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'FOREWORD

This report was prepared by Columbia Univer-
sity, Department of Civil Engineering, New York,
N. Y. under USAF Contract No. AF-33(616)-6112.
The contract was initiated under Projéct No. 7351,
"Metallic Materials," Task No. 735106, "Behavior of
Metals." The work was administered under the di-
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Directorate of Materials and Processes, Deputy for
Technology, Aeronautical Systems Division, with

Mr. D. M. Forney, Jr. acting as project engineer.

This report covers work conducted from March
1961 to March 1962.
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ABSTRACT

This report deals with certain‘problems of propagation
of microcracks (Griffith cracks) and fracture cracks. The
phenomenqlogical‘approach based on the concept of the con-
tinuum and the methods of mechanics of solids is used. An
enérgy criterion for equilibrium of cracks in inelastic sol-
ids is formulated in the form which reduces to Griffith's
criterion in the case of brittle solids and, with certain
simplying assumptions, results in Orowan's criterion for
elastic-plastic solids. Another criterion is derived from
the analysis of the stresses at the edge of a crack. This
stress criterion is also extended over time-dependént crack
resistance by relating it to certain characteristics of the

inelastic deformation.
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1. INTRODUCTION

Fracture Mechanics deals with the following two phenoména:

(1) The development and propagation of cracks in
stressed and deformed solid bodies; questions arise concerning
the conditions that cause a crack to develop and propagate or
a propagating crack to be stopped, and the relations between
thé mechanical properties of a body and its behavior with re-
spect to crack initiation and propagation.

(2) The well-known discrepancy between the theoretical
cohesive strength of the atomic lattice and the actual (tech-
nical) fracture strength of solids.

In order to explain the latter phenomenon, A. A. Griffith?
assumed that in all solids certain cracks exist which at their
edges cause large stress—concentrations even under relatively
small forces; hence, the average fracture strength of a body
is controlled by the effect of such micro-cracks. With respect
to their pfopagation, large-scale fracture cracks and Griffith
cracks can be discussed on the same basis, considering that a
fracture crack is in fact a large Griffith crack; at the lead-
ing edge of a fracture crack in an elastic medium the condi-

tions are the same as in a Griffith crack since no special

properties are attached to Griffith cracks which are assumed
to be large enough to justify a continuum mechanical approach
in the treatment of a single crack. On the other hand, the
analysis of the discrepancy between atomic and technical
strength in brittle materials is based on the assumption of a

" multitude of Griffith cracks of random size and orientation,

Manuscript released ry the authors November 1962 for publi-
cation as an ASD Technical Documentary Report.,




and the technical strength is based on their assumed statisti-
cal distribution and the resulting probability of occurrence
of cracks of extreme size, the propagation of which determines
the technical strength. ‘

Thus the problem is, in fact, transformed into a statis-
'ticallproblem‘in‘which the mechanical considerations only
form the underlying concept of the "weakest link" leading to
the statistical concept of the extreme value distribution of
technical strength.

In phenomenological fracture mechanics, however, the
mechanism of propagation of an individual crack in a contin-
uum is considered, utilizing methods of mechanics of solids.
This phenomenological theory has been fairly successful in
establishing certain laws of crack propagation for brittle
(elastic) solids, in introducing effects of plasticity, and
in dealing with.the dynamics of crack propagation. There is
one obvious limitation of phenomenological fracture mechanics:
it can only be applied to cracks that are sufficiently large
in comparison to the inter-atomic distances in the solid.
Because of this requirement, which can be satisfied in the
theory of propaéation of existing cracks, problems of crack
nucleatioﬁ are not accessible to phenomenological methods.

This paper deals with the limited group of problems of
fracture mechanics that may be described as problems of equi-
librium of cracks. The conditions which cause a crack to _
propagate or to stop will be investigated under the assumption
that all changes of the state of a body are quasi-static,
Special attention will be paid to the effect of inelastic
properties. The following aspects are dealt with:




General criteria of crack propagation (review).

The effect of plasticity (time-independent energy
dissipation).

The effect of time and time-dependent dissipation,




2., ENERGY CRITERIA OF EQUILIBRIUM

The enerqy equation for a body with a propagating‘check
can be written in the form

W=U +Us+K+S _ (2,1)
where W is the work of the external forces, Ur the revers-

ible part of internal (mechanical) enerqgy, U the irrevers-

ible part of internal energy, K the kineticdenergy, and S
the surface energy of the crack. The existence of the sur-
face energy has been postulated by Griffith! For quasi-static
problems discussed in this paper, it is assumed that K = 0 .
Equation (2.1) may be considered as the law of conservation

of enerqgy in a form containing the surface energy S . To
obtain a criterion for the equilibrium of a crack of speci-
fied dimension, a certain property of the energy pf a body'
with a crack has to be assumed. Let ¢ denote the character-
istic dimensioﬁ of the crack, such as its length or radius,

so that W, Ur’ Ud, K, and S can be considered as functions
of ¢ . Denoting by &6 the variations corresponding to an
infinitesimal change &6c of the characteristic dimension c,’
the condition for an equilibrium crack can be written in the

form

6W = 6U_ + 86Uy + &S (2.2)°

The variations are taken for constant values of all the param-
etérs characterizing the state of thé body. The physical
meaning of condition (2.2) is the following: the increments
of the work of the external forces and of the released strain




energy, oW —‘OUr » corresponding. to an increment of the crack
dimension 6c , are equal to the increment of the dissipated
energy and of the surface energy, 6Ud + 6S , corresponding
to the same increment of the crack dimension,

If the equality sign in (2.3) is replaced by an inequal-
ity sign, the crack is not in equilibrium. In particular, if

SW - 8U_ < 6Uy + 48 (2.3)

the characteristic dimension of the crack is larger than that
corresponding to the state of equilibrium, If

oW - 8U_ > 68U, + 68 : (2.%)

d

the characteristic dimension of the crack is smaller than
that corresponding to the state of equilibrium,

For an elastic (brittle) solid, U

= 0 and condition
(2.2) becomes ' '

d

oW - bU_ = &S (2.5)

The quantity -oW + 6Ur represents the variation of the po-
tential energy of the body. Equation (2.5) expresses thus
the Griffith criterion which states that the decrement of the
potential energy is equal to the increment of the surface
energy.

The criterion of Orowan for elastic-plastic solids can
be derived from Eq. (2.2) by assuming that the total dissi-
pation of energy occurs in a thin layer at the surface of
the crack; the variation of energy dissipated in this surface



wil; be denoted by 6U§s) -.Ués) may be considered as a ma-
terial characteristics in a similar manner as the surface
energy S . Thus, Eq. (2.2) becomes

S
6W - 6U_ = 6Uc(l. ) + 68 (2.6)

which expresses 6rowan's condition that the decrement of the
potential energy is equal to the increments of the surface
plastic work and the surface energy. Orowan notes that for
highly ductile solids 60&8) >> 68 and, consequently, &S
may be neglected in Bq. (2.6).

Consider now a solid with time-dependent dissipation
mechanism, for which 6Ués) is zero or does not depend on
time, such as, for instance, in certain viscoelastic solids
in which the extension of a crack does not produce an in-
stantaneous dissipation of energy. Then, three cases are
possible.

(a) 6U_. decreases with time in such a way that
oW - 6Ur increases in time, i.e. the amount of potential
energy to be released during crack propagation increases. An
equilibrium crack becomes at a certain instant of time a non- -
equilibrium crack and tends to propagate with increas
time. This process is reflected in the decrease of strength
under sustained loading,

() 6U_  increases in time and oW - 6U_. decreases.
In this case the opposite effect can be expected: the
strength under slowly applied load is larger than if the load
is applied at a high rate.

(c) If neither 6U_ nor oW - 6U_ depend on time, the
viscoelastic properties of the solid 4o not influence the
process of crack propagation,




The argument presented above can be applied to the con-
sideration of the effect of viscoelastic creep and relaxation
in a body as a whole, However, since the viscoelastic phenom-
ena in the vicinity of a leading edge of a crack depend on the
character and distribution of the bond stresses, the energy
criteria are not quite independent of certain stress hypo-
theses discussed in the following section.

Another problem of time dependent crack propagation might
arise in the case of variation of the surface energy S , or
of the specific surface energy s per unit area, as a func-
tion of time, The same result may, however, be obtained by
either assuming variation of 06U sj

d
of 6S with time., Certain conclusions may be derived on the

or an opposite variation

basis of the simplifying assumption that S 1is constant in

time,




3.  STRESS CRITERIA OF EQUILIBRIUM

The stress criteria of equilibrium are based on the com-
parison of the actual state of stress at the leading edge of
a crack with a limiting state associated with a given solid.
An exact approach to this problem would require a knowledge
of the bond forces developing at the edge of a crack. How-
ever, it is'possiﬁle to assume certain characterigtics of the
state of stress which are introduced as measures of the ten-
dencies of a crack. ;

In a method developed by Barenblatt* it is assumed that
at the leading edge of a crack large (but finite) cohesion
dorces exist, the distribution of which is controlled by the
character of bond forces, but is unknown. Now the following
assumptions are made concerning the effect of these forces:
(a) the leading'zone of the crack is very small compared to
the characteristic dimension of the crack; (b) the displace-
ments at the leading edge of a crack are unique for an equi-
librium state and do not depend on the type of loading (for
cleavage type fracture); (c) the crack closes smoothly, i.e,
the slope of the surfaces is zero at the end.

Let us apply the above proposition to a circular (axially
symmetrical) crack in an infinite body (Fig. 1). 1In a cylin-
drical coordinate system r, 6, z , in which, because of sym-
metry, 6 does not enter into the equations, let R denote
the radius of the crack, d the width of the leading zone,
and g(r) the loading on the surfaces of the crack. The
total loading g(r) consists of an arbitrary pressure p(r)
ané of the cohesion forces G(r)




p(r) ,0{r{R-4d
-G(r) , R-ada<{ r{R

g(r)

3.1
g(r) 5-1)

The z-component of the Qisplacement of the surfaces of
the crack®

_ 41 - v2)R udy j} xg(x R‘dx- (3.2)
( N - 2 5 l - x

where p =r/R , E and v are the Young modulus and Poisson
ratio, respectively.

The condition

()

St)r=r = ©

and Eq. (3.1) result in the equation

- 1 :
fd/R_-E(__)_dx.. I X_G(X_R.)_dx (3.3)
. VI -2 2ag VI - % ' '

The integral on the right-hand side of Eq. (3.3) can be
transformed into the form

d
-1 " F(s)ds TRY
B of Ve (34

where F(s) =G6(r) , s =R -1 .




Equation (3.3) becomes

1-d4/R d .
x p(xR dx = 1 j’ F(s) ds (3.5)
3 l - x v 2R 5 Vs
or
R-d
—xp(r) 5 _7\YR
of e Ve (3.6)

The quantity

d
_ F(s)
K ! L2l as (3.7)

thus characterizes the distribution of the unknown cohesibn
forces F(s) . It is introduced as a new material constant;
its role is similar to that of the specific surface energy
(per unit area). In fact, it can be shown that in order to
obtain the same crack-resistance from the energy theory and
the stress theory the relation should hold

R = T 3.8).

For a given loading p(r) and with a known cohesion
modulus K , Eq. (3.6) determines the radius R corresponding
to the equilibrium state of the crack. A similar relation
has been derived by Barenblatt for the case of plane stress

10
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X - a

b .
fp<x> D-Xgy- yBLk . (3.9)
a

with notations indicated in Fig. 2.

Another approach to the same problem is based on the
assumption that no cohesive forces act even near the leading
edges of the surface of the crack while the material remains
perfectly elastic beyond these edges. For any given loading,
for instance for uniform pressure on the surfaces of the
crack, the state of stress can be determined. All stress com-
ponents have a singularity at the edge of the crack. 1In par;

ticular, the normal stress g, is

o, === , £>0 (3.10)

where € = r - R for a circular crack, and € = x - b or

€ =a - x for a crack in plane strain (Figs. 3 and 4). For
an equilibrium crack, the constant C reaches its maximum
value Cmaxv which depends on the type of the material, The
criterion represented by (3.10) gives the same results as

the energy criterion for brittle solids if the constant Cmax

is related to the surface energy s in the following way

2Es

Clax = poy e W (3.11)

The shapes of cracks analyzed in this way are different
from those based on the previoué theory. The surfaces of a
crack do not close smoothly. In the case of uniform pressure,
the profile of the crack is elliptical (Pigs. 3 and 4). |

11



Consider now certain generalizations of the above con-
siderations. L. M. Kachanov gave recently’ an estimate of
the time effect for linear viscoelastic solids in relation to
Barenblatt's theory. He introduced a new material constant
characterizing the rate of change of the cohesion modulus K
‘with increasing deformation.

in this note a different approach is proposed. The time
dependence of crack resistance will be related to the surface
energy s and the viscoelastic properties of the solid. The
argument used here is valid for either one of the above stress
criteria,

Considering an arbitrary linear viscoelastic solid, the
simplifying assumption is made that v 1is approximately con-'
stant, although it is possible to extend all considerations
to the case of a variable v , Consider a crack whose char-
acteristic dimension at an initial time ¢t = to is larger.
than that corresponding to the state of equilibrium, i.e,
the parameters K or C are smaller than their limit values
Kmax and cmax , respectively., 1In order to explain the fact
that at a certain time t the crack reaches its equilibrium
state and starté to propagate, it has to be assumed that the
;imit values Kmax and Cmax decrease in time. The same
conclusion is suggested by the relations (3.8) and (3.11)
where a reduced modulus E should be taken into account. At
the same time, Egqs. (3.8) and (3.11) give a quantitative
measure of K . and cmax .as functions of time. Denoting
by EB(t) an equivalent modulus controlling deformation under

constant load, i.e.

u

E(t) = B ;-(%5- .(3.12)

12




where Eo is the modulus of initial deformation, u, is an
arbitrary component of strain or displacement at initial time,
u(t) is the same quantity at the time t , the existence of
E(t) defined by (3.12) follows immediately from the assump-
tions and type of the problem discussed. For other problems
an approximate value of E(t) should be established. Hence

[k (t)]2 = BLLITS (3.13)

and

(Cpax(t)1% = 728 (3.13)

The above relations can also be written as

K . (t) = %ilxo . (3.15)
and

cmax(t) = %%)-co masx (3.16)
where Ky max and Co max characterize crack resistance

.under short time loading.

In the procésses of fracturé of metals at high tempera-
tures, two different effects exist. One of them is the above
mentioned effect of creep, reducing crack resistance accord-
ing to the relations (3.13),...(3.16). The other effect, not
existing in linear viscoelastic solids, is a redistribution
of stresses caused by the non-linearity of creep and relaxation.

13




This results in reduced intensity of stresses near the edge

of a crack, and in this way it counteracts the former effect
of creep.

These conditions of fracture are implied by the type of
inelastic behavior shown by metals in high temperatures, The
existence of two. opposite effects is confirmed by experiments
in so-called static fatigue of metals, which indicate that
the reduction of strength in time is much smaller than would
be expected from large creep deformations.

14




4. CONCLUDING REMARKS

The topics discussed in this note represent a formulation
of some laws of fracture mechanics in terms of concepts and
equations of mechanics of continua. Realizing fully the in-
adequacy of this phenomenological approach, it is also neces-
sary to keep in mind its merits. Use is made of relatively
few assumptions and hypotheses, usually following from ex-
perimental evidence, Certain simplifications (as, for in-
stance, the models of linear elastic or linear viscoelastic
solids) have a rather definite scope of validity. The pre-
dictions made by phenomenological theories proved to be cor-
rect, at least qualitatively, and of practical use.

The conclusions derived in this note concern two prob-
lems: energy relations for a body with a crack, and stress
conditions at the leading edge of a crack. In particular,
the effect of inelastic properties has been taken into account.
The qualitative discussion of this effect and, for a‘special

case, certain quantitative relations are given.

Further questions arise in connection with the approach
presented in this report which require attention:

(a) Experimental investigation of the values of the sur-
face energy the maximum cohesion modulus Kmax » and the maxi-

mum stress intensity factor Cma »

X
(b) Experimental investigation of the time dependence of
crack resistance of several types of inelastic materials,

(c) Establishment of a reasonable distribution of bond
forces compatible with the considerations of continuum
-mechanics.

- (d) Development of the methods of analysis of stresses,
strain, and energies in the presence of cracks under different
loading conditions,

15
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Fig. 1. Stress distribution on the
surfaces of a circular crack with
smoothly closing edges.
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2l

Fig. 2. Stress distribution on the
surfaces of an infinitely long crack
with smoothly closing edges.
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Z,W

T

Fig. 3. Stress distribution in the
vicinity of a circular crack with
elliptical profile.
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Fig. 4. sStress distribution in the
vicinity of an infinitely long crack
with elliptical profile.

18




AR R AR AR - Sssaver oo Forecer . . . [ A ResEs e b arevecs e A €SI4000010000000080Ct LIRSt S0ss0s0rsPTRtes e
Sa6u: sPdsecearean e . LX) sesecnrcrag ®sesae ‘e - sscans AR R EE YRR NR] . Tes0suvensgece cee
> . ese srevene

i \
. / \ A /
| ~- | _
| .
_ _ *UoTIVEIOFED O 30 SOTETISIORTRYO
. UOTARIOFOP DTISITEUT oy JO SOTIITISAORINGD _ TreaTee o u«ﬂ?ﬂ. _”._.Ats.ab. counyo 503 FORTD |
_ TreI00 03 9F SupIvies L3 eouweyees yowso | - UOPUSdeP-SuT] 1840 Pepusxe OSTV 8T WOTIOY
AUePUdep-ouTy I04A0 POPINIX® OSTV ST UOTIey ~}ID $SeI3s STYL *YOBIO ¥ Jo eFpe oy 3w |
_ “HD 95838 STUL YOwI0 ¥ Jo edpe omy v _ 20990239 oy3 JO eTRATRUR oWy WOXZ PeATID
9088835 O} JO STEATWUS U3 WOXF DPOATIEp #1 UOTIe4TI0 Jomouy  *spyros oTaserd _
, _ #7 UOTINI IO IeQI0UY  °SpYTos oj3evyd -OTI99T0 J0F UWOLIIIO §,UNANIQ U] S3TMS6X
TTROTIS Joj DOTIITIO §,URROI) UY SIS ‘suopidunsew SuTAyTrdure UTeareo WmTA ‘puw |
* . . ‘suopidunsse LG TTIUTe uTeIIed WA ‘P | ..
I.|I||||I||||||Ar _—_——-—————_—_——_—_—_—_——_——— — —— =
4..Il'|r|||ll|||| o aeas )y : _
) . { a0 ) /
. A w _ \ ey gao _
i spITos ® 0- 9890 o} uo
_ SDTTO® OT33739 JO eswo oWy UT UOTIRLIO ..55%»“»-”88 %..«:i woy om uy
, _ SIMIITD 03 S00TPAI YO TYA W07 e uy _ POITTRAIO] €7 €PTTOF OTewTeuT U wOWD 3o |
. . DeIWTIIO; 8 SPTLOS 0T36€TOUT UT EIVWIS 3O WnTqTTTAbe 207 WOTIeTa0 ABieus uy  cpesn 87
WL TMbe J07 wOTIN} TI0 £3I0uUe Wy  *pesn sY $PTIO8 JO SOTUVIOOR JO SPOTROE oY} PUV WM _
_ L e T aooe 30 SPOTIOW O PUY WM | o orron VIISY U ‘A ~T3u0o ey jo 3decuco eqy wo peswq wordde
UOT30TTO0 VIISY UI °IA ~TJuoo ey3 Jo 3deouco ey3 wo peswq yovoxdds S0 T reay o Teoorousmouend oqg  sYoRK> SIMIoRKy pus
_ S10 X TeAY  °A TeoToTousmoneqd oYL °SIOVIO MMIOBI] pUY XOTUSTH *J W (10810 YIWILD) OO0 Jo uoryededond ” ,
XOTUSTd °q °K (sX0810 YITIITID) sxouwtoorotu Jo uopysPedoxd - ‘rqyuepnes W VAT Jo smeTqoxd uy¥iaeo g3Ta eTwep jrodex ey
‘TVIWePNeIy °H °V AT Jo sweTqoxd uT¥IIe0 Y3TA eTwep jx0dex ey _ *I *N %20% Moy 3 ’ _
°X N ‘X0 A : : p ‘ . jacdex peggyeseroun )
_ X *N "XI0X AeN 230dex ety eevTom €3T9I0ATU) BQUATO) *IIT :
%3sseatan YRWITO) *IIT ‘eemTTy *ToW *d 4 '€y oy “yaodez | Zr0L~(919) 9381 4 {°WTT] ooy °d Ly ‘69 Tt ‘aaodex |
_ Z70L-(919) e L | SSTTV CTOUT "C LT ‘€9 o ‘adodex €€ g 40vIIWD  SIT TUiE *SOINVEDER BMALOVES TVOIDTTONZHONR
€€ dy 308a3W0)  *y1 o SONVROAN BALOVAI TVOTOTTONINONIH OTSEL HewL - NI SHFHOMS F0S TCo-Eo-BU-G5V *of ¥y |
9OTSEL ABRL NI SHIHOUd FWOS HWNIMWIngmi oN 3y — TSEL 0eforg 9sav  °T o0 HOBIY Iug=uB XN
TSEL ofoxg 9sdv  °1 OO ‘ddv’ uosze3jug-quBray . *qQV] soTERIe) PUv STEIH ‘sessecoly pue _
soTU * B P gl o Mt A _ (SOTUWUOSH) &ML T | srwraesen/ag ‘moTETATQ sweysfs TwoTynwROTey
_ (soTuwyoeR) emyoery  °1 STVTIOIWR/IW ‘uoTSTAYY #we3sLs TeOTINEUOTRY ; _

..Qlol.lll.lll.%‘ll.ll. |||||||| Lvu.lll IIIII |||||||||I|Il|lll$l




