of the

giant dipole resonance,' this aspect of the problem is ignored,

and it might be supposed that the results of the calculations

might be changed drastically when some of the zero order wave

functions are changed from bound to virtual. We will show here,

however, that this is not the case and that the collective levels

are relatively insensitive to this change in the starting wave

functions, as long a. the virtual levels remain relatively sharp.
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It will suffice to establish this result in the framework of

the ordinary shell model. The generalization of the proof to the

extended shell model is straightforward. We also restrict our-

selves to one virtual single-particle l3vel "v", in addition to

the bound states "i*, or "J*. Now, the virtual level is nothing

other than a manifestation of a certairn behavior of the continuum

states "c" in the vicinity of the virt, al level energy eye For a

sufficiently narrow level we can ignore the difference between the

actual energy of the continuum state and ev, since only states

very near this energy are important for the collective problem.

There exist, of course, continuum states for the entire positive

energy scale, but these non-resonant wave functions will be

negligibly small inside the nucleus, and therefore they will not

be coupled to the collective vibrations. (This is, of course, not

strictly true, or there would be no damping.) With this approxi-

mation to the continuum energies, we can write the shell model

Schr6dinger equation for the amplitudes in the collective wave

function

= ZAi ii + 7 Ac c' (3)
c

as

4i Ai +Hi A~ ' + :Hic Ac E EAi (4)

4v Ac +Z Hcj A = E Ac (5)

Hqre i and *c are the bound and continuum basis functions,

respectively, (the latter normalized in some large spherical box),
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and Hip etc., the matrix elements of the particle-hole inter-

action. €i are the bound single-particle energies (including

as always the energy of the associated hole and also its

diagonal interaction with the excited particle).

We now make use of the fact that the continuum wave functions

at and near resonance all have the same funtional shape inside

the nucleus, and that this function can be represented as the

wave packet 9

iv 0c IcE (6)

Thus, inside the nucleus, the continuum wave Jc has a strength

proportional to the complex conjugate of the overlap amplitude

oc = (ec')" (7)

Furthermore, normalization requires

;Ic12 = 1. (8)

Our goal is to replace the infinite set of equations (5) by

a single equation based on the one function IV rather than on all

the different fc" This can be accomplished by noting that the

second term of the left hand member of Eq. (5) serves to couple

the continuum excitations to the rest of the wave function, and

hence is a sort of "driving force" which sets the scale of the

Ac The strength of the coupling is dependent upon the matrix

elements

Hcj = 0c H vj (9)

showing that

Ac = c Avg (10)

where Av is some constant independent of c. But substitution

into Eq. (3) and use of Eq. (6) give
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- Ai Ji A - AV Z 0 c

= Z Ai Ji + AV " (ii)
i

This establishes that AV can be considered es the probability

amplitude associated with the expansion of The collective wave

function into the virtual state v.

We can now proceed to make further simplifications based on

Eqs. (8), (9), and (10):

Z H A =H. z 0 *4 c \
c ic c iv c * c V

=Hiv AV - (12)

Substitution of these equations into Eqs. (4) and (5) lead

finally to

Ai + ji Hij A + Hiv A = EAi (13)

v Av +ZHVj A =EAv (14)

From the form of Eqs. (13) and (14) it follows that the virtual

level can be treated as simply another bound state j and that the

fact that it actually has negative binding energy can be ignored --

as was to be proved, thus justifying the calculations of refer-

ences 6 and 7.

In summary, we hope to have conveyed here, albeit without the

numerical details of the computations (for which the interested
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reader can consult reference 1), the conviction that systematic

application of the shell model gives not only a qualitative under-

standing but also a good quantitative account of the damping

process in the giant dipole vibration in a nucleus.
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TABLE 1

Damping of the 22-MeV Dipole State

Emission *Neutron *Proton
Channel Partial Partial

Widths (MeV) Widths (MeV)

-l
s3/2 P 1/ 2  0.01 0.01

p1!21 0.44 0.53

rn 0 0.45 P 0.54

sl!2 -1 0.03 0.08

td 5/ 2 p3!2  0.16 0.58

d -12 p! 0.00 0.00
•3/2 P3/2o.oo.o

r 0.19 r = 0.66

r n=r n 0 r n I1 r PPn +n pP p 0o P1

= 0.64 =1.20

Total width = r = n + rp

= 1.84 MeV
(rexp = 1.7 Mev, Bolen and Whitehead, reference 4.)

*Subscripts 0 and I refer to ground state and
excited state particle groups, respectively.

t In this channel the proximity of the single-particle
resonance to the dipole state makes the calculation
very sensitive to c anges in the energy values used.
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CAPTIONS FOR THE FIGURES

Fig. 1. (y¥n) cross section in 016 as a function of the gamma ray

energ) -- from Bolen and Whitehead (reference 4). Note

the giant dipole resonance maxima at 22 and 24 MeV.

Fig. 2. Schematic single-nucleon energy level diagram for 016 .

Note the positive energy continuum states for all

different angular momenta (abscissa). As the core

nucleons fill up the bound states through the p-level,

only the bound s- and d-levels near the nucleon

emission threshold are available for the dynamics of

the collective giant dipole oscillation. (Spin-

orbit splitting is neglected.) Excitation of a

nucleon into an energy-conserving positive energy

state leads to the escape of the nucleon and the

damping of the vibration.

Fig. 3. Feynman diagram corresponding to the extended shell

model description of a nuclear collective vibration.

Time increases upwards, so that backward-pointing

arrows correspond to holes in the core. A forward-

going thin line indicates an excited nucleon in a bound

single-nucleon state, while a heavy line indicates an

unbound continuum state. The intermediate heavy

line gives a real second order shift in the resonance,

while a terminating heavy line corresponds to the

matrix element for damping (imaginary second order

shift in the resonance).
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Fig. 4. Hamiltonian matrix divided into the usual shell-model

part, acting only in the subspace of Hilbert space

spanned by the bound single-nucleon states (S.M.),

and the part acting in the subspace spanned by the

continuum wave functions (lower right corner). H'

connects the two subspaces and produces single-nucleon

damping of the collective state. Note the approximation

of neglecting the off-diagonal matrix elements between

continuum states.

Fig. 5. Photonuclear cross section vs. gamma ray energy. The

dashed line shows the cross section to be expected

for direct excitation into the continuum (for constant

matrix element and state density), while the curve gives

a schematic representation of the interference in the

photonuclear cross section between the resonant and

direct processes (after Fano, reference 8). This

interference distorts the Lorentzian Breit-Wigner

type line which would be expected from the resonance

alone and changes it into an asymmetric line with a

long tail on one side. Under the circumstances

prevailing in the nuclear problem, the relative phase

is such that the tail falls on the high energy side,

in agreement with experiment (see Fig. 1.).

Fig. 6. Cross section vs. frequency for a system of two harmonic

oscillators. The solid curves show the resonances at

the two unperturbed natural frequencies ol and w2.
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Introduction of a coupling between the oscillators

causes the resonances to shift to the new positions

(dashed curves) at co and az". Thus the number of

resonances is conserved under the application of an

interaction. Although suggestive, this model is a

misleading analogue to the nucleus, where the photo-

nuclear cross section should exhibit resonances both

of the single-nucleon type (unperturbed lines) and

of the collective type (resulting from the nucleon-

nucleon interaction).
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