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FOREWORD

This effort is part of an overall program whose object is the investigation,

development and application of techniques which may be utilized to predict elec-

tronic circuit and system reliability, both initial (time zero) and time dependent.

The investigation of prediction techniques and tools (i. e. , linearization, Monte

Carlo, computer poles and zeros analysis, regression analysis) conducted by the

contractor during a preliminary phase of the program is described in RADC-TR-

61-299, "Mathematical Simulation for Reliability Prediction".

It was the purpose of the second and current phase to develop transfer func-

tions for selected circuits and to investigate means for deriving system transfer

functions by combining the transfer functions of constituent circuits. In follow on,

in-house work now underway, RADC is using the above circuits to empirically

evaluate each of the prediction techniques investigated in phase one.

In order to assure that the circuit functions chosen would be appropriate to

typical circuit functions encountered in Air Force ground systems, the RADC

preferred functional divisions (Report RADC-TR-59-243) were chosen as test

vehicles. Utilization of these particular circuit functions lead to the additional

advantage that the transfer functions developed and the predictions of performance

characteristics (initial and time dependent) will lend themselves readily to form

the nucleus of a library of preferred circuit transfer functions with predicted ini-

tial and time dependent performance characteristics.

2i



ABSTRACT

This report presents the results of the second phase of the study program

for the development of techniques for predicting the reliability of electronic sys-

tems from statistical information about the performance of system components.

The transfer functions which have been developed in this phase are mathematical

models of the actual systems to be evaluated. They are used to determine system
performance when component characteristics vary from nominal values as a result

of:

(1) Manufacturing and handling

(2) Degradation due to age

(3) Internal and external random stresses

This report concludes that the simulation techniques used are the most

efficient for the purpose and have the following distinct advantages.

(1) They provide a means of determining the sensitivity of circuits and
systems to the variations noted above. When circuits and systems
become complex, then the simpler conventional methods (e. g., differ-
entiation) are no longer feasible for determining circuit sensitivity.
At this point, mathematical simulation techniques provide the most
efficient and indeed the only means of analyzing and evaluating
system performance.

(2) They provide a means of determining not only the tolerance limits but
also the shape of the underlying frequency distribution of the particular
components used in the circuit or system under investigation.

(3) They provide an unambiguous definition of failure.

(4) They provide a means of assessing the relative merits of competing
systems.

(5) They allow the transfer function to be expressed conveniently in matrix
form so that conventional routines available to modern computers can
be utilized. Hence, the analytical expressions of system performance,
necessary even for the most rudimentary statistical design techniques
are unnecessary. (Such analytical expressions are laborious to form).

(6) They can be used to optimize a system for a given cost.

The circuits analyzed in this report will not only serve as vehicles to sub-

stantiate the findings of the first contractual phase, but will in addition serve as a

nucleus for a library of preferred designs with defined lifetime characteristics.
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SECTION I

INTRODUCTION

1. 1 DISCUSSION OF BASIC CONCEPTS

1. 1. 1- Transfer Functions

A transfer function is a mathematical function in an equation which relates

the characteristics of system performance to the characteristics of component

performance and to system inputs. This is expressed mathematically by:

zi = Ft(xl,x2... Xnpy Zy... n) (1)

where the zi represent system performance characteristics, the xi represent

component characteristics, the yi represent inputs into the system, and Ft in

the transfer function.

One elegant method for actually solving for the transfer functions describ-

ing a particular circuit is that presented in [1 , 2] . Here one writes the circuit

equations in compact matrix form, for example:

al1  a. ..... a ln zI b

a 2 1  a 2 2 . .... a2 n zZ2 b2

(2)

a 1nl ann zn bn

The n by n square matrix, called the "transformation matrix", consists of

elements which are functions of values of the various system components, such as

resistance, capacitance, inductance, etc.



The individual elements of the transformation matrix are functions of the

nominal values of the component parameters and are derived from the circuit

equations describing the particular circuit; examples of such derivations may be

found in Sections III and IV. The bi are voltage or current constants also obtain-

ed from the circuit equations. The elements z. of the third matrix are the indi-

vidual transfer functions describing system performance. Following Gabriel

Kron, we may say that the transformation matrix dominates the whole problem of

reliability prediction. Indeed, once this matrix is known, the task of finding the

unknown transfer functions can be made entirely automatic - a mere mechanical

routine. If the transfer matrix is non-singular, then the unknown transfer matrix

[z] can be found by:

[z] [A]' 1 [B] (3)

Equation (3) thus enables one to find the z. described in (1) in a convenient and1

compact form.

This basic procedure of finding transfer functions can be used to perform

any one of three different types of circuit analysis:

1. DC Analysis: The performance criteria are the quiescent currents
and voltages.

2. AC Analysis: The performance criteria are the functional relation-
ships between amplitude, phase and frequency.

3. Transient Analysis: The performance criteria are rise and decay
time, pulse width, overshoot, etc. Such characteristics are called
transient responses.

These three types of analysis together with the use of the transfer functions

to perform them can be applied at any level of system or circuit complexity.

Specifically, transfer functions can be applied to analyze the performance of an

individual circuit, of a subsystem composed of individual circuit, of a system

composed of subsystems, and so on ad infinitum.

1. 1. 2 Monte Carlo

If a system is made up of a large number of components whose character-

istics are described in terms of statistical measures, e. g., distribution functions,

and whose characteristics may change in time in a probabilistic way, then the

system performance criteria may also be determined in a probabilistic way as

2



functions of the distributions of component characteristics. Thus, the problem of

reliability prediction consists in determining the probability distributions of meas-

ures of component performance. The functions relating system performance to

component characteristics can be found in two ways, analytically (see Appendix IV)

or synthetically.

Given the cumulative distribution functions of various characteristics of the

components of a system, an integral equation can be formed which relates the

corresponding density functions to cumulative distribution functions of character-

istics of over-all system performance. When the system or the circuit is rela-

tively simple, i. e., when the underlying density functions are normal and the com-

ponents are either all in series or all in parallel, then the integral equation can be

solved by analytic means (see Appendix IV). However, as soon as the circuit be-

comes in any way more complex, or if the underlying density functions are no

longer normal, then analytic means are no longer practical and statistical methods.

of solving this integral equation must be applied. The statistical sampling methods

used to solve such integral equations are called Monte Carlo methods or mathe-

matical simulation methods. Examples of the use of this method can be found in

Section III and Section IV of this report, as well as in [3]. For a general introduc-

tion to Monte Carlo methods, see also [4].

Before concluding, it may help to consider an example of the application of

Monte Carlo methods to the solution of an area integral. Suppose a closed curve

to be traced on a plane surface in the form of a square, as shown below. On this

surface, a coordinate system is superimposed. A source of pairs of random num-

bers is available, any pair corresponding to a point on the square, with the condi-

tion that the random pairs are uniformly distributed. This means that a random

point may fall anywhere on the surface with equal likelihood. If these random pairs

are classified into two groups according to whether they fall inside or outside of

the closed curve, then the ratio of the area inside the curve to the total area is

approximated by the ratio of the points falling inside the curve to the total number

of random points. The accuracy of this approximation can be increased by in-

creasing the number of random pairs. This example could obviously be extended

to three or more dimensions. This illustrates the connection between Monte Carlo

methods and integrals, since integrals are used to express areas, volumes, etc.

[ii].
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SECTION II

PROCEDURES AND COMPUTER APPLICATIONS

2. 1 INTRODUCTION

In this section a description is to be found of the actual manner in which

concepts and techniques of transfer functions and Monte Carlo methods are applied

in a reliability analysis of a circuit or a system of circuits. Next, the role of the

computer in this analysis is described followed by the flow charts used in the com-

puter programs, together with relevant explanations as to their use. Finally,

there is a formalized description of these procedures suitable for enumerating

specifications in contract use.

2. 2 GENERAL PROCEDURE

The following is a brief description of the procedure for performing a re-

liability prediction as outlined in the block diagram in Figure 2.

Step 1: Deterministic Analysis

A set of performance criteria is first received which specifies how the

system i s to perform. Based on these criteria, a circuit is then selected, pref-

erably from a catalog of standard circuits of proved performance and reliability.

An equivalent circuit is then formed which represents the schematic and which is

then analyzed so as to yield the circuit equations. From these equations the trans-

fer function is then formed. In many cases these functions can be formulated in

the form of a matrix. This matrix is set up with the specified nominal values of

the circuit and solved by the computer. At this point, if it is impossible or in-

convenient to find an equivalent circuit; or to set up the circuit equations; or to

solve the matrices, a regression analysis may be alternatively used td determine

the transfer functions. Substituting the nominial values of the component charac-

teristics into the transfer functions, one then obtains the nominal values of the

system performance measures represented by each transfer function. The nominal

values of the system performance measures are then compared with the nominal

system performance criteria. If no suitable agreement occurs, then a new

circuit must be chosen and the entire procedure repeated until suitable agreement
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is obtained. At this point, an optional experimental check of the calculated nomin-

al values may be undertaken. The computations as well as the laboratory experi-

ments must be repeated until computed and experimental nominal values of per-

formance measures agree.

Step 2: Probabilistic Analysis

Once it has been ascertained that the transfer functions are correct, the

computations correct, and the laboratory experiments accurate, so that all nominal

values for system performance agree, then the next stage of analysis begins.

Random variations in the component characteristics will give rise to random

variations in the system performance measures. At this stage, random numbers

are first generated according to the rule which describes the random variation in

the component characteristics, i. e., the generation of these random numbers

simulates the random variationwhich the component characteristics are subject to.

These generated random numbers are then substituted into the transfer functions,

which are then evaluated and, in turn, yield sets of random numbers whose

variations can be described by a cumulative distribution function (see Appendix I).

[5, 6] This cumulative distribution function describes the resulting random varia-

tions in the system performance measures. This process can be. repeated at

intervals to give a description of how the system operates in time. At this point,

the cumulative distribution functions describing the system performance measures

can be examined to see if they are in accordance with the specified performance

criteria. If they are not, the components are changed and the Monte Carlo process

described above is repeated until the performance criteria are finally satisfied.

2.3 COMPUTER APPLICATIONS

In this section a description is to be found of the role of the computer in the

analysis of the performance of circuits and systems, and in the efficient treatment

of the transfer functions, both in the deterministic phase of analysis and in the

probabilistic phase of analysis using random numbers. Following this there is a

generalized flow chart which, together with relevant explanations, describes the

computer program in a general way applicable to any of the circuits or systems

discussed. With slight modifications, it can be rearranged to apply to any of the

specific circuits or systems in this report.

7



2. 3. 1 Role of Computer

In the mathematical simulation procedures the computer plays an indis-

pensable part. In the probabilistic stage of analysis where random numbers are

generated and substituted in the transfer functions of a solution, it is impractical

to do the work manually. The time-saving speed of the computer is also most

desirable in the solution of the matrices in the deterministic stage. The speed

and convenience of using the computer not only save time and money, but also

take Monte Carlo methods out of the realm of theoretical possibility into practical

reality.

A further advantage in the use of computers in this analysis is that one

obtains, so to speak, a built-in reference library which completely describes the

system and to which one has immediate access. A documented record of circuit

performance exists on cards or tape and information retrieval techniques can be

used to ascertain immediately the particular characteristics of system or com-

ponent performance. Given a particular amplifier placed in a particular configura-

tion, for example, one can immediately find the gain, bandwidth and associated

distributions.

2. 3. 2 Generalized Flow Chart and Explanation

Figure 3 shows a generalized flow chart which (with suitable modifications)

can be applied to any one of the specific circuits or systems in this report. The

general computer routine in the flow chart is as follows: Initially, the machine is

prepared for operation by rewinding the magnetic tape and setting the counter to

the appropriate number. Next, the various sets of random numbers are generated

in accordance with the underlying frequency distributions of the component param-

eters. This involves a proper adjustment of the random numbers, i. e. , fitting

them into the proper scale, e. g., 0 to 1, 2. 5 to 4. 6, 900 to 1100, and ascertain-

ing whether they fall within the proper range within the scale, if the distribution

is to be truncated. Next, the random numbers are used to generate and solve the

matrix involved in the problem. The solutions are converted for the plotter and

the answers written on the magnetic tape. The large loop on the left indicates that

the above steps are repeated one at a time for each single random number and that

the process comes to a halt only after all the generated random numbers lave been

utilized (counter a 0). [19]

8
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2.4 FORMAL PROCEDURE FOR RELIABILITY ANALYSIS

Step 1. A standard circuit or a system composed of standard circuits is

selected to satisfy the required performance criteria. In other words, the circuit

configuration or particular arrangement of the components is chosen, as opposed

to the specific or nominal values and their respective tolerances. If two or more

competing circuits exist and are capable of performing similar functions, an

analysis may be made of them in order to determine the circuit or system capable

of best meeting the requirements.

Step 2. Next, the transfer functions describing each critical performance

criterion such as bandwidth, rise time, quiescent current and voltage, noise

figure, etc., are generated. The transfer functions are constructed in the

following manner:

First, equivalent circuits are constructed from the

schematics, and the mathematical equations describing

the equivalent circuits are formulated. From these

circuit equations, the matrices contained in the equation

for the transfer function [Z] = [A]-I [B] can then be

formed.

In cases where it is not technically or economically feasible to define-the

transfer function analytically, it may be defined experimentally using regression

analysis techniques.

Step 3. Next, the matrix equation obtained in Step 2 must be solved by the

computer using the specified nominal values of the component characteristics.

Step 4. Once the solution is obtained mathematically, an experimental

check on the accuracy of the transfer function may be made in the laboratory by

constructing the actual circuit, taking measurements of specified performance

criteria and comparing these experimental values with the values obtained analy-

tically from the transfer functions.

Note: It is important to note at this time that the concept of failure must be

clearly defined since such a definition is essential for the application of mathema-

tical simulation procedures. In this program, the following definition applies:

10A



A failure is a cessation of ability to perform a specified

function or functions within previously established limits

on specific performance characteristics, i. e., referring

to the cumulative distribution function plotted in Figure

4, a failure is any unit that falls in the shaded area.

FAILURE
RELATIVE • ALURf USABLE

FRREQUENCY UNITS

/

LOWER upPER
LIMIT LIMIT

Figure 4. Cumulative Distribution Function of Critical Performance Limits-

Used to Define Failures

Step 5. Random numbers are generated according to the rule which des-

cribes the random variation in component characteristics, i. e. , the generation of

these random numbers simulates the random variation which the component

characteristics are subject to. These variations may be due to external stresses,

e. g. temperature, vibration, humidity, etc. , as well as internal stresses.

Note: Random number tables for frequently occurring distrubutions which repre-

sent a large class of those elements comprising electronic circuits and systems

are available in reference [31, which describes the generation of random numbers

having the following distributions:

1. Uniform

2. Exponential

3. W eibuUl

4. Normal (Gaussian)

5. Log Normal

6. Poisson

S7. Chi-Square with even degrees of freedom

- 7I



For cases where it is not known if any of the above sets of random numbers

describe the component, empirical cumulative distribution functions can be gen-

erated. The values of the actual components to be used in the system are meas-

ured and then ordered to form cumulative distribution functions. These values can

then be used directly or can be obtained from a curve that has been fitted to these

points.

Step 6. The appropriate random numbers are then substituted into the

transfer function, which is then evaluated on the computer. This process results

in cumulative distribution functions~de scribing system performance measures[ 17,181.

Step 6a. If the results of Step 6 are not satisfactory, the components used

in Step 5 must be replaced or alternatively the basic design must be modified so

that system performance is less dependent on component tolerance (e. g., add

feedback, temperature stabilization, etc. ).

Step 7. Repeat steps 1 through 6 as required.

12



SECTION III

CIRCUIT APPLICATIONS

3.1 INTRODUCTION TO CIRCUIT APPLICATIONS

It is the purpose of this section to present an individual circuit analysis of

each of the circuits that make up the systems represented in Figures 5 and 6. The

Timing Network is composed of conventional circuits chosen from the list of

preferred circuits included in the RADC Technical Report - RADC-TR-59-243.

The Error Sensing and Readout System is composed of microminiature circuits.

Microminiature circuits wer'e chosen since they are of a "state of the art" nature

and consequently relatively little is known of their reliability. Therefore, with

the cooperation of the Sylvania Microelectronics Laboratory, it was decided to in-

clude these circuits as a portion of the Mathematical Simulation Program.

It is possible to present three different analyses of any circuit: namely DC,

AC or transient. However, since the purpose of this program is to prove the

feasibility of a technique, the main emphasis has been placed on the DC or quies-

cent current and voltage portions. The techniques, as described below are also

applicable to the AC and transient analyses. The major difference in the approach

is due to the fact that the equations derived in the AC or transient analyses are

time dependent or differential equations, whereas the DC analysis yields algebraic

equations. However, it is possible to change these time dependent expressions

into algebraic expressions by use of the Laplace Transformation and then, once

the solution is obtained, transform it back into the time domain. [10]

The technique which has been referred to above is outlined as follows:

Once the circuit or system is chosen, a complete analysis is performed. This is

realized, in the DC treatment, by describing the circuit or system with a set of

nodal and/or mesh equations. These equations are arranged and a transformation

matrix is formed. Contained in this matrix are all of the critical circuit param-

eters as well as all of the individual components and/or various combinations of

these components which will, if varied, cause a change in the value of the corres-

ponding parameter or parameters. The matrix is then solved for the nominal

values of the components by means of a computer. At this point it is desirable to

13
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verify the accuracy of the transfer function by measuring the circuit parameters

on a breadboard of the particular circuit or system. A comparison of the empiri-

cal and analytical values will accomplish the verification. This is the extent to

which this section covers this technique; however, Section IV will present the com-

plete solution, the remainder of which is briefly described below.

Sets of random numbers are generated that correspond to the various parts

of the circuit or system. The type of random numbers depend upon the type of

distribution of the part or parts; i. e. , normal, uniform, etc. These random

numbers are substituted into the various matrices and the effects on the per-

formance noted. In this manner, it is possible to isolate the most critical parts

and, therefore, circuit redesign or maintainability steps may be taken. It is also

possible to repeat the above procedure at some time or times in the future by

generating new sets of random numbers based upon known characteristics of the

particular parts, thus obtaining a prediction of circuit reliability.

3.2 TRANSFER FUNCTIONS OF CONVENTIONAL CIRCUITS

This section presents the transfer functions of a number of circuits chosen

from the list of preferred circuits included in the RADC Technical Report - RADC-

TR-59-243. [9] The circuits chosen for analyses are preferred circuits of the

highest reliability (failure rate wise) which have undergone extensive life test.

Reference Report RADC-TR-59-243, "Reliable Preferred Solid State Functional

Divisions", and the RADC Reliability Notebook in which it is included. In this

report there is some philosophy about the circuits which you may find helpful.

3.2.1 Transfer Function of the Trigger Circuit

This subsection presents an analysis of an emitter coupled binary circuit,

commonly known as the Schmitt Trigger, in terms of its transfer functions. [7]

The expressions derived are those for the circuit appearing on page 47 of the

RADC Technical Report, RADC-TR-59-243. The solutions are in the form of

matrices of algebraic equations for the quiescent currents and voltages.

16



The circuit as analyzed is shown in Figure 7 and functions as a general

purpose multivibrator or squaring assembly. The transistors Q and Q3 per-

form as emitter followers isolating the timing circuit from external loads; and

QI arid Q 4, coupled through the common emitter resistor R 7 perform the

squaring function. The circuit will accept a sine wave, complex wave, or rec-

tangular input signal and present two DC coupled complementary signals at the

output terminals.

A complete solution of the circuit indicates that neither transistor when

operating was in a saturated condition. A verification of this fact may be re-

ceived by an examination of the computer solutions of the base currents for both

cases see Tables Zand3. Fromthe solutions,it may be seen that the base currents

are all negative indicating an impossible situation. As a check on the accuracy of

the transfer functions, a breadboard circuit was set up and the various voltages

were measured. As may be seen from Table 1, the measured and calculated

values compere very closely, thus, confirming the accuracy of the transfer

functions.

TABLE 1

COMPARISON OF CALCULATED VS. MEASURED VALUES OF TRIGGER CIRCUIT

A

Q4 NON-SATURATED, Q0 OFF

VE2  VE3 VE4

CALCULATED 22.1 8.8 7.4
MEASURED 22.5 8.8 8.0

B

Q1 NON-SATURATED, Q4 OFF

V V1  VEl VE2  VE3

CALCULATED 10.0 -0.7 8.6 8.7 22.3MEASURED* 11.0 -0.7 9.0 8.6 22.5

*Moasurod with a positlve DChIggor of 12 v.

17
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Figure 7. Trigger Circuit Schematic
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Quiescent Current and Voltage for 0 Off

When the condition exists that QI is off and Q4 is in either the saturated

or non-saturated state, Q1 P CR 3 and the associated circuitry are removed

from the circuit because of reverse biasing. Figure 8 is the equivalent circuit

used for the circuit analysis and Figures 9 and 10 are the equivalent circuits for a

transistor in the non-saturated and saturated state respectively. A 0. 6V drop was
assumed across the diodes CR 4 and CR 5 due to forward biasing. Utilizing the

nodes indicated in Figure 8, the circuit equations were derived for the state in

which Q4 is saturated and are presented below.

VE2 ICZ 24.4 (4)

V ~ p 1) 12 5

VE2 (E+ + VE 4  + Icz 1 - 9s(

9 8'VE2(w.)vE4 (W<Wj-W7 - B4 =

1.2 + 26.2 0.6 (6)

9 8 11

I + I 'C4(1) + -C
V E 3  6 + 1 +1 3 +3C (( 7)

24.4 + 23.8 1.2 (7)

V +1 I + 1 =25 (8)E4 "IC4 B4 = 71
74-; 7

rE3 9-1 "R7 + Ic3 (1o + M.9)

VE3(1) + VE 4(-l) a -0.4 (10)

The matrix used for the computer solution of this state is presented in

equation 11. The computer solution of this matrix is included in Table 2. For
the situation where Q is non-saturated, it may be easily seen by referring

4
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to Figures 9 and 10 that the matrix for this case may be written directly from the

matrix of equation 11. When 0 4 is non-saturated, the base current IB4 is

directly proportional to l/P4 times the collector current IC4. Therefore, the

matrix for Q4 (non-saturated) may be written as shown in equation 12. The com-

puter solutioii for this matrix is shown in Table 3.

TABLE 2

COMPUTER SOLUTION OF TRIGGER CIRCUIT

(QI OFF, Q4 SATURATED)

VE2  VE3 VE4  I C2 IC3 I C4 I B4

22.3 8.3 8.7 0.004 0.002 0.002 -0.0002

TABLE 3

COMPUTER SOLUTION OF TRIGGER CIRCUIT

P1 OFF, Q4 NON-SATURATED)

VE2  VE3  VE4  IC2 IC3 IC4

22.1 88 24 0.003 0.002 0.001

Quiescent Current and Voltage for Q4 Off

When the circuit receives a sufficient positive DC trigger to cause Q4 to

be cut off and Q1 to conduct, the equivalent circuit represented in Figure 11

applies. In this case, Q4 9 CR 1 and CR 4 are ignored due to reverse biasing.

The first situation to be explored is when 01 is saturated and the equations

for this case, utilizing the circuit indicated in Figure 11, are presented in equa-

tions 13 through 20.

22



N

* +

NI�o�
+ +

II

N I.w U U U
I> - - -

AI�
o - 9 0 0 +

o

�I�J o 0 0 0

o e - - 0 -

+

o 0 o

+

��In -v -v 0 0

23



+25V 02 ~ R R2 . 06R

R 12

_______ ______ VE2 +12i

OUTPU 1UPU

QI2 R9

INPUTU 1

INPUT 3 0 -VIVVI 0.6
IN626

-25V

Figure 11. Equivalent Circuit for Q4off and on

24



1iE + . 1.2 0.6(13)
VE1 2 R4

VE1 - ICl = 0.6 (14)

CR4

IC2 24. .4 +23. 8 1.2
"1,3 + "R12 - 13TI 2 _R5(15)

l _C (1 + P2 17

V25 0.6 (17)

VEl1() + VE2(-1) = 0.4 (18)

VE3 ) 3 )= -4. 4 (19)

V E3 ( 1- 'L) + 'C3 (1 + ) ?5 (20)

Its corresponding matrix is shown in equation 21. The computer solutions

for this matrix for values of V=1 to 10 volts are in Table 4. As was stated

before, it is possible to write the matrix for the non-saturated condition directly.

However, in this case, the equations are as shown in equations 22 through 28.

The matrix for this set of equations is presented in equation 29 and its computer

solution in Table 5.
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(iV E I(+IC IV 1L.2L o .6 (22)
E11J lkIl/2 '4

+ 0.6 (23)

V1  + VE L • + IC2 1 ) 0 (24)

V. W + VE + 'C C' P2c'T
VEz (r -+IZ+ + ICI(I) + IC/ 1,ý

5 12 13 2(25)
24.4 23.8 + 1.2

V1  ( . .) + VEZ(4) 25 0.6 (26)

VE3 + I C3 ( ' 24.4 (27)
P3 R6

VE 3  'F- C3=(1 + ) 5(
-10 12)\ 10

The analysis, as presented above, is typical of the analyses of the remain-

ing circuits. All equations necessary for the complete description of the relation-

ships between the components and the respective circuit performance character-

istics are defined in the matrix equations. Thus, all required tools are available

for a Monte Carlo Mathematical Simulation.

3.2 . 2 Transfer Functions of a Variable Frequency Oscillator

This study of the performance of a variable frequency oscillator will be

limited to an analysis of the oscillator's frequency as a function of its components.
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A schematic of the oscillator is shown in Figure 12 and its equivalent circuit is

shown in Figure 13. Table 6 prese-ts the performance criteria for the oscillator.

TABLE 6[8]

PERFORMANCE CRITERIA OF VARIABLE FREQUENCY OSCILLATOR

Requirements Maximum Deshgn MinimumCenter

Frequency range 1 250 kc 50 kc

Frequency range 2 1 mc 250 kc

Frequency range 3 5 mc I mc

Frequency range 4 10 mc 5 mc

Power Output 4 mw 3 mw 2 mw

Output Impedance 50

Load Impedance 50 o

Output Voltage, 50-ohm Load Open Circuit 0.4 v

Frequency Stability, Power Supply I%v DC

DC Supply Voltage -12 v

Operating Temperature 500 C 250 C 00 C

It has been shown that if a circuit is provided with a sufficient amount of

regenerative feedback, a transistor circuit will serve as a generator of period-

ically varying waves. A variety of feedback circuits which differ in detail are

available for the production of self-sustained oscillations. Characteristic of these

circuits is a feedback network through which a portion of the output is fed back

into the input circuit having such phase and amplitude that self-excitation results.

The analysis of such feedback oscillators will be simplified with the application of

the following two points: [12, 15, 16, 25]

1. The response of a circuit is oscillatory if the poles of the transfer
functions are complex conjugates. The oscillation will be sustained
with constant amplitude if the real parts of these poles are 0.

2. The voltage amplification or transfer function of a feedback amplifica-
tion with voltage feedback is:
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A
A 0
A - 0-cr~

0

The poles of this function are the roots of the denominator: 1 - A = 0.

The procedure for analyzing the feedback oscillator is as follows:

1. Draw the complete Class A equivalent circuit (this is shown in Figure
13):

a. Replace by-pass capacitors by short circuits

b. Replace radio frequency chokes with open circuits

c. Indicate tube or transistor capacitances

d. Draw the circuit as an open loop amplifier

2. Compute the over-all amplification of the open loop circuit as a function
of the frequency (p). This will equal the feedback factor: A0 .

3. Let A 0 -1 = 0.

4. This equation will appear as a polynomial in (p) with unity as the
coefficient of the highest powei of (p).

5. For oscillations to occur there must be a pair of conjugate roots with
zero real parts. These two conditions yield two design equations.

From Figure 13 a nodal analysis allows the following equations to be written:

- ~ Vi -V 3 +

Vyg 1 + (V1  V + 1 3p 2 = 0 (30)191 1 -2)gb'e PL + 1p- PC

(V 2 - V)gbe + V 2 g 4 - (V 1 - V 2 )gm = 0 (31)

3  1 ) + (V 1 - V 2 )gm + V 3 g3 + V 3 PC1 = 0 (32)

PL + -1

The following is the coefficient matrix of the above equation:
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PC 3  +PC PC 3

(g1 + gbe+ =- ~.---p 2) (-gble)2
p LC3 +1 p C 3 L+1

(gb'e .gm) (g 4 + gb'e + gm) =

SPC 3g+ PC 3 -- + + PC
p L--3C3 + IpLC 3 + 1••3 1

V
The gain is 1 = = 1 (33)

since V3 = A- (34)

where A1 is the coefficient matrix with the coefficients of V3 replaced

by the constant terms of equations (30, 31, and 32) respectively. Then the gain,
V3V may be written as:
1 1

V3  A1  (35)

V1 V1A

combining equations (33 and 35) we have

Al 1 = 0 (36)

multiplying equation (36) by V1 A and

A -VA = 0 (37)

Since A1 = 0 because column 3 in the matrix is all zeros and VI cannot

equal zero, then &= 0. (38)

We now solve the coefficient matrix and from equation (38) we set the matrix

equal to zero. Solving the matrix, we have
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[gb'eg4g3 +glg3gb'e + glg 3 g4 + glg 3 gm +[g beg 4 Cl + C 3 gb, eg 4 + C 2gbeg 3 +

C 2g 3 g4 + glgbeCl + C 3 glgbe + glg4 C1 + C 3glg4 + C3 gbleg 3 + C 3 g3 g4 +

(C 2g 3 + glCl + C 3 gl + C 3 g 3 + C3 g4 )gm ]P + [CIC 2gb'e + C 2 C 3gbe + C 1 C 2g4 +

C 2 C 3 g4 + C 1 C 3gb'e + CIC 3 g4 + g beg4 g3 C 3 L + gig 3 gb eC 3 L + glg 3 g4 C3 L + (39)

(CIC 2 + C 2 C 3 + C 3 C1 + glg 3 C 3 L)g I P 2 + [gbeg4 CiC 3 L + gb-eg 3 C2 C 3 L +

C 2 C 3 g 3 g4 L + glgb8 eClC3L + glg4 CiC 3 L + (C-C 3 g 3 L + glC1 C 3 L)grn P 3 +

4
[CIC 2 C 3gb, eL + CIC 2 C 3 g4 L + CIC2C3L giP p = 0

The circuit values for this matrix are shown in Table I and substituting these

constants in the above equation (39) and combining tern-is will result in equation

(40) below.

[0. 08457248618 x 10-8 + 2.8 x iO-8 gi]

+[0.7996937653 x 0"14 + 3.060708003 x 10" gM] P

+[3. 5191363382 x 10- + 4. 769320769 x 1o 1 8 g] P2  (40)

0-24 0-22 p3

+ [0. 1233719939 x 10 + 0.1311538462 x 10 gi P

+[0.1251125203 x10 3 0 + 0.4051x g] P 4  0

The first technique utilized to solve equation (40) for the resonant frequency

(p) was graphical in nature. A computer program was developed to solve the

above equation and a search was made for the value of g that would result in a

pair of complex conjugate roots on the imaginary axis. Figure 14 is a graph of

some of the roots of equation (40). Figure 15 is the same data presented on an
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expanded scale. This graph intersected the imaginary axis when the value of gm
was 0. 0086 and p = j381, 300. Since p = jw and w = 2urf, the frequency of oscil-

lation may be found by equation Zrfj n 381, 300j. Divide both sides by j

2fff = 381,300

f 381,300 u 60,717 CPS (41)

A second method for solving equation (40) is the utilization of the Routh-Hurwitz

criterion. The technique is as follows for a 4th order equation, after dividing

equation (40) by 10"8 the 4th order equation appears as equation (42)

(. 125 x 10-22 + .405 x 10 2 0 m) p4 + (. 123 x 10-1 6 + . 131 x10 1 4 g)p 3

S(3.52 x 10- 12+ 4.77x 10"10 g9)P2 + (.800x 10-6 + (42)

3.06 x 10. 4 gm )p + (.0846 + 2.8 grn) U 0

This equation is of the same form as equation (43).

I - A B =ap4 + bp3 + cp2 + dp + e .0 (43)

The formal procedure is as follows:

1. Form the array from the coefficients

4
p a c e

p b d

2 bc - ad be -a(0)p A B A b , B B 2 e
1 c(44)
Sc= Ad- bB cB A(0) (44

p0 D D=A D cBB
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2. The number of sign changes in the first column of the array equals the
niumber of roots with positive real parts. If there are no sign changes
in the first column, then the system is stable.

3. To produce a sign change in the first column, term C can be set < 0.
If C a 0 is solved, it yields the value of gm at which the system
becomes unstable. This corresponds to the condition that the roots of
the characteristic equation have zero real parts.

In this case:

C = (.800x 10.6 + 3.06x 10 4gM)(. 3 5x 10"28 + .345x 10"2 6

g .62 x 10.24 gg) - (8.46x 10"2+ 2•8 g ) (.015 x 10"32+gm m m-30 1-28 2

.0322 x 10"30 gm + 0172 x 8 gm ) (45)

This can be solved by trying positive realizable values of gm(. 000 to . 060)

in the expression to find the g at which C=0. This yields a value of gm near

007 or . 008.

1m 
C

o0wl .64 x 10..3

":006 .454 x 10-3 4  (46)

.007 
.349 x 10 -34

.006 -. 165 x 10.-%

.010 
-. 44 x 10"34

The value of gm at which C = 0 can be substituted into the characteristic

equation and this can be solved for p.

Since we are interested in the roots having zero real parts, p = 0 + jw a 0

+ j Znf, and the fourth order equation can be reduced to two equations:

Re = 0: aw 4 
- cW 2 + e Z 0 (47)

Im= 0: -bjw 3 + djw = 0 (48)

Both equations should yield the same value for f when the proper gm is used.

The frequency of oscillation is calculated as approximately 60 KC as shown in

Table 7 below.
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TABLE 7

COMPUTATION OF FREQUENCY OF OSCILLATION

9m From Re = 0 From Im = 0

0.007 61.6 KC 59 KC
0.006 61.4 KC 60 KC

A third approach relating to the proceeding results is an explicit determin-

ation of the resonant frequency, This procedure is as follows.

Let the denominator of the transfer function be of the form shown in

equation (49) where the coefficients are given in terms of gm and where p a jw

A + bp + cp2 + dp3 + p4 = 0 (49)

The technique which follows enables one to solve for gm and use this

result to find the frequency of oscillation. Since we are looking for the complex

conjugates, it is possible to write the above equation with these factored out.

This gives:

(p + ip 0 ) (p - ip0 ) (a + Pp + p2) =0 (50)

or (p + P 2) (a+ Pp+ p2) = 0

Multiplying out and equating like coefficients, one has

2 2 22 3 4 2 3 4ap0 + PPP+ (a+ p)p+ p +P = a+ bp+ cp+ dp + p (51)

a02 = a a = a/p 0
2  (52)

Ppo2 = b p0
2 - b/P (53)

a+o ffi a +b/p (54)

1•d (55)
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Combining the above, we have the following two equations:

a. d b

2 b (5")

From these two results the solution for gm is explicit and the frequency

of oscillation is uniquely determined.

CONCLUSIONS:

Of the three methods described above, it appears that the third approach is

the most efficient. The results determined analytically, satisfactorily compared

with those determined empirically. The above results allow a Monte Carlo simu-

lation t: be performed on the oscillator circuit. This will enable the distribution

of the performance parameters to be determined for variations in circuit compo-

nents; both for the initial performance distribution as well as the time-dependent

distribution, which may result from a degradation or change in values of compo-

nents.

3. 2. 3 Transfer Functions for the High-Level Amplifier

0 The next r ircuit to be analyzed is that of the High-Level Video Amplifier

shown in Figure 16. This amplifier consists of a two-stage, common emitter

feedback pair, driving a common emitter, high voltage mesa type output trans-

istor. Although some compression may occur in the second transistor, the entire

chain is designed as a linear amplifier up to the output capabilities of the trans-

istor Q3' Provision is made for DC restoration at the base of Q3 to permit

operation with long-duty cycle pulses. However, because of the small DC offset

inherent in this form of clamp, optimum performance is achieved only if the duty

cycle is restricted to 20 percent or less.

This type of amplifier is designed for use mainly to accept positive unipolar

signals from low-level sources and deliver a high-level negative control voltage

to a radar or some type of cathode ray display device.
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Figure 16. Video High-Level Amplifier Schematic

The analysis of this circuit was performed in two parts; the first being that

of the output amplifier or Q3' and the second that of the common emitter feed-

back pair.

The DC equivalent circuit of the output amplifier Q3 is shown in Figure

17. The analysis of this equivalent circuit yields equations (58)through (6%O

V1 R VC3 3 (58)

11

V2 - VE3 -. 7 1 C3 VE 3 + .7
=- + -a.--(59)

R9 'F3  R10

VE3 = P 3  
1 C3 (R1 2 + R1 3 ) (60)
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,RIO 68
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'220

Figure 17. DC Equivalent Circuit of Output State of Video High-Level Amplifier

The equations are then rearranged and put into matrix form for computer

solution. When typical values of P are used, the matrix equation (61) may be

solved and the computer solution is shown in Table 8.

1 0Rl VC3 Vi

O -P 3(R10 +R9 ) -R9R VE3 "P3 R 10 Vz+O 7P3R 10+0. 7P3 R9

0 P3 -(P 3 +I)(R1 Z+R1 3 ) IC3 0

(61)
TABLE 8

COMPUTER SOLUTION OF MATRIX FOR THE OUTPUT STAGE

VC3 VE3  I'C3

97.78 0.313 1.006 ma
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It is now desirable to solve for the DC operating point for the common
emitter feedback pair (0 1 and Q 2). The equivalent circuit for this problem is

shown in Figure 18.

V1 R6 VC2

R3 
C

IC! 2

V - 1 R5 V 2 .

__V2
iRS

Figure 18. Equivalent Circuit for Common Emitter Pair of High-Level Video Amplifier

The circuit analysis of this equivalent circuit yields equations (62) through

(68).

VI1 V C V El - V Cz 
(2R6 R R5 IC2 = 0( 2

RE 7 - Vz P c2- (63)

V EZ - V2 V 2 +V El + .5 V V (4
R 7 R 8 R 2

"R IICVCl I - IC = 0 (65)

"VCI = VE Z + 0. 5 (66)
V El I +I V EI "Vc2 0(67)
R 4 )I c1 R R5

V 2 - V El -5 1, --c 
(68)

R 2l



Fr,n, iLe above equatiuns, the matrix equation (69) is lorzued and the

computer solution of the equation is presented in Table 9.

TABLE 9

COMPUTER SOLUTION OF COMMON EMITTER PAIR OF HIGH-LEVEL AMPLIFIER

VC1 VC2 VEl VE2  V2  
1C1 IC2

5.76 16.78 1.11 5.16 4.05 0.003 0.005

Measurements of the critical circuit parameter were made on a breadboard

of the amplifier to validat- the transfer functions represented in equations (61) and

(69). A comparison of the analytical and empirical results is presented in Table

10.
TABLE 10

COMPARISON OF MEASURED AND COMPUTED VALUES
OF VIDEO HIGH-LEVEL AMPLIFIER

VOLTAGE COMPUTED MEASURED

VC1 5.756 V 7.0 V

VC2  16.776 14.5

V El 1.104 0.95

VE2  5.156 6.2

V2  4.055 5.1

VC3  97.78 98.0

VE3  0.313 0.4

As may be seen from Table 10, the results check rather closely. The

agreement between the computed and measured values would improve if the meas-

ured values of P1 and B?, (35 and 42 respectively) were used in place of the

assumed values of 55 and 60. However, the results serve to validate the transfer

functions for the DC bias conditions.
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Another important parameter in addition to the DC quiescent point is that

of the AC small signal gain. Therefore, an AC equivalent circuit was developed

and is shown in Figure 19. Since the frequency AC Equivalent Circuit of Video

High-Level Amplifier of interest is 50 KC, the circuit may be simplified to that

shown in Figure 20. Utilizing the simplified equivalent circuit, a nodal analysis

yields equations (70) through (77). These equations are then formed into matrix

equation (78). This matrix is then solved by means of a computer and the results

are presented in Table 11.

(VI - V 2 )g1 + lib I + (V 4 - V 2 )ge = 0 (70)

Si1'b + V3 (g 3 + g7 ) - b2 0 (71)

P Ab+ (V5 V4)95+ V5g6,9, 10"P3"b + V Iglge 3 '=0 (72)

"b 3 Vgli + ge 3 )

V4 g4 + (V4 - V5 )g 5 + (V 4 - V2 )ge 1  0 (73)

P3ib3 + V6 g1 1 = 0 (74)

ib = (V1 -V 2 )g1  (75)

ib2 + ib+ V3+3 =(76)

/g 1 2 ge 3 -
ib + I 3ib3-V 5 Ig2(g~e

3+ P3+ ge3) = 0 (77)

1~
Note: g

9, = .001 g6 ,9, 10  .00205 g1 1 = .000454

g2 = .0000213 ge 3 = .077 1 =5

93 = .000147 geI = .077 P= 60

94 .00555 9 7  = .00454 3= 13

5= 000213 g1 2  0147
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C2
VlV2r il• V, 0 b2 0, V,0 V,

R6,9,10 RII

AT 5 0 KC: -jXCZ = j 3.1 4 K Q -jXC1 = - 0 O. 4702

jX -jX C3 = - j 0.0096Zr2

-jXC7 = j 3.88 K0 ix LI= j 47. Z Q

rb Arb ^ 5012

bi b

Figure 19. AC Equivalent Circuit of High-Level Video Amplifier

,1 i b 2 b 2 3

VI 91 V2  -a V3  V5 Ai b
i b 1 b2

9 959 e I 9 3 9 7 9

96,9,10 9e3  911
V4

94 912

Figure 20. Simplified AC Equivalent Circuit of Video High-Level Amplifier
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TABLE 11

COMPUTER SOLUTION OF AC CIRCUIT ANALYSIS OF
VIDEO HIGH-LEVEL AMPLIFIER

V2  v3  V4  V5  V6 Ibl 1b2 Wi
0.96 -9.4 . 0.93 14.6 -379.8 o.0.004 -0.0008 0.008

The above analysis is based on small signal equivalent circuits and as-

sumes that the transistors are linear devices. In practice the predicted perform-

ance will only be valid for low-level signals. Specifically, the output stage Q 3

will be extremely non-linear to large input voltages.

Table 1Z presents the computed and measured values of small signal

voltage gain, input impedance and output impedance in the 50 KC frequency range.

TABLE 12

COMPARISON OF COMPUTED AND MEASURED SMALL SIGNAL GAIN
OF VIDEO HIGH-LEVEL AMPLIFIER

Transfer Function
or Impedance Computed Measured

Voltage Gain V6 = -80 -330+25%

Input Impedance Z R + 1-22.5K 18K
in 1 l

Output Impedance Zout R11 = 2.2K 2.2K

The pulse voltage gain of the amplifier was also measured using a 10% duty

cycle. This transfer function is plotted in Figure 21 and illustrates that the gain

is quite linear for Vin less than 100 MV and approximates the computed small

signal value in this region. In fact from Figure 21, the low-level pulse voltage

gain = VC3/Vin a 38V/0. IV = 380. This indicates that the small signiLl
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Figure 21. Voltage Gain of High-Level Video Amplifier
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voltage gain transfer function is also valid for the low-level pulse voltage gain for

duty cycles under 50%. Transistor Q2 begins to compress the signal for inputs

above 100 MV because its gain drops as it is driven to cutoff.

Table 13 presents the performance criteria of the amplifier.

NOTE: The current gain and the base emitter voltage of the three transistors used

in this amplifier were taken from manufacturer's documents: [13] and [14].

3.2. 4 Transfer Function of the Video Low-Level Limiting Amplifier

This subsection will develop the transfer function for the DC bias conditions

of the Video Low-Level Limiting Amplifier presented on page 3 of the RADC Tech-
nical Report RADC-TR-59-243.

The circuit accepts short duty cycle positive pulses from a radar detector

or sr-me other source and provides a nominal voltage gain of 12 up to the limiting

level. Input signals in excess of 5 volts are delivered to the output terminals at a
5 volt level. The maximum signal swing capability and limiting action is achieved

by biasing the first stage near cutoff, the second stage near saturation and the out-
put stage at cutoff. A biasing scheme of this type admits unipolar positive pulses

at the input and provides for minimum standby power dissipation in the amplifier.
Thus, power dissipation capabilities of the output stage are used most advantageous-

ly for efficient signal power transfer to succeeding stages. By properly control-
ling the gain of the first two stages, the output stage may be driven to saturation

and limiting action occurs at the desired input signal level. The performance

criteria of the amplifier is presented in Table 14.

The amplifier schematic is shown in Figure 22. Critical performance

criteria that are considered in the following analysis are the DC quiescent currents

and voltages for the condition of no input signal.

The DC equivalent circuit of the amplifier is presented in Figure 23. Note

that all AC dependent parameters are removed from the circuit and the diode CRI
is removed because of reversed biasing. The analysis of this circuit yields

equations (79) through (87).
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TABLE 14

PERFORMANCE CRITERIA OF VIDEO LOW-LEVEL LIMITING AMPLIFIER

REQUIREMENTS MAXIMUM DESIGN MINIMUMCENTER _____

INPUT LEVEL, PEAK POSITIVE 5V 0.O01V

INPUT IMPFOANCE 10001o

OUTPUT LEVEL (75-OHM LEAD) 5V 0. 0 12V

VOLTAGE GA I N (0. 001 V TO 0.1 V) 15 12 8

RISE TIME 0.05p.SEC O.035ýLSEC - -

DROOP (500- SEC PULSE) 10%

OVERSHOOT 5%

LINEAR ITY (0. O01V TO O.05V) 5%

D-C SUPPLY VOLTAGE +25V

OPERATING TEMPERATURE 850C +12V -55 0C

-= + 1C I 0.6 + Vc 2 - VEl (79)
RE 3 +1 P rbl R4

Z5 -Vcl = I + Ic_ + 0.6 (80)
R2 1 p3 rb2

V•. VE - V1•.l .6 1c2 0.6
E2 + EZV o 1 + +-o (81)

Z5 - VC2 + VC2 " VE1 (82)

5 CZ R4
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0 +25V

R2 R5
10K 1.5K

C4
0• 22ILF

35 V\ V1

R4 3135 2N697
5.6K

40R1RRI

+12V

R3,: R7
C2 CR1 2.2K

F022D, 1N276

R11
C1 1OOK C3 R6

6.8U 'F 18DUF 1.5K R9
35V 6V 470 OUTPUT

INPUT .

Figure 22. Schematic of Video Low-Level Limiting Amplifiwr
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+25V o - +12V

R2 R5 R8 RIO

VC1. VC2 VC3

It CI R4 2 Q3
'C2 'C3

VEI r. b6 0.6V rb 2" I +1•-0.6V
VE2+O6 h VE3

I Q Vc1 Ic_..2 rVE3+•".6  --C¢3-OWN. 0.2 VE2 0
R11

R3 R6 R7 R9

NOTE rb rb2 10K ni

03-50
S1"/z 25

Figure 23. DC Equivalent Circuit of Video Low-Level Limiting Amplifier
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VEZ + 0.6 =V (83)

ICl + 0.6 VEZ VEl'o. 6

r - (84)S1 rbl R

V E3 CG3
R I C3 + (85)

9 3 P33

IC3 12 -ZVE 3 - o.6 VE3 + o.6- (86)P3 7R8 R 7

-12 - V C3 (7
'03 - (87)

10

These equations are used to form the matrix equation (88).

The matrix equation is then zolved using a computer and Table 15 presents

a comparison of the measured and calculated values of the critical circuit param-

eters. Thus, an examination of the results validates the developed transfer

function.

TABLE 15

COMPARISON OF MEASURED AND CALCULATED VALUES OF THE
LOW-LEVEL LIMITING AMPLIFIER

COMPUTED:

VCI Vc2 Vc3 VEl VE2  VE3 IC1 !C2 IC3

11.76 11.34 11.68 0.5656 11.16 0.453 0.000976 0.000719 0.00945

MEASURED:

V VV IVl V ~ V~C1 Vc C2 VC3 VEl , E2 VE3

11. OV 12.0 1.7 0.55 10.0 0.50
m ll5I
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.1.0 N ,, 0 •1• •L• 1C

Ica.

ICA

I -. . . - I

0I 0 - 0 0 0 -' 0

I O o

0 0 0, •• 0 0 -0 0 0 +

0 0- 0 -0 0 0 0 0 0

1 -0,

08 0 0 + 0 0 0 0 0
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3.2.4.1 Low-Level Amplifier Mathematical Simulation

As was described in detail in Section 2, the performance of the Low-Level

Limiting Amplifier was evaluated by simulating the assembling of 1000 amplifiers

utilizing the 9400 Sylvania computer. The necessary computer routine to accom-

plish this evaluation is represented by the flow diagram shown in Figure 24.

Table 16 describes the underlying frequency distribution of the various

components in the circuits. The 1± represents the nominal value, the a repre-
2sents the standard deviation, (a variance), the upper and lower limits repre-

sent the truncation points of the distribution, i. e. , the tolerance limits for each

component.

These underlying frequency distributions which define the parameters in a

statistical manner are utilized in the repeated computation of the transfer func-

tion. The results of 1000 iteratLons are shown in Figures 25 through 28. Having

determined acceptable boundary conditions for each of the critical performance

criteria required for acceptable operation of the circuit, it ib pumsible to deter-

mine from Figures 25 through 28 the over-allreliability of the circuit. Moreover,

the sensitivity of the individual performance criteria as a function of the varia-

bility of the individual circuit components is also established. This process can

be repeated for any number of hours of simulated use. This is accomplished by

simulating the aging of component parts using degradation rates as shown in

Table 16. These rates must be determined by analyzing the physics of failure of

various elements of a circuit. [20]

Referring to Table 16, the means and variances ( s and ar a) for the

various components (at t = 1000 hours) are given. With this information that

describes the underlying frequency distribution of the parts, it is possible to

determine the cumulative distribution functions of the circuit parameters at

t = 1000 hours by repeating the tecnnique outlined above. The cumulative dis-

tribution functions are plotted in Figures 29 through 34. As a check on the ran-

domness of the number generator, two of the circuit input cumulative distribution

functions were plotted. At t = 0, the cumulative distribution function of R was

plotted and is presented in Figure 35. At t = 1000 hours, the cumulative distri-

bution function of P1 was plotted and is shown in Figure 36. The general shape
of these curves i. e., the straight line indicating uniform distribution and the S
0hape curve indicating normal distribution, validate the correct operation of the

random number generator.
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Low-Level Video Amplifier
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TABLE 16

UNDERLYING A FREQUENCY DISTRIBUTION OF PARAMETERS USED IN
LOW-LEVEL LIMITING AMPLIFIER

tO0 HRS t • 1000 HRS

;TANDARD STANDARD
MEAN EVIATIND LOWER UPPER MEAN EVIATION LOWER UPPER

/I DEVIAION LIMIT LIMIT D, ITON LIMIT LIMIT

RI 1,000 29 950 1,050 1,000 58 900 1,100

R2 10,000 290 9,500 10,500 10,000 578 9,000 11,000

R3 220 6 209 231 220 13 198 242

R4 5,600 162 5,320 5,880 5,600 324 5,040 6,160

R5 1,500 43 1,425 1,575 1,500 87 1,350 1,650

R6 1,500 43 1,425 1,575 1,500 87 1,350 1,650

R7 2,200 64 2,090 2,310 2,200 127 1,980 2,420

R8 22,000 640 20,900 23,100 22,000 1270 19,800 24,200

R9 470 14 446 493 470 27 423 5:7

R10 330 10 313 346 330 19 297 363

Rll *00,000 2890 95,000 105,000 100,000 5780 90,000 110,000

13I 20 4 10 38 27 7 10 50

""P2 20 4 10 38 27 7 10 50

rbl 10,000 2890 5,000 15,000 10,000 2890 5,000 15,000

rb2 10,000 2890 5,000 15,000 10,000 2890 5,000 15,000

"73 75 26 30 120 75_ 36 25 150

NOTE ALL DISTRIBUTIONS UNIFORM EXCEPT PI & 02 WHICH ARE TRUNCATED NORMAL

TEXAS INSTRUMENT TRANSISTOR RELIABILITY DATA 3RD 4UARTER 1961
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As an example of the usefulness of this technique, consider the critical

performance limit of VE 3 to be 0. 6 volts. Referring to Figure 37, the cumula-

tive distribution function of VE3 at t - 0, it may be seen that a 0.6 critical per-

formance limit produces no failures. However, making use of the Monte Carlo

technique, referring to Figure 32 it may be seen that at t = 1000 hours that 4 per-

cent of the units would fail. Thus, the example above briefly highlights the use-

fulness of this technique in predicting the future reliability of a circuit or system.

3.2. 5 Transfer Functions of the Monostable Multivibrator

The monostable multivibrator circuit appearing on page 55 of the RADC

Technical Report RADC-TR-59-243 has been analyzed and the following transfer

functions as a function of individual circuit parameters as well as the supply volt-

ages have been developed:

(a) Quiescent current and voltage

(b) Output amplitude

(c) Output pulse width

The schematic of the monostable multivibrator is shown in Figure 38 and

the performance criteria of this circuit is presented in Figure 39.

The monostable multivibrator has two states, one permanently stable and

one quasi-stable state. This type of multivibrator requires a triggering signal to

change from the stable to the quasi-stable state. It is possible for the multivibra-

tor to remain in its quasi-stable state for a long period of time in comparison to

the time required for transition between states. However, no external signal is

required to reverse this transition,i. e., eventually the multivibrator will return

from the quasi-stable state to its stable state unaided. [24]

When a single negative input trigger is fed to the monostable multivibrator

represented in Figure 38, an output gate with a controlled width and a fixed ampli-

tude is delivered to its output terminal. Transistors Q 1 and 02 form a regen-

erative feedback pair while transistors Q3 and Q 4 operate as emitter followers

providing a low output impedance as well as isolating the timing and trigger func-

tions from external disturbances. Transistor Q2 is normally operating in the

non-saturated condition while Q1 is cut off. When a trigger is fed to the multi-

vibrator, Q2 is cutoff and regenerative action drives into saturation. During
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the transition, a charge is stored on the parallel combination of capacitor C 4 and

the external timing capacitor. The charge on these capacitors dissipates in a

finite time period corresponding to the gate length.

The basic application, that of a gating or timing circuit, of this type of

multivibrator results from the fact that it may be used to establish a fixed time

interval, the beginning and end of which are marked by an abrupt discontinuity in

the voltage waveform.

Quiescent Current and Voltage for Q 1 Off During Stable State

The DC quiescent currents and voltages are derived when the monostable

multivibrator is in its stable state with no input signal applied. When the circuit

is in this condition, Q1 , CR3' and CR 7 can be removed because they are reverse

biased. Then, Figure 40 is the DC equivalent circuit for the state in which is

nonconducting and Q 2 is conducting. Transistors Q 3 and Q 4 are emitter

followers and, therefore, are conducting but are not saturated nor cut off. A 0. 6 V

drop was assumed across each transistor input and also across CR 1 , CR 2 , CR 4

and CR 5 since they are forward biased. The cathode of zener diode CR 6 was

assumed to be at or less than 6. 2V because of the zener diode equivalent circuit

in Figure 41. A complete circuit analysis of the multivibrator for this state yields

equations (89) through (99).

25 - VE 3 - 0.6 -(25 - VE3) VE 3 - VE 4 - 1.2 C3

R1 -1R5 + R6 + 3 (89)

IC3 VE3 VE 3 + 25
'C3 + = + (90)

S IA 4

VE 3 -VE 4 - 1.2 14 VE 4 + 1.2-Vl 25-VE4 -0.6
,, ,'ca (91)C6 E I 1

25-V E2 - 1.2 V E2+.2 IC2 + VE2- V1
R14 + R 1 (16+ R12 - R8 (92)
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VE2 - V + VE 4 + 1.2- V V18 R 7  9

1C2 VE2
Icz + (94)

C4 VE4+ VE4 V2P4 =4  2 (95)

"VE4 - V2 V2 + 25
- (96)

R10 R11

"VC2 a VE4 + 0.6 (97)

"VE4 + 1.2 < 6.2 Due to CR6 (98)

VCz > VEZ + 0.2 For Q2 Non-Saturated (99)

These equations completely describe the quiescent currents and voltages of the

rnonostable multivibrator. It must be noted that in order for the transistor Q2 to

be saturated the inequalities (98) and (99) must be satisfied. Therefore, it is

possible to obtain four different solutions when Equations (89) through (97) are

solved. The following procedure will indicate which of the solutions is correct.

(a) If the solution is such that V I 5V and VC 2 > VE2 + 0. 2 then
E4 2 E

equations (89) through (97) are valid.

(b) If the solution is such that VE 4 < 5V and VC 2 1 VE2 + 0.2, then

QZ is saturated and equations (89) through (97) must be revised as

follows: In equations (92)and (94) set IC2/ IB2 and add equation (100)

VC 2 a VE 2 + 0.2 (100)

(c) If the solution is such that VE4> 5V and V 0 2 > VE2 + 0.2, then

CR 6 is in zener breakdown, Q2 is not saturated and equations (89)

through (97) must be revised as follows:
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In equations (89), (91), (93), (95), (96) and (97) set VE 4 = 5V.

(d) If the solution is such that VE 4 I 5V and VG =2 VEZ + 0. 2, then

CR 6 is in zener breakdown, Q2 is saturated and the equations must be

revised as in (b) and (c).

Equations (89) through (97) are now used to form the matrix equation (101).

It now must be determined which of the four conditions listed above is appropriate.

Table 17 presents the computer solution of the matrix equation (101). As may be

seen from the solution, the inequality of equation (98) is not satisfied. Thereiore,

matrix equation (1101) is not appropriate and condition(c) must be used.

TABLE 17

COMPUTER SOLUTION OF MONOSTABLE MULTIVIBRATOR FOR Q OFF

V E2  V E3  j VE4  VC2  V1  V2  'C2 IC3 IC4
4.67 18.89 9.85 10.45 4.55 1.54 .0055 .0096 .0055

Table 18 presents the computer solution of the, multivibrator utilizing

condition (c) and the actual measurements made on a breadboard circuit in the

laboratory. As may be seen from Table 18, all equalities are satisfied and the

close comparison of calculated and measured values validate the accuracy of the

transfer function.

TABLE 18

COMPARISON OF COMPUTED AND MEASURED VALUES OF MONOSTABLE
MULTIVIBRATOR FOR Q OFF AND CONDITION C

VE2 VE3 VE4 V C2 V1  V2  IC2 I C3 I C4
COMPUTED 3.55 16.91 5.0 5.6 3.04 -2.16 0.00417 0.0067 0.0013
MEASURED 3.9 15.7 4.5 5.2 3.2 -2.37 ...0-.7 ...
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Quiescent Current and Voltage for 02 Off

When the monostable multivibrator receives a negative trigger of sufficient

amplitude to change its state, the equivalent circuit of Figure 42 with Q2 off

applies at the beginning of this quasi-stable interval. In this state, Q2 I CR 4

and CR are out of the circuit because they are reverse biased. Transistors

03 and 04 are conducting in the active region. The drop across the base

emitter junctions of Q 1 , Q 3 and Q4 and across CRI, CR 3 * CR 5 and CR 7

was assumed to be 0. 6V because they are forward biased. The cathode of zener

diode CR 6 is at or below 6. ZV.

25 - VE - 0. 6 + 1C3 + VE 3 +t .Z VI VE 4 - VE 3  1.2

Cl 3(102)

VEt + I (103)
-= ICI *(13

R 2  P1

VE 3  + E3 +23 + IC (104)

L + R4 C3 P3

VE 3 + 1.2 - V1  V3 - V1  V I

-+ (105)
R7 98

VE4 VE4- V2 1  I C4 (106)
L2 10 C4 04

VE 4 - VE3 - 1.2 25- VE 4  25- VE 4  o. 6 1 4 (107)

R 6 R5 R13

25- V3 -l.2 V +.1.2 V-3 V
- + 1 (108)

J'14 T A- R. 6 T+ X R

VE 4 - VZ V 2VEl 0. 6  V2 + 2510° R3+ -I--- (109)

13 R11

so



- - 426 V

RIICS ft9  1C4 R3 R14

V IE3 +- 3cm 7  Q4

C3 vks11 

1

CR31 RLl -N VE4 4*- Nis

Rio 44 RL2

-25V

"C 5V E3'V 3+"2
VEI

Rt7  ftis

VI ECR 6

R2 R, it 12

CR 1

Flgure 42. DC Equivalent Circuit of Monostable Muitivibrator at the Start of
the Quasi-Stable State with 02OFf acd Q Cnu1h
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4

VZ VE1 -0.6 1
R 3  - pl (110)

"VE3 + 1.2 !_5 6.2 (111)

"V 1 > V 1  + 0.2 (112)

Equations (103) through (110) define the bias voltages and currents assuming QI

is not saturated at the start of the quasi-stable period. Inequalities (111) and

(112) must also be satisfied or a procedure similar to that previously outlined

must be followed.

Equations (103) through (110) are used to form matrix equation (113).

The matrix is then solved by a computer and Table 19 presents this solution. As

may be seen from Table 19 the inequalities of equations (111) and (112) are not

satisfied; therefore, the matrix equation (113) is not appropriate and again condi-

tion (c) must be used.

TABLE 19

COMPUTER SOLUTION OF MONOSTABLE MULTIVIBRATOR FOR Q2 OFF

EV1  VE3 VE4  Vl I V2 _ V3 _ _VC I 'C3 0 1  'C4
7.099 20.13 23.09 9.40 10.43 10.21 .00833 .01015 .01147

Table Z0 presents the computer solution utilizing condition (c) and the laboratory

measureiients made on a breadboard of the circuit. Thus, the accuracy of the
transfer function is determined.

Output Amplitude

The output amplitude is the difference between the outputs (V E3 or VE4)

computed from Figure 40 and from Figure 4Z. The measured amplitudes were

AVE 3 = 16V and AVE 4 = 16V for C= - 1000 micro-farad and pulse width s

30 microseconds.
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TABLE 20

COMPARISON OF COMPUTER AND MEASURED VALUES OF MONOSTABLE
MULTIVIBRATOR FOR Q2 OFF AND CONDITION C

VE1 VE3  VE4 V1 V2  V3  IC1 IC3 IC4

COMPUTED 6.8 5.0 17.0 3.8 7.1 5.2 0.008 0.004 0.008
MEASURED 6.5 4.0 15.0 --....- ---......

Monostable Pulse Width

The time that the monostaLLe will remain in its quasi-stable state is a

function of the circuit parameters and 3upply voltages. Figure 43 shows the

complete circuit and its similarit, to a simple monostable with the addition of

emitter followers and clamp diodes. 'Ihe voltage at the junction of C 4 and RI6

can be determined by the same tef hniqxtes used on similar circuits. [Z2 1 The

collector voltage of Q and the bise voltage of Q3 are constrained to two

voltage levels by means of diodes CR 4 and CR These voltages have been com-

puted previously and they appear at VE 3 shifted by approximately 0. 6V at a

relatively low impedance. An eqt ivalent circuit is shown in Figure 44 for QZ

and CR 5 conducting.

The voltage across R12 in the steady state is:

R = (VE2 + 1.2) R 1 (114)
12 F2 R12 +R16

However, during the quasi-stable state, Q 2 and CR 5 will be cut off and the

equivalent circuit will appear as shown in Figure 45. Applying Thevenin' s

Theorem, the circuit in Figure 45a can be transformed to that shown in Figure

45b, where:

(R' 1 4 + R 1 6 ) R 1 2  (115)

lZ 14 16
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C =C 4 +C (116)

R RI J25 (117)
Y = + +R

1lz ' 14 16I

+25 V
-0+25

S48 R 144+4R15
03 Q3

it C

V1 3  
V13ni

C4 a1

-2s -25

A S

Figure 45. Thevenln Equivalent Circuit for Monostble Pulse Width

The voltage at the junction of C and R will appear as shown in Figure 46.

(vii t

PIn 46. Ou Mp WWkr.
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where: R
E V L 2 • - (VE 3 On VE 3 Off (118)

and the capacitor C discharges toward V so that the voltage at the junction of

R and C during the quasi-stable state is:

V-E exp(j) (119)

R1 2

The quasi-stable state will terminate when e = (VEZ + 1. 2) + 12 "

R12 16
Therefore, the width of the pulse tip can be obtained by solving the following

equation for t.

p

12 1

(VE Z R12 + = 1 V- E exp •

E exp = V - (VE+ 1.2) RI-+ RI6
V R- +

12 16(10
exp RC =E ( 120)

Solving fortp

expE

(V + 1.2)(R - )1

therefore,

t = RC In ( , l121)

V- (Vz2+ 1.2)
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where:

SE = ..V- [(VE 2  + 1. 2)- (VE3 On - VE 3  Off)] (IZZ)

and

V= R 2 +R, 1 4 +R 6 25) (123)

For nominal values of circuit parameters:

V =19.5SV

E = 19.5- [(3.56+ 1.2) -(16.91- 5.0)]= 25. 65V

t = RC In 25.65 = (55.7K) C in 1.74
19.5 - 4.76 Z

t = (31.0 x 103) C (124)

Therefore, it may be seen from equation (124) that the pulse width is directly

proportional to the value of the external capacitor C x and C4 . Table 21 pre-

sents a comparison of the computed and measured values of the pulse width. It

may be seen by referring to the table that the values check closely, thus indicating

the accuracy of the transfer function:

TABLE 21

COMPARISON OF COMPUTED AND MEASURED VALUES OF PULSE WIDTH

C C +C +C Cmputod t Msoured t R
X x4 stray p p

0 50 pf 1.56 mIcrmc. 2 m1crosec. 50 KC
160 pf 210 pf 6.5 mncroec. 7 microec. 50 KC
100 pf 1050 pf 32.5 microme. 30 mhcroseec. 5 KC
.1#f .1 )1 3.1 millbec. 2.6 millbec. 50 ap
.5 P t ./pF 15.5 m111100C. 12.5 mlllbec. 20 We
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3. Z. 6 Transfer Functions of the Bistable Multivibrator

The bistable multivibrator circuit shown in Figure 47 has been studied and

the following transfer functions have been developed:

a. Quiescent current and voltage as a function of individual circuit
parameters as well as the DC supply voltage.

b. Output amplitude as a function of individual circuit parameters as well
as the DC supply voltage.

c. Minimum trigger amplitude as a function of individual circuit
parameter.

Table 22 lists the performance criteria for this circuit.

.23 V

CI . .... $

CII- ClII10

___0_AA

INP~ -m TRI~m IP~ff ~ Our "

Note: This circuit is contained in RADC TR 59-243, dated December 15,

* 1959, Titled Reliable Preferred Solid State Functional Divisions..

Contract AF 30(602)- 1906.

* ~~Figure 47. Blstable Multivibeator Scemti
'4 ('9



TABLE 22

PERFORMANCE CRITERIA OF THE BISTABLE MULTIVIBRATOR

Design
Requirements Maximum Center Minimum

Trigger flip-Flop)Input - - -

AC Coupled - - -

Trigger Amplitude -8 v -5 v -4 v

Trigger Risetime I isec - O,1 lec

Trigger Frequency 250 kc -

Input Impedance - 9,000

Set-Reset (Sistablo) Input - - -

DC Coupled --

Voltage Level +6v +2v 0v

Ristime - - 0.1 poec

Pulse Frequency 250 kc -

Input Impedance - - 9,0001

Output Amplitude, Peak-to-Peak 18 v 15 v 10 v

Output Polarity, Both DC Coupled - - -

Output Risetlme 1 sec - 0.1 Posec

Output Decay Time 1 Rsec - 0. 1 hlec

Output Loading - 2,5000

DC Supply Voltages - +25 v -

- '-25V -

Operating Temperature seC - -55PC

NOTE:

This Is contained in RADC TR 59-243, dated December 15, 1959,
Titled, Reliable Proefered Solid State Functional Divisions Con-
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Quiescent Currents and Voltages

Since this circuit is symmetrical, the DC bias conditions will be computed

for the bistable multivibrator circuit in one state (Q4 non-conducting, Q3 conduct-

ing). Thus, the bias will be known for the opposite stable state.

+25 V

V_2 _O _3

QQ
40.6

* V~l +..

t ft

03ILI2

Figure 46. DC Equiwllet Ciruit of Ritble with off
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Figure 48 is the DC equivalent circuit for the state in which 04 is non-

conducting and 03 is conducting. Q4 ' CR 7 , CR 2 ' CRs, and CR 6 are removed

from the circuit because they are reverse biased. Figure 9 is the DC equivalent

circuit for-a conducting, non-saturated transistor. Diodes CR 1, CR 3 , CR 4 and

CR 8 were assumed to have a 0. 6 volt drop between anode to cathode because they

are forward biased. Figure 10 represents the DC equivalent circuit of a transis-

tor in saturation. The equivalent circuits presented in Figures 9 and 10 were

utilized in solving the transfer functions for the condition of 03 non-saturated

and saturated respectively.

An analysis of the circuit yields equations (124) through (132). These

equations are then simplified:

VE 3 + o. 6 -VE2 VE 3 +0. 6 +2S VE 3 - Vl VE 3 - VI+1 + 0
Rs + R8 + B3 + R10 R13

(124)

25 - VE2 25 - VE2 - 0.6 IC2 VEZ - VEl- (.12

R + R3 (1 2

VE2-VEl-I.2 VEl+1. 2-V -I IC VEl+0.6-25

R11 - R6 + + R(6 + )3

VEl + 1.2 - V1 VE 3 - V1 VE 3 - V1 V1
R + - + (127)
R 6  12 13 15

CI VV-.1 VEl VE I - V2

IC1 = + El (128)

L2 4
VEI - Vz V 2 + BS519

R4 R9

I V-v - 0.6,
IC + +C E ~ 2 E 0  (130)C r Rj71 + R
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VEl+ 0.6 = VE3+0'Z (131)

VE 3
1B3 + IC3 = (132)

=7

The matrix equation (133) is then solved using a computer and the results are

presented in Table 23.

NOTE: Wavoforma at the minitnum trigger Ievel; dotted
STABLE ..wav.fo... .occur when tnaunffLcIlt £npat to Prs..et.TABL 23o

COMPUTER SOLUTION FOR Vo4

BISTABLE MULTIVIBRATOR *3

WITH Q4 OFF, Q3 SATURATED, !(RL1 =R 2 = 2 5 0 0 p 25

L9IO2 O.017"

V2 02.00379 Va - V

'a Come, Figure 49. Bistable Equivalent Circuit at the
'1 -0.00o Leading Edge of the Trigger Pulse

The solution for Q3 in saturation appears satisfactory. However, a

negative answer for base current IB3 is not physically possible. The negative

answer indicates that the circuit does not allow sufficient base current to

saturate Q3 as it would if the solution for base current were positive. This

means that the assumed condition (Q3 saturated) cannot be physically realized.

Therefore, the analysis must be repeated using Figure 9 to represent Q3

which is apparently conducting but is not saturated. This change results in the

following changes in the equations (124) to (132).

9"A
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I C3/P is substituted for IB3 in equations (124) and (132); and equation

(131) is eliminated.

The revised matrix equation (134) is then solved and the results together

with the measured results are presented in Table 24.

TABLE 24

BISTABLE MULTIVIBRATOR Q4 OFF Q3 NONSATURATED

p = 25, RLI = RL2 ' 2500

v, V2  V j VE2  V.3  'cI C2 'C3
C ds 1.056 V -1.244V 6.199 V 17.40 V 4.016 V 3.907 MA 9.31 MA 3.86 MA
Meamed: 1.07 V -1.33 V 6.1 V 17.0 V 4.2 V --
with R! " RL =

Cmnpt•w: Ve 1vEI + 0.6 - 6.s0 V
MOaaWS V3 - 6.S V

Table 25 shows the solutions for the 8 variables for transistor P's of

10, 20, . . . 60. This data shows the changes in bias due to changes in transis-

tor current gain and indicates that the output amplitude (VEZ - VEI) increased by

11. 4 percent for a change in A from 10 to 60.

TABLE 25

BISTABLE MULTIVIBRATOR Q4 OFF NONSATULATED

RLI ' RL2 = 250, = 10, 20, ... , 60

V- V2 V1 V" 1 3 Ici 'C2 0•"
LOU ...- 1010 6.306 17.07 3.=2 0.00019 0.00071 0.0032V07 *10
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Table 26 is the computed solution of the bias equations assuming no

output loading, i. e., RL = RLZ = . The major difference between this case

and that of Table 24 is that the collector currents of Q and Q are reduced

by 300 percent. The other bias conditions changed less than 10 percent.

TABLE 26

COMPUTER SOLUTION FOR BISTABLE MULTIVIBRATOR WITH Q4 OFF Q3 NONSATURATED

RL1 = RL2 = co

V1 V2 VEI VE2 IVE3 1C1 IC2 Ica
co f 1.08 V -1.15 6.32 17.7 4.14 0.00152 0.00264 0.0039"

eompured: 1.07 V -1.33 6.1 17.0 4.2

Solution for Output Amplitude

The output amplitude of the bistable multivibrator providing sufficient

trigger voltage is present to change its state, equals the difference in quiescent
values of the emitter voltages Q1 and Q., i. e., the output amplitude
(VEZ - VE.). The value computed from Figure 12 using nominal values for all

components is 17. 7 - 6. 3 = 11. 4V. The measured value obtained from the bread-

board circuit was I IV. The measured and calculated values compare favorably,
therefore, confirming the accuracy of the solution.

Minimum Trigger Amplitude

To find the minimum required trigger amplitude, the equivalent circuits

of Figures 49, 50, and 51 must be used. From Figure 49, it can be seen that

VB must be changed negatively by at least 0. 6V to nullify its 0. 6V "on" bias.
Then VC3 will rise enough to propagate through Q1 and turn 04 on. Figuwe

50 shows the calculations for obtaining the input capacitance CBE 3 and
resistance RBE3 of Q3. Figure 51 is used to compute the Vin required to

Sturn off. At the leading edge of the Vin pulse, from the circuit of Figure 51:

%A



BBE = T' 1- v VVBE3 = in I I VCR4 Vin V +0E 3 +Od CR4

S~(135)

/C+C +C( ". V C5 * BE3+ a
The required Vin (VBE3 + VCR4) ( Q 5 ) or in terms of the

circuit parameters and specified transistor parameters,

(V1BE3 + VCR41 C ZPCOBZ
in f- C5 R C 5 + 2 (P + l)(0. 26 /IE)fC + C [ oB2F- (136)

Substituting nominal values into the above equation yields

V (06+0.6) [150+ 200+ 63.51 = 3.3V (137)

The measured minimum required trigger amplitude was 3. 5V peak to peak

at the "trigger" input. This input becomes differentiated by C5 and R 1 3 so that

a negative spike of 1. 5V amplitude occurs at the junction of C5 and R1 3 when

the input is going negative. This appears as a negative step of 0. 8V amplitude at

VBy This step instantaneously raises the collector of Q3 by 3V and is propaga-

ted through the emitter follower Q to the base of Q4 " It appears as a positive

step of 2. IV at VB4 thus raising the base of Q to +0. 8V thereby, causing Q4

to conduct. The negative voltage VC4 is fed back through Q2 to the base of
039 turning Q3 off.

Thus, the procedure described above details the stepsused in the devel-

opment of three transfer functions for the bistable multivibrator circuit.

3.2.7 Transfer Functions of the Pulse Adder

The pulse adder analyzed is basically a form of a wide band video amplifier.
The basic amplifier schematic is shown in Figure 52. This amplifier can be used

to perform the function on an OR circuit, which is basically a mixer or buffer that

permits a number of pulses to be connected to a common load. It also minimises
the interaction of the pulse sources on each other. If a positive pulse with a
maximum amplitude of 5 volts is applied to either of the input terminals, a Pulse
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22(K 75 22K

INPUT ZaNml 27N Z CaI 0 -- I Ca -II -
S22 /6f INPUT

OUTPUTC I R,2• R4 RL.R
,.27 2.2 x 470 75 2.

Ll L 2

ISO/ph 1500h

Figure 52. Pulse Adder Schematic

of similar amplitude and form will be available at the output. However, if a pulse

,is applied at both terminals simultaneously, the output consists of the sum of the

two. If the pulses are of sufficient amplitude to saturate the stage, then only the

wider of the two is transmitted, i. e., a pulse of sufficient width and amplitude

inhibits and prevents the transmission of a smaller or narrower pulse through the

circuit. The performance criteria of this circuit is presented in Table 27.

Quiescent Currents and Voltages

The DC equivalent circuit presented in Figure 53 was used to perform the

analysis of the pulse adder. From this circuit, equations (138) through (144) rela-

ting the individual circuit components and their corresponding parameters were derived.

12 - VBZ VBZ ICZJ -rl (138)

VBI = VE + 0.6 (139)

B 0.6 (140)
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TABL 27

PERFORMANCE CRITERIA OF PULSE ADDER

Recirements Maximum Center Minimum

Inputs (Two Unbalanced
to Ground)

Input Impedance - -- 8000
Input, Positive Peak 5 v 3.5 v --

Source Impedance -- 75 --

Voltage Gain, Either Input 1 0.75 0.6

Output Impedance -- 750 --

Bandwidth 4 mc -- 0 cp

Rise Time 0.15 pec 0. 1/e --

Output (One Unbalanced) -- --

Output Level 5 v 3 .5v -

Output Polarity Positive

Repetition Rate 5000 pp -- 20 pps
Pulse Duty Cycle 0.20 ....

Additive-Factor 0.25 -- -

Load Impedance 75n

DC Supply Voltage +12v -

Operating Temperature 8,sC -- -SeCA +12 ;3VB1 + 12 VB2 1 v-

(141)
1 2 - V C+
"Rn73 C1 •c c2 (142)

12 - v B1 v B 1 ic i
,M (143)" •''



+12V

AV 4 l .6Vl 6

Ra R 4 11 RL =64.61 I1

Figure 53. DC Equivalent Circuit of Pulse Adder

The equations are then simplified and are used to form matrix equation (144).

Then, assuming all components to be at their nominal value, 0 1 a A52 a 50 and

RL • 75 ohms, the matrix equation is then solved using a computer. Also, a

breadboard circuit of this pulse adder was constructed and tested in the laboratory.

Table 28 presents a comparison of the measured and calculated values of the

circuit parameters. An may be seen from Table 28, the calculated and measured

values compare quite favorably, thus validating the accuracy of the transfer

function.
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TABLE 28

COMPARISON OF CALCULATED AND MEASURED VALUES OF THE PULSE ADDER

V5 1  VS2  VE2  VC 1C1 C2

Calculated 0.98 0.98 0.38 11.57 0.003 0.003

Measured 0.93 0.94 0.30 11.20

Maximum Output Amplitude

The maximum peak to peak output amplitude is the difference between the

output WE I) with Q1 and/or 0. saturated, and the output (VEZ) under quiescent

conditions. The voltage VEZ has been previously calculated and found to be 0. 38

volts. In order to find the voltage VEl with Q0 and/or Q0 saturated, the

equivalent circuit of Figure 54 must be used. The analysis of this circuit yields

equations (145) through (147). These equations, when rearranged, form the matrix
equation (148).

12-V - 0.6 -v - o. 6 vRI + + VR + 1E (145)

VC =VE + 0.Z (146)

R - I C (147)
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+IIV
' 4 IlV

IC~j

.2V

.6V V.

RM A4 11 ML

Figure 54. Equivalent Circuit of Pule Adder with Q and/or 2 Saturated

"1 1 + 1 "- -11.4 0.6

1l + " +R4 0 1 2 I

-1 1 0V = 0.2 (148)

0 1 11
A oE3

This matrix is solved using a computer, and the results, along with those made on a

breadboard circuit are presented in Table 29.

TABLE 29

COMPARISON OF CALCULATED AND MEASURED VALUES OF THE PULSE ADDER
WITH Q1 and/or Q2 SATURATED

VEI VC I C

Calculated, 5.38 5.57 0.006
I I I I I I

MeuwMeds 4.8 5.0

101



Since the maximum output amplitude is defined as VEl - VE2, it is possible to

I determine the desired results:

Maximum Amplitude a V El - VEZ a 5. 38 - 0. 38 a 5 volts

The above analysis allows the transfer function relating input and output voltages

to be graphed as shown in Figure 55.

3. 2. 7. 1 Determining Incremental AC Gain Utilizing the Signal Flow Graph

Technique

In order to determine the incremental AC gain, the AC equivalent circuit

of the pulse adder (Figure 56) must be constructed. An analysis of this circuit

yields equations (149) through (151). The signal flow graph is then constructed

from the equivalent circuit and the equations and is presented in Figure 57.

e0 I e2 + I el + Iel) (149)

0

Iol a Eil eo 0.6 e il -o.6 o
""I rbl rbl rbl rbl rbl

Ic2 e i. e_ 0  0.6 ei2 " 0.6 a 0
a - -- - 2(151)-VZ 7 b-2 r b2 rb rb rb

rbrb b2 bZ

It is now possible to determine the incremental voltage gain so from the

flow graph and in equation (152). in
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Figure 55. Graph of Computed and Measured Input Versus Output A/oltage for Pulse Adder
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Figure 56. AC Equivalent Circuit of Pulse Adder
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p 1 4

e ~ ~ (I +..-L) R 4 (p+) 1 (52

r 4

For a1 508 R 4  364. 60 and r b 1 0

0 (51)64.6 3300
a~ ~ il - . U+(1 4 0. 985

3. 2. 8 Transfer Functions of the Distribution Amplifier

Te distribution amplifier (emitter follower) functions as a general purpose

short duty cycle pulses and to provide power gain with a voltage gain of unity. The
input ipdneo hsapiiri omlyhge hntela eitneo

the source. Thus. the parallel connection of several amplifiers to a common

source can be effected without loading the input. Isolation is provided between In.
put and output signals.
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The schematic of the amplifier is shown in Figure 58 and its performance

criteria is shown in Table 30. The input impedance of this transistor amplifier is

frequency sensitive and appears reactive above the A cutoff. frequency. Compen-
eating for this is the network LI R R shown in Figure 58. R and R 2 provide

circuit stability by determining the quiescent operating points of the transistor.

Diode CR 1 acts as a direct current restorer permitting operation with duty cycles

up to 50 percent. Optimum performance is achieved by restricting duty cycles

to 30 percent.

3.v3

1100

36V

a CRI R4 •OUTPUT
2A K 1"27 4?0

L 1
q G @ROUNDO

Fl"*e 5. $d1A•l of fh Dkdrltion AwoMs~er



TABLE 30

PERFORMANCE CRITERIA OF DISTRIBUTION AMPLIFIER

Design
Requirements Maximum Center Minimum

Input (One, Unbalanced to Ground) --- ...-

Input Impedance own- 00

Input Level, Positive Peak 5 3.5 v -

Souirces Impedance 75 n --

Voltage Gain 1 0.75 0.6
Bandwidth (3db Down Frequncies) 4 mc -- 10 cps
Rise Time 0. 15 pisc 0.1 g&sec -

Output (One, Unbalanced)----

Output Polarity Positive

Load Impedance -- 75n 50nl
DC Supply Voltage -- +12 v--

Operating Temperature 8.?C --- 5!?C

The direct current, quiescent current and voltages were determined by

utilizing the equivalent circuit shown in Figure 59.

~i R3

Ci VE +0.6 VC C .~
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A nodal analysis of this equivalent circuit results in equations (153) and
(155).

12- VF- o. 6  I V + 0. 6
Vc " + E (153)

VE 1-

'C .... (155)

These equations when rearranged form the matrix equation (156).

"141 1 11.4 0.6

1 2 02~
12

3 2 156)

i0 1 1 I 0

4

The matrix shown in equation (156) was programmed on the Burroughs Z05

computer and the solution is shown in Table 31.

TABLE 31

COMPUTER SOWTION OF DISTRWITION AMPLFIER

V 4E V1 C I
-. 453 11.9 .0094

I 0-
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The input voltage required to saturate the transistor Q can be obtained

by analyzing the equivalent circuit shown in Figure 60.

I R

IC:ha sc Vs

I IC
-0.2

S~~Z| 0.t 6.L.
9 V1

I11,R2 , R4

Figure 60. Equivalent Circuit of Distribution Amplifier with Q1 Saturated

A circuit analysis results in equations (157) to (161).

Ic+ I = Ir (157)c B F
4

12- V
I (158)

e VB 12 VB V
Bg + B + B(159)

R R 'B T+9 12

VB • VE + 0.6 (160)

VC VE + 0.2 (161)

These equations when rearranged form the matrix equation (162).

IN8



1- 0 1 0 0 VE o.6

*

12g g 12- 0 1 0 0 V +9 9
c1 0- 0.2 (16Z)

1c1
0 0 1 1 1B0

-4

0 0 1 - 0 1 1C12

W3 R 3

* e 9= (1.5, 3.5, 5.0, 7.0, 8.0, 9.0, 10.0, 10.2, 10.4, 10.6, 10.8,g
11, 12)

To determine the minimum input voltage required to saturate Q,, the

computer was programmed to search for the value of e g which results in a

negative base current which would indicate that the amplifier is in saturation.

The results of this computer program is shown in Table 3Z. This shows a transi-

tion of positive to negative base current occurring at an input voltage of 10. 677

volts.

j 3. Z. 8. 1 Small Signal Gain of Distribution Amplifier

To find the small signal gain the equivalent circuit shown in:Figure 61 is
utilized.

A circuit analysis is performed and equations (163) to (167) are formulated

in -Vb Vb 2 = (161)

ib b
4



TABLE 32

DISTRIBUTION AMPLIFIER WITH Q SATURATED

VE VB VC I8 Ic _ _

5.02 5.62 5.22 -0.0572 0.0678 1.5

6.04 6.64 6.24 -0.0447 0.0576 3.5

6.81 7.41 7.01 -0.0354 0.0499 5.0

7.84 8.44 8.04 -0.0229 0.0396 7.0

8.36 8.96 8.56 -0.0167 0.0344 8.0

8.87 9.47 9.07 -0.0104 0.0293 9.0

9.38 9.98 9.58 -0.00421 0.0242 10.0

9.49 10.1 9.69 -0.00297 0.0231 10.2

9.59 10.2 9.79 -0.00172 0.0221 10.4

9.69 10.3 9.89 -0.00048 0.0211 10.6

9.72 10.3 9.92 -0.00016 0.0208 10.65

9.72 10.3 9.92 -0.00010 0.0208 10.66

9.72 10.3 9.92 -0.00010 0.0197 10.67

9.73 10.3 9.93 -0.00002 0.0207 10,673

9.73 10.3 9.93 -0.00001 0.0207 10.674
90
9.73 10.3 9.93 0 0.0207 10.675
9.73 10.3 9.93 0 0.0207 10.676

9.73 10.3 9.93 0 0.0207 10.677

9.73 10.3 9.93 0.00001 0.0207 10.678

9.73 10.3 9.93 0.00002 0.0207 10.679

9.73 10.3 9.93 0.00002 0.0207 10.69

9.74 10.3 9.94 0.00015 0.0206 10.69

9.74 10.3 9.94 0.00015 0.0206 10.7
9.77 10.4 9.97 0.00046 0.0208 10.75

9.79 10.4 9.99 0.00077 0.0201 10.0

9.90 10.5 10.1 0.002D 0.0190 11.0

110041010 0.0002 0.0139_ 1.
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V
b = (165)

Vb - • Vb •o (166)brb = rb rb11 1

Using equation (164) to solve for e

e° = ibR 4 (0+ 0) (167)

1, V, vib
1 F- -___

RC

*in l V P i0

Ogr

! e~in RA e ",

R.R2

Where a~1RA R + R

and C + L1 are low impedancee at frequency of interest.

- F Igw 61. Sm&l SAIl bEqiWva Ckwt



Using equation (163) to solve for Vb

V Ri RAR 1ARin (168)
A in A in

Using equations (165), (166), (167), and (168) the signal flow graph shown in Figure

62 can be obtained and the gain determined. [22]

RA Min

RO tA4 in M4 | +÷ 9|

Sso
*in RA b

HA+ Ris

Figure 62. Signal Flow Graph of Distribution Amplifier

RAR 4(0 + p)

eo (A + in)r-b(19R R4(169)
inRARi + inein 1 +(RA + Rinr rb

A in) b b

•o RAR 4 (1 +)

ein (R + + R+ R 4 (I + + )(RA + Ri) (170)

_ 0RAR 4 (1 +)

ein RA ib in b A in ' A 4 + 4ein + PK 4 A + PR4 In



Where

RA = 2200 (2000) r = 50A= Z4, ZOO

R = 470 R. = 754 in

= 60, 50, 40, 30, 20 0 = 9.589xI0"
in

P5=50

A conventional analysis using nodal equations gives the same results. Equations

(172), (173) and (174) are the nodal equations for the equivalent circuit shown in

Figure 61. This is shown in matrix form in equation (175).

i b{ ...1 + 1 ein
S +- in (172)

in A in

e
ib(l + P)-]. = 0 (173)

1~74
Vb +i + _ 0 (174)
rb b rb

1+ I 1 --
in A b i

01 + 0) " ib = 0 (175)
W4

1 1 0
r b rb •o

Equation (176) shows the matrix with nominal circuit parameters, and

Table 33 is the solution to the matrix obtained by using the Burroughs 205

computer.



0.013833... 1 0 Vb 0.0133

0 51 -0.002127 ib 0 (176)

-0.02 1 0.02 e 0

TABLE 33

COMPUTER SOLUTION OF DISTRIBUTION AMPLIFIER SMALL SIGNAL GAIN

Vb 'b "%
.9614 7v 40 .959 4 7v

3.3 TRANSFER FUNCTIONS OF MICROMINIATURE CIRCUITS

This section presents the transfer functions of the microminiature circuits

developed by the Sylvania Microelectronics Laboratory.

The circuits presented in this section of the report were, in some in-

stances, analyzed not simply as individual circuits with their supply voltages#

but also with respect to their use in the system represented in Figure 6. An

example of this is the steering circuit which was analyzed with consideration for

the loading of the previous stage. Also, the active circuits (the Flip-Flop and

NOR circuit) were analyzed with their respective transistors operating in both

the saturated and non-saturated states. The accuracy of the transfer functions

was verified by measuring the voltages on actual circuits in the laboratory.

Since the flip-flop is of a symmetrical nature,. the transformation matrix

solved for Q2 conducting and Q, off also represents the condition when 0, is

conducting and 02 is off.

/ t ,-



3. 3. 1 Transfer Function of the 5 mc Flip-Floj

The flip-flop or bistable multivibrator circuit utilized for analysis is

shown in Figure 63.

I.I
4SV liV

Sci

-4V -4V

Figure 63. Five Me. Flip-Flop Circuit

This general purpose type circuit is specifically designed to operate in
the saturated mode at a maximum repetition rate of 5 mc. This type of circuit

finds extensive application in pulse circuitry being used not only for the generatiom

of square waves from pulses but also for the performance of certain digital

operations such as counting. The actual operation of the circuit is similar to the
one previously discussed in Section 3. Z. 6.

Quiescent Currents and Voltages

When the condition exists that Q is off and Q. is in either the sa4tur&t.4

or the non-saturated state, Q, and CR, and the associated circuitry awe re-

moved from the circuit. Figure 64 is the equivalent circuit used for the analyet.,
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TABLE 34
PERFORMANCE CRITERIA OF MICROMINIATURE FLIP FLOP

Maximum operating frequency -5 mc:

INPUT REQUIREMENTS:

Input pulse derived from pulse level gfte
Maximum "Fan In" (pulse level gates) - 3 per Input
OUTPUT REQUIREMENTS:
R min (max load to gr&,nd) - 6K (0.8 ma)

R min (max load toV - 2K (6 ma)

Maximum DC "Fan out" = 2 logic Inputs or
2 6"ve Inputs (pulse level gate)

Maximum AC "Fan out" -4 pulse Inputs (pulse level gafte)
Maximum capacitive load -50 pf

Typical output characteristics for operation with pulse
level gate output at 25"C unloaded

turn on time =30 ns
turn off time 50 ns
turn on delay -25 ns
turn off delay =20 n

Logic levels: "false" - +5 volts
"true" - +0.3 volts

supply voltage$

cc -12vlts +5 percent
Vba-4 volts +5 percent

V H =+4.5 volts +5 percent

VEE gro~und

Storag temperature - -55C to + 1 2eC

Operating teimpereure, - 55"c to + 12d*C

Power dissipation -90* mW
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it144.5 V

XCa

Figure 6. DC Equivalent Circuit of Flip-Flop with QIoff and Q 2 Catducting

The equivalent circuits used for the transistors are presented in Figures

9 and 10. Utilizing the above set of equivalent circuits, the analysis yields
equations (177) through (182); these equations are then rearranged and form

matrix equation (183).

V C 0. 2 (177)

V1 =5 1 (178)

V BZ =0. 78(1)

Vc~I 3) + V(- R 3 - R)-4R5 (@

V BZ(1/R 6 + l/R 4 ) + Vl(- /R 4 ) + 1B -4/R 6

V~(1/z -1/ 3) + V( 3 ) - C

51 7.



0 0 0 0 V 0.2

0 0 1 0 0 0 VBZ 5.1

1 0 0 1 10 o

R3 0r 07 is

(183)

0 1+1 0 4

W6 04 104 Vr6

1 1 0 0 1 0.-1 1 i2- -1r or - B " •z

o 1 0 0 0 0_.

This matrix equation is then solved using a computer. The results of this com-
puter solution along with the results received from laboratory measurements on

this circuit are presented in Table 35.

TABLE 35

COMPARISON OF CALCULATED AND MEASURED VALUES OF FLIP-4:LOP
WITH Q1 OFF AND Q2 SATURATED

iV2 V2 Vl [ VB IS I¢

CALCULATED 0.2 0.78 5.1 -0.61 0.00136 0.0078
MEASURED 0.2 0.85 5.0 -0.60 0.0013 0.0087

As may be seen from Table 35, the calculated and measured values com-
pared very closely, and therefore, confirm the accuracy of the transfer function.

Let us now consider the case when QI is off and 02 is non-saturated.

This condition is represented by the DC equivalent circuit presented in Figure 65.
The analysis of this circuit is quite simple since most of the nodal voltages are

known, i.e., the voltages VCI, VBI ,cz are known and are shown on the

Ila1



diagram. Also, IB is approximately equal to IC and since it is of the order of

10-9 amps, it is neqlected. Therefore, the analysis yields only equation (184).

+12V +12V

NJ I R2

CR2/ / 1

VCI VC2
0.2

-4V -4V

Figure 65. DC Equivalent Circuit of Flip-Flop with Q off and Q2 Non-Saturated

0.2- VBZ VBZ -(-4)
+ (184)

Since the value of lB i3 negligible, VB2 may be solved for directly and

is -0. 605 volts. It should be noted that the voltage VB2 for 02 non-saturated

is the same as VBl for Q2 saturated, thereby pointing out that 02 does not

operate in the non-saturated mc.de but is, in fact, cut off.

3. 3. 2 Transfer Functions of the Steerinij Network

The circuit analyzed in this subsection is that of a steering and logic net-

work designed to provide the input pulse for the Microminiature Flip-Flop circuit.

Each wafer contains two independent RC differentiating networks with level block-

ing, diode-gated outputs. Two iaput capacitors are provided on each gate to allow

a wider variety of input pulses tc. be used. The schematic of this circuit is pre-

sented in Figure 66.
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4,5V

R 43 t4 CR2
,~~KI23.9K

R5 R
4.5 X

C 3 CI C 2 C4

I0

12V

Flgure 66. Microminiature Steering Network Schematic

As may be seen from the schematic, the circuit is of symmetrical nature,

and therefore, an analysis of one side of the circuit is sufficient. The analysis of

this circuit was made with consideration of the previous stage (e. g., in the system

represented in Figure 6 the steering network is fed by a NOR circuit). Therefore,

the appropriate circuitry of the NOR circuit is included into the analysis of the

steering network. This approach requires that the steering network be analyzed

when the NOR circuit is in the saturated and non-saturated modes. This must be

done since different portions of the NOR circuit in its different modes have a signi-

ficant effect on the steering network.

We will first consider *he case when the NOR circuit (presented in Figure

69) is operating in the saturated state. The DC equivalent circuit for this condition

i s shown in Figure 67.

Referring to Figure 67(a). RA is the resistance of the diode CR 4 and R

is the collector resistance of the NOR circuit. Figure 67(b) is the simplified

circuit where

R R I R(4Rp R I +lR4)

An analysis of this circuit yields equations (186) and (187). Since there are

only two unknowns, it is much easier to solve these equations
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A k 4.5 V 4.6V

"A RA

-AA 91 12

4 1 4 .3.K X taPU1 i

+ 2 1 ~ 0

() |(b)

Figure 67. DC Equivalent Circuit of Steering Network when NOR Circuit is Saturated

12 - VI VI V0 - VI
R 1 + 0 (186)

4.5-Vo V0 -V 1

R- + R 0 (187)
35

by simple substitution rather than by the use of a computer. This type of approach

gives the following relationships:

VI(RAR5 Rp5 + RRA) -12 RAR5v =RlARA) A"5(188)

0 RR

V1 = V0 R + 4.5w (159)

By substituting (189) into (188) the following expression for V0 as a function of the

circuit components is derived:

'U



4. 5 (RAR 5 + R R 5 + R RA) - 12 R 3 RAR (190)

vo R RARS + RpRS + Rp R3A -3A . R3 p

Once the expression for V0 is obtained the solution for V1 is also known by sub-

stituting the expression for V0 into equation (189). The numerical solution is

then obtained by substituting the nominal values of the components into the expres-

sions. This procedure yields the following results:

V0 = 6. 34 volts

V1 = 5.99 ,olts

Let us now consider the case where the NOR circuit is operating in the non-

saturated mode. For this condition the equivalent circuit presented in Figure 68

applies.

VVo

R3 33

4.S5÷

+4.5
CR4 flCR4

Rp

RP + " 4

+12 +12j Ie) (b),.

Figure 66. DC Equivalent CIrcut of Steering Network when N Cliult b Nen-Scowetd

j Referring to the equivalent circuit, the voltage V 1 is clamped at 5. 1 vOUS

massuming a 0. 6-volt hop across the diode CR 4. It is now possible to c€nplo.y

•'•1r3



describe the voltage V0 in terms of the circuit components by equation (191).

Simplifying the expression

5. 1 - V0  4. 5 - V0
+ R0 (191)

and solving for V0 yields the following relationship:
4.5R5+ 5.R

V0  R 3 +R 5  (192)

Substituting the nominal values for the components into the expression yields the

voltage V0 when the NOR circuit is operating in the non- saturated mode.

V0 = 5.0v

Thus, we have completely described the steering network in terms of its transfer

functions for both internal and external effects.

3. 3. 3 Transfer Functions of the Microminiature NOR Circuit

The circuit to be analyzed in this sub-section is that of a NOR circuit.

This circuit is simply a gate with a logic sense of plug 5 volts = False and zero

volts = True. The circuit is composed of a three-input "OR" gate and an inverting

transistor amplifier and a clamping diode for greater reliability. The circuit

accepts a positive pulse at the input and delivers a negative pulse to the succeeding

stage. The NOR circuit schematic is presented in Figure 69. The performance

criteria of the circuit is shown in Table 36.

This circuit was analyzed for the transistor operating in both the saturated

and non-saturated modes.

We will now consider the circuit when the transistor is operating in the

non-saturated mode. The DC equivalent circuit for this condition is presented in

Figure 70.
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+12V +4.5 V

+ +12V .IV cm

R4R

5.4K 6.3 K
CRCI

Rg3
CCR4

R5 ~ ~ R 'O OAR EISA COPWU

21-6K

-4V D-4V

Fig,. ~Figur 69.vim Schemati of Mirominiature NOR Circuitfo 1Trshr
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TAKLE 36

PERFORMANCE CRITERIA OF MICROMINIATURE NOR CIRCUIT

INPUT REQUIREMENTS:

Maxi mu m "Fan I nn 6 (addition of 3 diodes to pin 5 or 12)
Minimum Input pulse width 40 ns
"false" voltage level - +4.5 to + 6.0 volts
"true" voltage level 0 to +0.5 volts

OUTPUT REQUIREMENTS:

RLm n. (M•x. load to round) - 0.5K (1 ma)
RS min. (Max. load to VCC) - 1.5K (8 ma)

Maximum DC fan out" -3 logic Inputs or 2 level Inputs (pulse
level gate 37AA02)

Max. capacitive load - 100 pf
Max. AC "Fan out" - 4 pulse Inputs (pulse level gate 37AA02)
Typical output clmcterhtics for operation with 5 volt. input

pulse at 250C unloaded
Turn on time- 20 no
Turn off time - 20 ns
Turn on delay - 10 ns
Turn off delay 50 m

In order for the transistor to be physically in non-saturation, one of the input
diodes has to be grounded. Referring to the equivalent circuit, the analysis

yields equations (193) through (195)4

V a = . 1 (193)C

VI - vB - 4 - VB
V72VB + (194)

12 - VI V1 vI -V ss4 R '1 + •3(195)4 _r3

However, in equation (194), 1 3 U1 3 0  l09thus, since the effects of 1 195)
negltigibleethe equation may be rewritten as equation (196).

VI- VB 4 + VB



Utilizing the above equations the matrix equation (197) may be formed.

1 1 1 V41 2r v

1 1 1 1 V 12 (197)

54 'r 3 3 Y

The solution of this matrix along with the values of the circuit parameters meas-

ured on a breadboard in the laboratory are presented in Table 37.

TABLE 37

COMPARISON OF MEASURED AND CALCULATED VALUES OF THE NOR CIRCUIT
WITH THE TRANSISTOR IN THE NON-SATURATED MODE

VC VI VB

Measured 5.0 0.8 --

Calculated 5.1 0.73 -0.83

As may be seeh from the table, the calculated and measured values of the circuit

compare quite closely and thereby verify the accuracy of the transfer function.

We will now consider the case where the transistor is operating in the

saturated mode. The DC equivalent circuit for the condition is presented in

Figure 71. Utilizing this circuit, we may write equations (198) through (202).

1 1-V1  V1 B (19)

R1 R3

vl-vR -4-vR

R 3 + R z B V

12 - Vc

4 c
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II.I| ,1

VCSzc

-4V

Flgure 71. DC Equivalen Circuit of Micai.mlnlatw NOR Circuit with tOe Transwr
In Sahowation

cB 
(ZO)

V 0.2 (202

The above equations are then formed into the matrix equation (203).

ri7 r 0 0 VI IK

1 I 1 14
lr3lr3 ?. 0 VB

0 0 0 Vc 0.

"00 0 l
•0 - • - I €.•

lr4 4.jm •



The matrix equation is then solved by means of a computer and the measured and

calculated values are presented in Table 38.

TABLE 38

COMPARISON OF CALCULATED AND MEASURED VALUES OF THE NOR CIRCUIT
WITH THE TRANSISTOR IN SATURATION

Measured 5.6 0.15 - --

Calculated 5.5 0.2 -2.3 0.0018 0.00004

An examination of Table 38 reveals the close comparison between the

measured and calculated values of the circuit parameters thereby confirming the

accuracy of the transfer function of the microminiature NOR circuit.
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SECTION IV

SYSTEMS APPLICATIONS

The procedures andapplications described in this section are, to a certain

extent, similar to those discussed in Section 3. The major differences in the

technique as applied to systems are: (1) the added complexity and (2) the prepara-

tory work that must be accomplished in order for the results to be both meaning-

ful and useful.

The study has yielded three possible approaches that may be used, all of

which present very useful results. The particular approach to be chosen depends

upon a number of factors among which are: (1) type of information required,

(Z) complexity, (3) resources, (4) time and money available, etc. Therefore,

the three approaches will be presented aIong with a discussion of the afore-

mentioned factors. The first method that will be discussed is the most elaborate

and consequently the most expensive. The second method is a modification of the

first and the third and least expensive is a relatively simple but quite useful

technique. The three techniques are described below.

(1) In the first approach, one obtains a complete transfer function in
terms of all the components in the system. This transfer function
may be derived in a number of ways. Two methods are described
below:

(a) The transfer functions of each of the subsystems may be individ-
ually obtained and then by adding, subtracting or multiplying the
the individual transfer functions, depending upon the function of
the subsystems, the complete transfer function may be obtained.
However, if these individual transfer functions are in matuix
form, the rules for manipulating matrices must be followed, i. e.,
in order to multiply matrices, they must be of the same order,
etc. It is, therefore, quite probable that a great deal of prepara-
tory work will be required upon the individual transfer functions
prior to the task of formulating the over-all function. This
method is considered to be the easier and most useful method.
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(b) Another method that may be used to determine the system transfer
function is to express it analytically in terms of the input and
output voltages of the system. However, with this type of ap-
proach a great deal of information may be lost since many of the
component parameter relationships internal to the input-output
sections of the system may not appear in the transfer equation.
It is, therefore, recommended that the first technique be used.

Once the system transfer function is obtained and is formed into a
transformation matrix of the order N , the Monte Carlo process
described in Section II of this report may be used. For this particular
technique one would run the process for every component and combina-
tion of components in the matrix.

(2) The next approach that may be used is identical to that described
above except that the Monte Carlo process is applied only to the
critical components in the system. An example of this technique is
described below:

Consider the simple amplifier shown in Figure 72. It is obvious from
inspection of the circuit that the gain is given by Equation (204):

0

I

PiV,. 72. Anrp r Ck
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Gain 0nK (204)
in I+gR

If g RK >> 1 it is easily seen that equation (206) may be re-
wriien as shown below:

RL

Gain - L (205)

It may be stated, therefore, that the critical components of the ampli-
fier are the plate and cathode resistances RL and .K . The trans-
conductance gm may be neglected since it is common to both numera-
tor and denominator of the gain expression. Therefore, if one
determined the critical components of a system it would be possible to
save a great deal of time and expense using this approach as opposed
to that described in (1).

(3) The final technique to be described is one in which the Monte Carlo
process is applied to the individual subsystem transfer functions.
With this type of approach it is, therefore, necessary to know the in-
put and output requirements of the individual subsystems. Once
the requirements are known, the Monte Carlo process may be
applied. The technique consists of Monte Carloing each of the
components in the individual subsystem, and noting the effects
upon the output. When and if the output does not meet the input
requirements of proceeding subsystem, the values of the comn-
ponent or components are noted and the process is halted in the
presence of a failure or continued on the next subsystem if no
fialure occurs. Another useful outcome of this technique is that
although the output may just fall within the input requirements
of the proceeding stage, it may cause a failure at another point

in the system under consideration. As an illustration of this
technique, lot us consider the following example:

Suppose we have two amplifiers in series

F lomr 73. Ikhifl, bmq*I.
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The gain of Amplifier 01 Apliir #2 xR

The Amplifiers have the following Requirements:

TABLE 39

OPERATING PARAMETERS OF
ILLUSTRATIVE EXAMPLE

AmpIlflw #1 2 +5% volts 10+ 5% volts

Ampliffer #2 0 + 5% volts 50 +5% volts

We will assume that the input to Amplifier #1 in always at 2 volts. The
next step is to perform a Monte Carlo process on each of the compon-
ents in the amplifier and note the effects upon the output. From the
cumulative distribution functions obtained by this procedure, it is
possible to determine when the output falls outside the input require-
ments of the proceeding amplifier and, thus, the reliability of the
amplifier io known. This process is then carried on until all, of
the subsystems have been analysed.

This technique is considered to be the least expensive and requires
loes computer time, but as in the two techniques previously men-
tioned, quite time consuming. This procedure may be used on all
components or only on the critical components. It is, therefore,
recommended that this technique be used since it provides all
necessary information.I ~~The techniques outlined above will provide the following inorto:

(1) Based on the underlying frequency distribution ad the c~nm.
it is poesible to 6stom=Uo the reliabilfty of a sysae= at "rea' time
and at some "tasi as times 1* 6 fthe w.
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(2) It provides a means of improving performance, a.g. *lot us consider

a circuit whose

ACTUAL P911ORMANCI LIMITS

X1 %/

(~) (b)

Figre 74. Illustratlve Example of Application of Monte Carlo Techniqu

performance is plotted as the cumulative distribution function of
Figure 74b. The normal distribution shown in Figure 74a represents
the critical component R. of the circuit. The particular tolerance
limits on this component (4. TI) will yield a reliability of I - (X + X1 )
for the circuit. However, it io easily seen that If a stricter toler-
ance (T2 ) is imposed on the comnponent R the performance of the
circuit may be improved as represented by the dashed curve in
Figure 74b. Therefore, by utilising the technique in this manner,
the over -all performance of a circuit or system may be improved.

(3). With the information obtained from this technique, it will be
possible to plan better spare parts allocation and mnaintaInab~lity
methods.

(4) It will provide a better method for determining trouble -shooting
techniques since the critical parts will be highlighted end the systemi
degradation due to the failure of these parts will be known.
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I 4.1 TIMING SYSTEM

It is the purpose of this subsection to present a specific application of the

Monte Carlo Technique, previously described in Section IV, on a system. The
system, as presented in Figure 5, generates a constant 10 microsecond pulse at

a repetition rate of 100 kc in an environment where a large shift of nominal part

parameters may be experienced. This treatment presents the specific application

of the technique, however, in keeping with the purpose of this report, that of

developing a new technique, the routine mechanics are not included. The mathe-

matical simulation procedure is as follows:

An oscillator is synthetically constructed utilizing the transfer func-

tion previously developed. The critical performance criteria of the

oscillator is the resonant frequency and the satisfaction of this cri-

teria will automatically ensure adequate input to the high level am-

plifier. Once it has been ascertained that the oscillator is operating

within specifications, the second stage or high level amplifier is

synthetically constructed and the process is repeated. This proce-

dure is followed with each of the remaining stages in the system.

If a failure is experienced, the process is immediately halted and

the cause and location of the failure noted. The whole process is

repeated 1000 times thereby yielding the reliability of the system.

Referring to the test system and the waveform development shown

in Figure 5, the following requirements must be satisfied by the

respective subsystems in order to obtain successful operation.

Oscillat•r - 0.4v - 1 .0v

High Level Amplifier 0.Ov - 5v 0.6v - lO0v

TriggerwCicult 6v - lov lOv - l1v (n)

Btable/Witt v - 15v m610 + 10v -+ 14V

MoneMObl Multi 4v - 1Ov(g) 1Ov - l1v

Pule Adder >5V ~t. epmthn 0S0-50
<*so . ~suot~s

L" Level Ampilier 0.00V - 3VS 0.02V- Sv



4.2 DUCRZPTION OF THE MICROMINIATURE CIRCUITS IN THE ERROR
SENSING AND READOUT CIRCUIT -

In Section 3.3 the three microminiature circuits are described which

compose the systems in Section IV, and detailed schematic diagrams are drawn.

In this subsection these same three circuits are again described, but here in

terms of their logical functions or of their general function in a configuration,

as opposed to their electrical configuration. (26. 272

4.2. 1 Lomical Description of a Circuit

All electrical circuits can be divided into two types, digital and analog.

If a circuit is viewed as a black box, i. ew only the inputs and outputs are of

interest, then analog circuits are those in which the voltages at the terminals

may vary continuously over a range; whereas digital circuits are those in which

the terminal voltages, both input and output, are reitricted to two (or any

finite number but usually only two) sufficiently separated narrow sub-ranges,

say R I and R., of the total possible range R. If the voltage falls outside of R 1

and R the circuit is said to have failed. If the circuit does not fail, then the

voltage at each terminal must be in one and only one of two mutually exclusive

sub-ranges. Different letters ( a. b, --- ) of the alphabet may be assigned to

each terminal to indicate the presence of a voltage in one of the sub-ranges. and

the negation, in the sense of symbolic logic, or Boolean algebra of this letter

(A. I, --- ) means that the voltage is in the other sub-range. An exampl of this

is given in Figure 75.

(A, )

FI II*"" . hvWh L"% Pok W s



In Figure 75 the Symbolic Logic Block Diagram, the following voltages

defineABC andA B C:

Input *A, when 0 < VA< 1
Input -A.when 5 < vA • 6

Input =B, when0<VB< 1

Input B, when 5<VB <6

Input = C. whenO<V <1

Input C when 5 < VC • 6

A non-sequential circuit is one in wbich the outputs depend only on the

inputs and nothing else, e. g, internal state, past history, etc. In, a non-

sequential circuit the same inputs always yield the same outputs. A sequential

circuit is one in which the outputs depend not only on the inputs but also on the

internal state. Different internal states handle the same inputs differentlh i. e.,

may yield different outputs for the same set of inputs. In this sense the in-

ternal state may profitably be regarded as itself another input. Sequential

circuits are sometimes described as those having "memory", since they

"remember" past inputs by correlating different internal states with various

sequences of past inputs. A complete description of a circuit can be given by a

truth table, if the inputs and outputs are represented by their respective letter

symbols and arranged in the following manner. The letters are listed horison.

tially as column headings and each row gives each possible state of the circuit.

Affirmation and negation can be described as in symbolic logic (Boolean Algebra)

or numbers can be used ( 'one' for affirmation, 'sero' for negation). The

resulting array is called a truth table (for example Table 40) and is a complete

description of all possible states of a non-sequential digital circuit. A Boolean

equation, or a logical truth function, is completely equivalent to this array

and represents the fact that the outputs of the circuit are a certain function of

the inputs. To say that a digital circuit performs a certain logical operation

or that it has a certain logical description is the same as saying that its ule+ate

and outputs satisfy a particular Boolean equation. leum the name *1 4m0 .
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is the same as saying that its inputs and outputs satisfy a particular Boolean

equation. Hence the name of some digital circuits (s. S. NOR circuit, NAND

Icircuit) often comes from the kind of equation which describes its operation.

I (e.g. + B)for not (A or B))

4. 2. 2. NOR Circuit

The NOR circuit used here has 3 inputs A, B, C and one output D. The

truth table below is arranged according to the explanation given above. For all

possible input configurations the output D is given as a function of this con-

figuration (of ordered triplets of 'zero' and 'one').

TABLE 40

REPRESENTATIVE TRUTH TABLE

A S C D

0 0 0 1

1 0 0 0

0 1 0 0
I 1 0 0

0 0 1 0

1 0 1 0 -

0 1 1 0

I 1 1 0

The equation equivalent to this truth table is given by equation (206k'

I(A+ B +C) BF (T -D(3)

4. 2. 3 Flip-Flop Trigger Circuits

The combination of the flip flop and trigger cireuit is deelped to bhe ue

as a single unit and forms a sequemial circuit.

5.,



The flip flop performs an operation which is often referred to as

"remembering". It has two possible complementary outputs, called 'true' and

'false'. It can be switched from one state to another by short-duration pulses

and "remembers" indefinitely the last state into which it was thrown. If the

flip flop is in the condition where the 'true' output is in the 'zero' state and a

pulse input is delivered to the 'true' side, the flip flop will change state so that

the 'true' side goes from 'one' to 'zero'. Consequently the 'false' side goes

from 'zero' to 'one'. A signal last delivered to the 'false' input will settle the

flip flop so that the 'one' side goes from 'one' to 'zero', and the 'zero' side

generates a 'true' signal (i. e., goes from 'zero' to 'one'). This state is main-

tained indefinitely and is referred to as the 'one' state of the flip flop. A second

short-duration pulse delivered to the 'true' input of the flip flop does not change

the state, but a pulse delivered to the 'false' input reverses the state of the flip

flop so that its 'true' output terminal generates a 'zero' signal and its 'false'

side a 'one' signal. The flip flop is now in the 'zero' state and remains there

until an input is next delivered to the 'false' input terminal. See figure 76.

TW~A OUTPUT
FALK OUTPUT

WhIiPuT TIMAUIA.FLI4PtLnI

Figure 76. Logic Diagra of Flip-Flp

The trigger circuit (see Figure 77) is composed of two identical circuits.

LgvEL L161.

FgIre 77. LogIc Dikgrm oF Triggr Circuit
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Its two outputs are connected to the two inputs of the flip-flop circuit. The

system clock is connected to the inputs of the trigger circuit. Clock pulses pass

from the trigger input to the trigger output terminal if the level input is in state
|'one'. If the level input is in state 'zero', the clock pulses do not pass through to

the output.

4. 2.4 Description of the System

The function of the error sensing and readout system it to monitor two

inputs, each input being an output from one of two identical systems, and to com-

pare these inputs with a reference. An indication signal is provided when

1. Either one of the two systems is in error (but only one) or

2. Both systems are in error.

The error sensing subsystem is a gating structure composed entirely of

NOR circuits which has one indicator for single error, and one indicator for

double error, so that correct operation of the monitored systems corresponds to

an absence of such indications. Correct operation is defined as agreement with the

reference signal at all times.

The readout subsystem is composed of two flip flop circuits that

"remember" that an error has occurred in the time interval following the last

reset of the system. These flip flops provide an indication signal at the time of

malfunction and continue to supply this indication until the system is reset. Re-

setting clears the system of all error indications. Since these are digital systems.

the signals at any time will be two valued (as has been described above). Thereforo.

if the two systems being monitored have different outputs at any time, one must

-gree with the reference and the other must disagree. If the 'true' outputs of

these systems are represented by A and B then the requirement for single failure

(8) can be described by the Boolean equation

s - A+:T (20 )

In the case of double failure (D), the two systems must agree w"• h es

other and disagree with the reference (R). The equation for this coa. it to

ý:F



D AB R+AB R (208)

It foUows that correct operation (C) means that the reference and both

systems agree. This can be represented by

C =AB R+AB R (209)

The equations for S and D can be rewritten in the following manner

S=AB+A.B

S (AB +A )

S=(A B) (A B) = [A+B) +(A +B)] (210)

D= ABR+AB R+ (AB +AB) (RA+RA)

D- (AB +AB) (R+A) (R+A)-- --
D= B +AB)+ (R+A) +(

But (A B + AB)S (211)

Therefore,

D - [S +ýA +R)+(A+R)i (212)

Expressed in this form these equations describe the error sensing NOR

circuit configuration of Figure 6.

In the error readout section (also shown in Figure 6) the output of T will

trip flip flop F 2 on receiving the first clock pulse during the time sons in which

S is present. In a similar manner, T 1 will trip F 1 on receiving the first clock

pulse occurring while D is present. The flip flop drives the appropriate error

indicator when S or D have occurred.

The Monte Carlo techniques described in Section 4. 1 are directly ap-

plicable at this point.

14



SECTION V

CONCLUSIONS AND RECOMMENDATIONS

This study report has developed mathematical simulation procedures to

accomplish the following:

1. Provide the designer with a specified degree of confidence that his
circuit will have a particular performance criteria.

2. Provides a means of readily evaluating the sensitivity of the circuit
thereby indicating the major sources of variability.

3. Tolerances for part parameters or circuit elements can be
realistically specified for the selection of parts.

4. The system is optimized for a given cost.

5. The development of transfer functions require that the definition of
failure be precisely specified rrthematically and thus the usual
decisions as to the acceptability of a circuit performance criteria
is eliminated

6. The cost of the parts purchased can be reduced as the worst case
design technique is no longer required and the parts do not have to be
as precise.

7. The precision of this technique is limited only by the number of
iterations performed; however, this is non-restrictive because of the
availability of modern day computers.

8. The technique makes possible the planning of improved allocation of
spare parts.

9. It is possible to improve maintainability techniques; i. e.. the infor-
mation will be available to allow the optimum determination of repair
crows required to maintain the system.

10. It will provide a guide for the determination of trouble shooting
techniques since the critical parts will be highlighted and the system
degradation due to the failure of these parts will be known.



11. Based upon the underlying frequency distribution of the components,

it is possible to determine the reliability of a system at zero time
and at some time or times in the future.

Thus, it is concluded that in most cases Mathematical Simulation is the

only feasible solution to the reliability prediction problem.

Recommendations for future work in these areas include:

1. A hardware program be continued to further validate the predictive

techniques developed in this report.

2. Additional work be continued in developing the optimum distribution

of parts and components for optimizing system reliability against

given constraints.

3. Research be conducted into the further application of the technique

in the area of automatic circuit design.
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GLOSSARY

The set of definitions presented in the RADC Reliability Notebook, dated

30 October 1959 (see reference 94 in the Bibliography) is appropriate for use in

understanding this report. If an alternative definition is needed for clarity, the

list below may prove useful.

FREQUENCY - The ratio of the number of events which meet a performance

requirement to the total number of events.

FIRST FAILURE TIME DISTRIBUTION - The distribution of all times to the

first failure.

DENSITY FUNCTION - The first derivative of the distribution function.

PART - The smallest basic element of a complete system.

MODULE - (Normally used interchangeably with component.) A module is an

article which is normally a combination of parts, subassemblies, or

assemblies, and is a self-contained element of a complete operating
equipment, and performs a function necessary to the operation of that

equipment.

CUMULATIVE DISTRIBUTION FUNCTION - (See Appendix A)

SYSTEM PERFORMANCE CRITERIA - A system performance criterion is a rule

that states within what limits a system performance measure must fall.

A system performance measure may be of two types, a deterministic

performance measure or a probabilistic performance measure. A deter.
ministic performance measure is a measure that can be characterized by

a single number.

Some examples of this type of measure are:

a. gain d. rise time

b. bandwidth e. fall time
c. signal to noise ratio f. delay time
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I
g. noise figure i. output impedance

h. input impedance

A probabilistic performance measure is a measure that can be

characterized by a cumulative distribution function which may take any of the

following forms:

1. an equation

2. a graphical curve

3. an approximating polynomial

CRITERION- A standard of judging, a rule or test by which anything is tried

in forming a correct judgment respecting it.

SPECIFICATION - Minute description of particulars or the particular details

themselves, e.g..in the terms of a contract the details of construction

etc. According to the glossary in the RADC Reliability Notebook, a detailed

description of the characteristics of a product and of the criteria which

must be used to determine whether the product is in conformity with the

description.

NOMINAL VALUE - The stated value (e. g., by the manufacturer or designer)

of some characteristic or measure of performance of a piece of equip-

ment. Note: Due to internal and external stresses, it is seldom the case

that the nominal value coincides with the actual measured value of a

particular characteristic.

*Definition from Webster' s New Collegiate Dictionary.
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APPENDIX I

DEFINITION OF CUMULATIVE DISTRIBUTION FUNCTION

The function F(x) is called the cumulative distribution function (cdf) of

the random variable X if and only if F(x) has the following properties:

(1) F(x) lies between 0 and I for all values of x.

(2) F(x) decreases to zero as x decreases to -o.

(3) F(x) increases to 1 as the upper bound b of the interval in which
x is supposed to lie increases to +ao. (The probability of a value less
than +. is 1.)

(4) F(x) is an increasing function in the sense that f a b, where a is
the lower bound of the interval, then F(a) d F(b). (The probabi-
lity that a random value X is smaller than a is less than the
probability that a random value X is smaller than the larger
number b.)

(5) F(x) is always continuous on the left; i. e., F(a) increases to F(b)
as a increases to b.

Conversely, any real function F(x) with the above properties defines a

cumulative distribution function for a random variable X, that is

F(x) a Pr(X < x)

An intuitive grasp of a cumulative distribution function may be obtained

from the following illustration. Suppose a thousand resistors have been made and

are tested to find the exact resistance of each one. If the thousand values resulting

from the test are ordered according to magnitude, starting with the smallest and

ending with the largest, a graph is obtained at- shown below in Figure I- 1.

Here the ordinate represents the number of resistors having a value less

than or equal to that shown on the horisontal scale. Depending on the scale, the

ordinate is sometimes called the probability (0 to 1) or relative frequency (0 to 1)

or percentage (0 to 100), but in any case, it represents the value of the cumulative

distribution function F(3.
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The derivative of the cumulative distribution function F(x) is called the

density function (d. f.) f(x). Since the c. d. f. is scaled to go from 0 to 1, it must

be the case that the area under the d. fG is exactly equal to 1.

The items discussed above can be extended to two or more dimensions.

When a process simultaneously produces two (or more) numbers at random at

each trial, the collection of pairs of random numbers (X 1 , X2 ) can be considered.

If the probability is known, with which a pair of random numbers (X 1 , X2 ) lie in

the quadrant given by the two inequalities X1 <xl and X2 <1x, the joint

cumulative distribution function can be defined by

F(x 1 , x2 ) u Pr {Xl<x 1 and X.<xx)

PI
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APPENDIX U

DISCUSSION OF RELIABILITY MEASURES AS BASED
ON THE CUMULATIVE DISTRIBUTION FUNCTION

The definition of reliability that has received wide acceptance in the

literature is:

The probability of performing a specified function without failure

under given conditions for a specified period of time.

This can be expressed mathematically as:

Reliability u R(t) a •"kt (eI- )

where X a failure rate i. e., reciprocal of mean time
between failures

t = duration of mission or task

This definition of Reliability defines R as a probability which is a function of

time (t) and of internal and external conditions, since X depends on the environ-

ment as well as on internal stresses.
S-Xt

In this equation, the expression e gives one type of probability fumction

which can be used as a measure of the reliability.

There may be other types of probability functions which may be used as
reliability measures in addition to the type of probability function described above.

The following analysis shows how the formulation of reliability in (U.-1) is

related to the "Monte Carlo" procedures described in Section IU. This analysis

will deal first with a system having only one type of unit. To express the above
reliability measure R(t) in terms of a cumulative distribution function Fn(t)

measuring the probability of failure let:

Fn(t) a I - Rn(tI I- -)nt (loZ)

so that Fn(t) + Rn(t) a 1 (113)

where n It, 2...*o



As t approaches , Fr approachus the steady state distril. ionn func-
tion.

F is the particular cumulative distribution function which describes the
n th a thdistribution of the various intervals of time between the n and , 1 )

failure.

Let the cun•itidtive distribution function of a circuit performai., .. . sure

at t 0 appear as shown in Figure UI-I.

OI -ACCEPTANCE REGION - - CRITICAL PERFORMANCE LIMIT

•0 0

PERFORMANCE CHARACTERISTIC

Figure I1-1

Note that in Figure U1-I each of the cumulative distribution functions repre-

sents the same set of systems. A circuit is considered to have failed whenever

the performance measure falls outside the preassigned limit of satisfactory opera-

tion. Therefore, any circuit or system whose performance measure falls to the

right of the critical performance limit has failed (as shown by vertical line in
Figure I-1). From Figure 11-1 it is possible to construct Figure U1-2 by noting

the times at which failure occurs. These are found at the intersections

critical performance limit with the time dependent cumulative distribution func-

tions. The time-to-first-failure distribution FI(t) is defined as I - R 1 (t).

This is shown in Figure U1-3. It is important to note here that in many instances

RI(t) may not be in exponential form, since it is a direct function of the particular

family of cumulative distribution functions curves shown in Figure U- 1.

, •.-.
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Figur 11-2 Figure 11-3

The fact that one may either repair or replace units which have failed will

influence the development of the mathematical models used to describe the relia-

bility measures of the system. Furthermore, in the case of repair there will be
one type of model, while in the case of replacement another type of model will be

necessary.

In the case of repair, the simulated change in performance criteria is

represented as shown in Figure 11-4. To determine the distribution of times to

first failure (i. e., F1 ) and the distribution of times between the consecutive fail-
ures n and n+ 1 (i.e., Fn ) a critical performance limit is defined (horizontal

line in Figure 11-4. The time to first failure is that time at which the curve

describing the performance measures in time first crosses the line representing

the critical performance limit.

PERFORMANCE

CHARACTERISTICS CIIA

LIMIT

No-N
time

FMge 11-4

U-3



If these times to first failure are ordered according to magnitude, they

yield the cumulative distribution function shown in Figure II-5.

Ua

aW

Ii.

4rF

Figure 11-5

Figure 11-4 shows how several parts come to the time-of-first failure.

Figure 11-6 takes one of these parts and shows the performance of the part passing

the critical performance limit at t1 (time-to-first-failure), being repaired,

rising in performance again until it passes the critical performance limit at t

(time-to-seconul-failure), and so on. Figure 11-7 does this for another part.

If a whole series of such graphs are imagined for each part, then a cumulative

distribution function may be found for each At [ (Ati = ti - (t- I) ) i.e., each

incremental time between failures. This gives Fi (the cumulative distribution

function for time from the (i - )th to the i - th failure for the type of part being

tested on the basis of the performance of a large number of actual tested samples.

Notice that the time required to repair a part is taken as zero on the graphs.

Although this is rare in practice, this time for repair does not influence the

distributions in question.

Interfailure Time Distribution with Monitoring Replacement Policy

In the case where the system is monitored and failed parts are replaced,

a second mathematical model is necessary. In Figure IU-8 the solid curves repre-

sent the cumulative distribution function of the original population of parts, which

were subject only to degradation in time and no monitoring. If the defctive pasts

11-4
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are replaced at intervals when the cumulative distribution function will be described

by the dotted curves, i.e. , (1 - X) of the unite have failed at time t - t .
nA

(1 - X) of the units have failed at t1l000 hours; these occur because a

critical performance limit is exceeded. The replacement of (1 - X) of the units

taken from the population represented by the cumulative distributive function will

result in the cumulative distribution function represented by the dashed curve (1)

at t = 0. This replacement would, at t * 2000 hours, cause this curve to shift and

be represented by the dashed curve (Z). This curve would be composed of (1 - X)

of the samples from the distribution at t • 1000 and X of the samples from the

distribution at ZOO0 hours. The net result would be that the reliability of the

samples of the curve (Z) would be increased. The increase in reliability for any

point on the curve would be a maximum of (1 - X). This procedure may be

repeated indefinitely as time increases.

R C,) x *4WITH Mom, m

Wt~u UOItf
0 I mt

F1gur 11-9

Figure 11-9 represents a plot of the Reliability as a function of time with

and without monitoring. Figure I1-10 is the corresponding plot of the failure rates.

Figures 11-8, 11-9, UI-10 are related to each other in the same way as

Figures 11-1, 114-, U1-3.

System with Two Types of Units

To obtain the over-all system reliability for a system with two types of

units it is sufficient to multiply the two reliabilities.

U-



Over-all system failure occurs if any one of the two units fails. Upon

failure, it is assumed that the failed unit will be restored to an operable condition.

For simplicity it is further assumed that the failed unit is replaced by a new unit.

To satisfy the relibility requirement, the set of distribution functions of time-

to-first-failure and time-between-failures must be found. For example, if an

80% confidence limit is specified, then the lower 20% points of all failure time

distributions must exceed the required value. (See Figure II-I I.)

WI4OUT3 WMOITOMING f-t)

o I/," p,.

Figure 11-10 Fi!•" 11-11

ti To illustrate we will consider a two-unit system with given failure time

I distributions Fl(t) and F,(t). See Figure 11-12.
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To generate a sample of time-to-failure, one selects a sample value (i)

from a uniform distribution betweeon (0, 1) and determines the appropriate failure

time s tI andt2 as shown above. System time-to-first-failure is the smaller of the
two values t 1 , t 2 . For this example t 2 <t 1 . At this time the second unit is

replaced by a new unit. The failure distribution curve for Unit #2 is now dis-

placed by an amount t 2 , as shown in Figure 11-13.

FF (t) Mt 1

0.0*

ta ta

Figure 11-13

The failure time distribution for Unit #1 is the conditional probability that

the unit has not failed in (0, t 2 ) and fails at t where t<t 2 . This conditional

distribution F 1 (t) is given by:

F Mt a FlItM " F I(t2) tI -. IFl(t2 t->t 2

1 2

To obtain the time-to-second failure, we again select a deviate from a
uniform distribution and proceed as above, thus obtaining a set of time-to-second-

failure. The smaller of the two is the time-to-second-failure of the system.
.Proceeding in a similar manner times-to-third, -fourth, -fifth failures, etc.,
are obtained, and, accordingly, the times-between-failures. This process is

repeated until a sufficient number of times to first failure, times to second, etc.
are obtained. Thus, the empiric time-between-failure distributions can be do-
termined to any desired degree of confidence. To meet the requirements, the

lower 20% value of all mean-time-betwoenofailures must exceed that value

specified.



APPENDIX III

PROBABLE ERROR IN STATISTICAL SOLUTION OF AREA INTEGRAL

III. 1 MONTE CARLO MODEL FOR DETERMINING AREA

This appendix will determine the probable error resulting from a given

number (n) of replications when Monte Carlo is used to ascertain an area.

Figure I11-I illustrates the area (shaded) to be determined by Monte Carlo
.techniques.

Y
I -"s- I , TOTAL AREA A

Figue 111-1

Let B be the area under f(x) between the limits a and b, thus:

B. b f(x) dx (i-1)

a

The area A under the rectangle is given by:

A * (b-a) h (Mn-3)

To determine the area under f(x) using Monte Carlo, one proceede as
follows:

jAl~ms



From a uniform distribution select a value X on the interval from a to

b. In a similar manner pick Y1 from the uniform distribution on the interval

from 0 to h . These two values define a point P1 with coordinates P{(X is Y ).

This process is continued n times until one obtains PN a (XN, YN)" The limit

of the ratio of the number nB of points falling in B to the total number of points

(nt) defines the percentage probability as nt-.a or:

nP =Um "t(LU- 3)

To obtain the area B. one simply takes the product PA. If the number of

points is infinite. PA w B , the exact area f(x). However, since nt is finite, a

certain error is introduced. To find this probable error as a function of n, one

proceeds as follows.

Define:

P = probability of falling in B

I -P pr.obability of not falling in B

The probability of obtaining r successes in n tries can be obtained

from the binomial distribution:

P(n, r) a CNr0 -r (P)(-4)

The average number of successes. T. is given by:

~ N (M1-3)

or = r
n

For the binomial distribution the standard deviation a is defined by

,,/nP(l P) (rn-7)

.MAl-



It follows that one standard deviation in P(n, r) is:
n

*~a W *P)(-P) . _____n n n -s

and the probable error (percent) in P(n, r) is

67.45 07

P.5E. n67 4
Fin l/n

67.45 n L:o:

As seen from equation (111-9) the larger P and n, the smaller the

probable error. Therefore, the size of the enclosing reference area should be

kept as small as possible.

I
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APPENDIX IV

DERIVATION OF THE FREQUENCY FUNCTION OF A FUNCTION
OF TWO INDEPENDENT RANDOM VARIABLES

IV. I INTRODUCTION

This appendix considers the mathematics of a problem which arises in

reliability theory, viz., the determination of the distribution of the parameters

of a system given the distributions of the parameters of the components that

make up the system. That is, it is the problem of determining the distribution of

a function of several random variables of known distributions.

IV. 2 DERIVATIONS

Given the two random variables x and y , their joint frequency function,

Pxv y(4 7)*. and some function relating a variable z and the two variables x and

y, viz.,
z = f(x, y) (IV- 1)

then z will also be a random variable whose distribution is determined by the

distr ution of x and y. We will develop methods for determining the fre-

quency function of the distribution of z.

The distribution function of z, F , will simply be the integral of

Px, y(• •) over that region of the 1 - 7 plane for which

That ia,

F = $ Px, y( •)dr dq (IV-3
Zf S

and the frequency function of z, p (z). will be the derivative of F with

respect to ; ; i.e.,

Subscripts are used throughout this memorandum to identify functions; the
subscripts are not to be regarded as variables.

IV-l



*d p 4(IV-4)

We will assume that equation (IV-l) and the Inequality (IV-2) may be

solved explicitly for y and 7 respectively, and that the solution of equation

(IV-1) for y is single-valued and differentiable; thus

f(x,y) = z (a)

frl (x,z) - y (b)* (IV-S)

and
< (a) -

when f 1  I 16 (b)

y Ib

The inequality (IV-6b), corresponding to the inequality (IV-6a), may

have either sense, as noted, or it may have different senses in different regions

of X.

Then Equation (IV-3) may be written:

1. If _< f 1 (4,.) when flg,7)

+40

Fz(•) = 5' dPy(g7)dW•d4 (IV-7)

z. If > f- , when f(4, <

SF = 'x, yl ) dy d• (IV-8)
f y

The notation f is the inversion of f(x, y) with respect to y; it should not becofed with a partial derivative with respect to y.

x•V-z



If x and y are statistically independent, which -will be assumed through-

out the balance of this appendix, the joint frequency function of x and y will

be simply the product of the frequency functions of x and y:

pxy(, ) Y px (ý)p y( (Iv-9)

Throughout the balance of this memorandum the following assumptions

(some of which are implicit in the preceding) will be made:

1. px(4) and py(Y) are continuous.

2. The function, f(x, y), and its inversion with respect to y, C I(x, Z),
y

are continuous, single-valued, and differentiable.

3. x and y are statistically independent.

4. x, y, and z are real.

When x and y are statistically independent, equations (IV-7) and (IV-8)

reduce to

1. When ,<_f 1 (7,_ ) when f(4,1)<

= px$¢) SPy(y) d 7 d4 (V-b)

z y+,-

= P(4) F' [f;-1%(44Idq (IV- 11
Iy

2..When ý_>f; 1 4 when (IV-l1Z<

II



but for general forms of the frequency functions, p and p
tx

1. if z x+ y (IV-20)
/4

y z- x (IV-21)

Then z< <

(IV- 22)
when y x

Therefore
÷so

(x~) p( - i (IV-23)
-00

which is the familiar convolution integral
+00

POO " px(,) ýpy( - r) dT (IV-Z4
-00

2. If z x'y (IV-ZS)

y (IV-26)x

-Then -- . . ..

when y < •lx x> O0

}• (IV-Z7)++ y > Ulx x< o0+

Therefore 0

I: 'P.m P

LIV++



FS [f- 1 .(4)]} ( 13)

I 1-Sp(4)F(f'i) dT, (IV. 14)'
-60

Equation (IV-4) for the frequency function of z, p,(t), becomes, for the

two cases:

1. When 1:<Sf 1 (F, t) when f(g,) <

+00 .0

at Y ph(S ) E py(y) d7 d4 (IV-15)

*f f(•,L)

S+ ' to- . dt - V-16)

2. When omf- 1 ý,) when functio

,-= fS y ) py(f) d ~d4 (IV- 17)

8•f M
3 X S Y'~ y (IV-d418)

We will now consider a number of specific cases, that is, a number of

specific forms of the function

z 8 A~x.y) (IV- 19)
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-. 0

which reduces to the following form, which has been called the loga. rithmic

convolution:

p ~ (4)) PXT y (IV- 30)

3. If ZE (IV-31)
x

y u * (IV- 32)

Then <

when y xc x>0

f (IV.33)

Therefore

0

ps*O P-a k PY(~4 * (Ldt

(IV- 34)

+ Sp.(4) py4)J (t indi;
0

Spx(4) py ) )d + 1 ~p1(f) py(;%)tdt

-. (IV- 35)

-aq) SO=' X ( Ci PYWO d'T (IV.S6)

IV-6



4. If z e••' (IV-37)

(Obviously. z > 0 if x and y are real; the latter assumption is

made throughout this memorandum.)

:.inx = x+ y (IV-38)

y = In z. - x (IV-39)
Then The < (IV-40)

when y< lnt- x

Therefore, when z > 0

pz(•) = pxS ) py(In • -• ) (In F-) dt (IV-41)

- . P'~xP P(lIn g, - g) d4 (IV-42)

0 <0
pz( = 1 (IV-43)S[Px * Py] (In >, ,• 0

where, in Equation (IV-43), the usual notation for the simple convolution of the

frequency functions px and p y is used.

5. If Z = xY x>0

(Obviously, z 0 if x and y are real.)

•Ina= y In x (IV-45}

I.= U

S I-6
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I;
I

Then z <

Swhen YY < . x> 10x 1L } (IV-47)

Therefore, when • > 0
1

0

1(0 0U ) -IT
p +((, -- ')Pk~l n (IV-40)

=d 4

• Pxl'r) py • •>

0

+ J~C A, /d(IV-49)

p S, ="M 1YkT n7ý

0<

We may formalize several generalities which are suggested by the

preceding:

1. Heuristically we may condense the two cases represented by equations

(IV- 16) and (IV- 18) to a single equation:

p(,) Spx(?r)py[fy()] 1of ur d-r (IV-51) 0

IV -s



Equation (IV-51) may be regarded as the generalized convolution of px and

with respect to the function f; this operation we will denote by the operator *f.

This convolution of p and py then becomes an operator on a,, and equation

(IV-51) may be written, in operational form:

Pz( Px f P ) (IV-52)

2. Consider a functional relation between x, y, and z of the form

z = h 0f(xy)] (IV-53)

where x and y are random variables with frequency functions px and py

We may define another random variable, w

w = f(x,y) (IV- 54)

whose frequency function, pww (w), will be

Pw(,w = Px *f Py] • (IV-55)

Now

z = h(w) (IV-56)

which, we will assume, may be solved for w

w = h- (z) (IV-57

where h'I(z) is a single-valued function of z.

The frequency function of z in terms of Pw will then be

I=Pw [h') dhd (IV-)
4 P

X!-



Therefore

S Pzt•) - ~dh'lr) h l
dZIt [Px *f Py] [h •)] (IV-59)

SExample 4 above is of this type (see equation (IV-48)

3. Consider a functional relation between x, y, and z of the form

Z = f [g(x), h(y)] (IV- 60)

where, again, x and y are random variab es with the frequency functions px

and p y. Define the two new random variables:

u g(x) (
U (lV-61)

v = h(y) I

and assume that equations (IV-61) can be inverted to give the single-valued

functions of u and v:

x 9- 1(u)

(IV-6Z)

y : h iv)

Then the frequency functions of u and v will be

PUW I dg '1()I
Px1(g- (v)]011 -. ~ __

1=) dh'(v)d (IV-63)

Substituting equations (IV-61) into equation (IV-60) gives

S • f(usv) (IV-64)



and, therefore, the frequency function of z in terms of p u and pv is

-[pu *f p v] () fIv- 65)

where Pu and pv are given by equation (IV-63). Equation (IV-65) may thus be

written

" pz(•)-- {[('l)'XPxlg'I]• [(h-'l)" Xyhl] p• (IV-66)

where:

(g')' I ) d [g'l l

(hl - T[h'1 lr)]

The operator *f defines the variables on which these operators operate. Refer

to equations (IV-88) and (IV-89) with regard to the symbol X.

4. The same process may be iterated for certain types of functions of

more than two variables. For example, let x, y, and w be random variables

with frequency functions px # Py p w and let z be defined as

z f[g(x, y), w] (IV-68)

If we let

u = g(xy) (IV-69)

u will be a random variable wiLh frequtency function

Pu1•1 2 [Px *f Py] tu) (IV-70)

From equations (IV-68) and (IV-70)

z f(u, w) (IV-71)

iY1



so that
S~~Ps(O' Pu *f Pw] ) (IV-72)

Therefore

Pz1• 9 { Px y] *f Pw ) 1• IV-73)

5. Again, let x, y, u, and v be random variables with frequency func-

tions px1 pya Pu9 Pv, and let

z = f [ g (x, y), h(u, v)] (IV-74)

If we let

= g(x, y)

t= h(u, v)

then a and t are random variables with frequency functions

Poky Pxe * ) p 
1(IV-76)

Pt = ( Pu *hP] (P ) }
a is a function of a and t:

z a f (s,t) (IV-77)

and is a random variable with the frequency function

P 3..( a (ps *f Pt] (c,1 (IV-76)

Therefore

P"1 = W {(Px * Py] *f Py *h Pv] (IV-79)

9v-i



IV. 3 SUMMARY

If we regard p z as an operator, i. e., if we regard pZ(•)' as the result

of performing the operation pz on , we may summarize the results of the

preceding in operational notation.

Let x , y , u , v , be random variables with frequency functions defined by

the operators Px P P Pu Pv and let z be a function of the variables x, y

u , v viz.,

z = f(x, y, U, v) (IV-80)

Then z will be a random variable whose frequency function will be defined by the

operator p . We will tabulate the form of the operator pz for various forms

of the function, f(x, y, u, v) (i. e., the operator f).

First, we will define the generalized convolution operator with respect to

the function f of two variables, viz., *f I as :

a-l(

[Px *fPy] (u ;) (• px(- 1))P'[f(I (C'.) yq dr (IV-81)

where f'l(x, z) is the inversion of f(x, y) with respect to y; i. e. ,
y

given:

z f(x, y)

then: y fy1(x, z)

The tabulation is as follows:

1. If z = f(xy) (IV-83)

SPz ='Px *fPy] (IV-84)

2. if z = h[f(x, y) (IV-85)

IV- 3



= [D X [px *f p] (h 1 ) ] (IV-86)

where D is the differential operator; i. e.,

D [0 (x)] a ý(x) s a- *(X) (IVd87)

The cross in equations (IV-86) indicates multiplication in the following sense;

Given two operators, L1 and L 2 , and the variable (or function, or operator),

z , then

L I. L 2(z)=a LI[L 2(z)] (IV-88)

L X L 2 (z)mNL 1 (z)] X [L 2(z)] (IV-8 9 )

That is, the notation of equation (IV-89) indicates the successive application of

the operators L 2 and L1 : first the operation Lz is performed on z , and

then the operation L1 is performed on the result. The notation of equation

(IV-89) indicates the product of the results of performing each of the operations

L1 and L2 on z.

3. If z = f [ g(x), h(y)] (IV-9o)

: ) U ( - px(g 1)] *f [ (h- 1p y(h" 1)]}

[D X Px] (g-1)) *f {[D X py (h'1)}]

4. If z f fCg(x, y),ul (IV-92)

Pz I Px* Py] *j Pu (IV- 9 3 )

5. If z = f [ g(x, y), h(u, v)] (IV- 9 4) 4W

P. = [Px *g Pyl *f [Pu *h Pv]) (IV-95)

IV-14I



In the following particular cases, the convolution takes the forms shown:

6. If z = f(x, y) = x + y 1V-96)
soI

Pz1 P)= [P* fPy ( S) = )y(t - T) dT (IV-97)

7. If z = fx, y) = x y (IV-98)

pz()(= [p=fp ] ((T) p (J() )p (,V_99)

Z~~~~~ x ap X r-M

8. if z = f(x, y) =y (V-_100)x
a

Pz = [Px *f py " pxr() py •r)I•1 d-r (IV-101)
-a

9. If z = f(x,y) = ex+y (IV-_02)

PZ(4) [Px *f Py

(0<0
• D (IV-f103)

px( C)py(In4 r)d'. 0

10. z = flxy) = )y x) 0 (IV-104)

PZW Cxf P1 y~

0 0
S=so. (IV- I1051

0
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The pw'ceding is predicated on the following assumptions:

S1. P x . py 0 Pu , p v are continuous.

2. f, g , h, and their inversicns, f- 1 , g-1 h-I are continu

single-valued, and different- able.

3. x, y , u i and v are statistically independent.

4. x, y, u, v, and z are real.
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