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FOREWORD

This effort is part of an overall program whose object is the investigation,
development and application of techniques which may be utilized to predict elec-
tronic circuit and system reliability, both initial (time zero) and time dependent,
The investigation of prediction techniques and tools (i. e., linearization, Monte
Carlo, computer poles and zeros analysis, regression analysis) conducted by the
contractor during a preliminary phase of the program is described in RADC-TR-
61-299, '""Mathematical Simulation for Reliability Prediction".

It was the purpose of the second and current phase to develop transfer func-
tions for selected circuits and to investigate means for deriving system transfer
functions by combining the transfer functions of constituent circuits. In follow on,
in-house work now underway, RADC is using the above circuits to empirically

evaluate each of the prediction techniques investigated in phase one.

In order to assure that the circuit functions chosen would be appropriate to
typical circuit functions encountered in Air Force ground systems, the RADC
preferred functional divisions (Report RADC-TR-59-243) were chosen as test
vehicles. Utilization of these particular circuit functions lead to the additional
advantage that the transfer functions developed and the predictions of performance
characteristics (initial and time dependent) will lend themselves readily to form
the nucleus of a library of preferred circuit transfer functions with predicted ini-

tial and time dependent performance characteristics.




ABSTRACT

. This report presents the results of the second phase of the study program
for the development of techniques for predicting the reliability of electronic sys-
tems from statistical information about the performance of system components.
The transfer functions which have been developed in this phase are mathematical
models of the actual systems to be evaluated. They are used to determine system
performance when component characteristics vary from nominal values as a result
of:

(1) Manufacturing and handling

(2) Degradation due to age
(3) Internal and external random stresses

This report concludes that the simulation techniques used are the most

efficient for the purpose and have the following distinct advantages.

(1) They provide a means of determining the sensitivity of circuits and
systems to the variations noted above. When circuits and systems
become complex, then the simpler conventional methods (e, g., differ-

. entiation) are no longer feasible for determining circuit sensitivity,
At this point, mathematical simulation techniques provide the most
efficient and indeed the only means of analyzing and evaluating
system performance.

(2) They provide a means of determining not only the tolerance limits but
also the shape of the underlying frequency distribution of the particular
components used in the circuit or system under investigation.

(3) They provide an unambiguous definition of failure.

(4) They provide a means of assessing the relative merits of competing
systems,

(5) They allow the transfer function to be expressed conveniently in matrix
form so that conventional routines available to modern computers can
be utilized. Hence, the analytical expressions of system performance,
necessary even for the most rudimentary statistical design techniques
are unnecessary. (Such analytical expressions are laborious to form).

(6) They can be used to optimize a system for a given cost.

. The circuits analyzed in this report will not only serve as vehicles to sub-
stantiate the findings of the first contractual phase, but will in addition serve as a
nucleus for a library of preferred designs with defined lifetime characteristics,
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SECTION 1
INTRODUCTION

1. 1 DISCUSSION OF BASIC CONCEPTS

1. 1. 1~ Transfer Functions

.

A transfer function is a mathematical function in an equation which relates
the characteristics of system performance to the characteristics of component
performance and to system inputs, This is expressed mathematically by:

zi = Ft(xl,xz... xn.Yl»Yz--- Yn) (1)

where the z, represent system performance characteristics, the x; represent
component characteristics, the y; represent inputs into the system, and Ft is
the transfer function,

One elegant method for actually solving for the transfer functions describ-
ing a particular circuit is that presented in [1, 2] . Here one writes the circuit

equations in compact matrix form, for example:

— B i B e
a“ alZ""'aln z1 b1
aZl aZZ""'aZn z2 bZ

= (2)
2n1 a'nn Zn bn

The n by n square matrix, called the 'transformation matrix'', consists of
elements which are functions of values of the various system components, such as

resistance, capacitance, inductance, etc.



The individual elements of the transformation matrix are functions of the
nominal values of the component parameters and are derived from the circuit
equations describing the particular circuit; examples of such derivations may be
found in Sections III and IV, The b, are voltage or current constants also obtain-
ed from the circuit equations. The elements 2 of the third matrix are the indi-
vidual transfer functions describing system performance. Following Gabriel
Kron, we may say that the transformation matrix dominates the whole problem of
reliability prediction. Indeed, once this matrix is known, the task of finding the
unknown transfer functions can be made entirely automatic - a mere mechanical
routine. If the transfer matrix is non-singular, then the unknown transfer matrix

[z] can be found by:
[2] = (a1} [B]) (3)

Equation (3) thus enables one to find the z, described in (1) in a convenient and

compact form.

This basic procedure of finding transfer functions can be used to perform
any one of three different types of circuit analysis:

1. DC Analysis: The performance criteria are the quiescent currents
and voltages.

2. AC Analysis: The performance criteria are the functional relation-
ships between amplitude, phase and frequency.

3. Transient Analysis: The performance criteria are rise and decay
time, pulse width, overshoot, etc. Such characteristics are called
transient responses.

These three types of analysis together with the use of the transfer functions
to perform them can be applied at any level of system or circuit complexity,
Specifically, transfer functions can be applied to analyze the performance of an
individual circuit, of a subsystem composed of individual circuit, of a system

composed of subsystems, and so on ad infinitum,
1. 1.2 Monte Carlo

If a system is made up of a large number of components whose character-
istics are described in terms of statistical measures, e, g., distribution functions,
and whose characteristics may change in time in a probabilistic way, then the

system performance criteria may also be determined in a probabilistic way as

2



‘functions of the distributions of component characteristics. Thus, the problem of
reliability prediction consists in determining the probability distributions of meas-
ures of component performance. The functions relating system performance to
component characteristics can be found in two ways, analytically (see Appendix IV)

or synthetically,

Given the cumulative distribution functions of various characteristics of the
components of a system, an integral equation can be formed which relates the
corresponding density functions to cumulative distribution functions of character-
istics of over-all system performance. When the system or the circuit is rela-
tively simple, i.e., when the underlying density functions are normal and the com-
ponents are either all in series or all in parallel, then the integral equation can be
solved by analytic means (see Appendix IV). However, as soon as the circuit be-
comes in any way more complex, or if the underlying density functions are no
longer normal, then analytic means are no longer practical and statistical methods.
of solving this integral equation must be applied. The statistical sampling methods
used to solve such integral equations are called Monte Carlo methods or mathe-
matical simulation methods, Examples of the use of this method can be found in
Section III and Section IV of this report, as well as in [3]. For a general introduc-

tion to Monte Carlo methods, seealso [4].

Before concluding, it may help to consider an example of the application of
Monte Carlo methods to the solution of an area integral, Suppose a closed curve
to be traced on a plane surface in the form of a square, as shown below, On this
surface, a coordinate system is superimposed. A source of pairs of random num-
bers is available, any pair corresponding to a point on the square, with the condi-
tion that the random pairs are uniformly distributed. This means that a random
point may fall anywhere on the surface with equal likelihood. If these random pairs
are classified into two groups according to whether they fall inside or outside of
the closed curve, then the ratio of the area inside the curve to the total area is
approximated by the ratio of the points falling inside the curve to the total number
of random points. The accuracy of this approximation can be increased by in-
creasing the number of random pairs. This example could obviously be extended
to three or more dimensions., This illustrates the connection between Monte Carlo
methods and integrals, since integrals are used to express areas, volumes, etc,

[11].
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Figure 1, Statistical Solution of Area Integral
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SECTION II
PROCEDURES AND COMPUTER APPLICATIONS

2,1 INTRODUCTION

In this section a description is to be found of the actual manner in which
concepts and techniques of transfer functions and Monte Carlo methods are applied
in a reliability analysis of a circuit or a system of circuits, Next, the role of the
computer in this analysis is described followed by the flow charts used in the com-
puter programs, together with relevant explanations as to their use. Finally,
there is a formalized description of these procedures suitable for enumerating

specifications in contract use.

2.2 GENERAL PROCEDURE

The following is a brief description of the procedure for performing a re-

liability prediction as outlined in the block diagram in Figure 2,

Step 1: Deterministic Analysis

A set of performance criteria is first received which specifies how the
system is to perform. Based on these criteria, a circuit is then selected, pref-
erably from a catalog of standard circuits of proved performance and reliability,
An equivalent circuit is then formed which represents the schematic and which is
then analyzed so as to yield the circuit equations., From these equations the trans-
fer function is then formed. In many cases these functions can be formulated in
the form of a matrix. This matrix is set up with the specified nominal values of
the circuit and solved by the computer, At this point, if it is impossible or in-
convenient to find an equivalent circuit; or to set up the circuit equations; or to
solve the matrices, a regression analysis may be alternatively used td determine
the transfer functions. Substituting the nominal values of the component charac-
teristics into the transfer functions, one then obtains the nominal values of the
system performance measures represented by each transfer function, The nominal
values of the system performance measures are then compared with the nominal
system performance criteria, If no suitable agreement occurs, then a new
circuit must be chosen and the entire procedure repeated until suitable agreement

5
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is obtained, At this point, an optional experimental check of the calculated nomin-
al values may be undertaken. The computations as well ag the laboratory experi-
ments must be repeated until computed and experimental nominal values of per-

formance measures agree,

Step 2: Probabilistic Analysis

Once it has been ascertained that the transfer functions are correct, the
computations correct, and the laboratory experiments accurate, so that all nominal
values for system performance agree, then the next stage of analysis begins,
Random variations in the component characteristics will give rise to random
variations in the system performance measures, At this stage, random numbers
are first generated according to the rule which describes the random variation in
the component characteristics, i, e,, the generation of these random numbers
simulates the random variationwhich the component characteristics are subject to.
These generated random numbers are then substituted into the transfer functions,
which are then evaluated and, in turn, yield sets of random numbers whose
variations can be described by a cumulative distribution function (see Appendix I).
[5,6] This cumulative distribution function describes the resulting random varia-
tions in the system performance measures, This process can be repeated at
intervals to give a description of how the system operates in time. At this point,
the cumulative distribution functions describing the system performance measures
can be examined to see if they are in accordance with the specified performance
criteria. If they are not, the components are changed and the Monte Carlo process

described above is repeated until the performance criteria are finally satisfied.

2,3 COMPUTER APPLICATIONS

In this section a description is to be found of the role of the computer in the
analysis of the performance of circuits and systems, and in the efficient treatment
of the transfer functions, both in the deterministic phase of analysis and in the
probabilistic phase of analysis using random numbers. Following this there is a
generalized flow chart which, together with relevant explanations, describes the
compufer program in a general way applicable to any of the circuits or systems
discussed. With slight modifications, it can be rearranged to apply to any of the
specific circuits or systems in this report.
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2,3.1 Role of Computer

In the mathematical simulation procedures the computer plays an indis-
pensable part. In the probabilistic stage of analysis where random numbers are
generated and substituted in the transfer functions of a solution, it is impractical
to do the work manually, The time-saving speed of the computer is also most
desirable in the solution of the matrices in the deterministic stage, The speed
and convenience of using the computer not only save time and money, but also
take Monte Carlo methods out of the realm of theoretical possibility into practical

reality,

A further advantage in the use of computers in this analysis is that one
obtains, so to speak, a built-in reference library which completely describes the
system and to which one has immediate access. A documented record of circuit
performance exists on cards or tape and information retrieval techniques can be
used to ascertain immediately the particular characteristics of system or com-
ponent performance, Given a particular amplifier placed in a particular configura-
tion, for example, one can immediately find the gain, bandwidth and associated

distributions,

2,3.2 Generalized Flow Chart and Explanation

Figure 3 shows a generalized flow chart which (with suitable modifications)
can be applied to any one of the specific circuits or systems in this report. The
general computer routine in the flow chart is as follows: Initially, the machine is
prepared for operation by rewinding the magnetic tape and setting the counter to
the appropriate number, Next, the various sets of random numbers are generated
in accordance with the underlying frequency distributions of the component param-
eters, This involves a proper adjustment of the random numbers, i,e., fitting
them into the proper scale, e.g., O0to 1, 2,5to 4,6, 900 to 1100, and ascertain-
ing whether they fall within the proper range within the scale, if the distribution
is to be truncated. Next, the random numbers are used to generate and solve the
matrix involved in the problem. The solutions are converted for the plotter and
the answers written on the magnetic tape, The large loop on the left indicates that
the above steps are repeated one at a time for each single random number and that
the process comes to a halt only after all the generated random numbers lave been
utilized (counter = 0), [19] ‘
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2.4 FORMAL PROCEDURE FOR RELIABILITY ANALYSIS

Step 1. A standard circuit or a system composed of standard circuits is
selected to satisfy the required performance criteria. In other words, the circuit
configuration or particular arrangement of the components is chosen, as opposed
to the specific or nominal values and their respective tolerances. If two or more
competing circuits exist and are capable of performing similar functions, an
analysis may be made of them in order to determine the circuit or system capable

of best meeting the requirements,

Step 2. Next, the transfer functions describing each critical performance
criterion such as bandwidth, rise time, quiescent current and voltage, noise
figure, etc., are generated. The transfer functions are constructed in the

following manner:

First, equivalent circuits are constructed from the
schematics, and the mathematical equations describing
the equivalent circuits are formulated. From these
circuit equations, the matrices contained in the equation
for the transfer function [Z] = [A]'l [B] can then be

formed.

In cases where it is not technically or economically feasible to define-the
transfer function analytically, it may be defined experimentally using regression

analysis techniques,

Step 3. Next, the matrix equation obtained in Step 2 must be solved by the

computer using the specified nominal values of the component characteristics.

Step 4. Once the solution is obtained mathematically, an experimental
check on the accuracy of the transfer function may be made in the laboratory by
constructing the actual circuit, taking measurements of specified performance
criteria and comparing these experimental values with the values obtained analy-

tically from the transfer functions,

Note: It is important to note at this time that the concept of failure must be
clearly defined since such a definition is essential for the application of mathema-
tical simulation procedures. In this program, the following definition applies:

10



A failure is a cessation of ability to perform a specified
function or functions within previously established limits
on specific performance characteristics, i.e,, referring
to the cumulative distribution function plotted in Figure

4, a failure is any unit that falls in the shaded area,

FAILURE
RELATIVE FALURE USABLE
FREQUENCY UNITS

AN

\
RN \\‘\\\Qt\
SO

\
\
WA

\\

PERFORMANCE
LOWER UPPER
Limir LmiT

Figure 4. Cumulative Distribution Function of Critical Performance Limits -
Used to Define Failures

Step 5. Random numbers are generated according to the rule which des-
cribes the random variation in component characteristics, i.e., the generation of
these random numbers simulates the random variation which the component
characteristics are subject to. These variations may be due to external stresses,

e. g. temperature, vibration, humidity, etc., as well as internal stresses,

Note: Random number tables for frequently occurring distrubutions which repre-
sent a large class of those elements comprising electronic circuits and systems
are available in reference [3], which describes the generation of random numbers

having the following distributions:
1. Uniform
2. Exponential
3. Weibull
4, Normal (Gaussian)
5, Log Normal
6. Poisson

7. Chi-Square with even degrees of freedom

11



For cases where it is not known if any of the above sets of random numbers
describe the component, empirical cumulative distribution functions can be gen-
erated, The values of the actual components to be used in the system are meas-
ured and then ordered to form cumulative distribution functions. These values can
then be used directly or can be obtained from a curve that has been fitted to these

points,

Step 6. The appropriate random numbers are then substituted into the
transfer function, which is then evaluated on the computer. This process results

in cumulative distribution functicnsdescribing system performance measures[17,18].

Step 6a. If the results of Step 6 are not satisfactory, the components used
in Step 5 must be replaced or alternatively the basic design must be modified so
that system performance is less dependent on component tolerance (e. g., add

feedback, temperature stabilization, etc. ).

Step 7. Repeat steps 1 through 6 as required,

12
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SECTION III
CIRCUIT APPLICATIONS

3.1 INTRODUCTION TO CIRCUIT APPLICATIONS

It is the purpose of this section to present an individual circuit analysis of
each of the circuits that make up the systems represented in Figures 5 and 6, The
Timing Network is composed of conventional circuits chosen from the list of
preferred circuits included in the RADC Technical Report - RADC-TR-59-243,
The Error Sensing and Readout System is composed of microminiature circuits,
Microminiature circuits wexre chosen since they are of a '"state of the art' nature
and consequently relatively little is known of their reliability, Therefore, with
the cooperation of the Sylvania Microelectronics Laboratory, it was decided to in-

clude these circuits as a portion of the Mathematical Simulation Program,

It is possible to present three different analyses of any circuit: namely DC,
AC or transient, However, since the purpose of this program is to prove the
feasibility of a technique, the main emphasis has been placed on the DC or quies-
cent current and voltage portions, The techniques, as described below are also
applicable to the AC and transient analyses. The major difference in the approach
is due to the fact that the equations derived in the AC or transient analyses are
time dependent or differential equations, whereas the DC analysis yields algebraic
equations. However, it is possible to change these time dependent expressions
into algebraic expressions by use of the Laplace Transformation and then, once

the solution is obtained, transform it back into the time domain, [10]

The technique which has been referred to above is outlined as follows:
Once the circuit or system is chosen, a complete analysis is performed. This is
realized, in the DC treatment, by describing the circuit or system with a set of
nodal and/or mesh equations., These equations are arranged and a transformation
matrix is formed, Contained in this matrix are all of the critical circuit param-
eters as well as all of the individual components and/or various combinations of
these components which will, if varied, cause a change in the value of the corres-
ponding parameter or parameters. The matrix is then solved for the nominal
values of the components by means of a computer, At this point it is desirable to

13
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verify the accuracy of the transfer function by measuring the circuit parameters
on a breadboard of the particular circuit or system. A comparison of the empiri-
cal and analytical values will accomplish the verification. This is the extent to
which this section covers this technique; however, Section IV will present the com-
plete solution, the remainder of which is briefly described below.

Sets of random numbers are generated that correspond to the various parts
of the circuit or system. The type of random numbers depend upon the type of
distribution of the part or parts; i.e., normal, uniform, etc. These random
numbers are substituted into the various matrices and the effects on the per-
formance noted. In this manner, it is possible to isolate the most critical parts
and, therefore, circuit redesign or maintainability steps may be taken. It is also
possible to repeat the above procedure at some time or times in the future by
generating new sets of random numbers based upon known characteristics of the
particular parts, thus obtaining a prediction of circuit reliability,

3.2 TRANSFER FUNCTIONS OF CONVENTIONAL CIRCUITS

This section presents the transfer functions of a number of circuits chosen
from the list of preferred circuits included in the RADC Technical Report - RADC-
TR-59-243. [9] The circuits chosen for analyses are preferred circuits of the
highest reliability (failure rate wise) which have undergone extensive life test,
Reference Report RADC-TR-59-243, "Reliable Preferred Solid State Functional
Divisions', and the RADC Reliability Notebook in which it is included. In this
report there is some philosophy about the circuits which you may find helpful.

3.2.1 Transfer Function of the Trijger Circuit

This subsection presents an analysis of an emitter coupled binary circuit,
commonly known as the Schmitt Trigger, in terms of its transfer functions. [7]
The expressions derived are those for the circuit appearing on page 47 of the
RADC Technical Report, RADC-TR-59-243. The solutions are in the form of
matrices of algebraic equations for the quiescent currents and voltages.

16
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The circuit as analyzed is shown in Figure 7 and functions as a general
purpose multivibrator or squaring assembly. The transistors QZ and Q3 per-
form as emitter followers isolating the timing circuit from external loads; and
Ql and Q4. coupled through the common emitter resistor R,7 perform the
squaring function. The circuit will accept a sine wave, complex wave, or rec-
tangular input signal and present two DC coupled complementary signals at the

output terminals,

A complete solution of the circuit indicates that neither transistor when
operating was in a saturated condition., A verification of this fact may be re-
ceived by an examination of the computer solutions of the hase currents for both
cases see Tables 2and3. Fromthe solutions,it may be seen that the base currents
are all negative indicating an impossible situation., As a check on the accuracy of
the transfer functions, a breadboard circuit was set up and the various voltages :
were measured. As may be seen from Table 1, the measured and calculated
values compare very closely, thus, confirming the accuracy of the transfer

functions.

TABLE 1
COMPARISON OF CALCULATED VS, MEASURED VALUES OF TRIGGER CIRCUIT
A

Q, NON-SATURATED, Q‘ OFF

Ve2 Ves | Ve 3
CALCULATED 22.1 8.8 7.4
MEASURED 22.5 8.8 8.0
B
Q, NON-SATURATED, Q, OFF

v Vi Ve | Ve2 | Ves
CALCULATED | 10.0 0.7 8.6 | 8.7 22.3
MEASURED* 1.0 0.7 9.0 | 8.6 22.5

*Measured with a positive DC trigger of 12 v,

17
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Quiescent Current and Voltage for Q1 Off

When the condition exists that Ql is off and Q 4 is in either the saturated
or non-saturated state, Q1 ’ CR3 and the associated circuitry are removed
from the circuit because of reverse biasing., Figure 8 is the equivalent circuit
used for the circuit analysis and Figures 9 and 10 are the equivalent circuits for a
transistor in the non-saturated and saturated state respectively, A 0,6V drop was
assumed across the diodes CR4 and CR; due to forward biasing. Utilizing the

nodes indicated in Figure 8, the circuit equations were derived for the state in

which Q4 is saturated and are presented below.

v 1
E2 C2 _ 24.4
t o—— = - (4)
Ry B2 R,
1 1 1 1 1.2
v + +ve, |- v, F1-2L) = L (5)
E2 (R; R‘;) E4 (R;) c2 ( pz) Ky
1 11 1 _
VE2 (R—)" VE4 (R‘; . Rﬁ) -7
1.2, 26.2 , 0.6 (6)
Ry ° Ry © Ry
1 1 1 - 1 .
VEs (ﬁ; D el R—l;) + Iggl) # Ic(ﬁ'; =
24.4 , 23.8 _ 1.2 (7)
R, = R, " Ry
1 _ 25
VE4 (‘ 1'7) tlea Tl * R (8)
1 1 1 25
v - - + 1 1 + —-) = 9
E3 ( R KR) c3 ( Bs) Ky )
Veall) + Vg (-1) = -0.4 (10)

The matrix used for the computer solution of this state is presented in
equation 11, The computer solution of this matrix is included in Table 2. For
the situation where Q 4 is non-saturated, it may be easily seen by referring

19
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to Figures 9 and 10 that the matrix for this case may be written directly from the

matrix of equation 11. When Q4 is non-saturated, the base current IB4 is

directly proportional to llﬁ4 times the collector current IC4' Therefore, the

matrix for Q4 (non-saturated) may be written as shown in equation 12. The com-

puter solutioi for this matrix is shown in Table 3.

TABLE 2

COMPUTER SOLUTION OF TRIGGER CIRCUIT

(Q, OFF, Q SATURATED)

Ve2 Ve Ve lc2 e lca a4
22.3 8.3 8.7 0.004 0.002 0.002 -0.0002
TABLE 3
COMPUTER SOLUTION OF TRIGGER CIRCUIT
(@, OFF, @, NON-SATURATED)

Ve2 Ves Ves Ic2 ) lcs
22.1 88 2 0.003 0.002 0.001

Quiescent Current and Voltage for Q, Off

When the circuit receives a sufficient positive DC trigger to cause Q4 to

be cut off and Ql to conduct, the equivalent circuit represented in Figure 11

applies, In this case, Q4, CR1 and (J'R4 are ignored due to reverse biasing.

The first situation to be explored is when Q1 is saturated and the equations

for this case, utilizing the circuit indicated in Figure 11, are presented in equa-

tions 13 through 20,
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1 vo.l1.2 0.6
VEI(n;)“ ‘81 * "R~ - K, (13)

2 4
VEl (‘Rl'.,') -ler - ¢ %f (14)
o R O S
W) lhed) BoR
Ve )+ Vo,(-1) = 0.4 (18)
VE3 (Rlz * s (61;)= E‘?T'f (19)
VE3('RLI'6+FI{_Z_)+IC3 (1“;:—3)=RZ—15; (20)

Its corresponding matrix is shown in equation 21. The computer solutions
for this matrix for values of V=1 to 10 volts are in Table 4. As was stated
before, it is possible to write the matrix for the non-saturated condition directly.
However, in this case, the equations are as shown in equations 22 through 28,
The matrix for this set of equations is presented in equation 29 and its computer
solution in Table 5.
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1 1 . V-1.2
VEl (‘R’z')+ Ic1(31’) X, "X, (22)

1 1) 25 0.6
VE) (FT)+ e (”ﬁ;) "R T X, (23)
{
v (‘Rl’)"vzz(%’“kl‘)* IC,(-I-—I—)= 0 (24)
P\ Re 9 Rp) - B2

(25)
_24.4 , 23.8 1.2
Ry Rz i3
1 1 1 1 25 0.6
v. |- - - + Vv = - (26)
1 ( ITQ Ry "R E2 (R';) Ry R_l‘l
1 1 24, 4
\' + 1 —) = (27)
e (%) 1o () = 51
1 1 ) ( 1) 25
v - - =]+ 1 1 + — | = (28)
E3 ( ‘R_lg R, C3 B3 ’RE

The analysis, as presented above, is typical of the analyses of the remain-
ing circuits. All equations necessary for the complete description of the relation-
ships between the components and the respective circuit performance character-
istics are defined in the matrix equations. Thus, all required tools are available

for a Monte Carlo Mathematical Simulation.

3.2,2 Transfer Functions of a Variable Frequency Oscillator

This study of the performance of a variable frequency oscillator will be
limited to an analysis of the oscillator's frequency as a function of its components.
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v

A schematic of the osc:llator is shown in Figure 12 and its equivalent circuit is

shown in Figure 13, Table 6 prese-ts the performance criteria for the oscillator.

rante 62

PERFORMANCE CRITERIA OF VARIABLE FREQUENCY OSCILLATOR

Requirements Maximum g:::g: Minimum

Frequency range | 250 ke —— 50 ke
Frequency range 2 1 me -——- 250 ke
Frequency range 3 Sme — 1 me
Frequency range 4 10 me ———— 5 me
Power Output ‘ 4 mw 3 mw 2 mw
Output Impedance 50 m——— ———-
Load Impedance —— ——— 50
Output Voltage, 50-ohm Load Open Circuit ——— 0.4v -————
Frequency Stability, Power Supply 1% v DC ——— ————
DC Supply Voltage ———- -12v -—
Operating Temperature 500C 25°C 0°C

It has been shown that if a circuit is provided with a sufficient amount of
regenerative feedback, a transistor circuit will serve as a generator of period-
ically varying waves, A variety of feedback circuits which differ in detail are
available for the production of self-sustained oscillations. Characteristic of these
circuits is a feedback network through which a portion of the output is fed back
into the input circuit having sueh phase and amplitude that self-excitation results.
The analysis of such feedback oscillators will be simplified with the application of
the following two points: [12, 15, 16, 25]

1. The response of a circuit is oscillatory if the poles of the transfer

functions are complex conjugates. The oscillation will be sustained
with constant amplitude if the real parts of these poles are 0.

2. The voltage amplification or transfer function of a feedback amplifica-
tion with voltage feedback is:
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The poles of this function are the roots of the denominator: 1 - Ao = 0.
The procedure for analyzing the feedback oscillator is as follows:

1. Draw the complete Class A equivalent circuit (this is shown in Figure
13):

a. Replace by-pass capacitors by short circuits

b. Replace radio frequency chokes with open circuits
c. Indicate tube or transistor capacitances

d. Draw the circuit as an open loop amplifier

2. Compute the over -allamplification of the open loop circuit as a function
of the frequency (p). This will equal the feedback factor: Ao.

3, Let BA_-1 = 0.
[o]

4. This equation will appear as a polynomial in (p) with unity as the
coefficient of the highest power of (p).

5. For oscillations to occur there must be a pair of conjugate roots with
zero real parts. These two conditions yield two design equations.

From Figure 13 a nodal analysis allows the following equations to be written:

V. -V
1”3 -
pL * 5er
P¥3
(V2 - Vidgpie + Vagy - (V- Volgy, = 0 (31)
(Vs - V)
= * (V- Vy)g,, + Vigy + V3pC, = 0 (32)
pL + o

3

The following is the coefficient matrix of the above equation:
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r -
(8 + Brr + el —+pC.)  (-g.1.) e T
g% Byig t 3———+P -8 ——
R T ble p°C,L+1
(- Bhle gm) (84 + 8pe T gm) 0 =
<—z——'pc3 + Ca) 3 + g. + BC)
g - g —~——— -t gyt P
pLC 41 ™ ™ pLC, + 1 3 1
V3
The gain is o~ = pAo =1 (33)
1
. _ A
since V3 = =X (34)

where Al is the coefficient matrix with the coefficients of V3 replaced

by the constant terms of equations (30, 31, and 32) respectively. Then the gain,
V3
T, may be written as:

1

v A
3. __.2_ (35)
1 vl
combining equations (33 and 35) we have
4
vx-1=0 (36)
1
multiplying equation (36) by v,a and
a, - V,a=0 (37)
Since Al = 0 because column 3 in the matrix is all zeros and V1 cannot
equal zero, then A= 0. (38)

We now solve the coefficient matrix and from equation (38) we set the matrix

equal to zero. Solving the matrix, we have

34
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(8168483 * 818381 * B 838 81838 ] ¥[8y, 8,C) + C3Byi o8y ¥ Ci8pi 83t
Co838, +8)8,.Cp *C3818,, *88,C) +Ci818, * Cy8,, 85+ Ca838, *

(C,8,+ 8, C) +Csg) +Cygy + Cygyle, P +IC Cg +CCug, +CCog, +

283

+ + +
C,C38, +C1Cagp * C Ca8, +8,1,8,83C3L * 8,848, C3L *8,858,C, L (39)

+
(C1 2+C2C3+CSC1 +glg3 3L)g ]P +[gb' e84 1C3L+gb| g3C2C3L

3
o C3g3g4L+g1gb, C, c L+g1g4C C, L+ (C C3g3L+g1C1C3L)gm] P+

4
+ =
[CIC C3gb' L+ C o C3g4L C1C2C3L g | P 0
The circuit values for this matrix are shown in Table ] and substituting these

constants in the above equation (39) and combining terms will result in equation

(40) below.

-8 -8
2.8x107 g |

+

[0.08457248618 x 10

+[0.7996937653 x 107'* + 3.060708003 x 10712 g |

18 2

-20 . 769320769 x 10~ g | P (40)

+[3.5191363382 x 10 +

>

-24 ’ -22 3

+{0.1233719939 x 10 + 0.1311538462 x 10 gm] P

+[0.1251125203 x 107 + 0.405x107% g 1P* < 0

The first technique utilized to solve equation (40) for the resonant frequency
(p) was graphical in nature. A computer program was developed to solve the
above equation and a search was made for the value of g, that would result in a
pair of complex conjugate roots on the imaginary axis. Figure 14 is a graph of

some of the roots of equation (40). Figure 15 is the same data presented on an
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expanded scale. This graph intersected the imaginary axis when the value of 8,
was 0.0086 and p = j381,300. Since p = jw and w= 2nf, the frequency of oscil-
lation may be found by equation 2nfj = 381, 300j. Divide both sides by j

2nf = 381,300

= 28L200 2 60,717 cPs (41)

A second method for solving equation (40) is the utilization of the Routh-Hurwitz

criterion. The technique is as follows for a 4th order equation, after dividing

8

equation (40) by 10™" the 4th order equation appears as equation (42)

22 16

(.125 x 10°%% + . 405 x 10%°

4 - -14
g,)p + (.123x10 + .131x107" " g Jp

12 6

+ (3.52x 107 + 4.77x1071% g )p? + (.800x 1070 + (42)

3.06x10°% g )p + (.0846 +2.8g ) = 0

Em

This equation is of the same form as equation (43).
4 3 2
1-AB = ap + bp” + cp  +dp+ e = 0 (43)

The formal procedure is as follows:

l. Form the array from the coefficients

B =

bec - ad
E 1] = e

be - a(0)
—5
(44)

. Ad-bB ch-A(O) = B

b o » o
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2, The number of sign changes in the first column of the array equals the -
number of roots with positive real parts. If there are no sign changes
in the first column, then the system is stable.

3. To produce a sign change in the first column, term C can be set < 0.
If C= 0 is solved, it yields the value of g_ at which the system
becomes unstable. This corresponds to the tondition that the roots of
the characteristic equation have zero real parts.

In this case:

C = (.800x 10°°

4 28 6

+ 3.06x107%g )(.35x 10728 + .345x 1072

24 -32 +

- 2 -2
gm-.62x10 gm)-(8.46x10 +Z.8gm)(.015x10

28 2

«30 -
. 0322 x 10 Bm + .0172x 10 Bm

) (45)

This can be solved by trying positive realizable values of gm(. 000 to . 060)

in the expression to find the g, 2t which C=0. This yields a value of g near

. 007 or . 008.
. o C
004 o4 x10°4
006 454 x 1074 (46)
.007 ,349 x 1074
.008 —165x 1074
.010 - 44x107H

The value of 8, 2t which C=0 can be substituted into the characteristic
equation and this can be solved for p.

Since we are interested in the roots having zero real parts, p=0 + jus 0

+ j 2xf, and the fourth order equation can be reduced to two equations:

Re = 0: aw4 - cwz + e =0 (47)
Im = 0: - bjw> + djw = 0 (48)
. Both equations should yield the same value for f when the proper 8m is used.

The frequency of oscillation is calculated as approximately 60 KC as shown in
Table 7 below,

39



TABLE 7
COMPUTATION OF FREQUENCY OF OSCILLATION

O From Re =0 From Im=0
0.007 61,6 KC 59 KC
0,008 61,4 KC 60 KC

A third approach relating to the proceeding results is an explicit determin-

ation of the resonant frequency. This procedure is as follows.
Let the denominator of the transfer function be of the form shown in
equation (49) where the coefficients are given in terms of Em and where p = jw

A+bp+cpz+dp3+p4=0 (49)

The technique which follows enables one to solve for 8m and use this
result to find the frequency of oscillation. Since we are looking for the complex

conjugates, it is possible to write the above equation with these factored out.

This gives:
. . 2
(p+ipy) (p -ipy) (@t pp +p7) = 0
(50)
2 2
or (p +p°)(a+pp+pz)=0
Multiplying out and equating like coefficients, one has
2 2 2 4 2
ap, * Bpg p+(a+poz)p +pp’+p? = atbptcpitdp’+pt (51)
2 2
a’po = a a= a/Po (52)
2 2
Ppg =0 Pg = blp (53)
2
atpy = ¢ at b/p = (54)
p=d . (55)
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Combining the above, we have the following two equations:

a_i;__‘! + % 2 ¢ (56)
Pe. = 3 (57)

From these two results the solution for &m is explicit and the frequency

of oscillation is uniquely determined.

CONCLUSIONS:

Of the three methods described above, it appears that the third approach is

the most efficient. The results determined analytically, satisfactorily compared

with those determined empirically. The above results allow a Monte Carlo simu-
lation t> be performed on the oscillator circuit. This will enable the distribution
of the performance parameters to be determined for variations in circuit compo-
nents; both for the initial performance distribution as well as the time-dependent
distribution, which may result from a degradation or change in values of compo-

nents,

3.2.3 Transfer Functions for the High-Level Amplifier

. The next circuit to be analyzed is that of the High-Level Video Amplifier
shown in Figure 16, This amplifier consists of a two-stage, common emitter
feedback pair, driving a common emitter, high voltage mesa type output trans-
istor. Although some compression may occur in the second transistor, the entire
chain is designed as a linear amplifier up to the output capabilities of the trans-
istor 03. Provision is made for DC restoration at the base of 03 to permit
operation with long-duty cycle pulses, However, because of the small DC offset
inherent in this form of clamp, optimum performance is achieved only if the duty

cycle is restricted to 20 percent or less.

This type of amplifier is designed for use mainly to accept positive unipolar
signals from low-level sources and deliver a high-level negative control voltage

to a radar or some type of cathode ray display device.
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Figure 16, Video High-Level Amplifier Schematic

The analysis of this circuit was performed in two parts; the first being that

of the output amplifier or Q3, and the second that of the commion emitter feed-

back pair.

The DC equivalent circuit of the output amplifier Q3 is shown in Figure

17. The analysis of this equivalent circuit yields equations (58) through 60)
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Figure 17. DC Equivalent Circuit of Output State of Video High-Level Amplifier

The equations are then rearranged and put into matrix form for ~omputer
solution. When typical values of B are used, the matrix equation (61) may be

solved and the computer solution is shown in Table 8.

— —_- -
1 0 R, Ves v, o
0 -B4(Ro*R,) -RoR o Ves | = | B3R oV*0: 7B3R +0. 7B,R |
0 B -(B.F1NR,+R | | I

. ; IR {les || 0 _

(61)
TABLE 8

COMPUTER SOLUTION OF MATRIX FOR THE OUTPUT STAGE

\' |

c3 Ves c3
97.78 0,313 1.008 ma
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It is now desirable to solve for the DC operating point for the common
emitter feedback pair (Ql and QZ)‘ The equivalent circuit for this problem is

shown in Figure 18.

Vi Re Ve2

R3

o () Ve, +0.5 ,?
V. 105 & %
i 305 )

(]
Vu
R? R4 R7

Ve

V2
RS

Figure 18. Equivalent Circuit for Common Emitter Pair of High-Level Video Amplifier

The circuit analysis of this equivalent circuit yields equations (62) through

(68).
vV, -V A% -V
1" Vez , Ve1 - Ve )
®,_ 'K, “lgp =0 (62)
Vea " V2 ., L2 (63)
R c2 ¥ G,
Y_-'?_E.i?__zé+ VE1 TP Ve =0 (64)
R, R, R,
inVa o ez (65)
R, a1 T,
- (66)
Vg, = Vg, * 0.5
Ver (AN, Y Ve (7
- R
R, B, J'c1 ;
V, -V, -.5 I
2~ VEI _ la (68)
R, P
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Froun. the above equatiuns, the matrix equation (69) is tormed and the

computer solution of the equation is presented in Table 9.
TABLE 9
COMPUTER SOLUTION OF COMMON EMITTER PAIR OF HIGH-LEVEL AMPLIFIER

Var Ve2 Vey Ve2 Vs ler le2

5.76 16.78 .1 5.16 4,05 0.003 0.005

Measurements of the critical circuit parameter were made on a breadboard
of the amplifier to validate the transfer functions represented in equations (61) and
(69). A comparison of the analytical and empirical results is presented in Table
10.

TABLE 10

COMPARISON OF MEASURED AND COMPUTED VALUES
OF VIDEO HIGH-LEVEL AMPLIFIER

VOLTAGE COMPUTED MEASURED
VCI 5.756 V 7.0V
ch 16.776 14,5
VEl 1.104 0.95
VE2 5.156 6.2
V2 4.055 5.1
VC3 97.78 98.0
VE3 0.313 0.4

As may be seen from Table 10, the results check rather closely. The
agreement between the computed and measured values would improve if the meas-
ured values of B; and B, (35 and 42 respectively) were used in place of the
assumed values of 55 and 60, However, the results serve to validate the transfer
functions for the DC bias conditions.
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Another important parameter in addition to the DC quiescent point is that

of the AC small signal gain.

Therefore, an AC equivalent circuit was developed

and is shown in Figure 19. Since the frequency AC Equivalent Circuit of Video
High-Level Amplifier of interest is 50 KC, the circuit may be simplified to that

shown in Figure 20. Utilizing the simplified equivalent circuit, a nodal analysis

yields equations (70) through (77).

equation (78). This matrix is then solved by means of a computer and the results

are presented in Table 11,

(V1 - Vz)g1 + Blibl + (V4 - Vz)gel =0

1y, ¥ Vilgy + ) - Palp, = O

LAV - Ve + : £128°3 1\ _
Patp, * Vs - Valos * Vee 0,10 Psts, * Vs (g, 738,

\ -
V4g4+ (V4 - Vs,g5+ (V4 - Vz)gel = 0
‘3311:3 Vg = 0
ip, = (V) -Vylg,

+V
1

= 0

Biip 383

L b e v £)28°3 0
1 - =
b3 p31b3 5 82 + gey

Note: g = b:4
g = . 001 86,9,10 = . 00205 By = . 000454
g, = .0000213 gey = . 077 B, = 55
g3 = . 000147 ge; = .077 . B, = 60
Bg ™ . 00555 g8, = . 00454 p3 = 13
8 = , 000213 8j2 = .0147

These equations are then formed into matrix

(70)
(71)
(12)

(73)
(74)
(75)

(76)

(77)
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Figure 20, Simplified AC Equivalent Circuit of Video High=Level Amplifier
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TABLE 11

COMPUTER SOLUTION OF AC CIRCUIT ANALYSIS OF
VIDEO HIGH-LEVEL AMPLIFIER

V. V. Ve | Vs \) by b2 b3
0.96 | -9.4.]0.93 | 14.6 | -379.8 | 0.00004 | -0.0008 | 0.008

The above analysis is based on small signal equivalent circuits and as-
sumes that the transistors are linear devices. In practice the predicted perform-
ance will only be valid for low-level signals. Specifically, the output stage Q3
will be extremely non-linear to large input voltages.

Table 12 presents the computed and measured values of small signal

voltage gain, input impedance and output impedance in the 50 KC frequency range.

TABLE 12

COMPARISON OF COMPUTED AND MEASURED SMALL SIGNAL GAIN
OF VIDEO HIGH-LEVEL AMPLIF IER

Transfer Function
or Impedance Computed Measured
Ve
Voltage Gain v -380 -330 + 25%
1
V,.
Input Impedance Zin Rl + f = 22,5K 18K
1
Output Impedance Zou’ R” =2,2K 2,2K

The pulse voltage gain of the amplifier was also measured using a 10% duty
cycle., This transfer function is plotted in Figure 21 and illustrates that the gain
is quite linear for vin less than 100 MV and approximates the computed small
signal value in this region. In fact from Figure 21, the low-level pulse voltage
gain = VC3/vin = 38V/0.1V = 380, This indicates that the small signal
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A

voltage gain transfer function is also valid for the low-level pulse voltage gain for

duty cycles under 50%. Transistor Q2 begins to compress the signal for inputs
above 100 MV because its gain drops as it is driven to cutoff.

Table 13 presents the performance criteria of the amplifier.

NOTE: The current gain and the base emitter voltage of the three transistors used

in this amplifier were taken from manufacturer's documents: [13] and [14].

3.2.4 Transfer Function of the Video Low-Level Limiting Amplifier

This subsection will develop the transfer function for the DC bias conditions
of the Video Low-Level Limiting Amplifier presented on page 3 of the RADC Tech-
nical Report RADC-TR-59-243,

The circuit accepts short duty cycle positive pulses from a radar detector
or srme other source and provides a nominal voltage gain of 12 up to the limiting
level. Input signals in excess of 5 volts are delivered to the output terminals at a
5 volt level. The maximum signal swing capability and limiting action is achieved
by biasing the first stage near cutoff, the second stage near saturation and the out-
put stage at cutoff. A biasing scheme of this type admits unipolar positive pulses
at the input and provides for minimum standby power dissipation in the amplifier.
Thus, power dissipation capabilities of the output stage are used most advantageous-
ly for efficient signal power transfer to succeeding stages. By properly control-
ling the gain of the first two stages, the output stage may be driven to saturation
and limiting action occurs at the desired input signal level. The performance

criteria of the amplifier is presented in Table 14,

The amplifier schematic is shown in Figure 22. Critical performance
criteria that are considered in the following analysis are the DC quiescent currents

and voltages for the condition of no input signal.

The DC equivalent circuit of the amplifier is presented in Figure 23, Note
that all AC dependent parameters are removed from the circuit and the diode CR1
is removed because of reversed biasing. The analysis of this circuit yields
equations {79) through (87).
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TASLE 14

PERFORMANCE CRITERIA OF VIDEO LOW-LEVEL LIMITING AMPLIFIER

REQUIREMENTS MAXIMUM [C)Elfl':'gf? MINIMUM
INPUT LEVEL, PEAK POSITIVE 5V _——— 0,001V
INPUT IMPEDANCE -_—— - -_—— 1000 O
OUTPUT LEVEL (75-OHM LEAD) 5V —_—— 0.012v
VOLTAGE GAIN (0.001 VT0O0.1V) 15 12 8
RISE TIME 0.05uSEC | 0.035uSEC |} — — —
DROOP (500~ SEC PULSE) 10% —_——— —_ ——
OVERSHOOT 5% —_—— —_——
LINEARITY (0.001V TO 0.05V) 5% —_——-— —_ - —
D-C SUPPLY VOLTAGE -—— - +25V ———
| OPERATING TEMPERATURE 850C +12v '55°C
v 1 v v
El C1 0.6 C2 - "El
= I + =1+ + (79)
R, 1 By Tbl Ry
25 -V 1
Cl c2 0. 6
=1 + —_— =2 (80)
RZ Cl 8 T2
v Voo = Voo, - 0.6
E2 g2 YE1~ % cz . 0.6
+ = L., + y 0:6 (81)
Rg Ry Cz © B, Ty
25 -V, Vez - VEI (82)
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v + 0.6 = V (83)

E2 Cc1
fe1 , 0.6 Vg2 - Vg - 0:6 (84)
= -3
G Th1 11
Yes 4 los (85)
R C3 B ‘
9 3
Iy _ 12-Vgy-0.6  Vgy+o.6 56
By Rg R,
1., = 12 Ves (87)
c3 T TRy

These equations are used to form the matrix equation (88).

The matrix equaticn is then solved using a computer and Table 15 presents
a comparison of the measured and calculated values of the critical circuit param-

eters. Thus, an examination of the results validates the developed transfer

function.
TABLE 15
COMPARISON OF MEASURED AND CALCULATED VALUES OF THE
LOW=LEVEL LIMITING AMPLIFIER
COMPUTED:

B | e | VBl 'a | ‘e c3

1.76 | 1.34 | 11.68 | 0.5656 | 11.16 | 0.453 |0.000976 | 0.000719] 0.00945

MEASURED:
Val Vee | Vo |l YVa | Y2 | VB
mov | 120 | w7 | oss | 100 | o5
= |
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3,.2.4.1 Low-Level Amplifier Mathematical Simulation

As was described in detail in Section 2, the performance of the Low-Level
Limiting Amplifier was evaluated by simulating the assembling of 1000 amplifiers !
utilizing the 9400 Sylvania computer. The necessary computer routine to accom-

plish this evaluation is represented by the flow diagram shown in Figure 24,

Table 16 describes the underlying frequency distribution of the various
components in the circuits, The p represents the nominal value, the 0 repre-
sents the standard deviation, (c:2 = variance), the upper and lower limits repre-

sent the truncation points of the distribution, i.e., the tolerance limits for each

e e B b, B 5 ¢ e

component.

These underlying frequency distributions which define the parameters in a
statistical manner are utilized in the repeated computation of the transfer func-
tion, The results of 1000 iterations are shown in Figures 25 through 28, Having
determined acceptable boundary conditions for each of the critical performance
criteria required for acceptable operation of the circuii, it is pussible to deter-
mine from Figures 25 through 28 the over-allreliability of the circuit. Moreover,
the sensitivity of the individual performance criteria as a function of the varia-
bility of the individual circuit components is also established. This process can
be repeated for any number of hours of simulated use. This is accomplished by
simulating the aging of component parts using degradation rates as shown in
Table 16. These rates must be determined by analyzing the physics of failure of

various elements of a circuit. [20]

Referring to Table 16, the means and variances (p s and 0 s) for the
various components (at t = 1000 hours) are given. With this information that
describes the underlying frequency distribution of the parts, it is possible to
determine the cumulative distribution functions of the circuit parameters at
t = 1000 hours by repeating the tecnnique outlined above. The cumulative dis-
tribution functions are plotted in Figures 29 through 34, As a check on the ran-
domness of the number generator, two of the circuit input curnulative distribution
functions were plotted. At t = 0, the cumulative distribution function of Rl was
plotted and is presented in Figure 35. At t = 1000 hours, the cumulative distri-
bution function of B, was plotted and is shown in Figure 36, The general shape
of these curves i. e., the straight line indicating uniform distribution and the S
shape curve indicating normal distribution, validate the correct operation of the

random number generator,
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TABLE 16

UNDERLYING A FREQUENCY DISTRIBUTION OF PARAMETERS USED IN

LOW-LEVEL LIMITING AMPLIFIER

t=0 HRS
mean  PISNORT Lowe | upper

B e | umr | umir

RY 1,000 » 9% | 1,0%
Re | wow | 2 | 950 | 10,50
R3 ez 6 | B
R4 5600 | 162 | 532 | 5,80
RS 1,500 8 | a5 | 1,50
R6 1,500 8 | L85 | 1505
R 2,20 o | 200 | 2310
RS | 200 | 60 | 2% | 210
R9 ) 14 Mo | 493
RI0 330 10 | 3%
RIL| J00,00 | 289 | 95000 | 105,000
*g1 2 4 10 3
*g2 2 a 10 38
L | 10,000 | 289 | 5000 | 1500
2| 10,00 | 2% | 500 [ 1500
*g3 75 % % 120

NOTE: ALL DISTRIBUTIONS UNIFORM EXCEPT BI & B2 WHICH ARE TRUNCATED NORMAL

£+ 1000 HRS
MEAN E{C:ﬁgﬂ LOWER | UPPER
i TN it | i
1,000 58 w0 | 1,100
10,000 s | 9,000 | 11,00
220 B3| 198 22
5,600 2 | so00 | 6160
1,500 & | 130 | 1,65
1,50 & | 1,30 | 1,65
2,200 w | L | 24
2,00 | 120 | v,m0 | 2420
an 7 4 5:7
3% 19 7 %3
100,000 | 5780 | 9,000 | 110,000
a 7 10 50
2 7 10 5
10,00 | 2% | 500 | 1500
0,00 | 200 | 500 | 1500
75 3% % 1

"Tos INSTRUMENT TRANS ISTOR RELIABILITY DATA 3RD QUARTER 1961
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As an example of the usefulness of this technique, consider the critical
performance limit of VE3 to be 0. 6 volts. Referring to Figure 37, the cumula-
tive distribution function of Vg, at t= 0, it may be seen that a 0. 6 critical per-
formance limit produces no failures. However, making use of the Monte Carlo
technique, referring to Figure 32 it may be seen that at t = 1000 hours that 4 per-
cent of the units would fail. Thus, the example above briefly highlights the use-~

fulness of this technique in predicting the future reliability of a circuit or system.

3,2.5 Transfer Functions of the Monostable Multivibrator

The monostable multivibrator circuit appearing on page 55 of the RADC
Technical Report RADC-TR-59-243 has been analyzed and the following transfer
functions as a f{unction of individual circuit parameters as well as the supply volt-

ages have been developed:
(a) Quiescent current and voltage
(b} Output amplitude
(c) Output pulse width

The schematic of the monostable multivibrator is shown in Figure 38 and

the performance criteria of this circuit is presented in Figure 39,

The monostable multivibrator has two states, one permanently stable and
one quasi-stable state. This type of multivibrator requires a triggering signal to
change from the stable to the quasi-stable state. It is possible for the multivibra-
tor to remain in its quasi-stable state for a long period of time in comparison to
the time required for transition between states, However, no external signal is
required to reverse this transition,i. e., eventually the multivibrator will return

from the quasi-stable state to its stable state unaided. [24]

When a single negative input trigger is fed to the monostable multivibrator
represented in Figure 38, an output gate with a controlled width and a fixed ampli-
tude is delivered to its output terminal., Transistors Q1 and Qz form a regen-
erative feedback pair while transistors Q3 and Q4 operate as emitter followers
providing a low output impedance as well as isolating the timing and trigger func-
tions from external disturbances. Transistor Qz is normally operating in the
non-saturated condition while Ql is cut off. When a trigger is fed to the multi-
vibrator, Q, is cutoff and regenerative action drives Q, into saturation. During
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the transition, a charge is stored on the parallel combination of capacitor C 4 and
the external timing capacitor. The charge on these capacitors dissipates in a
finite time period corresponding to the gate length,

The basic application, that of a gating or timing circuit, of this type of
multivibrator results from the fact that it may be used to establish a fixed time
interval, the beginning and end of which are marked by an abrupt discontinuity in

the voltage waveform.

Quiescent Current and Voltage for Q1 Off During Stable State

The DC quiescent currents and voltages are derived when the monostable
multivibrator is in its stable state with no input signal applied. When the circuit
is in this condition, Ql' CR3, and CR7 can be removed because they are reverse
biased. Then, Figure 40 is the DC equivalent circuit for the state in which Ql is
nonconducting and Q2 is conducting. Transistors Q3 and Q4 are emitter
followers and, therefore, are conducting but are not saturated nor cut off. A 0.6 V
drop was assumed across each transistor input and also across CRI’ CRZ’ CR4
and CRS since they are forward biased. The cathode of zener diode CR6 was
assumed to be at or less than 6.2V because of the zener diode equivalent circuit
in Figure 41. A complete circuit analysis of the multivibrator for this state yields
equations {89) through (99).

25- Vg3 - 0.6 -(25- Vg,) , Ves- Vee- 12 Ig 9)
R Rg Re B,

L les L VEs, Vst 001

C3 B3 R Ry

Ves- Va1 i lg Vegtl2-Vp zs-vm-o.si 1 o
X, - X, X, c2

25-Vgp-1.2  Vp,+1.2 , Loz, VE2r V) w2

Rig¥ Ry R Ky 6y Ry
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Ves - V) , Vgt 12 -V, _ v, 031
Rg Ra R,
I \%
c2 E2 ,
ICz + _B; = -R-Z—- (94)
Ica . VEs Vea - V2
Icg = vt R (95)
A L2 10
VEq-Vy _ Vt 25
)3 = R (96)
10 11
Ve * Vgt 0.6 (97)
Vg + 1.2 S 6.2 Due to CRé (98)
VCZ > Vg, + 0.2 For QZ Non-Saturated (99)

These equations completely describe the quiescent currents and voltages of the

monostable

multivibrator. It must be noted that in order for the transistor Q2 to

be saturated the inequalities (98) and {(99) must be satisfied. Therefore, it is

possible to obtain four different solutions when Equations (89) through (97) are

solved. The following procedure will indicate which of the solutions is correct.

(a)

(b)

(c)

L <
If the solution is such that VE4 2 5V and VCZ > VEZ + 0.2 then
equations (89) through (97) are valid.

If the solution is such that VE4 § 5V and VCZ s VEZ + 0.2, then
Qz is saturated and equations (89) through (97) must be revised as
follows: In equations (92) and (94) set Icz/p = IBz and add equation (100)

v s V

c2 + 0.2 (100)

E2

If the solution is such that VE4 > 5V and ch > VEZ + 0.2, then
CR6 is in zener breakdown, Qz is not saturated and equations (89)
through (97) must be revised as follows:

(ki
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In equations (89), (91), (93), (95), (96) and (97) set Veg = 5V
o <
(d) If the solution is such that V., $5V and Ve, 5 Vgp + 0.2, then
CR6 is in zener breakdown, QZ is saturated and the equations must be

revised as in (b) and (c).

Equations (89) through (97) are now used to form the matrix equation (101).
It now must be determined which of the four conditions listed above is appropriate,
Table 17 presents the computer solution of the matrix equation (101). As may be
seen from the solution, the inequality of equation (98) is not satisfied. Thereiore,

matrix equation (101) is not appropriate and condition{(c) must be used.

TABLE 17
COMPUTER SOLUTION OF MONOSTABLE MULTIVIBRATOR FOR Q] OFF

Ve2 Ves Ves Ve2 Y V2 lc2 lca Ica

18,89 9.85 10.45 4.55 1.54 .0055 .0096 .0055

4,67

Table 18 presents the computer solution of the multivibrator utilizing
condition (c) and the actual measurements made on a breadboard circuit in the
laboratory, As may be seen from Table 18, all equalities are satisfied and the

close comparison of calculated and measured values validate the accuracy of the

transfer function.

TABLE 18

COMPARISON OF COMPUTED AND MEASURED VALUES OF MONOSTABLE
MULTIVIBRATOR FOR Ql OFF AND CONDITION C

Ve2 | Ves | Ve Ve2 Y, V2 Ic2 lea Ica
COMPUTED | 3.55 | 16.91 | 5.0 | 5.6 3.04 2.16 0.00417 0.0087 0.0013
MEASURED | 3.9 15.7 | 4.5 5.2 3.2 2,37 —- - -
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Quiescent Current and Voltage for Q, Off

When the monostable multivibrator receives a negative trigger of sufficient
amplitude to change its state, the equivalent circuit of Figure 42 with Qz off
applies at the beginning of this quasi-stable interval. In this state, C)2 ’ CR4
and CRZ are out of the circuit because they are reverse biased. Transistors
Q
emitter junctions of Ql’ Q3 and Q4 and across CRl, CR3 . CR5 and CR7

and Q4 are conducting in the active region. The drop across the base

was assumed to be 0. 6V because they are forward biased. The cathode of zener
diode CR6 is at or below 6.2V.

25 - VEy -0.6 _, , 3, Vesti12-Vi VEe-VEs-1l2
®y C1° By Re ) Re
(102)
v I
_El Iey * _c1 (103)
R; By
Ve, Ves*t 2 g o8
R R, C3 By
Vs L2-V V-V 108
Rs Rg Ry
Vee , YEa - V2 |, lca (106)
R, Ko Cse = By
ey VEs - L2 25-Vg, 25 - Vg, - 0.6 1_gé (162)
R, X3 X, "
25 - V, - 1.2 vV, + 1.2 vV, -V
R—+= * Rt (108)
14T K15 16 T Ry2 Rg
Ve~ Ve _ Vo - Vg - 08 Vp+ 2
®10 Rs R (109)
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R e s s o .

2 El cl
= == (110)
R4 1
Vo, + 1.2 § 6.2
E3 . . (111)
Vop > Vg, t 0.2 (112)

Equations (103) through (110) define the bias voltages and currents assuming Q1
is not saturated at the start of the quasi-stable period. Inequalities (111) and
(112) must also be satisfied or a procedure similar to that previously outlined
must be followed.

Equations (103 ) through (110) are used to form matrix equation {113),
The matrix is then solved by a computer and .T'able 19 presents this solution, As
may be seen from Table 19 the inequalities of equations {(111) and {112) are not
satisfied; therefore, the matrix equation (113) is not appropriate and again condi-

tion (c) must be used.

TABLE 19
COMPUTER SOLUTION OF MONOSTABLE MULTIVIBRATOR FOR Q2 OFF

Ver Ves Ves Y V2 Vs Vai Ies lca
7.099 20.13 23.09 9.40 10.43 10.21 ,00833 01015 | o4y

Table 20 presents the computer solution utilizing condition (c) and the laboratory

measureuents made on a breadboard of the circuit. Thus, the accuracy of the
transfer function is determined.

Output Amplitude

The output amplitude is the difference between the outputs (VE3 or VE4)
computed from Figure 40 and from Figure 42, The measured amplitudes were
AVEp, = 16V and OVE, = 16V for C_ = 1000 micro-farad and pulse width =

30 microseconds,

82

~



BB o sty Lo g o -

Franes

-
o
-y
-
4
P N
| = ~led
i W
' J ol ﬂlﬁ:
n 1
e o Sl e ¥y ° Rl ) ' Ry
) i L o ol =
#l N.‘n,f Qte c"“ )
| N ’ o J
"
' - - — ” 1
I A N >E > o > O Y S
| o ° o ° ~|ar ~|a* ° ° o
+ ]
_lu'" ° _1‘1 o o ° -3 ) o
~|a
- + ) -] ) ] o ° _‘Q.—
~N
e
- *f,
-1
+
) ° ° ~° © o -l o o
' +
)
ol
- += o
4 il
+
o ° o o -I = ° ) Rt ="
Iﬁ '
+
fal
e ™
* ©
e ® ° e ° ° ~|ed ° o
] + - !
o e
-y dz ]
wn
- ©
_!‘o o o ) ! s !‘ ° -—I‘- ©
_.d "I&o [
]
...l; -
' ~ ol o -] o
o ° ~led ° |
* ~| '
-n"" '
]
fod
© ..l, ) - o L) ] _"n "

83



MULTIVIBRATOR FOR QZ OFF AND CONDITION C

TABLE 20
COMPARISON OF COMPUTER AND MEASURED VALUES OF MONOSTABLE

<

E3

Vs

Cl

&

C4

COMPUTED | 6.
MEASURED | 6

.‘(h

7.1

5.2

0.008

0.004

0.008

Monostable Pulse Width

The time that the monostatle will remain in its quasi-stable state is a

function of the circuit parameters and supply voltages,

Figure 43 shows the

complete circuit and its similarity to a simple monostable with the addition of

emitter followers and clamp diodes.

The voltage at the junction of C4

can be determined by the same tec hniques used on similar circuits. [21]

collector voltage of Ql and the base voltage of Q,
and CR3.
puted previously and they appear at VE3

voltage levels by means of diodes CR ,

are constrained to two

and R16

The

These voltages have been com-

shifted by approximately 0.6V at a

relatively low impedance. An equivalent circuit is shown in Figure 44 for Q2

and CR5 conducting.

The voltage across Rlz in the steady state is:

R

12

R

_ 12
Vez * 1.3 7R,

(114)

However, during the quasi-stable state, Qz and CR5 will be cut off and the

equivalent circuit will appear as shown in Figure 45, Applying Thevemn ]

Theorem, the circuit in Figure 45a can be transformed to that shown in Figure

45b, where:

R

(R4 + Ryg) Ry
. L]
R, FRY 4Ry

(115)

ﬂ,.
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Figure 43, Monostable Circuit Used to Solve for Pulse Width
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. Figure 44, Equivalent Circult for Monosiable Pulse Width for Q2 Conducting
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C=C,+C, (116)
vV = Rlz 25 (117)
R PR, TR
+28 v
=0 +28
RhasRigetis R
o Q3
S —
x Ris o
En | c
Ves
Ves
c
Re 4 LIT] Re
-28 ' -28
A [

Figure 45, Thevenin Equivalent Circult for Monostable Pulse Width

The voltage at the junction of C and R will appear as shown in Figure 46,

v — o
8 ,’,__..-
”~

§ (VE2 1.2 =T

(VEson-vEaorr

st 6 e i

Figure 46, Output Voltags Waveform
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¢ where: RIZ

and the capacitor C discharges toward V so that the voltage at the junction of

R and C during the quasi-stable state is:

V-E exp (gg) (119)
RIZ
The quasi-stable state will terminate when e = (VEZ + 1.2) I
. 12 16
Therefore, the width of the pulse tlp can be obtained by solving the following
equation for t_.
P
| Rz -t
Vg LD g—FRr; = V-E o |x&
-t RIZ
E °"P( )= V- Vgt 12 gy
12 16
: V - (Vo + 1.2) R_.l.z_{f_r
-t - VE2 ’ ‘
exp (-ﬁ-g ) = E J:gn 16— (120)
Solving for tp
¢ E
exp fp = X
Ve (Vi + 1-2’(1("'7!"‘)
E2 127 R1e
N therefore, "L
t = RCIn B (121)
P V- (Ve,+1.2) 12
E27 % \Rp¥Kpg

e , LU



where:
E = Ve [(VEZ +1.2) - (VE3 On - VE3 Off))] {122)
and -
R
Vo TR ) t123)
12 14 16

For nominal values of circuit parameters:

19. 5V
19.5 - [(3.56 + 1.2) - (16.91 - 5.0)] = 25.65V

RC 1n 25. 65
p 19.5 - 4. 76

-
1}

STOR— = (55.7K)C In 1, 74

(31.0x 10%) C

1}

t

p (124)

Therefore, it may be seen from equation (124) that the pulse width is directly
proportional to the value of the external capacitor Cx and C 4 Table 21 pre-
sents a comparison of the computed and measured values of the pulse widti.. It
may be seen by referring to the table that the values check closely, thus indicating

the accuracy of the transfer function:

TABLE 21
COMPARISON OF COMPUTED AND MEASURED VALUES OF PULSE WIDTH

c, €Ay Computed 1 Measured t - PRF

.g 0 50 pf 1.56 microsec, 2 microsec. 50 KC

‘ 160 pf 210 pf 6.5 microsec. 7 microsec, 50 KC
100 pf 1050 pf 32,5 microsec, 30 microsec. 5KC
A pf A 3.1 miilisec. 2,6 millisec, 50 cpe
Spf o pf 15.5 millisec. 12,5 millisec, 20 ops
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. 3,2,6 Tranafer Functions of the Bistable Multivibrator

The bistable multivibrator circuit shown in Figure 47 has been studied and

. the following transfer functions have been developed:

a. Quiescent current and voltage as a function of individual circuit
parameters as well as the DC supply voltage.

% b. Output amplitude as a function of individual circuit parameters as well
‘ as the DC supply voltage.

c. Minimum trigger amplitude as a function of individual circuit
parameter,

Table 22 lists the performance criteria for this circuit,

e m el . e

i
¢
f cx, Chy
. - 9,
3 ) J
i ] cry
% -
°
< L] ?
n
NORMAL
ouTP

iEn.! e ) :Eo, n,!: E k‘c
<
b 3

1}9
) N b i€,
'uci
<
fa lﬂlE . $ s
4
G :E.‘Q 1
|
i
s ‘ & basser & camy
AT By ™OOR  INRT U

Note: This circuit is contained in RADC TR 59-243, dated December 15,
1959, Titled Reliable Preferred Solid State Functional Divisions,

Contract AF 30(602)-1906.

- Figure 47, Bistable Multivibrator Schematic
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TABLE 22 ‘ *
PERFORMANCE CRITERIA OF THE BISTABLE MULTIVIBRATOR
Design
. " R 'fmn" D ——— T —— - s s —— n _
Trigger (Flip-Flop) Input - - -
AC Coupled - - -
Trigger Amplitude 8v Sv -4 v
Trigger Risetime 1 usec - . 0.1 psec
Trigger Frequency 250 ke - -
: Input Impedance - - 9,0000
% Set-Reset (Bistable) Input - - -
% DC Coupled - - -
; Voitage Level +6v +2v 1 Ov .
§ Risetime - - 0.1 psec
' Pulse Frequency 250 ke - -
lnput Impedance - - 9,0000 .
Output Amplitude, Peak-to-Peck 18v 15v 10v
? Output Polarity, Both DC Coupled - - -
Output Risetime 1 psec - 0.1 psec
Output Decay Time 1 usec - 0.1 usec
Output Loading - - 2,5000
DC Supply Voltages - +25 v -
( - -25 v -
Operating Temperature 85°C - -55°C
§
| NOTE:

" This Is contained In RADC TR 59-243, dated December 15, 1959,
s Titled, Reltable Preferred Solid State Functional Divisions, Con~
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Quiescent Currents and Voltages

Since this circuit is symmetrical, the DC bias conditions will be computed
for the bistable multivibrator circuit in one state (Q 4 non-conducting, Q3 conduct-

ing). Thus, the bias will be known for the opposite stable state.

Figure 48, DC Equivalent Circult of Bistable with Q 4 off
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Figure 48 is the DC equivalent circuit for the state in which Q 4 18 non-
conducting and 03 is conducting. C}4 , CR7 . CRz, CRs, and CR6 are removed
from the circuit because they are reverse biased, Figure 9 is the DC equivalent

circuit for-a conducting, non-saturated transistor. Diodes CRI' CR3, CR 4 and
CR8
are forward biased., Figure 10 represents the DC equivalent circuit of a transis-

were assumed to have a 0. 6 volt drop between anode to cathode because they

o e e Y, WA S ST SHGRENE

tor in saturation., The equivalent circuits presented in Figures 9 and 10 were
utilized in solving the transfer functions for the condition of 03 non-saturated

and saturated respectively,

An analysis of the circuit yields equations (124) through (132), These
equations are then simplified:

Vest0.6-Vg,  Vgyt0.6425 VgV, VgV
3 3 B3 R R
5 8 12 13 (124)
25-Vg, 25-Vg,-0.6 g Vg, - Vg -l.2 125
) R3 B L3
Ve -Vgyt12 _ Vgtlh2-vy gy Vg, +0.6-25 .
R, R, B R, C3
(126)
V1t 12-Vy Ve -V VEs-Vy Yy (127)
Rg . R K3 R
: 1 v Vo, -V .
i cl El E1" V2
I., + = 4 E (128)
! c1 B K., R,
|3
Ve, -V V, + BS
E1- V2 2
'—1'4—— 2 _R;"" (129)
1 v Ve, = Vea - 0,6
c2 E2 g2 g3~ %
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EI+ 0.6 E3:'+ 0.2 (131)

0
<

E3

B3 " ‘c3 T HKo (132)

‘,WW,,
~

The matrix equation (133) is then solved using a computer and the results are
presented in Table 23,

NOTE: Waveforms at the minimum trigger level; dotted

TABLE m waveforms occur when insufficient input is present.
COMPUTER SOLUTION FOR Oy
- BISTABLE MULT]V'BRATOR vess v

Vea
‘P
r

0,9039
- 240

4. 2068
6.6
47048
0,00312
0.008727
0.00518%9

conducY

AV Y l°~
vE3

.

. WITH Q, OFF SATURATED 4
RL1 =R, = 2300 e

>°_1_ovnn-o-

Vge

Figure 49, Bistable Equivalent Circuilt ot the
Leading Edge of the Trigger Pulse

Ies - 0,000099

The solution for Q3 in saturation éppearo satisfactory, However, a

negative answer for base current IB3 is not physically possible, The negative
answer indicates that the circuit does not allow sufficient base current to
saturate Q3 as it would if the solution for base current were positive, This

means that the assumed condition (03 saturated) cannot be physically realized,

Therefore, the analysis must be repeated using Figure 9 to represent Q3
which is apparently conducting but is not saturated, This change results in the
following changes in the equations (124) to (132),
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IC3/(3 is substituted for IB3 in equations (124) and (132); and equation

{131) is eliminated.
The revised matrix equation (134) is then solved and the results together

with the measured results are presented in Table 24,

TABLE 24

BISTABLE MULTIVIBRATOR Q, OFF Q; NONSATURATED
B=25R ;=R ,=2500

M V2 Ver Ve Vea i1 Ic2 ‘e
Computeds 1,088V | <124V | 6199V | 1740V | 4.006v | 3.907MA | 9.31MA | 3.86MA
Meoswed: .07V | .3V | AV 7.0V 4.2V — — —
withR | =R, o

Computed: Vca-VEl+0.6'6.NV
Maecsured: Va-é.OV

Table 25 shows the solutions for the 8 variables for transistor f's of

10, 20, . . . 60, This data shows the changes in bias due to changes in transis-
tor current gain and indicates that the output amplitude (VEZ - VEI) increased by

11, 4 percent for a change in g from 10 to 60.

TABLE 25

BISTABLE MULTIVIBRATOR Q 4 OFF Q3 NONSATURATED
’m, ='°, 20, ...,60

Ry =Rz
Y A M1 Ve2 Ves oy e s
1,063 1,010 | .36 7.07 528 0.003819 | 0.008715 0,003207 =10
S Eamn S :
- o, ¢ I -
. $ g ‘3% ] z
8. O P IR B 3 L, B
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Table 26 is the computed solution of the bias equations assuming no
output loading, i.e., RLl = RLZ = o, The major difference between this case
and that of Table 24 is that the collector currents of Q1 and Qz are reduced
by 300 percent. The other bias conditions changed less than 10 percent.

TABLE 26

COMPUTER SOLUTION FOR BISTABLE MULTIVIBRATOR WITH Q 4 OFF Q3 NONSATURATED
R..=R .= ©©

L1 L2
Y, AP i3 Ve2 Ves ar le2 )
Computed: | 1.8V | -~1.15 6.32 17.7 404 0.00152 0.00264 | 0.0039
Moasored: | 1.07V | -1.33 6.1 17.0 4.2 - — -

Solution for Output Amplitude

The output amplitude of the bistable multivibrator providing sufficient
trigger voltage 18 present to change its state, equals the difference in quiescent
values of the emitter voltages Ql and QZ' i. e., the output amplitude =
(VEZ - VE l). The value computed from Figure 12 using nominal values for all
components is 17,7 - 6.3 = 11, 4V, The measured value obtained from the bread-
board circuit was 11V, The measured and calculated values compare favorably,

therefore, confirming the accuracy of the solution.

Minimum Trigger Amplitude o

To find the minimum required trigger amplitude, the equivalent circuits
of Figures 49, 50, and 51 must be used. From Figure 49, it can be seen that
Vp must be changed negatively by at least 0, 6V to nullify its 0. 6V "on'' bias,
Then VCS will rise enough to propagate through Q1 and turn Q 4 O Figure
50 shows the calculations for obtaining the input capacitance CBES and
resistance Rg.., of Q,. Figure 51 is used to compute the V, required to
turn Q3 off. At the leading edge of the Vin pulse, from the circuit of Figure 51:

A



Mgt w6

s
! e
SCantCT c
_ BE3" s 5 i
VBEs * Vin 7T ) " Yera ® Via ('C"T'C'—ﬂ:"s - )‘ch
Tcs "CBE.'S;C‘S s
s (135)
- C.+C +C
The required Vin = (VBE3 + VCR4’ 5 g§3 ') or in terms of the
5

circuit parameters and specified transistor parameters,

v. = UsestVerd |, 1 , C2PCoB2
L - (136)

Substituting nominal values into the above equation yields

_ (0.6 + 0.6) _
vin = e [150 + 200 + 63.5] = 3.3V (137)

The measured minimum required trigger amplitude was 3, 5V peak to peak
at the "trigger" input. This input becomes differentiated by C; and R13 so that
a negative spike of 1.5V amplitude occurs at the junction of CS and Rl 3 when
the input is going negative., This appears as a negative step of 0. 8V amplitude at
VB3. This step instantaneously raises the collector of Q3 by 3V and is propaga-
ted through the emitter follower Ql to the base of Q & It appears as a positive
step of 2.1V at VB 4 thus raising the base of Q 4 to +0, 8V thereby, causing 04
to conduct, The negative voltage VC 4 18 fed back through Q2 to the base of
03, turning Q3 off,

Thus, the procedure described above details the atepl\uled in the devel-
opment of three transfer functions for the bistable multivibrator circuit,

3.2.7 Transfer Functions of the Pulse Adder

The pulse adder analyzed is basically a form of a wide band video amplifier.
The basic amplifier schematic is shown in Figure 52, This amplifier can be used
to perform the function on an OR circuit, which is basically a mixer or buffer that
permits a number of pulses to be connected to a common load. It also minimizes
the interaction of the pulse sources on each other, If a positive pulse with a
maximum amplitude of 5 volts is applied to either of the input terminals, a pulse

- 95
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Figure 52, Pulse Adder Schematic

of similar amplitude and form will be available at the output, However, if a pulse
is applied at both terminals simultaneously, the output consists of the sum of the
two, If the pulses are of sufficient amplitude to saturate the stage, then only the
wider of the two is transmitted, i.e., a pulse of sufficient width and amplitude
inhibits and prevents the transmission of a smaller or narrower pulse through the

circuit. The performance criteria of this circuit is presented in Table 27,

Quiescent Currents and Voltages

The DC equivalent circuit presented in Figure 53 was used to perform the
analysis of the pulse adder. From this circuit, equations (138) through (144) rela-
ting the individual circuit components and their corresponding parameters were derived.

2-Vgs Vi _Ig
Xs RPY Py (138)
Vaz = Vg + 0.6 (140)
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TABLS 27

PERFORMANCE CRITERIA OF PULSE ADDER

‘Design
Requirements Maximum Center Minimum
inputs (Two Unbalanced
to Ground)
Input Impedance - -- 8000
Input, Positive Peak S5v 3.5v -
Source impedance - 750 -
Voltage Gain, Either Input 1 0.75 0.6
Output Impedance - 750 -
Bondwidth 4 mec - 10 cps
: Rise Time 0.15 psec 0.1 psec -
Output (One Unbalanced) - - -
Output Level S5v 3.5v i -
Output Polarity Positive
Repetition Rate 5000 pps - 20 pps
“Pulse Duty Cycle 0.20 - -
Additive-Factor 0.25 - -
Load Impedance ~ £ 1y) -
DC Supply Voltage - +12v -
Operating Temperature 8s°C - -55°C
ch*‘cz*'T—‘*‘—R'—'-n-:Bz'-g?'-;!;}-‘ ‘VEL
(141)
12 - Vc
) X, " latle (142)
12-Vg, Vg I
(143)

2.
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Figure 53. DC Equivalent Circult of Pulse Adder

The equations are then simplified and are used to form matrix equation (144).
Then, assuming all components to be at their nominal va}ue, g 1 ® p’z = 50 and _
RL = 75 ochms, the matrix equation is then solved using a computer, Also, a
breadboard circuit of this pulse adder was constructed and tested in the laboratory.
Table 28 presents a comparison of the measured and calculated values of the
circuit parameters. As may be seen from Table 28, the calculated and measured
values compare quite favorably, thus validating the accuracy of the transfer

function.
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TABLE 28
COMPARISON OF CALCULATED AND MEASURED VALUES OF THE PULSE ADDER

Bl 82 £2 c e Ic2

5,
A}

.Cnlculoted 0.98 0.98 0.38 1.57 0.003 0.003

M“”‘d 0093 0.94 0.30 ‘ ] . 20 e - -omeen

Maximum Output Amplitude

The maximum peak to peak output amplitude is the difference between the
output (VEl)with Ql and/or Qz saturated, and the output (VEz) under quiescent
conditions, The voltage V2 has been previously calculated and found to be 0, 38
volts. In order to find the voltage Vm with Ql and for Q2 saturated, the
equivalent circuit of Figure 54 must be used. The analysis of this circuit yields
equations (145) through (147). These equations, when rearranged, form the matrix
equation (148).

- 0.6 -V - 0.6 Vv
: E * E ¢ E
i + + 1. = (145)
Ry K, c Ry TTRL
VC = VE + 0.2 (146)
12 - VC .
3 )
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Figure 54, Equivalent Circuit of Pulse Adder with Q' and/or Q2 Saturated

1 1 1 1 v~ (11, 4 0.6
-R—-.l + R-z- + R'; 0 -1 VE -R——l i
-1 1 0 VC = 0.2 (148)
1 12
Y - = - ound - -
This matrix is solved using a computer, and the results,along with those made on a
breadboard circuit are presented in Table 29,

TABLE 29
COMPARISON OF CALCULATED AND MEASURED VALUES OF THE PULSE ADDER
WITH Q, and/or Q,, SATURATED

\3 Ve I

cc'WW‘ 50“ 5057 0.086
Measured: 48 5.0 w—ne

101




Since the maximum output amplitude is defined as Vm - VEZ’ it is possible to
determine the desired results:

Maximum Amplitude = VEl - VEZ = 5,38 -0.38 = 5 volts

i The above analysis allows the transfer function relating input and output voltages
i to be graphed as shown in Figure 55,

3,2.7.1 Determining Incremental AC Gain Utilizing the Signal Flow Graph
Technique

In order to determine the incremental AC gain, the AC equivalent circuit
of the pulse adder (Figure 56) must be constructed. An analysis of this circuit
yields equations (149) through (151). The signal flow graph is then constructed

from the equivalent circuit and the equations and is presented in Figure 57,

I I
1 el el
e, = R4 (Iez+ —B_z + Iel + -B-—l) (149)
[ ]
Loy Y E., % 0.6 €y - 0.6 5% (150)
By ™1 Tbir  Tbl bl h1

= - (151)

e
It is now possible to determine the incremental voltage gain ;-2- from the '
flow graph and in equation (152). in
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_.ﬂ_l (14-1) R}

1
s _ bl By 4 (B, t1R, (152)
‘ e, -0.6 B T, .+ (P, FITR,I
, i1 1 1,o 1 b1t Py 4 .
. 14 —(1+-=)R
. % 1 Py 4

For g, = 50, R4l = 64.6Q and r,, = 500 :

2 51646 3300 _ oo

]
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3.2.8 Transfer Functions of the Distribution Amplifier

The distribution amplifier (emitter follower) functions as a general purpose
amplifier in a similar manner to a chathode follower, It is designed to accept
short duty cycle pulses and to provide power gain with a voltage gain of unity. The
input impedance of this amplifier is normally higher than the load resistance of
the source. Thus, the parallel connection of several amplifiers to a common
source can be effected without loading the input. Isolation is provided between in- *
put and output signals, ' S % ,
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: The schematic of the amplifier is shown in Figure 58 and its performance
criteria is shown in Table 30, The input impedance of this transistor amplifier is
frequency sensitive and appears reactive above the p cutoff. frequency. Compen-
sating for this is the network L, RIRZ shown in Figure 58. Rl and R, provide
circuit stability by determining the quiescent operating points of the transistor.
Diode CRl acts as a direct current restorer permitting operation with duty cycles
Optimum performance is achieved by restricting duty cycles

————

up to 50 percent.
to 30 percent,

-0 +12V
RI R3
- 22K 100
g -
%
£
.| m
f ¢l M
g,f NNTH
g 22
sV
R2 CRI Re ouTPUT
22x T in27e 470

' i

+ ‘ 1’ GROUND

Figure 58, Schematlc of the Distribution Arpiifier
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TABLE 30
PERFORMANCE CRITERIA OF DISTRIBUTION AMPLIFIER

Design
Requirements Maximum Center Minimum

; input (One, Unbalanced to Ground) ——— - e-
, Input Impedance — —— 8000
] Input Level, Positive Peak 5 3.5v -~

Source Impedance — 75Q —

Voltage Gain i 0.75 0.6

Bandwidth (3db Down Frequencies) 4 me —— 10 cps
j Rise Time 0.15 psec 0.1 usec —
: Output (One, Unbalanced) —— -— -
Output Polarity Positive ‘ -
Load impedance - 75Q 50
DC Supply Voltage ——= +12v R 5
Operating Temperature 85°C - -55°C

The direct current, quiescent current and voltages were determined by

. utilizing the equivalent circuit shown in Figure 59.

| 7 12 v R 7 2v
Ry R3 L]
[ Ve 5 —.x}l/’ ic
Vg +06 L1}
v —f f 2N687 sV .
R2 vg . ke tc’vp
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(155).

computer and the solution is shown in Table 31,

IZ-VF-0.6 1 VE+0.6
7] - +
X, - ai v
v 1
E c
K, ° It ¥
IZ-Vc
Ic'—n;—

1 1 1
K-+T 0
1 2 P
1
0 T 1
3
1 1
I; 0 -lp

(153)

(154)

(155)

(156)

The matrix shown in equation (156) was programmed on the Burroughs 205

TABLE 31

COMPUTER SOLUTION OF DISTRIBUTION AMPLIFIER

VE vc 'c
AS3 1.9 000

1
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The input voltage required to saturate the transistor Q1 can be obtained -
by analyzing the equivalent circuit shown in Figure 60,

2v

Figure 0. Equivalent Circuit of Distribution Ampifier with Q, Saturated

A circuit analysis results in equations {157) to (161),

[ g
§ VE
12-v
* I, = T (158)
i e -V 12-V v
i £ B "!t'l"'B"‘IB"‘Kl:' (159)
g
[ ]
VB L] VE + 0.6 (160)
Ve = Vg + 0.2 N (161)
”»
These equations when rearranged form the matrix equation (162),
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L TP e v

[ ——

-1 0 10 o] [vg 0.6
e %
1,1 ,1 12
0 + o+ 0 1 0 VB +
o0t ot o LS
1 0 1 0 of|ve] = 0.2 (162)
1 0 0 1 1 1 0
- B
4
0 0 = 0 1 I 12
3 b 3
b o - - . 3 -

"‘e8 = (1.5, 3.5, 5.0, 7.0, 8.0, 9.0, 10.0, 10.2, 10.4, 10,6, 10.8,
11, 12)

To determine the minimum input voltage required to saturate Ql’ the
computer was programmed to search for the value of e_ which results in a
negative base current which would indicate that the amplifier is in saturation.

The results of this computer program is shown in Table 32, This shows a transi-
tion of positive to negative base current occurring at an input voltage of 10, 677

volts,

3.2.8.1 Small Signal Gain of Distribution Amplifier

To find the small signal gain the equivalent circuit shown in.Figure 61 is
utilized,

A circuit analysis is performed and equations (163) to (167) are formulated.

n- Y Vb

T h nen
[ ] .

b - R‘i + P, =0 : (164)
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TABLE 32

DISTRIBUTION AMPLIFIER WITH Ql SATURATED

Ve i3 Ve lg e o
5.02 5.62 5.22 -0.0572 0.0678 1.5
6.04 6.64 6.24 -0.0447 0.0576 3.5
6.8 7.41 7.01 -0.0354 0.0499 5.0
7.84 8.44 8.04 -0.0229 0.0396 7.0
8.36 8.96 8.56 | -0.0167 0.0344 8.0
8.87 9.47 9.07 | -0.0104 0.0293 9.0
9.38 9.98 9.58 -0.00421 0.0242 10.0
9.49 10.1 9.69 -0.00297 0.023 10.2
9.59 10.2 9.79 0.00172 0.0221 10,4
9.69 10.3 9.89 -0.00048 0.0211 10.6
9.72 10.3 9.92 -0.00016 0.0208 10.65
9.72 10.3 9.92 -0.00010 0.0208 10.66
9.72 10.3 9.92 -0.00010 0.0197 10.67
9.73 10.3 9.93 -0,00002 0.0207 10.673
9.73 10.3 9.93 -0.00001 0.0207 10,674
9.73 10.3 9.93 0 0.0207 10.675
9.73 10.3 9.93 0 0.0207 10,676
9.73 10.3 9.93 0 0.0207 10.677
9.73 10.3 9.93 0.00001 0.0207 10.678
9.73 10.3 9.93 0.00002 0.0207 10.679
9.73 10.3 9.93 0.00002 0.0207 10.68
9.74 10.3 9.94 0.00008 0.0206 10.69
9.74 10.3 9.4 0.00015 0.0206 10.7
9.77 10.4 9.97 0.00046 0.0203 10,75
9.7 10.4 9.99 0.00077 0.0201 10.8.
9.90 10.5 10,1 0.0020 0.0190 n.0

10.4 1,0 10.6 | 0.0082 0.0139
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- v .
i o= g (165)
i = -
B iy X, ‘
‘ i, o= vb "% = y_b_ - :2 (166)
b Ty Ty Ty

Using equation (164) to solve for e

e, = iy Ry (1+p) (167)

B

ein

172
Where RA = R TR
1 2
and Cl + I..l are low impedances at frequency of interest.
- Figue 61, Small Signal Equivalent Clrouit
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Using equation (163) to solve for V,

R. R R,R, .
: A . ATin .
Vo * R - b TR (168)
b AT Ry, b Ry+K

Using equations (165), (166), (167), and (168) the signal flow graph shown in Figure
k 62 can be obtained and the gain determined. [22]

_ Mt
RatRin Re (14 8)
o > \° L2
Cin Ra Vo ;"I; »
OXLR -;‘L. .

Figure 62, Signal Flow Graph of Distribution Amplifier

R,R,(1+8)
e lR ; R. ir
z‘.g‘ = R RA = tl’i (169)
n 1+ et v Anep
(R, ¥R, 7, b
% R R (1+8) 1701 ;
®in TRA + lEinh'b + R:Kin + ![4(1 PNE [A Hin’ ‘
e, R R (1+8) .
ev—— -
in RaTp * R, F K FRICFR R FPRICT PR R -

an
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Where

- 2200 (22, 000)
: Ry = Eaas i

R4 = 470 Rin = 75
eo -1
B = 60, 50, 40, 30, 20 == 9.589 x 10
in
B=50

A conventional analysis using nodal equations gives the same results, Equations
(172), (173) and (174) are the nodal equations for the equivalent circuit shown in
Figure 61. This is shown in matrix form in equation (175).

[ NN R

1 1 . _ S%n
in A in
- e,
) vb °o
- —_ + i 4+ — = 0 (174)
ry b Ty
B 1 1 i ) 7 B
+ 1 0 V. in
| Rin Fa ’ L
1
0 (1+p) - R: i, = 0 (175)
! 1 1
Equation (176) shows the matrix with nominal circuit parameters, and
Table 33 is the solution to the matrix obtained by using the Burroughs 205
. computer,
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gt R

R PN 130
ol - - — o -
0.013833. ., ., 1 0 Vb «| 0,0133
‘ ,
0 51 -0, 002127 ib = 0 (176)
] -0. 02 1 0. 02 i i e, . i 0 |
TABLE 33

COMPUTER SOLUTION OF DISTRIBUTION AMPLIFIER SMALL SIGNAL GAIN

Vb Ib %
96147y 40 .95947v .
3.3 TRANSFER FUNCTIONS OF MICROMINIATURE CIRCUITS -

This section presents the transfer functions of the microminiature circuits

developed by the Sylvania Microelectronics Laboratory.

The circuits presented in this section of the report were, in some in-
stances, analyzed not simply as individual circuits with their supply voltages,
but also with respect to their use in the system represented in Figure 6. An
example of this is the steering circuit which was analyzed with consideration for
the loading of the previous stage, Also, the active circuits (the Flip-Flop and
NOR circuit) were analyzed with their respective transistors operating in both
the saturated and non-saturated states, The accuracy of the transfer functions
was verified by measuring the voltages on actual circuits in the laboratory.
Since the flip-flop is of a symmetrical nature, the transformation matrix
solved for Q, conductingand Q, off also represents the condition when Q, is
conducting and Q, is off.
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3,3.1 Transfer Function of the 5 mc Flip-Flop

The flip-flop or bistable multivibrator circuit utilized for analysis is
shown in Figure 63,

45v v
+i12v ? ?
CR2

c2 +45v

v 0

-4V -4V

Figure 63. Five Mc, Flip-Flop Circuit

This general purpose type circuit is specifically designed to operate in
the satur.a.ted mode at a maximum repetition rate of 5 mc. This type of circuit
finds extensive application in pulse circuitry being used not only for the generation
of square waves from pulses but also for the performance of certain digital
operations such as counting. The actual operation of the circuit is similar to the
one previously discussed in Section 3, 2. 6.

Quiescent Currents and Volu‘ﬂ

When the condition exists that Q, is off and Q, is in either the saturated
or the non-saturated state, Ql and CRz and the associated circuitry are re-
moved from the circuit. Figure 64 is the equivalent circuit used for the analysis,
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TABLE 34
PERFORMANCE CRITERIA OF MICROMINIATURE FLIP FLOP

Maximum operating frequency = 5 mc
INPUT REQUIREMENTS:

Input pulse derived from pulse level gate
Maximum “Fan in" (puise level gates) = 3 per input

OUTPUT REQUIREMENTS:
RL min (max load to g'éun.d) = 6K (0.8 ma)

Rs min (max load to VCC) = 2K (6 ma)
Maximum DC "Fan out" = 2 logic Inputs or

2 level inputs (pulse level gate)
Maximum AC "Fan out” = 4 pulse inputs (pulse level gate)
Maximum capacitive load = 50 pf

Typical output characteristics for operation with pulse
level gate output at 25°C unloaded

turn on time = 30 ns
turn off time = 50 ne
turn on delay = 25 ns
turn off delay = 20 ns

Logic levels: "false” = +5 volts
"true" =+0,3 volts

Supply Voltages

Vcc=+|2 volfs +5 percent
Vbb--4voltsj-_5p¢rcent

VH = +4.5 volts +5 percent

VEE-gwnd

Storage temperature = =55°C to + 125°C

Operating temperature = ~55°C 1o + 125°C
Power dissipation = 90 mw
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Figure 64, DC Equivalent Circult of Flip-Flop with Q‘ off and Q2 Conducting

The equivalent circuits used for the transistors are presented in Figures
9 and 10, Utilizing the above set of equivalent circuits, the analysis yields
! equations (177) through (182); these equations are then rearranged and form
i matrix equation (183),

Ve = 0. 2 am
v, = 5.1 (178)
v = 0.78

B2

ch(- IIRZ - 1/33) + V(l/Rs) Il = -lZIRz




o : DA —— oL RTRp—————_

—— ——— r — pas— z- .
| 0 0 0 0 o0 Ve 0
0 0 | 0 0 o0 7 5,1
1 0 0 -y 0o o v -
L X, K : R,
= (183)
j 1 1 1 4
0 + - 0 1 0 v -
R, R, "R, Ry
e
1 1 1 ‘ 12
. - 0 0 0 -1 1 -
R, "Ry R B R,
0 1 0 0 o o 1 0.78
- JdLed L

This matrix equation is then solved using a computer, The results of this com-
puter solution along with the results received from laboratory measurements on

this circuit are presented in Table 35,

TABLE 35

COMPARISON OF CALCULATED AND MEASURED VALUES OF FLIP<LOP
WITH QI OFF AND QZ SATURATED

5 Ve Va2 Voo | Vm LY ‘e
; CALCULATED | o0.2 0.78 5.1 0.61 | 0.00138 | 0,007
| MEASURED 0.2 0.85 5.0 0.0 | 0.003 0.0087

As may be seen from Table 35, the calculated and measured values com-
pared'very closely, and therefore, confirm the accuracy of the transfer function.

Let us now consider the case when Ql is off and Qz is non-saturated.
This condition is represented by the DC equivalent circuit presented in Figure 65, ’
The analysis of this circuit is quite simple since most of the nodal voltages are
known, i.e., the voltages Veir Ve Vo2 are known aid are shown on the
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- diagram. Also, IB is approximately equal to IC and since it is of the order of
10'9 amps, it is neylected, Therefore, the analysis yields only equation (184).,
. ' +2v +i12V
1

Ve
0.2

-4v -4v

Figure 65. DC Equivalent Circuit of Flip=Flop with Q‘ off and Q2 Non~Saturated

0.2 - VBZ VBZ - (-4)

= + 1 (184)
R4 R6 B

Since the value of 1g i3 negligible, Vg, may be solved for directly and
is -0. 605 volts. It should be noted that the voltage Vg, for Qz non-saturated
is the same as vBl for Q2 saturated, thkereby pointing out that Qz does not
operate in the non-saturated mode but is, in fact, cut off.

3.3.2 Transfer Functions of the Steerinﬁ Network

The circuit analyzed in this subsection is that of a steering and logic net-
work designed to provide the input pulse for the Microminiature Flip-Flop circuit,
Each wafer contains two independent RC differentiating networks with level block-
ing, diode-gated outputs, Two iaput capacitors are provided on each gate to allow
a wider variety of input pulses tc be used. The schematic of this circuit is pre-
sented in Figure 66,

ny
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Figure 66. Microminiature Steering Network Schematic

As may be seen from the schematic, the circuit is of symmetrical nature,
and therefore, an analysis of one side of the circuit is sufficient, The analysis of
this circuit was made with consideration of the previous stage (e. g., in the system
represented in Figure 6 the steering network is fed by a NOR circuit), Therefore,
the appropriate circuitry of the NOR circuit is included into the analysis of the
steering network. This approach requires that the steering network be analyzed
when the NOR circuit is in the saturated and non-saturated modes., This must be
done since different portions of the NOR circuit in its different modes have a signi-
ficant effect on the steering network.

We will first consider *he case when the NOR circuit (presented in Figure
69) is operating in the saturated state. The DC equivalent circuit for this condition
is shown in Figure 67.

Referring to Figure 67(a), RA is the resistance of the diode CR4 and R4'
is the collector resistance of the NOR circuit. Figure 67(b) is the simplified
circuit where

R * WFRY (18%)

An analysis of this c¢ircuit yields equations (186) and (187), Since thers are
only two unknowns, it is much easier to solve these equations
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1 1 0~ Vi
. - + = 0 (186)
R TR
4.5-V V.-V
rs° + °R 1 - 9 (187)
5

by simple substitution rather than by the use of a computer. This type of approach
gives the following relationships: ‘

v - Vl(RAR5+RpR5+RR )-12R,R
0 K K
Ap

5

{188)

-Rg Rg
o (B s o

By substituting (189) into (188) the following expression for VO as a function of the
circuit components is derived:

14
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4.5 (RAR5 + RpRS + RPRA) - 12 R3RARp

V., = ) ~(190)
0 TRA 5+RPR5+R;1!A-R3RA -113Rp

Once the expression for V0 is obtained the solution for Vl is also known by sub-
stituting the expression for Vo into equation (189). The numerical solution is
then obtained by substituting the nominal values of the components into the expres-

sions. This procedure yields the following results:

Vo = 6.34 volts

vV, = 5.99 yolts

Liet us now consider the case where the NOR circuitis operating in the non-
saturated mode, For this condition the equivalent circuit presented in Figure 68

applies,
*
, Vo
'3 -
45
%
Rs
, +45
CRe R
+43 +12
i
-
| Re
R +Ry
+12 +i2 l

(a) { 1]

Figure 68. DC Equivalent Circult of Steering Network when NCR Circult Is Non-Satwroted

Referring to the equivalent circuit, the voltage Vl is clamped at 5, ] volts
sssuming a 0, 6-volt hop across the diode CR,. It is now possible to completely

122




ha e TGP AR RS A R IO s .,

A A Ay s om o S+

describe the voltage V, in terms of the circuit components by equation (191).

Simplifying the expression .

5,1~V 4.5-V
g2+ =L = 0 (191)
5 3
and solving for V, yields the following relationship:
4.5 R5 +5.1 R3
Vo i3+ R, (192)

Substituting the nominal values for the components into the expression yields the
voltage V, when the NOR circuit is operating in the non-saturated mode,

VO = 5,0v

~ Thus, we have completely described the steering network in terms of its transfer

functions for both internal and external effects.

3,3.3 Transfer Functions of the Microminiature NOR Circuit

The circuit to be analyzed in this sub-section is that of a NOR circuit,
‘This circuit is simply a gate with a logic sense of plug 5 volts = False and zero

"volts = True. The circuit is composed of a three-input '"OR" gate and an inverting

transistor amplifier and a clamping diode for greater reliability, The circuit
accepts a positive pulse at the input and delivers a negative pulse to the succeeding
stage. The NOR circuit schematic is presented in Figure 69. The performance
criteria of the circuit is shown in Table 36,

This circuit was analyzed for the transistor operating in both the saturated
and non-saturated modes,

We will now consider the circuit when the transistor is operating in the
non-saturated mode, The DC equivalent circuit for this condition is presented in

Figure 70,

15




Figure 69. Schematic of Microminiature NOR Circuit -

+12 +12

Ry
' CRg
-l 45V
R>
Vi A AL
Rg
Rgs FOWARD RESISTANCE OF INPUT
DIODE
s80 R *»

Figure 70, DC Equivalent Clreult of Microminiature NOR Cireult for the Translator |
' in the Non=Saturated Mode ,
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TABLE 36
PERFORMANCE CRITERIA OF MICROMINIATURE NOR CRRCUIT

INPUT REQUIREMENTS:

Maximum "Fan In“= 6 (addition of 3 diodes to pins 5 or 12)
Minimum input pulse width = 40 ns

"false" voltage level = +4.5 to + 6.0 volts

"true" voltage level = 0 to +0.5 voits

OUTPUT REQUIREMENTS:

Rs min. (Max, load to V) = 1.5K (8 ma)

Maximum DC “fan out” = 3 logic inputs or 2 level inputs (pulse
level gate 37AA02)
®  Max, capacitive load = 100 pf
Max. AC "Fan out* = 4 pulse inputs (puise level gate 37AA02)
Typlcal output characteristics for operation with 5 volts input
pulse at 25°C unloaded
Tumontime=20ns
Turn off time = 20 ns
Turn on delay =10 ns
Turn off deloy = 50 ns

In order for the transistor to be physically in non-saturation, one of the input
diodes has to be grounded, Referring to the equivalent circuit, the analysis
yields equations (193) through (195),

Vc = 5,1 (193)
vV, -V -4-V
-1 B B
+ = I (194)
RZ R3 B
12 - Vl Vl Vl - VB
= + (195)

However, in equation (194), IB = IBO ~ 10'9; thus, since the effects of ln are
negligible,the equation may be rewritten as equation (196),

V,- Vs 4+ Vg
an el (196)




Utilizing the above equations the matrix equation (197) may be formed,

pose . = -
1 11 v 4
%, %%, 1 %
= (197)
J _l_vl_l 1 v _12
Rt L A 5 ¥,
¢ ] w— o b p—

The solution of this matrix along with the values of the circuit parameters meas-
ured on a breadboard in the laboratory are presented in Table 37,

TABLE 37

* COMPARISON OF MEASURED AND CALCULATED VALUES OF THE NOR CIRCUIT
: WITH THE TRANSISTOR IN THE NON=SATURATED MODE

vc vl VB
Measured 50 | o8 -— i

Caleulated 5.1 0.73 -0.83

R As may be seeh from the table, the calculated and measured values of the circuit

compare quite closely and thereby verify the accuracy of the transfer function,

We will now consider the case where the transistor is operating in the

saturated mode, The DC equivalent circuit for the condition is presented in
Figure 71. Utilizing this circuit, we may write equations (198) through (202).
12 - v, V- Vs
—R-l'— 2 —— (198)
3
vV, -V -4-YV
_l_ns'R + 12 R . Iy ‘ (199)
-
12 -V
rc = I
4 c
126 4 .
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+12 +i12

. in Saturation
: (201)
= p 01
Is
Vc = 0,2 (202)
The above equations are then formed into the matrix equation (203).
R 1 7. 7 BT
- - 0 0 \'A -
LI Y 3 ! 1
[}
1 R N | 0 21 v 4
Ry KK B B K
= (203)
0 0 1 0 Vc 0.2
[ 4
0 0 = 1)) -2
i e 4 P I . - o ‘-—i

E 4




] The matrix equation is then solved by means of a computer and the measured and
calculated values are presented in Table 38,

TABLE 38

; COMPARISON OF CALCULATED AND MEASURED VALUES OF THE NOR CRCUIT
WITH THE TRANSISTOR IN SATURATION

% : i

-, . c\..

3 Y Ve Vl e 'B(-ﬁ- \, p=20
Measored | 5.6 | 015 | -- -- -
Calculoted | 8.5 | 0.2 | -2.3 | o.008 0.00004

, An examination of Table 38 reveals the close comparison between the
; measured and calculated values of the circuit parameters thereby confirming the
! accuracy of the transfer function of the microminiature NOR circuit,
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SECTION IV

SYSTEMS APPLICATIONS

The procedures and applications described in this section are, to a certain
extent, similar to those discussed in Section 3. The major differences in the
technique as applied to systems are: (l) the added complexity and (2) the prepara-
tory work that rfuut be accomplished in order for the results to be both meaning-

ful and useful.

The itudy has yielded three possible approaches that may be used, all of
which present very useful results. The particular approach to be chosen depends
upon a number of factors among which are: (1) type of information required,

(2) complexity, (3) resources, (4) time and money available, etc. Therefore,
fhe three approaches will be presented along with a discussion of the afore-
mentioned factors. The first method that will be discussed is the most elaborate
and consequently the most expensive. The second method is a modification of the
first and the third and least expensive is a relatively simple but quite useful

technique. The three techniques are described below.

(1) In the first approach, one obtains a complete transfer function in
terms of all the components in the system. This transfer function
may be derived in a number of ways. Two methods are described

below:

(a) The transfer functions of each of the subsystems may be individ-
ually obtained and then by adding, subtracting or multiplying the
the individual transfer functions, depending upon the function of
the subsystems, the complete transfer function may be obtained,
However, if these individual transfer functions are in matrix
form, the rules for manipulating matrices must be followed, i. .,
in order to multiply matrices, they must be of the same order,
etc., It is, therefore, quite probable that a great deal of prepara-
tory work will be required upon the individual transfer functions
prior to the task of formulating the over~all function. This
method is considered to be the sasier and most useful method,

». .




(2)

(b) Another method that may be used to determine the system transfer
function is to express it analytically in terms of the input and
output voltages of the system. However, with this type of ap-
proach a great deal of information may be lost since many of the
component parameter relationships internal to the input-output
sections of the system may not appear in the transfer equation.
It is, therefore, recommended that the first technique be used.

Once the system transfer function is obtained and is formed into a
transformation matrix of the order N , the Monte Carlo process
described in Section II of this report may be used. For this particular
technique one would run the process for every component and combina-~
tion of components in the matrix.

The next approach that may be used is identical to that described
above except that the Monte Carlo process is applied only to the
critical components in the system. An example of this technique is
described below:

Consider the simple amplifier shown in Figure 72. It is obvious from
inspection of the circuit that the gain is given by Equation (204):

8+

Figwe 72, Amplifier Circuit |
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Gain = = = ce——— (204)
®n 1+ ‘mRK

If g R, >>1 it is easily seen that equation (206) may be re-

writfen as shown below:
R

Gain = == (205)

Rk

It may be stated, therefore, that the critical components of the ampli-
fier are the plate and cathode resistances R;, and Ry . The trans-
conductance g, may be neglected since it is common to both numera-
tor and denominator of the gain expression. Therefore, if one
determined the critical components of a system it would be possible to
save a great deal of time and expense using this approach as opposed
to that described in (1).

The final technique to be described is one in which the Monte Carlo
process is applied to the individual subsystem transfer functions.
With this type of approach it is, therefore, necessary to know the in-
put and output requirements of the individual subsystems. Once
the requirements are known, the Monte Carlo process may be
applied. The technique consists of Monte Carloing each of the
components in the individual subsystem, and noting the effects
upon the output. When and if the output does not meet the input
requirements of proceeding subsystem, the values of the com-~
ponent or components are noted and the process is halted in the
presence of a failure or continued on the next subsystem if no
fialure occurs. Another useful outcome of this technique is that
although the output may just fall within the input requirements

of the proceeding stage, it may cause a failure at another point

in the system under consideration, As an illustration of this
technique, let us consider the following example:

Suppose we have two amplifiers in series

AMPLIFIER AMPLIFIER
YR ""‘{ .t >

Figue 73, lllustvative Example




SRy, g
The gain of Amplifier #1 = Amplifier #2 = nn"‘ﬁ"

m L

The Amplifiers have the following Requirements:

* TABLE 39

Z OPERATING PARAMETERS OF
ILLUSTRATIVE EXAMPLE

doput Quiput
Amplifier 1 2+ 5% volts 10 + 5% volts
Amplifier #2 | 10+ 5% volts | 50+ 5% volts

We will assume that the input to Amplifier #1 is always at 2 voits. The -
next step is to perform a Monte Carlo process on each of the compon-

ents in the amplifier and note the effects upon the output. From the
cumulative distribution functions obtained by this procedure, it is

possible to determine when the autput falls outside the input require-

ments of the proceeding amplifier and, thus, the reliability of the

amplifier is known. This process is then carried on until all of

the subsystems have been analyzed.

This technique is considered to be the least expensive and requires
less computer time, but as in the two techniques previously men-
tioned, quite time consuming. This procedure may be used on all
components or only on the critical components. It is, therefore,
recommended that this technique be used since it provides all
necessary information,

The techniques outlined above will provide the following information:

(1) Based on the underlying frequency distribution of the components,
it is possible to determine the reliadbility of a system at sero time o
and at some time or times in the future. :




(2)

3

(4)

It provides a means of improving performance, e.g., let us consider
a circuit whose .

ACTUAL PERFORMANCE LIMITS
o

(@) 1)

Figure 74, Iliustrative Exomple of Application of Monte Carlo Technique

performance is plotted as the cumulative distribution function of
Figure 74b. The normal distribution shown in Figure 74a represents
the critical component R of the circuit., The particular tolerance
limits on this component (+ T}) will yield a reliability of 1 - (X + X;)
for the circuit. However, it is easily seen that if a stricter toler~
ance (T3) is imposed on the component R the performance of the
circuit may be improved as represented by the dashed curve in
Figure 74b, Therefore, by utilizing the technique in this manner,

the over-allperformance of a circuit or system may be improved.

With the information obtained from this technique, it will be
possible to plan better spare parts allocation and maintainability
methods.

It will provide a better method Ioi determining trouble-shooting
techniques since the critical parts will be highlighted and the system
degradation due to the failure of these parts will be known,




4.1 TIMING SYSTEM
It is the purpose of this subsection to present a specific application of the

Monte Carlo Technique, previously described in Section IV, on a system. The
system, as presented in Figure 5, generates a constant 10 microsecond pulse at
a repetition rate of 100 kc in an environment where a large shift of nominal part

parameters may be experienced., This treatment presents the specific application

of the technique, however, in keeping with the purpose of this report, that of
developing a new technique, the routine mechanics are not included. The mathe-

o ! matical simulation procedure is as follows:

An oscillator is synthetically constructed utilizing the transfer func-
1o tion previously developed. The critical performance criteria of the
oscillator is the resonant frequency and the satisfaction of this cri-
teria will automatically ensure adequate input to the high level am-
plifier. Once it has been ascertained that the oscillator is operating
within specifications, the second stage or high level amplifier is
synthetically constructed and the process is repeated. This proce-

! dure is followed with each of the remaining stages in the system,

[SI—,

If a failure is experienced, the process is immediately halted and

[—

the cause and location of the failure noted. The whole process is
repeated 1000 times thereby yielding the reliability of the system.
Referring to the test system and the waveform development shown
in Figure 5, the following requirements must be satisfied by the

respective subsystems in order to obtain successful operation.

Subsystem Input Output

Oscillator e O.4v = 1,0v
High Level Amplifier - 0.0lv = 5v 0.6v = 1000v
Trigger Clrcult & =10v 10v = 18v (neg)
Bistoble Multi " B = 15v (neg) +10v -+ 18
Monostable Multl 4v = 10v (neg) T0v = 18v
Pulse Adder " 35v unst, cperation 05

<8v sot, operation

Low Leve! Amplifier 0,001v = v 0.012v - 5
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4.2 DESCRIPTION OF THE MICROMINIATURE CIRCUITS IN THB ERROR
SENSING AND READOUT CIRCUIT 0 . .

N

PR,

In Section 3.3 the three microminiature circuits are described which
compose the systems in Section IV, and détailed schematic diagrams are drawn.
In this subsection these same three circuits are again described, but here in
terms of their logical functions or of their general function in a configuration,
as opposed to their electrical configuration. [26, 27]

4.2.1 logical Description of a Circuit

All electrical circuits can be divided into two types, digital and analog.
If a circuit is viewed as a black box, i, e. only the inputs and outputs are of °
interest, then analog circuits are those in which the voltages at the terminals
may vary continuously over a range; whereas digital circuits are those in which
the terminal voltages, both input and output, are restricted to two (or any
finite number but usually only two) sufficiently separated narrow sub-ranges,
say Rl and Rz. of the total possible range R. If the voltage falls outside of R
and Rz the circuit is said to have failed, If the circuit does not fail, then the
voltage at each terminal must be in one and only one of two mutually exclusive
sub-ranges. Different letters ( a, b, -~-) of the alphabet may be assigned to
each terminal to indicate the presence of a voltage in one of the sub-ranges, and
the negation, in the sense of symbolic logic, or Boolean algebra of this letter
(A, B, ---) means that the voltage is in the other sub-range. An example of this
is given in Figure 75,

1

e (€ , € )

Figwe 75, Symbslic Logle Slock Disgram
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In Figure 75 the Symbolic Logic Block Diagram, the !ollowing voltages -
define ABC andA B C:
Input = A, whmO<VA 1 bd
Input = A, when 5< VA< 6
Input = B, when 0 < VB< 1
Input = B, when 5<V <6
Input = C, when 0 < Vc_<_ 1
Input = C, when Sf_ch_b
o A non-sequential circuit is one in which the outputs depend only on the
inputs and nothing else, e,g, internal state, past history, etc. In a rone
sequential circuit the same inputs always yield the same outputs. A sequential
circuit is one in which the outputs depend not only on the inputs but also on the
internal state. Different internal states handle the same inputs differentlyi. e.,
may yield different outputs for the same set of inputs, In this sense the in- -
ternal state may profitably be regarded as itself another input. Sequential
circuits are sometimes described as those having "memory", since they -

"remember' past inputs by correlating different internal states with various

sequences of past inputs. A complete description of a circuit can be given by a

truth table, if the inputs and outputs are represented by their respective letter

symbols and arranged in the following manner. The letters are listed horizon-

tially as column headings and each row gives each possible state of the circuit ,

Affirmation and negation can be described as in symbolic logic (Boolean Algebra)

or numbor.l can be used ( ‘one' for affirmation, 'sero' for negation), The

resulting array is called a truth table (for example Table 40) and is a complete

description of all possible states of a non-sequential digital circuit. A Boololn

equation, or a logical truth function, is completely equivalent to this array ;;
and represents the fact that the output- of the circuit are a certain function of .
the inputs. To say that a digital circuit performs a certain logical operation

or that it has a certain logical description is the samse as saying that its inputs o
and outputs satisfy a particular Boolean equation. Hence the name of some g
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is the same as saying that its inputs and outputs satisfy a particular Boolean

equation, Hence the name of some digital circuits (e. g. N(SR circuit, NAND
- circuit) often comes from the kind of equation which describes its operation.

(e.g. (A ¥ B) for not (A or B) ) |

4.2.2. NOR Circuit

The NOR circuit used here has 3 inputs A, B, C and one output D. The
truth table below is arranged according to the explanation given above, For all
possible input configurations the output D is given as a function of this con-

figuratiou ( of ordered triplets of 'zero' and 'one’'),

TABLE 40
REPRESENTATIVE TRUTH TABLE

A B c D
. 0 0 0 |

1 0 0 0

0 | 0 0

1 1 0 0

0 0 1 0

1 0 1 o |-

0 | 1 0

| 1 1 0

The equation eciuivalent to this truth table is given by equation (206).

(A¥B+C)=ABC=D -~ (206}

4.2,3 Flip-Flop Trigger Circuits

as a single unit and forms a quul circ\at.

The combination of the flip flop md trigger circuit is designed to be m o

o
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The flip flop performs an operation which is often referred to as
“remembering', It has two possible complementary outputs, called 'true' and
'false', It can be switched from one state to another by short-duration pulses
and ''remembers' indefinitely the last state into which it was thrown, If the
flip flop is in the condition where the 'true' output is in the 'zero' state and a
pulse input is delivered to the 'true' side, the flip flop will change state so that
the 'true' side goes from 'one' to 'zero'. Consequently the 'false' side goes
from 'zero' to 'one'. A signal last delivered to the 'false' input will settle the
flip flop so that the 'one' side goes from 'one' to 'zero’', and the 'zero' side
generates a 'true’ signal (i.e., goes from 'zero' to 'one')., This state is main-
tained indefinitely and is referred to as the 'one' state of the flip flop. A second
short-duration pulse delivered to the 'true' input of the flip flop does not change
the state, but a pulse delivered to the 'false' input reverses the atate of the flip
flop so that its 'true' output terminal generates a 'zero' signal and its ‘false’
side a 'one' signal. The flip flop is now in the 'zero' state and remains there

until an input is next delivered to the 'false' input terminal, See figure 76,

®
TRUR QUTPUT
! f FALSE OUTIUY

TRUE INPUT TERMINAL T f FALSE IRPUT TERMINAL

Figure 76. Logic Diagrom of Flip~Flop

The trigger circuit (see Figure 77) is composed of two identical circuits.

Figure 77, Loglc Diagram of Trigger Cireult
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Its two outputs are connected to the two inputs of the flip-flop circuit. The
system clock is connected to the inputs of the trigger circuit, Clock pulses pass

~ from the trigger input to the trigger output terminal if the level input is in state
'one'. If the level input is in state 'zero’, the clock pulses do not pass through to
the output.

4, 2.4 Description of the System

The function of the error sensing and readout system it to monitor two
inputs, each input being an output from one of two identical systems, and to com-
pare these inputs with a reference. An indication signal is provided when

| 1. Either one of the two systems is in error (but only one) or

2. Both systems are in error.

The error sensing subsystem is a gating structure composed entirely of
NOR circuits which has one indicator for single error, and one indicator for
double error, so that correct operation of the monitored systems corresponds to
- an absence of such indications. Correct operation is defined as agreement with the

reference signal at all times,

; The readout subsystem is composed of two flip flop circuits that
"remember" that an error has occurred in the time interval following the last

reset of the system, Theui flip flops provide an indication signal at the time of
malfunction and continue to supply this indication until the system is reset. Re-
setting clears the system of all error indications. Since these are digital systems,
the signals at any time will be two valued (as has been described above). Therefore,
if the two systems being monitored have different outputs at any time, one must

- agree with the reference and the other must diugru. If the 'true’' outputs of
these systems are represented by A and B thcn the requirement for single hnun
(S) can be described by the Boolean oqution

S*AB+AB (207)

In the case of double failure (D), the two systems must agree with sach
other and disagree with the reference (R). The equation for thie cmh |
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D=ABR+ABR (208)

It follows that correct operation (C) means that the reference and both

systems agree. This can be representad by
C=ABR+ABR (209)
The equations for S and D can be rewritten in the following manner
S=AB+AB
S=(AB+AB)

S=(AB) (AB) = EX+§H4A+m] (210)

D=ABR+ABR+(AB+AB)(RA+RA)

D=(AB+AB)(R+A)(R+A)

D = [!AB+IE)+(R+A)+(§+'K)]

But (AB+AB)=5s ' (211) A
Therefore,
D= s+m+nyuZ+RJ (212)

Expressed in this form these equations describe the error sensing NOR

circuit configuration of Figure 6.

In the error readout section (also shown in Figure 6) the output of Tz will
trip flip flop Fz on receiving the first clock pulse during the time zone in which

S is present. In a similar manner, T 6 will trip Fl on receiving the first clock

1
pulse occurring while D is present. The flip flop drives the appropriate error

indicator when S or D have occurred.

The Monte Carlo techniques described in Section 4.1 are directly ap-
plicable at this point.
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P SECTION V

CONCLUSIONS AND RECOMMENDATIONS -

This study report has developed mathematical simulation procedures to
accomplish the following:

1. Provide the designer with a specified degree of confidence that his
circuit will have a particular performance criteria.

2. Provides a means of readily evaluating the sensitivity of the circuit
thereby indicating the major sources of variability.

3. Tolerances for part parameters or circuit elements can be
realistically specified for the selection of parts.

4. The system is optimized for a given cost,

5. The development of transfer functions require that the definition of
. failure be precisely specified ma thematically and thus the usual
. decisions as to the acceptability of a circuit performance criteria
! is eliminated .

6. The cost of the parts purchased can be reduced as the worst case
design technique is no longer required and the parts do not have to be
as precise,

7. The precision of this technique is limited only by the number of
iterations performed; however, this is non-restrictive because of the
availability of modern day computers.

8. The technique makes possible the planiing of improved allocation of
spare parts,

9. It is possible to improve maintainability techniques; i. e., the infor-
mation will be available to allow the optimum determination of repair
crews required to maintain the system,

. 10, It will provide a guide for the determination of trouble shooting
techniques since the critical parts will be highlighted and the system
degradation due to the failure of these parts will be known,
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11. Based upon the underlying frequency distribution of the components,

it is possible to determine the reliability of a system at zero time
and at some time or times in the future.

Thus, it is concluded that in most cases Mathematical Simulation is the
only feasible solution to the reliability prediction problem.

Recommendations for future work in these areas include:

A hardware program be continued to further validate the predictive
techniques developed in this report.

Additional work be continued in developing the optimum distribution
of parts and components for optimizing system reliability against
given constraints.

Research be conducted into the further application of the technique
in the area of autormatic circuit design.

Ko ¢
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GLOSSARY

.

. The set of definitions presented in the RADC Reliability Notebook, dated
30 October 1959 (see reference 94 in the Bibliography) is appropriate for use in
understanding this report., If an alternative definition is needed for clarity, the

list below may prove useful,

FREQUENCY - The ratio of the number of events which meet a performance

requirement to the total number of events. \
]

FIRST FAILURE TIME DISTRIBUTION - The distz}ibution of all times to the

first failure,

: DENSITY FUNCTION - The first derivative of the distribution function.
& PART - The smallest basic element of a complete system,

MODULE -~ (Normally used interchangeably with component.) A module is an
article which is normally a combination of parts, subassemblies, or
L assemblies, and is a self-contained element of a complete operating

equipment, and performs a function necessary to the operation of that

equipment,

CUMULATIVE DISTRIBUTION FUNCTION = (See Appendii A)

SYSTEM PERFORMANCE CRITERIA - A system performance criterion is a rule

that states within what limits a system performance measure must fall,

A system performance measure may be of two types, a deterministic

performance measure or a probabilistic performance measure. A deter-
ministic performance measure is a measure that can be characterized by

a single number,

Some examples of this type of measure are:

a. gain ) d, rise time
b. bandwidth e. fall time
c. signal to noise ratio f. delay time
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g. noise figure i. output impedance

h. input impedance

A probabilistic performance measure is a measure that can be
characterized by a cumulative distribution function which may take any of the

following forms:

1. an equation
2. a graphical curve

3. an approximating polynomial

CRITERION*- A standard of judging, a rule or test by which anything is tried

in forming a correct judgment respecting it.

SPECIFICATION® - Minute description of particulars or the particular details

themselves, e, g.,in the terms of a contract the details of construction

etc, According to the glossary in the RADC Reliability Notebook, a detailed
description of the characteristics of a product and of the criteria which

must be used to determine whether the product is in conformity with the -

description.

NOMINAL VALUE - The stated value (e.g., by the manufacturer or designer)

of some characteristic or measure of pérformance of a piece of equip-
ment. Note: Due to internal and external stresses, it is seldom the case
that the nominal value coincides with the actual measured value of a

particular characteristic,

*Definition from Webster's New Collegiate Dictionary.
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* APPENDIX I
DEFINITION OF CUMULATIVE DISTRIBUTION FﬁNCTION

The function F(x) is called the cumulative distribution function .(cdf) of

the random variable X if and only if F(x) has the following properties:
(1) F(x) lies between 0 and 1 for all values of x.

(2) F(x) decreases to zero as x decreases to -,

i (3) F(x) increases to 1 as the upper bound b of the interval in which
x is supposed to lie increases to += ., (The probability of a value less
than +e is 1.) ‘

[p—

{4) F(x) is an increasing function in the sense that jfa b, where a is
. the lower bound of the interval, then F(a) = F(b). (The probabi-
lity that a random value X is smaller than a is less than the
probability that a random value X is smaller than the larger
number b,)

(5) F(x) is always continuous on the left; i.e., F(a) increases to F(b)
as a increases to b.

Conversely, any real function F(x) with the above properties defines a
cumulative distribution function for a random variable X, that is

F{x) = Pr(X < x)

An intuitive grasp of a cumulative distribution function may be obtained
from the following illustration. Suppose a thousand resistors have been made and
are tested to find the exact resistance of each one. If the thousand values resulting
from the test are ordered according to magnitude, starting with the smallest and
ending with the largest, a graph is obtained as shown below in Figure I-1,

. . Here the ordinate represents the number of resistors having a value less
than or equal to that shown on the horizontal scale. Depending on the scale, the
. ordinate is sometimes called the probability (0 to 1) or relative frequency (0 to 1)
or percentage (0 to 100), but in any case, it represents the value of the cumulative
distribution function F{(» .

[

;
;
:

-1




RELATIVE FREQUENCY

X} %0 . -
oHms
Figure |-1

The derivative of the cumulative distribution function F(x) is called the
density function (d.f.) 'f(x). Since the c.d.f. is ecaled to go from 0 to 1, it must
be the case that the area under the d.{./is exactly equal to 1.

The items discussed above can be extended to two or more dimensions.
When a process simultaneously produces two (or more) numbers at random at
each trial, the collection of pairs of random numbers (Xl, xz) can be considered.
If the probability is known, with which a pair of random numbers (Xl, xz) lie in
the quadrant given by the two inequalities Xl <x and Xz <x,, the joint
cumulative dintributionﬁ function can be defined by

F(x,, x,) = Pr {xlfxl and x2_<_x2}

I-2




APPENDIX II

DISCUSSION OF RELIABILITY MEASURES AS BASED
ON THE CUMULATIVE DISTRIBUTION FUNCTION

The definition of reliability that has received wide acceptance in the

literature is:
The probability of performing a specified function without failure
under given conditions for a specified period of time,

This can be expressed mathematically as: ) .

Reliability = R(t) = e . (-1

A = failure rate i, e., reciprocal of mean time
between failures

t = duration of mission or task

where

This definition of Reliability defines R as a probability which is a function of
time (t) and of internal and external conditions, since \ depends on the environ-

ment as well as on internal stresses.

In this equation, the expression e')‘t gives one type of probability function

which can be used as a measure of the reliability.
There may be other types of probability functions which may be used as
reliability measures in addition to the type of probability function described above.
The following analysis shows how the formulation of reliability in (II-1) is
related. to the '"Monte Carlo" procedures described in Section II. This analysis
will deal first with a system having only one type of unit. To express the above
reliability measure R(t) interms of a cumulative distribution function Fn(t)

measuring the probability of failure let:

Ft) = 1-R(t, = 1. ot (11-2)
80 that Fn(t)+Rn(t) s ] {11.3)
where ns= 1,2,,.
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As t approaches =, Fn approachces the steady state distri!. ‘ion func-
tion,

Fn is the particular cumulative distribution function which describes the

distribution of the various intervals of time between the nth and (.. 1 l)th
failure.

Let the cuniulative distribution function of a circuit performai.. ....sure
at t = 0 anpear as shown in Figure 111,

C

: | e ACCEPTANCE REGION CRITICAL PERFORMANCE LIMIT

§ o \
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PERFORMANCE CHARACTERISTIC
Figure Ii=1

Note that in Figure [I-1 each of the cumulative distribution functions repre-
sents the same set of systems. A circuit is considered to have failed whenever
the performance measure falls outside the preassigned limit of satisfactory opera-
tion. Therefore, any circuit or system whose performance measure falls to the
right of the critical performance limit has failed (as shown by vertical line in .
Figure II-1). From Figure II-1 it is possible to construct Figure 1I-2 by noting
the times at which failure occurs., These are found at the intersections
critical performance limit with the time dependent cumulative distribution func-
tions. The time-to-first-failure distribution Fl(t) is defined as | - Rl(t).

This is shown in Figure 1I-3, It is important to note here that in many instances
le may not be in exponential form, since it is a direct function of the particular
family of cumulative distribution functions curves shown in Figure II-1,
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The fact thai one may either repair or replace units which have failed will
| influence the development of the mathematical models used to describe the relia-
bility measures of the system. Furthermore, in the case of repair there will be
one type of model, while in the case of replacement another type of model will be
necessary,

In the case of repair, the simulated change in performance criteria is
represented as shown in Figure II-4. To determine the distribution of times to
first failure (i, e., Fl) and the distribution of times between the consecutive fail-
ures n and n+tl (i.e., Fn) a critical performance limit is defined (horizontal
line in Figure I1-4, The time to first failure is that time at which the curve
describing the performance measures in time first crosses the line representing

the critical performance limit,

f )
PERFORMANCE .
CHARACTERISTICS
CRITICAL
PERFORMANCE
(€11}
. -

time

Figure l=4

.




If these times to first failure are ordered according to magnitude, they -
yield the cumulative distribution function shown in Figure II-5,

>

RELATIVE FREQUENCY _

MTTF

Figure 11=5

Figure I1-4 shows how several parts come to the time-of-first failure.

Figure II-6 takes one of these parts and shows the performance of the part passing
the critical performance limit at t1 (time-to-first-failure), being repaired, -
rising in performance again until it passes the critical performance limit at t,
{time-to-second-failure), and so on. Figure [I-7 does this for another part.

If a whole series of such graphs are imagined for each part, then a cumulative
distribution function may be found for each At [(Ati =t - (ti -1))]) i.e., each
incremental time between failures. This gives Fi (the cumulative distribution
function for time from the (i - l)th to the i - th failure for the type of part being
tested on the basis of the performance of a large number of actual tested samples,
Notice that the time required to repair a part is taken as zero on the graphs,
Although this is rare in practice, this time for repair does not influence the

Prev———

distributions in question.

Interfailure Time Distribution with Monitoring Replacement Policy

In the case where the system is monitored and failed parts are replaced,
a second mathematical model is necessary. In Figure II-8 the solid curves repre-
sent the cumulative distribution function of the original population of parts, which
were subject only to degradation in time and no monitoring. If the defective parts

-

iI-4
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are replaced at intervals when the cumulative distribution function will be described

by the dotted curves, i.e., (1 - i() of the units have failed at time t = ty

(1 - X) of the units have failed at t=1000 hours; these occur because a
critical performance limit is exceeded. The replacement of (1 - X) of the units
taken from the population represented by the cumulative distributive function will
result in the cumulative distribution function represented by the dashed curve (1)
at t= 0. This replacement would, at t = 2000 hours, cause this curve to shift and
be represented by the dashed curve (2). This curve would be composed of (1 - X)
of the samples f‘rom the distribution at t = 1000 and xl of the samples from the
distribution at 2000 hours. The net result would be that the reliability of the
samples of the curve (2) would be increased. The increase in reliability for any
point on the curve would be a maximum of (1 - X). This procedure may be
repeated indefinitely as time increases. ‘

~
R (1) X \,{vnrn MONITORING

-

Figure lI-9

Figure II-9 represents a plot of the Reliability as a function of time with
and without monitoring. Figure lI-10 is the corresponding plot of the failure rates.

Figures 11-8, 1I-9, 1I-10 are related to each other in the same way as
Fi‘\u“l n'l. u-z' u-‘3.

System with Two Types of Units

To obtain the over-all system reliability for a system with two types of
units, it is sufficient to multiply the two reliabilities.

n-6

-
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Over-all system failure occurs if any one of the two units fails. Upon
failure, it is assumed that the failed unit will be restored to an operable condition.
For simplicity it is further assumed that the failed unit is replaced by a new unit.
To satisfy the relibility requirement, the set of distribution functions of time-
to-first-failure and time-between-failures must be found. For example, if an
80% confidence limit is specified, then the lower 20% points of all failure time

distributions must exceed the required value. (See Figure II-11.)

WITHOUT MONITORING

(1-12)

Fint =Ry

Fult?

time TP

Figure 11-10 Figure 11-11

To illustrate we will consider a two-unit system with given failure time

distributions Fl(t) and Fz(t). See Figure 11-12.

UNIT ® }
NIT &
1.0 10 u 2
B B ‘
o 0
time Y ty time
Figure 1I-12
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To generate a sample of time-to-failure, one selects a sample value ()
from a uniform distribution betweeon (0, 1) and determines the appropriate failure
times tl amit:2 as shown above. System time-to-first-failure is the smaller of the
two values tl, tz . For this example tz<tl. At this time the second unit is
replaced by a new unit. The failure distribution curve for Unit #2 is now dis-
placed by an amount 1:2 , as shown in Figure II-13,

. Fi(t)-F (tg) ’
Fiines ALY 212

.
P Py (1)
- 1.0 1.0
0 i ° e
Figure 11-13

The failure time distribution for Unit #1 is the conditional ﬁrobability that
the unit has not failed in (0, t,) and fails at t where t<t, . This conditional
distribution F;-(t) is given by:

Fl(t) - Fl(t
r-f‘l(t

2)

#
Fl(t) = )

To obtain the time-to-second failure, we again select a deviate from a

uniform distribution and proceed as above, thus obtaining a set of time-to-second-

failure., The smaller of the two is the time-to-second-failure of the system. '

-Proceeding in a similar manner times-to-third, -fourth, -fifth failures, etc.,

are obtained, and, accordingly, the times-between-failures. This process is

repeated u'ntil a sufficient number of times to first failure, times to second, etc.

are obtained. Thus, the empiric time-between-failure distributions can be de-

termined to any desired degree of confidence. To meet the requirements, the »

lower 20% value of all mean-time-between-failures must exceed that value
specified, '

18 SRR
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APPENDIX II1
PROBABLE ERROR IN STATISTICAL SOLUTION OF AREA INTEGRAL
III,1 MONTE CARLO MODEL FOR DETERMINING AREA

This appendix will determine the probable error resulting from a given
number (n) of replications when Monte Carlo is used to ascertain an area,

‘Figure III-1 illustrates the area (shaded) to be determined by Monte Carlo
‘techniques.

g «f

' tis)

— —-_ﬁ

o ]

Figure l11-]

- o -

Let B be the area under f(x) between the limits a and b, thus:

b ,
Bs S f(x) dx (111-1)
a

The area A under the rectangle is given by:

A s (b-a)h (11-2)

‘To determine the area under f(x) using Monte C;rln. one proceeds as
follaws: ‘

Wied
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From a uniform distribution select a value xl on the interval from a to -
b . Ina similar manner pick ‘I1 from the uniform distribution on the interval
from 0 to h. These two values define a point P1 with coordinates Plﬂ(x i. Y l).
This process is continued n times until one cobtains PN - (XN. YN). The limit
of the ratio of the number np of points falling in B to the total number of points

(nt) defines the percentage probability as n,~e or:

P 2B
t

n -+«

t

To obtain the area B, one simply takes the product PA. If the number of

points is infinite. PA s B , the exact area {(x). However, since n, is finite, a
certain error is introduced. To find this probable error as a function of n, one

proceeds as follows,
Define:

P = probability of falling in B
l - P = probability of not falling in B

The probabiiity of obtaining r successes in n tries can be obtained

‘ from the binomial distribution:

Pin,r) = cfp’u - PPt (111-4)

The average number of successes, T, is given by:

(111-5)

b

T =

Sini

or ‘ P =
For the binomial distribution the standard deviation ¢ is defined by

' ¢ = VoP(1 - P) (m-7)

W2




It follows that one standard deviation in ﬂ'%ﬁl is:

¢c  MPIG-P) , [PO-P) (111-8)
n .

LN -
o n n

and the probable error (percent) in P(n,r) is

67. 45 /E(l - P)
P.E. (%) = 61. 45 ¢’ n

T/n Tin

1. P (11-9)
= 67.45 T

As seen from equation (III-9) the larger P and n, the smaller the
probable error. Therefore, the size of the enclosing refarence area should be
kept as small as possible,



A O v s e e

APPENDIX IV

DERIVATION OF THE FREQUENCY FUNCTION OF A FUNCTION
OF TWO INDEPENDENT RANDOM VARIABLES

IV.1 INTRODUCTION

This appendix considers the mathematics of a problem which arises in
reliability theory, viz., the determination of the distribution of the parameters
of a system given the distributions of the parameters of the components that
make up the system. That is, it is the problem of determining the distribution of
a function of several random variables of knowp distributions.

IV.2 DERIVATIONS

Given the two random variables x and y, their joint frequency function,
Py Y(t r,)*. and some function relating a variable z and the two variables x and
?
Y, viz.,
z = f(x,y) (Iv-1)

then z will also be a random variable whose distribution is determined by the
di-tr%ution of x and y. We will develop methods for determining the fre-

quency function of the distribution of z.

The distribution function of g2, Fz(;) ,» will simply be the integral of
Py Y(E 7) over that region of the § -7 plane for which
?

(g, ;< ¢ (1v-2)
That is,
Fz(;) = S px' y(; %] ) dr 48 (Iv-3
(8, y)<t

and the frequency function of z,p z((,), will be the derivative of F '(;) with
respect to {; i.e.,

»
Subscripts are used throughout this memorandum to identify functions; the
subscripts are not to be regarded as variables.

V-l
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P k) = FF,) = &S Py, y(8:%) ¢ d% (1V-4)
HE )<t

We will assume that equation (IV-1) and the Inequality (IV-2) may be
solved explicitly for y and % respectively, and that the solution of equation
(IV-1) for y is single-valued and differentiable; thus

fix,y) = z (a)
f;l(x, z) = y (b)* v=2)
and
(5, 9) < ¢ (@)
{(IV-6)
when 8,05y (b)

The inequality (IV-6b), corresponding to the inequality (IV-6a), may
have either sense, as noted, or it may have different senses in different regions

of x.

Then Equation (IV-3) may be written:

L If < f;,l(z.;) when £(§,2)g5 ¢

-1
4+ f (g,;)
. y
R = § (e ey ana av-7)

2. '/zf;l(LL) when £(§,%)<{

raer = § (o mpeyas (1v-8)
“= Tl -

* -
The notation £~ 1 is the inversion of f(x,y) with respect to y; it should not be
confused with a partial derivative with respect to y.

Iv-2

T I T KIS A omscoastmess s i . ST—— T |

*



ety v sl S5 WA SN R 1 W s

1

If x and y are statistically independent, which will be assumed through-
out the balance of this appendix, the joint frequency function of x and y will
be simply the product of the frequency functions of x and y:

Px,y'5:7) = P, (8) py(y) (1v-9)

Throughout the balance of this memorandum the following assumptions
(some of which are implicit in the preceding) will be made:

1. px(g' ) and py(y) are continuous.

2. The function, f£(x,y), and its inversion with respect to vy, f;l(x, z),

are continuous, single-valued, and differentiable.

3. x and y are statistically independent,

4, x, y, and z are real.

When x and y are statistically independent, equations (IV-7) and (IV-8)

reduce to

1. When 9 < }€,() when f(§,9)< ¢

e £ 18, )
r 0 = pge (o ayes (1V-10)
4o
- (@ r G onas (Iv-11

2. When »>4-'5,() when f(€,7)< ¢

: + o0 +o0
raw = (@) (opmes (av-12)
e £18,4) -
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but for general forms of the frequency functions, px(B) and Py(7"

1. I z s x+y (Iv-20) .
i Sy 8 z-Xx (Iv-21)
Then z 5_ 4
| (1v-22)
_when y<t{-x
Therefore
+e
= - g -4) -
= (e pi - Miod) (1v-23)

ﬁhich is the familiar convolution integral *
4o
Rlg) = S Pi(7) Pyl - =) dr (1v-24 .
2, If z = x°y (IV-25)
y =3 (IV-26)
e . . Them . <l )
: when y € ¥Ux x>0
% (IV-27)
y 2 §/x x< 0 2
’ !
?ﬁurctoro 0 | i
= - (e bn § S oo (1v-28)
-l ’g
4w ~
' "i"p*(t) NN EX

IV}
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+e

= S P, (£) {1 - Fylf;llg.;)l} dg (Iv-13)
- +e0
=1- gpx(é)FY[f;l@.c)l dg (Iv-14)

Equation (IV-4) for the frequency function of z,pz((,). becomes, for the

two cases:

1. When 3 < £}, ) when f(5,y)<¢

-1
e £.05,0)
= 8 )
. Pl = 3% S P, (§) Spy(7) dy d§ (IV-15)
+a -1
: . 8f_(€,¢)
= pr(e) ‘py[fyl(ﬁ.;)]—lb-r—— 13 (IV-16)

2. When y> £1(£,1) when £(§,7)< ¢

4o 4+
; Pl = 38-;- pr(i) SPY(7) dyd§ (IV-17)
| - £ 1€ 0) -

+w ) -1
S N -1 af ﬁ, ‘) - -
= ) 8,08) p [ (5, 0] g ag (IV-18)

We will now consider a number of specific cases, that is, a number of
specific forms of the function

z ® f(x,y) {IV-19)

IvV-5%
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. S P, (E) P (f)-‘-'f pr(é) py (g) (1v-29)

:which reduces to the following form, which has been called the logarithmic
convolution:

et = (o gm o, (5) 45 (1v-30)
3. 1If z =2 (Iv-31)
y = zx (1V-32)
Then z< {
when y € Ix x>0
(IV-33)
Yy > §x x<0
Therefore
0
0 = - (empuef ana
o (IV-34)
' b§p,<e> P 0 8) & (¢ B ag
0 ©
« (0 port-pat + Sp,(;) P (LU &
-® (IV-35)
Ppe) = Sb,,h)'py(u) it} d« ) (Iv-36)
-t .

IV-6
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(IV-37)

(Obviously, z> 0 if x and y are real; the latter assumption is

made throughout this memorandum,)

.odnx = x+y

Yy = lnz-x
Then
z < ¢
when y < Inf -x
Therefore, when z > 0
20 = (o &) ng- £ ung -5 a8
=1 -
t (oo me-na
(x) ’ £<?
e Pglt) = 1
7 [pe*p ] ng) >0

(IvV-38)

(IV-39)

(IV-40)

(Iv-41)

(Iv-42)

(IV-43)

where, in Equation (IV-43), the usual notation for the simple convolution of the

frequency functions P, and py is used.

5. If . z = xv x>0

(Obviously, z> 0 if x and y are real.)

Ing= ylnx

Ing

Y * Tnx

(IV-45)

(IV-46)

IV.?
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é Then < ¢ d
when Yy £ lﬁ:—-,“- x>1
(IV-47)
y > I:X Ocxcl
Therefore, when { > 0
1
. (4) = -Sopx(s)py (B8 5 (38) =
+ S:x(‘E)PY (B8 & (B) = (1V-48)
1
1
’ zgop‘g“’ (B#) ~=r ,
+ 1 S:x(e)p (B5#) oe avoen
\ b4 n -
0 t<o0
= {IV-50)

p, (%)

We may formalize several generalities which are suggested by the
preceding:
! 1. Heuristically we may condense the two cases represented by equations
(IV-16) and (IV-18) to a single equation:

81 }r,q)

-—l,r—l ds (IV-51) -

Pl = (ot 16 e, 00
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Equation (IV-5]) may be regarded as the generalized convolution of Py and p y
with respect to the function f; this operation we will denote by the operator *f.

This convolution of Py and py then becomes an operator on { , and equation
{IV-51) may be written, in operational form:

P 8) = [py *p,] (1) (1v-52)

2. Consider a functional relation between x, y, and z of the form

z = h{f(x,y)] (Iv-53)
where x and y are random variables with frequency functions Py and py.
We may define another random variable, w :
w = f(x,vy) (Iv-54)
whose frequency function, pw(u ), will be
Pel0) = [p, %P ] (@) (1V-55)
Now
z = h(w) (IV-56)
which, we will assume, may be solved for w:
w = b }(z) (1v-57
where h” l(z) is a single-valued function of z.
The frequency function of 2z in terms of Py will then be
-1,y 4}
P,(0) = p,, [b77(L)] (1V-58)

Iv-9
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Therefore ¥

-1

dh

plL) = [p, * P} [57'(2)] | (1V-59)

Example 4 above is of this type (see equation (IV-48) )

B s

3, Conaide;- a functional relation between x, y, and 2z df the fdrm
z = flg(x), hiy)] (IV-60)

where, again, x and y are random variall es with the frequency functions Py
and py. Define the two new random variables:

[
1]

8(?‘)
(Iv-61)
h(y) -

<
n

and assume that equations (IV-61) can be inverted to give the single-valued
functions of u and v ’

(IV-62)

[1]
-

y

Then the frequency functions of u and v will be

-1
b0 = plg el 2-%;;9—)

‘ -1 {IV-63)
?: pv) = p[h7 ()] LE0)
! Substituting equations (IV-61) into equation (IV-60) givel
£ = f(u,v) (IV-64) s

IV-10




and, therefore, the frequency function of z in terms of Py and p v 18
’ p,8) = [p, *p,) (¥) (IV-65)

where P, and P, are given by equation (IV-63). Equation (IV-65) may thus be

written
p ) = (7 rxpte7h * (" Hx p 67 h} o) (IV-66)
where:
(€1 (o) = (87100
(IV-67)
™ e) = 7]
' The operétor *e defines the variables on which these operators operate. Refer

to equations (IV=88) and (IV-89) with regard to the symbol X,

4. The same process may be iterated for certain types of functions of
more than two variables, For sxample, let x, y, and w be random variables

with frequency functions Py+ Py Py, » and let z be defined as

y
z = f[g(xv y)h W] (IV-68)

If we let .
u = gix,y) (IV-69)

] u will be a random variabie wiih [requency function
Py(v) = [py *p lt) (IV-70)

From equations (IV-68) and (IV-70)

g = flu,w) (Iv-71)

Iv-1}
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' .
‘80 that
P8} = [p, % p,] (0 (IV-72)
Therefore ‘
P, (8) = {[p *op 1 *ep, } (L) (1V-73)
5. Again, let x, y, u, and v be random v;riables with frequency func-
tions Py s py » Pys Py and let
z = £[g(x,y) hiy,v)] (IV-74)
If we let
s = g(x,y)
(IV-75)
t = hiu,v) .
then s and t are random variables with frequency functions
o
P o) = [p * p 1 (0)
(IV-76)
p.(7) = [p, % p,] (1)
z is a function of s and t:
z = f(s,t) (1vV-77)
} and is a random variable with the frequency function
;
‘ P(t) = [P, * Pl (L) (IV-78)
'§ '
Therefore
Pt} = (Ip e * p, ] % [p, %50} (0) ~ (1v-19) +
.
Iv-12
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1v.3 SUMMARY

If we regard P, as an operator, i.e., if we regard pz(;)‘ as the result
of performing the operation P, on {, we may summarize the results of the
preceding in operational notation,

Letx, y, u, v, be random variables with frequency functions defined by

the operators Pys» Py Pys P, and let z be a function of the variables x, y,

. y
u, v, viz,,

[

z = {(x, y, u, v) (IV-80)

Then z will be a random variable whose frequency function will be defined by the
operator p, . We will tabulate the form of the operator P, for various forms

of the function, f(x, y, u, v) (i.e., the operator f).

First, we will define the generalized convolution operator with respect to

the function f of two variables, viz., *f , as

o 0 as e, g)
lpy *¢ ] (L) = S‘ Pl TP lE (7, L)] —13——; dr (IV-81)
-0
where f;l(x. z) is the inversion of f(x,y) with respect to y; i.e.,
given:
z = f(x,y)
(IV-82)
then: y = £;1(x. z)
The tabulation is as follows:
1. If z = f(x,y) (Iv-83)
~ P, =[p, * Pyl (1V-84)
2, If z = h[f(x,y)] (IV-85)

P, = [(h"l)' X {[px*fpyl(h’l)}]

IV.l3
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, -1 ' |
= [DX[p, *p ] ("] (1V-86)
where D is the differential operator; i, e.,
D¢ (x)] = &lx) = -;; $(x) (IV-87)

The cross in equations (IV-86) indicates multiplication in the following sense;
Given two operators, Ll and Lz , and the variable (or function, or operator),

z , then
Ll, Lz(z)g Ll[Lz(z)] : (IV-88)
I..1 X Lz(zHLl(z)] X [Lz(z)] (IV-89)

That is, the notation of equation (IV-89) indicates the successive application of
the operators Lz and Ll : first the operation l.,2 is performed on z , and
then the operation Ll is performed on the result., The notation of equation
(IV-89) indicates the product of the results of performing each of the operation,
Ll and Lz on z,

3. If z = £ [ g(x), hiy)] (IV-90)
p, = (L& e e hls [ h'p m™h 1)
(IV-91)
- [toxp 1 @y (o xp ) m7hY]

4, I z = f[gl(x,y)u] (IV-92)
p, = (o, *gp,] *ep,) (1V-93)

5. If z = f[glx,y) hlu,v)] (IV.94)
pe = {lpy *gpy] % [p, %, 0,0} (1V.9s)

IV-14



In the following particular cases, the convolution takes the forms shown:

) 6, If z = f(x,y) = x+y (IV-96)
P (0 = [p %l 0 = (o mp-mar v

7. I z = f(x,y) = x-y (IV-98)

Pt = [p, %P1 (4) = fpxm Py (&)T‘!:-[ (IV-99)

8. If z = f(x,y) = { (IV-100)

P,l8) = [py % p, 1 (0) = pr('t)py((. olt| ar  (@av-101)

9. If z = flx,y) = XY (IV-102)
13
L) = [p % p, ] (1)
0 £<0
: (IV-103)
1 pr( Opfing - 7dr g2 0
10, z = f(x,y) = x¥ x> 0 (IV-104)
P,{8) = [pg % p,] (1)
1
’ 0 £<o0
2 . (IV-108)
1 In
) ‘ 7 pr(t)py (h—,‘) 5 o0
0

IvV-1%
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The pr-ceding is predicat-ed on the following assumptions:

1. Py » py » P+ P, aTe continuous.

2. £, g, h, and their inversicns, f-l, g'l, h-l, are continu
single-valued, and different:able,

3. x,y,u, and v are statis‘ically independent.

4, x,y,u, v, and z are real,




