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1. Introduction.

Neglect and even contempt often mark the attitude of statisticians

and of mathematical economists towards Pareto's well-known empirical

discovery, that there exist two constants C and a< > 0, such that the rela-

tive number of incomes exceeding u can- for large values of u- be written
-o(

in the form Cu (footnote 1).

It is not very seriously questioned, however, that the law of Pareto

repres-ats very satisfactor y, not only the "tail" of the distribution of

personal income, but also tiuse of the distribution of firm sizes and of

city sizes. In fact, the game consisting of searching for new instances

of that law has been at times very popular and quite successful, although

seldom respected [see for example the writings of George Kingsley Zipf

(17) (18)].
We think therefore that the law of Pareto has been neglected because

it does -t represent the middle range of incomes-- which may be the more

important far certain purposes-- and also because it is so lacking of

theoretical motivation-- at least within the context of elementary probabil-

ity theory. We believe, however, that in the light of modern advances in

the pure theory of random variables and of stochastic processes, this re-

markable finding deserves a systematic new examination.

We shall see indeed that the law of Pareto literally thrusts itself

upon anyone who takes seriously the models of economics based on maximization

or upon linear aggregation, upon anyone who takes a cautious view of the

origin of the economic data, and upon anyone who believes in the influence

on economics of the physical distribution of various scarce natural resources.

We shall also show the following: when the "spontaneous activity" of

a system is ruled by a Paretian process, the causally structural features of

the system are likely to be very much more hidden by noise than is the case

where the noise is Gaussian. In fact, causal structures may be totally

"drowned out." On the other hand, Paretian noise generates all kinds of

"patterns" that seem to be perfectly clear-cut but have no value for purposes

of prediction. Thus, in the presence of a Paretian "spontpe''cus activity,"

the scientist is faced by an unexpectedly heavy burden of proof, and the

basic problem of the validation of laws acquires many new and indeed per-

turbing features.
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We shall see that the most important features of the law of Pareto are

linked to the length of its tail, and not to its extreme skewness. In fact,

in the cases where we shall deal with random variables that can also take

large negative values, we shall have to introduce a family of bilateral

Paretian distributions, which may even be symmetric. Hence, the extreme

skewness of the distribution of income must be considered as being a secondary

feature of those Paretian variables that are constrained to be positive.

The general "tone" of this paper is indicated by its title. We shall

not attmept to treat any point exhaustively, nor to fully specify all the

conditions of validity of our assertions, which are discussed in detail in

the publications referred to in the bibliography.

The last section of this paper will examine two of the most influential

critiques of the law of Pareto.

2. Thegeneral principle of our "method of invariant laws."

The approach used in our studies of the law of Pareto may seem unusual

in the context of social science, but it resembles a method very familiar in

physics (footnote 2). To begin with, we find that the various "microscopic

models," which could be considered as explaining "why" such and such a ver-

sion of the law of Pareto is encountered in such and such a domain, are at

the very best hardly more convincing than the law itself, because they are

of much less general applicability, and because seemingly slight and irrel-

evant changes in the hypotheses completely change the result. Moreover,

we believe that the stress upon generative models of the law of Pareto has

handicapped the study of its remarkable properties.

Therefore, we have preferred to center our work in this area around the

study of the actual conditions of empirical observation, as practiced in

economics and in other social sciences. By "observation" we not only mean

the activity of the scholar who observes to describe, but also that of the

entrepreneur who observes to act. In both cases, we note that, even if

irreducible economic quantities had a real existence, they could hardly

ever be observed directly; they would rather be altered by some ill-known

sequence of all kinds of manipulation.

In most practical problems, very little can be done about this diffi-

culty, and one must make do with whatever approximation to the desired data is



actually available. But inappropriate data are a notorious handicap in

theoretical work, since economic relationships are usually relative to

conceptual irreducible economic quantities, and cannot generally be expected

to be left invariant by the manipulations performed before actual measurement.

That is, the analytical formulas, by which they may be described, must be

expected to change in form markedly, whenever one applies one of the basic

transformations. As a result, however great the practical importance of

these relationships, and hence however great the efforts to understand them,

there is a good chance that their form will be discovered later, and that

they will forever remain known with lesser precision, than the phenomena that

"happen" to be in some sense invariant with respect to the maximum number of

observational transformations, such as the following (which are all funda-

mental, but unequally so).

Linear aggregation or simple addition of various quantities in their

common natural scale. For example, aggregates of various kinds of income

are better known than each kind taken separately. Long-term changes in most

economic quantities are better known than the more desirable medium-term

changes; moreover, the meaning of "medium-term" differs between series, so

that a law that is not invariant under aggregation would be apparent in some

series, and not in others, and could not be firmly established. A number of

operations of aggregation also occur in the context of firm sizes, in

particular when "old" firms merge within a "new" one.

The most universal interpretation of aggregation occurs, however, in

linear models that add the (weighted) contributions of several "causes", or

more generally embody linear relationships between several variables or

between the current and the past values of a single variable (autoregressive

schemes). The scholar's preference for such models is of course based upon

the unhappy but unquestionable fact that mathematics offers few workable

non-linear tools to the scientist.

There is clearly nothing new in our emphasis upon invariance under

aggregation. It is indeed well known that the sum of two independent

Gaussian variables is itself Gaussian, and -- after the ease of analytical

manipulation -- this is the principal reason for using Gaussian "error

terms" in linear models. However, the Gaussian law is alone to be invariant

under aggregation only if one excludes random variables with infinite



populations moments (whereas we shall not exclude them; see section 5).

(Besides, the Gaussian law is not invariant under our other two observational

transformations).

Let us also note that one may aggregate a small or a very large number

of quantities. Whenever possible, "very large" is approximated by "infinite",

so that aggregation is intimately related with the question of the central

limit theorem concerning the behavior of limits of sums of random variables.

A second fundamental transformation is weighted mixture, or compounding.

For example, a compounded lottery ticket would be one in which a first prelim-

inary chance drawing would determine in which of several final drawings the

gambler has the right to participate. This provides a model for all kinds

of actually observed variables: For example, if one does not know the

precise origin of a given set of income data, one may consider that they were

picked at random among a number of possible basic distributions; the distrib-

ution of observed incomes would then be the mixture of the basic distributions.

Similarly, price data often refer to grades of a commodity that are not pre-

cisely known and hence can be assumed to be randomly determined. Finally, the

notion of a firm is somewhat undeterminate (what about almost wholly owned,

but legally distinct subsidiaries?), and available data refer to firms that

may vary in size between individual establishments and holding companies;

such mixture may be represented by random compounding.

In many cases, one has to deal with a combination of the above operations:

for example, after a wave of mergers has hit an industry, one may consider

that the distribution of "new" firms is the mixture of the distribution of

companies not involved in a merger. of the distribution of companies made up

of the sum of two old firms, and perhaps even of sums of more than two firms.

The final basic transtoxmation is maximizing choice, i.e., the selection

of the largest or smallest quantity in a set. For example, it may be that all

we know about a set of quantities is the size of the one chosen by a profit-

maximizer. If one must use historical data, one must often expect to find

that only the exceptional largest or smallest events are fully reported, for

example, droughts or floods, famines (and the names of the"Bad Kings" who

reigned in those times), or "Good times" (and the names of the "Good Kings").

Mixture and maximization are often mixed, since many data are a mixture of

fully reported periods and of reporting limited to the extreme cases.



Although the above transformations are not the only ones of interest,

they are so important, that one must characterize the laws which they leave

invariant. It so happens, that invariance-up-to-scale holds asymptotically

for all three transformations if the parts follow the law of Pareto (in the

case of infinite aggregation, invariance only holds if Pareto's exponent is

less than two). On the contrary (with some qualifications) invariance does

not hold -- even asymptotically -- in any other case. Hence, if one's

belief in the importance of those transformations has any strength at all,

one will attach a special importance to Paretian phenomena, at least from a

purely pragmatic viewpoint.

This also affects the proper presentation of enpirical results: Indeed,

one knows that, in order to be precise in the staternent of scientific laws,

it is not sufficient to say that income, for example, is Paretian; it is also

necessary to list the excluded alternatives. Our considerations will show

that the proper precise statement is not of the form: "it is true that

incomes (or firm sizes) follow the law of Pareto; it is not true that incomes

follow either the Gaussian, or the Poisson, or the negative binomial or the

log-normal law." We must rather say: "it is true that incomes (or firm

sizes) follow the law of Pareto; it is not true that the distributions of

income are very sensitive to the methods of reporting and of observation."

3. Some invariance properties of Pareto's law and of certain

of its kins.

Of course, the singular character of the asymptotic law of Pareto holds

only under additional assumptions, so that the problem will surely not be

exhausted by our present approach. We shall, indeed, consider N independent

random variables, Un (1< n ( N), following the weak (asymptotic) form of

the law of Pareto, with the same exponent,(:

Pr(Un) u) (' Cnu-"' if u is large.

The behavior of Pr(Un <-u) for large u will be examined in section 7.

Keeping the proofs in footnotes, we shall begin by quoting some state-

ments that imply that a Paretian behavior of Un is sufficient for the three

types of asymptotic invariance -- up-to-scale. The sign E will always
Nrefer to the addition of the terms relative to the/possible values of the

index n.
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Weighted Mixture. Suppose that the random variable UW is a weighted

mixture of the Un, i.e. that it has the probability Pn of being identical to

Un. One can show (footnote 3) that this 1UW is also asymptotically Paretian,

and that its scale parameter is CW - PnCn, which is the weighted average

of the separate scale coefficients Cn.

Maximizing choice. Let UM be the largest of the variables Un, (that is,

the one that turns a posteriori to be the largest, when the values of all

the Un are known; there is no simple way of saying which one of N random

variables is the largest!). One can show (footnote 4) that this UM is also

asymptotically Paretian, with a scale parameter which is the sum of the

separate scale coefficients Cn.

Aggregation. Let CA be the sum of the random variables Un. One can

show (footnote 5 ) that it is also asymptotically Paretian, with a

scale parameter that is again the sum of the separate Cn. Thus, the sum of

the Un behaves asymptotically exactly like the largest of them.

Mixture combined with aggregation -- an operation that occurs in the

theory of mergers -- also leaves the law of Pareto invariant up to scale.

The converse of the above statements are true only in the first

approximation: in order for the invariances-up-to-scale to hold, the dis-

tributions of the Un need not strictly follow the law of Pareto; butthe

actual generalizations are in practice quite negligible.

Strictly invariant and limit distributions.

Let us now abandon asymptotics and let us introduce Frechet's and Levy s

kins of the law of Pareto, by imitating (with a different interpretation), a

famous principle of physics: to require that the random variables Un be

strictly invariant -- (up-to-scale) with tespect to one of our three trans-

formations. This means the following: let the N random variables Un all

follow--up to changes of scale--the same law as the variable U, so that Un

can be written as anU, where an > 0; we shall require that UW (respectively

UM Of UA) also follow--up to scale--the same law as U. For that, it must be

possible to write UW (respectively UM or U A) in the form awU (respectively

aMUor a!) is some positive function of the numbers a

It turns out that the conditions of invariance lead to somewhat similar

equations in all three cases (see footnote 6 ). More precisely, one

obtains the following results:
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Maximization. The invariant laws must be of the form FM(u)-exp(-u ),

which is due to Maurice Fr~chet (reference 5 ). They are clearly Paretian,

since-- for large u-- FM can be approximated by I - Cu . They also
"happen" to have the remarkable property of being the limit distributions

of the expression N max U where the Un are asymptotically Pare-

tian. There are no other distributions that can be obtained simply by

multiplying max U by an appropriate factor and by having N tend to infin-

ity. (If one also allows the origin of U to change as N _. o, one can

obtain the Fisher-Tippett distribution, which is not Paretian and is not

invariant under the other two transformations.)

Mixture. In this case, invariance leads to Fw (u)-l-Cu" D, i.e., to
the law of Pareto extended down to u = 0, an expression which corresponds to

an infinite total probability. One notes immediately that such a solution

is strictly speaking inacceptable. However, it must not be rejected offhand,

because in many cases in practice U is further restricted by some relation

of the form C< a . u< b, leading to a perfectly acceptable conditional prob-

ability distribution.

Aggregation. Finally, aggregation leads to random variables that are

part of the family of Lfvy's "stable distributions," other members of which

will be encountered later. (See reference 4 ) One knows dFA (u) in closed

form for the stable law with°< - 2 (which is the Gaussian in a sense; it

is a limit case of the other stable Paretian laws, but is not itself Pare-

tian) that with t- 1/2, which plays a central role in return to equilibri-

um in coin tossing. Otherwise, no closed analytic expression is known for

the stable FA(u); Ldvy has shown, however, thatunless-< - 2, they asymp-

totically follow the law of Pareto of exponent • .

The stable variables yielded by the present argument can take nega-

tive values if l<\(<< 2, as is readily seen in the Gaussian case. But

the probability of large negative values is very small, and we have shown in

our papers how to handle this question in practice, with the help of appro-

priate changes of origin.

Ldvy's stable distributions have another important property: they are

the only possible non-Gaussin limits of linearly weighted sums of random

variables. Hence, even though they cannot begin to compare with the Gaussian

law from the viewpoint of ease of mathematical manipulation, they share both
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the fundamental properties of that law from the viewpoint of linear oper-

ations: the existence of the corresponding forms of the non-classical cen-

tral limit theorem show that, if a process is the resultant of many additive

contributions, it need not be Gaussian; if one wishes to explain by linear

addition a phenomenon that is ruled by a skew distribution, it is not

necessary to assume that the addition in question is performed in the scale

of log U rather than in the scale of U itself. This also shows that the

lognormal distribution is not the only skew law that can be explained by addi-

tion arguments; this takes away the principal asset of that law, which is

known in most cases to grossly underestimate the largest values that can be

taken by the variable of interest.

One can see that the probability densities of the three invariant

families differ through most of the range of u. However, if 0 <o<< 2,

their asymptotical behaviors coincide, so that the law of Pareto is also

asymptotically invariant with respect to applications of an arbitrary

succession of the basic transformations.

It should be noted that Frichet's and Ldvy's Paritian limit distri-

butions have attracted substantial attention from pure mathematicians. How-

ever, the Verally known applications of Paretian maximum distributions were

few and those of Paretian sum distribution (stable laws) were practically

non-existent. It is true that the introduction of the Gnedenko-Kolmogoroff

treatise (reference 4 ) contains statements about the wide applicability

of the mathematical techniques to which that book is devoted, and even

references to forthcoming publications specially concerned with applications.

However, when we discussed this introduction with the senior author in

1958 (ten years after the appearance of the original Russian book), we

found that these papers had not materialized after all - for lack of

applications! Basically, the only fairly well-known practical instance

of a stable distribution remains the law, due to Holtsmark but often re-

discovered, that rules the Newtonian attraction between randomly distri-

buted stars (see reference 7). Anyway, our plea, that stable laws be

counted among the most "coumon" probability distributions, has not been

made void by the Gnedenko-Kolmogoroff book,
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4. On the value of the evidence of doubly logarithmic graphs.

The above limitation in the value of -< brings us to another,

quite different, aspect of the general problem of observation, relative to

the practical significance of statements having only an asymptotic valid-

ity. Indeed, in order to verify empirically the law of Pareto, the usual

'first step is to draw the so-called doubly logarithmic graph of log10 l - F(u)]

as a function of log1 0 u. One should find that this graph is a straight line

with the slope.--< , or at least that it rapidly becomes straight with this

slope. But let us look closer at the empirical point of largest u. Ex-

cept for the distributions of incomes, one has at most a sample of 1000 or

2000 items; or one may otherwise know the value of u that is exceeded with

the frequency i - F(u) - 1000 or 20001. That is, the "height" of the

empirical doubly logarithmic graph will at the very best cover three units

of the decimal logarithm of I - F. The "width" of this graph will therefore

be at the very best equal to 3/o( units of the decimal logarithm of u. How-

ever if one wants to estimate reliably the value of the slope o( , it is

necessary that the width of the graph be close to one unit: therefore, one

cannot have any trust whatsoever in data that suggest that e< is larger than

3, and the practical range of alphas is anyway hardly wider than in the case

of Ldvy's Paretian laws.

Looking at the same question from another angle, let us plot a Guassian,

lognormal negative binomial or exponential distribution on doubly logarithmic

paper: since these distributions are all very "short-tailed," the slope of

the graph will become asymptotically infinite. However, in the region of

probabilities down to 1000- , the dispersion of empirical data is liable to

generate-- on doubly logarithmic coordinates-- the appearance of a straight

line having a high but finite slope. In the words of F. Macaulay (see

section 9): "The approximate linearity of the tail of a frequency distribu-

tion charted on a double logarithmic scale signifies relatively little, be-

cause it is such a common characteristic of frequency distributions of many

and various types." However, linearity with a low slope signifies a great

deal indeed. (see Figure 1)

There is another way of describing curve-fitting using special papers:

one may say that the maximum distance between the sample curve and some re-

ference curve-.- preferably a straight line-- defines a kind of distance
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between two alternative probability laws. Any special paper-- whether it

be lognormal or Paretian-- should be used only in ranges where the dis-

tances which it defines are sensitive to the differences that count from

the viewpoint of the problems at hand. Hence, the conservative thing to

do is often to consider several hypotheses, i.e., to use several kinds of

paper.

To sum up, if one takes account of mixtures, maximization and practi-

cal measurement the range of values of alpha is reduced to the interval

from 0 to 3. If one also takes account of aggregation,cK must fall between

0 and 2 (actually, the range of apparent alphas is somewhat wider).

5. The problem of the meaning of random variables with infinite population

moments.

Such Paretian laws are extraordinarily long-tailed, as measured by

Gaussian standards. In particular, if c< < 2, the population second moment

is infinite. It should be stressed, however, that there is nothing im-

proper in such a notion.

It is of course true that-- observed variables being finite-- the sam-

ple moments of all orders are themselves finite for finite sample sizes;

but this does not exclude that they become infinite with the sample size.

It may also be true that the asymptotic behavior of samples is practically

irrelevant, because the sizes of all empirical samples are by nature finite.

For example, one may argue that the history of cotton prices is a finite

set of data from 1816 to 1958, because speculation on cotton was very much

diminished by the 1958 acts of the Congress of the United States. Similar-

ly, when one studies the sizes of United States cities, one deals with

statistical populations for which the sample size is bounded. Even for con-

tinuing series, one may well argue for "aprbs moi, le D6luge," and neglect

any time horizon longer than a man's life. Hence, the behavior of the

moments for infinite sample sizes may seem unimportant. But all that this

actually implies is that the only meaningful consequences of infinite popu-

lation moments are those relative to the sample moments of increasing

sub-sets of our various bounded universes. Here, the situation is basically

as follows: (see Figures 2 and 3)

There is no question that, wherever the sample second moment is ob-
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served to rapidly "stabilize" around the value corresponding to the total

set, it is useful to take that value as an estimate of the population

second moment of i conjectural infinite population, from which the sample

could have been drawn. But suppose that the sample second moments corres-

ponding to increasing sub-sets continue to vary widely, even when the

sample size approaches the maximum imposed by the subject matter. From

the viewpoint of sampling, this must be interpreted as meaning that the dis-

tribution is such that even the largest available sample is too small for

reliable estimation of the population second moment, or-- in other words--

that a wide range of values of the population second moment are equally

compatible with the data. Moreover, it frequently turns out that this range

of values of the moment happens to include the value "infinity," implying

that facts can be equally well described by assuming that the "actual" mo-

ment is extremely large but finite, or by assuming that it is infinite.

In order to motivate the alternative that we prefer, let us point

out that a realistic, scientific model must not depend too critically upon

quantities that are difficult to measure. The finite-moment model is un-

fortunately very sensitive to the value of the population second moment,

and there are many other ways in which the first assumption, which of course

is the more reasonable a priori, also happens to be by far the more cum-

bersome analytically. The second assumption on the contrary leads to simple

analytical developments, and the rapidity of growth of the sample second

moment can be so adjusted that it would lead to absurd results only if one

applied it to "infinite" samples, that is, if one raised problems devoid of

concrete meaning.

In other words, there is no danger in assuming, as we shall do, that

an intrinsically bounded variable is drawn at random from an infinite popu-

lation of of unbounded variables having an infinite second moment. But all

these infinities are a relative matter, entirely dependent upon the statis-

ticians' span of interest; as the maximum useful sample size increases the

range of the estimates of the second moment will steadily narrow. Hence,

beyond a limit, the second moments of some variables may have to be con-

sidered as actually being finite; conversely, there are variables for which

the second moment must be considered as being finite only if the useful

sample size is shorter than some limit.

Actually, our use of infinity is a most coimmon one in statistics,
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insofar as it concerns the function max(ul,u 2 P .... UN) of the observations.

From this viewpoint, even the use of infinite spans would seem to be im-

proper; however, it is well known in statistics that little could be done

if one could not use unbounded variables: one even uses the Gaussian to

represent the height of adult humans, which is surely positive!

The unusual behavior of the moments of Paretian distributions can be

used to introduce the least precise interpretation of the validity of the

law of Pareto. For example, if the first moment is finite, but the second

moment is infinite, the function I - F(u) must decrease slower than 1/u 2

but faster than 1/u when u tends to infinity. In this case, the behavior of

F(u) in the tails is very important, and, in the first approximation, it

may be very useful to approximate it by the form Cu" C , with 1 <c' < 2;

this can never lead to harm, as long as one limits oneself to consequences

that are not very sensitive to the actual value of cý( If on the contrary

the tail is very short (say if moments are finite up to the fourth order)

the behavior of the function F(u) for large u is far less important to re-

present than its behavior elsewhere; hence, one will risk little harm with

interpolations by the Gaussian or the lognormal distribution.

6. Problems of statistical inference and of confirmation of scientific

laws, when the "background noise" is Paretian.

It is well known that second moments are heavily used in statistical

measures of dispersion or of "standard deviation." Hence, whenever the

considerations. of section 5 are required to explain the erratic behavior

of sample second moments, a substantial portion of the usual methods of sta-

tistics should be expected to fail, except if extraordinary care is exerted.

Examples of such failure haveof course often been observed empirically, and

have perhaps contributed to the disrepute in which many writers hold the law

of Pareto; but it is clearly unfair to blame a formal expression for the

complications made inevitable by the data which it represents. If 2 <o(< 3,

second moments exist, but concepts based upon third and fourth moments, such

as Pearson's measures of skewness and of kurtosis, are meaningless.

We are sure that, from the practical viewpoint, these diffi-

culties will eventually be solved. However, as of today, they are so se-

vere as to even require a re-examination of the meaning of the popular but
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vague concept of "a structure." It is indeed a truism for the working

scientist, especially in fields where actual experimentation is impossible,

that the major danger of his trade is the possibility of confusion between

patterns that can only be used for "historical" description of his records,

and those that are also useful for forecasting some aspects of the future.

In particular, as we have seen, modern inference theory has taught us

always to list both the accepted and the rejected possibilities, and the

scientists' major problem is frequently topetermine whether a conjectured

"relation" is significant with respect to what may be generally called

"spontaneous activity," which is the resultant of all the influences that

one cannot or does not want to control in the problem at hand, and which

is conveniently described with the help of various stochastic models. A

useful vocabulary considers the search for laws as a kind of extraction

and identification of a "signal" in the presence of "noise."

It is not enough however that all the members of a cultural group

agree upon the patterns that they read into a historical record. Indeed,

although there is unanimity in the interpretation of certain of Dr. Rohr-

schach's inkblots, they have no significance from the viewpoint of science

as a system of predictions. Broadly speaking, a pattern is scientifically

significant and is felt to have chances of being repeated, only if in

some sense its"likelihood" of having occurred by chance is very small. This

kind of significance is obviously to be assessed with the help of the tools

of statistics; unfortunately, those have been mostly designed to deal with

Gaussian alternatives and, when the chance alternative is Paretian, they

are not conservative enough by far. We believe that one will be able to

go around this difficulty, but, whenever one works in a field where the back-

ground noise is Paretian, one must begin by taking an accurate measure of

the weight of the burden of proof that one faces, and which is closer to

that of history and autobiography than to that of physics.

The same thought can be presented in more optimistic sounding words,

by saying that if a "mere chance" can so readily be confused with a causal

structure, it is itself entitled to the same noble designation, rather than

the less high-sounding term "noise." That is, "noise" may perhaps be re-

served for the Gaussian error terms, or its binomial or Poisson kins, which

are indeed universally dislikedas sources of nuisance,

but are seldom respected as sources of anything interesting-looking.
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The situation is made worse by the fact that, in models known to be

very structured (e.g., to be autoregressive) with a Paretian noise, one

should expect the generated paths to be much more influenced by the noise,

and much less by the structure, than is the case in the Gaussian case--

where noise is already very influential. We hope to develop this point in

later editions of reference 11 .

The association between the law of Pareto and "interesting patterns"

is nowhere more striking than in the outcome of accumulated tosses of a coin.

Indeed, the following fact is examined in the later parts of most good books

on probability: suppose that we break into the game of tossing a fair coin,

which "Peter" and "Paul" have been playing since sometime in the early

eighteenth century. Whenever the coin falls on "heads," Peter wins a

dollar (or perhaps rather a thaler); whenever the coin falls on tails, Paul

wins, and let T designate the time it takes for Peter and Paul's fortunes

to return to the state they were in at the moment when we broke in. For

large values t of T, one has the relation:

Probability that the fortunes return to their initial
i -1/2

Lstate after a time greater than t -(constant) t

which is the law of Pareto of exponent 1/2.

However, it is notorious that gamblers see an enormous amount of in-

teresting detail in the past records of accumulated coin tossing gains

(even more than in the separate results of tossing a coin), and that they

are prepared to risk their fortunes on the proposition that these details

are not due to mere chance. Similar phenomena ought to be expected when-

ever the law of Pareto applies: that is, the stochastic models associated

with those phenomena can well dispense with any kind of built-in causal

structure, and yet generate paths in which the unskilled or the skilled eye

equally well distinguishes details that are usually associated with causal

relations. Similar details would be so unlikely in the path generated by

a Gaussian process, that they wbuld surely be considered as significant

for forecasting. But this is not so in the Paretian case: there, from the

viewpoint of prediction, those structures should be considered as being

perceptual illusions: they are in the observer's current records and in

his brain, but not in the mechanism that has generated these records and

that will generate the future events.

Bearing in mind the existence of such models, let us suppose that we
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have to infer a process from the data. We believe that, in many cases, a

non-structured Paretian universe is capable of accounting so well for the

observations, that it will be extremely difficult at best to choose be-

tween alternative models, one of which consciously imbeds some causal re-

lations, while the other has no structure other than stochastic.

A student's belief in the existence of "genuine" structures will

therefore be challengeable only with the greatest difficulty; conversely,

in order to communicate such a belief to others, with the standards of cre-

ibility current in physical science, one will need much more than the tests

of significance that some social scientists shrug off at the end of a dis-

cussion. Such a situation will-- as we said-- require a drastic sharpening

of the distinction between patterns that-- whichever the scholar's diligence--

can only be useful for historical purposes, and those usable for forecasting

the future.

The question we have in mind can be well illustrated by the prob-

lem of the significance of "cycles." With the help either of many charts or

of the most sophisticated methods of Fourier analysis, it is comparatively

easy to show that almost any record of the past is made up of some com-

bination of swings. But the same is also true for a wide variety of arti-

ficial series generated by random processes with no built-in cyclic be-

havior whatsoever, and it is known that, however great their skill, cycle

researchers seldom risk firm short-term forecasts. Could we then ask,

using Keynes% terms, How far are these curves...meant to be no more than a

piece of historical curve-fitting and description, and how far do they make

inductive claims with reference to the future as well as the past?

It may also be noted that, because of the invariance of the law of

Pareto with respect to various transformations, one cannot hope that a

simple way out will be provided by arguing that only the genuine structures

will be apparent to all observers. That is, the only criterion of trust-

'worthiness is replicability in time. This again may not be a straight-

forward matter, because in an important respect the models of Paretian

spontaneous activity diverge from the standards of "operationalism" sug-

gested by philosophers. Indeed, in order to explain by mere chance any

given set of phenomena, it will be necessary to imbed them in a universe

that also contains such a fantastic number of other possibilities, that

billions of years may be necessary to run through all of them. Hence, within
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our lifetime, any given configuration will occur at most once and one

could hardly at all define a probability for them on the basis of sample

frequency. This conceptual difficulty is of course common knowledge among

physicists and it is to be regretted that the philosophical discussions of

the foundations of probability so seldom investigate this point. In a

way, the physicists' models freely indulge in practices that for the his-

torian are mortal sins: to rewrite history as it would have been, if Cleo-

patra's nose had a different shape. Our sins are even worse than the phys-

icists', because their contrafactual histories turn out after all to be all

very close to some kind of a "norm," a property which our models certainly

do not possess.

We think some examples are in order here, although this section is

already too long by far. We shall limit ourself to two re-interpretations

of the coin-tossing record plotted on Figure 4.

First of all, forgetting the origin of that figure, let us imagine

that it is a geographical cross-section of a new part of the world, in which

all the regions below the bold horizontal line are under water. Let us

also imagine that this chart was just brought home by an explorer (we found

that most observers have no great difficulty in indulging in such a fling

of the imagination), and that our problem is to decide whether it was due

to cause or to chance. The naive defense will readily resort to the Highest

Cause, using our graph as fresh evidence that God created Heaven and the

Earth, using the same template for all the Earth, and that He also created

the Verb, in which such concepts as a continent, an ocean, an island, an

archipelago or a lake are precisely adapted to the shape of the Earth.

Against this, the Devil's Advocate will have no difficulty in arguing

that the Earth is a creation of blind chance, and that the possibility of

using such convenient terms as "continent" and "island" just reflects the

chance fact that the areas above water happen to be very short or very lonp

very often, and to be unexpectedly seldom of average length.

The preceding example is not as fictitious as it may seem, because

the distribution of the sizes of actual island is precisely Paretian.

Hence, our hypothetical debate emphasizes the two extreme outlooks realis-

tically, even though-- the Earth having been presumably entirely explored--

no actual prediction is involved in the choice between the interpretation-

of archipelagoes as "real" or as creations of the mind of the weary mariner.
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Another example, also chosen for its lack of direct economic inter-

pretation: the problem of clusters of errors on telephone circuits. Sup-

pose that a telephone line is only used to transmit either dots or dashes,

which may be distorted in transmission to the point of being mistaken for

each other. It is clear-- according again to the defender of a search

for Causes-- that whenever an electrician touches the line, one should ex-

pect to observe a small cluster of such errors. Since moreover a screw-

driver touches the line many times during a single repair job, one should

expect to see clusters of clusters of errors, and even clusters of third

order and higher.

Actual records of the moments when errors occurred do indeed exhi-

bit such clusters, with long periods of flawless transmission in between.

A good idea of the distribution of the errors is, for examples provided by

the sequence of points where the twice-used graph of Figure crosses the

line that used to represent sea-level. According to the searcher for

Causes, the precise study of such past records will make it possible to

better predict where new errors will occur and to minimize their effects.

On the other hand, precisely because of the origin of Figure 2 , the

Devil's Advocate can again point out that those beautiful hierarchies of

degrees of clustering can very well be due to "mere chance," devoid of any

memory and hence entirely useless for purposes of prediction.

Similar critical roles can very well be played in many other con-

texts, and we think that it is mandatory that somebody play them in every

important problem, without forgetting that the Devil's Advocate must always

be on the side of the Angels. An interesting example of stable truce be-

tween structure and chance is provided by the study of language and of dis-

course, where the traditional kind of structure is represented by grammar

and-- as one should expect by now-- the chance mechanism is akin to the

law of Pareto.(15).

7. Two-tailed Pawetian variables and multi-dimensional stable Paretian laws.

We have up to now followed tradition by associating the law of Pareto

with essentially positive random variables, with a single-long tail, so

that their central portion is necessarily quite skew. However, we have

discovered important examples in economics of distributions having two

Paretian tails (the most striking example refers to relative price changes



of fenUItIve speculative commodities). The argument of Invariance under

mxiimization cannot be extended to that case. But invariance under mix-

Lure simply leads to the combination of a Paretlan distribution applying

to all positive u and of another applying to all negative u. As to in-

,iarlance under aggregation, it Is satisfied by every of the "stable" ran-

dom variables, which are constructed as the sum or the difference between

two arbitrarily weighted "positive" stable variables of the kind studied

(.arlfer In thia paper. Ln particular, stable variables can be symmetric;

the Cauchy distribution provides a prime example. But their study depends

very little upon the actual degree of skewness; hence, the asymmetry of the

usual Paretian variables is less crucial than the length of their single

tail.

Another remarkable property of the stable distributions is that, like

the Gaussian, they have intrinsic extensions to the multi-variate case,

other than the degenerate case of independent coordinates. Ve!ry few other

distributions share this property, and the reason for this ts intimately

related to the role of stable distributions in linear models: it is indeed

possible to characterize the multi-variate stable distributions as being

those for which the distribution of every linear combination of the coordin-

ates is a scalar stable variable. ibis property is essential in the study

of multi-dimensional economic quantities, as well as In the investigation

of the dependence between successive values of a one-dimensional quantity

such as Income (see reference 8 ).

8. Conclusion concerning the role of Pareto's law in economics and

establishment of a link with the physical sciences.

Our arguments show that there is strong pragmatic reason to begin the

study of economic distributions and time-series by those that satisfy the

law of Pareto. Since this category includes prices (reference 11 ), firm

sizes (reference 13 ), and incomes (references 7 , 8 and 9 ), the study

of Paretian law acquires a fundamental. importance in economic statistics.

Similarly, the example of the distribution of city sizes stresses the

importance of the law of Pareto in sociology (reference 10). Finally,

we have strong indications of its importance in psychology. (We shall not

even attempt to outbid George Kingsley ZI.pf in listing all the Paretian

phenomena of which we are aware; their number seems to increase all the time.)



19.

However, it is impossible to postpone "explanation" forever. If in-

deed a grand Economic System is only based upon aggregation, choice and mix-

ture, one can prove that, in order that it be Paretian, it must be triggered

somewhere by a Paretian "initial" condition. That is, however useful the

method of invariants may be, it is true that it somewhat begs the question,

and that the basic mystery cannot be solved by pushing it around. Indeed,

if it were true, in accordance with "conventional wisdom",that physical

phenomena are characterized by the law of Gauss, and social phenomena by

that of Pareto, we may eventually have to explain the latter by some of

the "micro-scopic" economic models, such as the "principle" of random pro-

portionate effect (reference 14 ) which we prefer to de-emphasize in our ap-

proach.

We claim, however, that such need not be the case. Quite on the con-

trary, the physical world is full of Paretian phenomena which one can

easily visualize as playing the role of the "triggers" that cause the eco-

nomic system to be also Paretian. We found for example (reference 12)

that single-tailed Paretian distributions, with trustworthy values for ,

represent the statistical distributions of a variety of natural resources,

which are surely not influenced by the structure of society, and by weather,

which is barely influenced by man, as yet. Such is the case of the areas of

oil fields and their total capacities (i.e., the sums of the total pro-

duction and of the currently estimated capacity); the same is true for the

valuations of certain gold, uranium and pyrite mines in South Africa, for

at least some levels of rivers, and for a host of similar data related to

weather-- some of which, such as hail, have a direct influence on important

risk phenomena, namely the insurance against hail damage.

If our purpose were to contribute to "geo-statistics," we should of

course examine the degree of generality of our claim. But, for the pur-

pose of a study of economic time-series, it will be quite sufficient to

note that a Paretian Grand Economic System can very well be triggered by

statistical features of the physical world. For example, natural resources

and weather influence prices, which in turn influence incomes. (Since

the Systems to which we refer are spatio-temporal, there is nothing disturb-

ing in our association of economic time-series with geological and geo-

graphical spatial distributions.)

We shall not attempt to say anything about the actual triggering
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mechanism, since we doubt that a unique link can be found between the social

and the physical worlds. After all, quite divergent values of Pareto's alpha

are encountered in both so that the overall Grand System cannot possibly

be based only upon transformations by linear aggregation, choice and mixture.

Let us also point out that, even if one finds simple models for the

various occurrences of Pareto's law in geomorphy, many aspects of this

general problem will be accessible to our "phenomological analysis" and

for many purposes they should be so treated. Moreover, until models be-

come available, this is the only open alternative.

We wish finally to point out that the Paretian phenomena of physics

have also turned out to include some that are devoid of direct relation with

economics. For example, a three-dimensional stable law occurs in the theory

of Newtonian attraction (reference 7 ). Moreover, the distribution of the

energies of the primary cosmic rays has long been known to follow a law

which happens to be identical to that of Pareto with the exponent 1.8 (as

a matter of fact, Enrico Fermi's study of this problem happens to include

an unlikely, but rather neat generation for the Pareto distribution; see

reference 14 ). The same holds for meteorite energies and is important for

ionospheric scatter telecommunications. Also, the intervals between suc-

cessive errors of transmission on telephone circuits happen to be Paretian

with a very small exponent, the value of which depends upon the physical

properties of the circuit (see reference I ), as discussed in section 6.

This example-- combined with the problem of the areas of islands and lakes also

investigated in section 6-- suggests that many of the Paretian phenomena

encountered in practice may be related to "accumulative" processes similar

to those encountered in coin tossing.

In any event, all the examples of a Paretian behavior show that sta-

tisticians will have to pay special attention to distributions-without popu-

lation moments.

9. An examination of Frederick Macaulay's criticism of the law of Pareto.

Finding so many reasons for considering the law of Pareto as being one

of the most important of all probability distributions, we were of course

permanently surprised by the "neglect and even contempt" to which we re-

ferred in the first sentence of this paper. We eventually found that this
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attitude had deep roots not only in the apparent lack of theoretical mo-

tivation for that law, but also in several seemingly "definitive" criti-

cisms, and we would like to analyze two often quoted adverse analyses.

We shall begin with F. R. Macaulay's (reference 6 )- We found this

essay most impressive and-- even though we obviously disagree with its

conclusions-- we recommend very strongly that it continue to be read. It

has indeed fully disposed of any possible claims concerning the invariance

of Pareto's exponent from year to year and from country to country, and con-

cerning the relevance of the law of Pareto to the description of small in-

comes or of incomes of the lower-paid professional categories. Macaulay is

also very convincing concerning Paretian distributions with a high exponent

(see section 5; his conclusions on this account were independently reached--

much later-- in 9 ).

We definitely believe, however, that his main point is not well-taken

and that his strictures against what is called "mere curve-fitting" have

been very harmful. Indeed, his ideals of a proper mathematical description

are not followed in any science we know of, and they have materially contri-

buted to the excessive reliance of statistical economics upbn Gaussian or

lognormal "null hypotheses," which are patently wrong in most cases, or

upon non-parametric methods, which by definition cannot possibly tell very

much about any specific situation. One should of course only use curve-

fitting for what it is worth, but not for any less.

For example, Macaulay points out that an excellent fit of the cumulated

expression Pr(U• u) ("global" limit theorems)woy As a result, one had better

avoid inferences from densities; if one cannot avoid them, one should not

expect them to be very good.

But Macaulay is even more severe and he finds that the empirical

curves do not zigzag around the simple Paretian interpolate, but rather

cross it systematically a few times. The fact that this observation was

used to reject the law of Pareto outright illustrates a basic difference be-

tween the outlooks of the careful economists and of the careless physicists:

when the law of Boyle was similarly found to differ from facts, the physi-

cists simply invented the concept of a "perfect gas," that is, a body that

follows perfectly Boyle's law. Naturally, perfect-gas approximations are

not even considered in some problems (for example, such bodies never cease

to be gases, and-- whichever the temperature-- they cannot become liquid).
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However, the perfect-gas approximation is adequate in many cases, and it is

so simple that one cannot afford not to consider it first. Similarly,

Pareto-law approximations should not even be considered in some problems

(for example, those relative to low incomes); but one cannot afford not to

consider them first in other investigations.

Macaulay's criticism of the law of Pareto may therefore be summarized

from our viewpoint by saying that it only endorses the "weak" forms of this

law with which we had occasion to work. In many cases, however, we think

that it is legitimate to take more seriously certain Paretian kins, such as

the stable distributions.

We fell less well disposed towards other critiques of Pareto's law,

such as Dwight B. Yntema's (reference 16 ). This work happens indeed to be

a call for the measurement of inequality by various expressions based on

sample moments, rather than by Pareto's exponent "4 . We agree of course

that Pareto's exponent is insufficient, as long as the concept of "inequali-

ty" is defined so as to involve medium and small incomes. But, if the con-

cept of "inequality" is defined so as to involve large incomes, we have shown

that the sample moments are nonsensical. There is as yet no common ground

to compare the indices of different kinds, so that Yntema's evidence is ir-

relevant to the validity of Pareto's law.



23.

Footnotes

(1) This is of course only an analytic way of saying that, if one plots

the logarithm of the number of incomes greater than u, as a function of

the logarithm of u, one should obtain a curve that for large u becomes a

stright line sloping down to the right with an absolute slope equal to o(

(2) That is, the method of invariants used by physicists is a somewhat

different procedure. For example, the classical "principle of relativity"

was not introduced to "explain" any complicated empirical law such as

that of Pareto. For the stress upon the nuances between different methods

of invariants we are indebted to Harrison White.

(3) Mixture. It is easy to see that one has

Pr(U w u) I n Cpnnu = Cwu with Cw PnCn. QED

(4) Maximizing choice. In order that U M< u, it is clearly both necessary

and siafficient that Un< u for every n. Hence, Pr(UM• u) - WPr(Un< u).

It follows that one has:

Pr(UM> u) - 1 - Pr(UM < u) tv 1 -]I (1 - CnU u 0 ) Cnu" = CMU_ ', QED.

(5) Aggregation. Here the argument is more involved, and we prefer to

suggest to the reader to look up the proof in reference 7 •

(6) Let U be characterized by its distribution function F(u) - Pr(U ( u)

and by its generating function G(s), which is the Laplace transform of F(u);

G(s) - SF exp(-u s)dF(u). (This limits our argument to laws for which dF

is so small for u < 0 that G converges.) Then, one can begin by writing the

following conditions, which are respectively necessary for the various types

of invariance-- up-to-scale.

Weighted Mixture. It is necessary that stability hold for equal pn"

Thus, it is in particular necessary that the function F satisfy the condi-

tion that

1j F(u/an) F(u/aw)N V
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Maximization. Now, it is necessary that F(u/aM) - iT F(u/a n); in

other words, one must have:

ý log F(U/an) - log F(u/aM).

Aggregation. This requires that G(a as) -T IG(a ns); in other words,

one must have:

Yjlog G(a s) - log G(a S).
n a

It turns our therefore that the three types of invariance lead to for-

merly almost identical equations, although they refer to different functions,

respectively Fw, log FM and log GA(S). The general solutions must therefore

respectively take the forms F (u) - C= Cu F (u) - exp( and

GA(S) -exp( - Cs ). One also easily verifies that -a4 m a a"' ,

a'- 1 anw n~
Now, we shall show that the above necessary conditions are actually not

sufficient, and that additional requirements must be imposed upon C', C and '

Maximization. The distribution function of a random variable must be

non-decreasing and such that FM (-) - 1. This requires that C> 0 and .-> 0,

which leaves us with the laws FM(u) - exp(-Cu A ).

Mixture. In order that Fw (u) be non-decreasing and such that

F w(0 ) = 1, it is now necessary that C' - 1,0( > 0 and C > 0.

Aggregation. In order that G A(s) be a generating function, one can show

that it is necessary that 0 <ok<1 with C < 0, or 1 a(< 2 with C> 0.
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FIGURE 2. Example of a record of successive values of the sample second

moment, when the sample values are drawn from a Paretian population

with an alphsl close to 1/2, so that the population womnt is surely infinite.
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