UNCLASSIFIED

14

AD 402 117

 $\dot{\gamma}$

Reproduced by the DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Best Available Copy

Red Bank Division THE BENDIX CORPORATION Eatontown, New Jersey

ľ

Π

Π

Qualified requesters may obtain copies of this report from ASTIA.

Report No. 345 3200 CPS Electrical Power Distribution Characteristics

July 14, 1961

Prepared Under Navy, Bureau of Weapons Contract NOas 60-6121-C Item 2

Approved by Oblann Chief Engineer, Bendix

Herald T. Heinman Project Engineer, Bendix

Witnessed by AfgCR, Eatontown, N.Y.

Certified by Charles & V.o. BuWeps Rep., Teterboro, N. J.

ABSTRACT

Π

This report demonstrates the distribution characteristics associated with 3200 CPS Electrical Power. The specific characteristics of a variety of wiring techniques are analyzed and relative compari sons made.

TABLE OF CONTENTS

Section	Title	Page
I	Contractual Requirements	1
II	General Information	2
ш	Impedance Characteristics A. General B. Two Conductor Systems C. Single Conductor Systems	7 7 8 20
IV	Mutual Induction Characteristics A. General B. Induced Voltages C. Effect on Wave Shapes	30 30 31 36
v	Conclusions	37

Appendix A	3200 CPS Electrical Power Distribution Test Procedures - Report No. 331
Appendix B	3200 CPS Electrical Power Distribution

Tests (Laboratory Data)

ſ

E

LIST OF FIGURES

Figure	Title	<u>Page</u>
1	Laboratory Set Up for Mutual Induction Tests - Photograph	4
2	Laboratory Set Up for Mutual Induction Tests - Photograph	5
3	Laboratory Set Up for Mutual Induction Tests - Photograph	6
4	Distribution Characteristics - Conductor Resis- tance vs Wire Size for one and two conductor systems	16
5	Distribution Characteristics - Two conductors in various configurations - Reactance vs Wire Size	17
6	Distribution Characteristics - Two conductors in various configurations - Impedance vs. Wire Size	18
7	Distribution Characteristics - Two conductors in various configurations - Power Factor vs. Wire Size	19
8	Distribution Characteristics - Single Conductor with Aluminum Plate Ground Return - Reactance vs. Wire Size and Spacing	27
9	Distribution Characteristics - Single Conductor with Aluminum Plate Ground Return - Im- pedame vs. Wire Size and Spacing	28
10	Distribution Characteristics - Single Conductor with Aluminum Plate Ground Return - Power Factor vs. Wire Size and Spacing	29
11	Distribution Characteristics - Mutual Induction in Parallel Circuits - Ampere Feet vs. Induced Voltage and Spacing	34
12	Distribution Characteristics - Mutual Induction : Parallel Circuits - Effect of Primary Current, Spacing, and Wiring Configuration on Induced Vo age	in 35 olt-

LIST OF TABLES

Table	Title	Page
1	Distribution Impedance Characteristics - Two Conductors Side by Side	11
2	Distribution Impedance Characteristics - Two Conductors Side by Side on an Aluminum Plate	12
3	Distribution Impedance Characteristics - 'Two Conductors Spaced 2 Inches Apart	13
4	Distribution Impedance Characteristics - Two Conductors Cabled	14
5	Distribution Impedance Characteristics - Two Conductors in Various Configurations (Summary)	15
6	Distribution Impedance Characteristics - Single Conductor on Aluminum Plate Ground Return	22
7	Distribution Impedance Characteristics - Single Conductor Spaced 1 Inch from Aluminum Plate Ground Return	23
8	Distribution Impedance Characteristics - Single Conductor Spaced 3 Inches from Aluminum Plate Ground Return	24
9	Distribution Impedance Characteristics - Single Conductor Spaced 5 Inches from Aluminum Plate Ground Return	25
10	Distribution Impedance Characteristics - Single Conductor with Aluminum Plate Ground Re- turn in Various Configurations (Summary)	26

ľ

Ĺ

Ē

: **[**

E

E

E

Section I Contractual Requirements

In accordance with Item 1 of BuWeps Contract NOas 60-6121-C, Bendix Red Bank has conducted a study to determine the feasibility of generating, controlling, and distributing 3200 CPS AC electrical power on aircraft to support missiles. The final report on this study, Contract Item No. 2, was forwarded as Bendix Red Bank Report 337, dated April 27, 1961.

As stated in Section I of Report 337, the characteristics contained in that report were obtained analytically and additional laboratory testing would be conducted to provide actual characteristics. Therefore, since the major problem associated with 3200 CPS electrical power is in the area of distribution, Bendix Red Bank has conducted a series of tests designed specifically to demonstrate distribution characteristics. The results of these laboratory tests and conclusions are being forwarded in this report and are intended to supplement the information contained in Bendix Red Bank Report No. 337.

Section II <u>General Information</u>

The 3200 CPS distribution characteristics shown in this report are broken down into two basic catagories:

1) Impedance Characteristics and 2) Mutual Inductance Characteristics. The specific details of the test conducted, characteristics, and conclusions for each of these catagories is discussed in Sections III and IV respectively.

In order to provide as much information as possible on the results of this study, Appendix A and B have been included in this report. Appendix A is a copy of the detailed test procedure which was used to obtain the necessary laboratory data. This test procedure, Bendix Red Bank Report No. 331, Rev. B is entitled "3200 CPS Electrical Power Distribution Test Procedures". The actual test data obtained by laboratory testing has been included as Appendix B. The characteristics shown in this report are taken from this data.

It should be noted that throughout this report reference is made to test procedure numbers. These numbers reference the various tests as outlined by the procedures of Appendix A. The test data from each specific test contains reference to the same applicable test procedure number. The tables contained in the body of this report also include a reference to the test procedure number.

The source of electrical power for these tests was a "breadboard" version of the 3200 CPS generating section being fabricated under Item No. 5 of this contract. This 3200 CPS generating section will be used as part of the dual frequency generating system being manufactured by Bendix Red Bank. This 3200 CPS, single phase generator is rated at 6 KVA, therefore the tests described therein are limited to these parameters.

The impedance characteristics demonstrated in Section II of this report were obtained by tests conducted within the Red Bank Laboratory. The actual test set up was isolated from all possible sources of induced potentials so as to minimize error. However, since the mutual induction tests outlined by Section IV were much more critical with respect to induced potential, the actual testing

Page 2 (199

was conducted outside of the laboratory. Three photographs, Figures 1, 2 and 3 have been included to show the test set up.

From these pictures, it should be noted that extreme care was used in the spacing of all conductors. The conductors being tested were kept at uniform spacing by the use of wooden blocks. All other leads were placed either perpendicular to the test leads or at a minimum distance of 6 feet. The particular test area was chosen because it is completely isolated from any power lines, under ground pipes, or conduit.

Figure 1 shows the "breadboard" generator being driven by a portable drive. A forced blower is being used to insure adequate generator cooling. Figure 2 shows the test set up as viewed from the generating end. Figure 3 shows the test set up as viewed from the load end. Test Procedures 9 through 15 made use of this particular test set up.

Section III Impedance Characteristics

A. <u>General</u>

The object of this section is to demonstrate the impedance characteristics associated with the distribution of 3200 CPS electrical power. It should be pointed out that these characteristics are for Stranded type wires and, for uniformity, operating at a temperature of 25°C. As indicated in the various tables of this section and in Appendix B, a great deal of data was taken at temperatures above this standard. Therefore, the values used for comparison purposes were adjusted to this predetermined temperature.

The various tables in this section of the report compare calculated values of resistance (R), Reactance (X), and Impedance (Z) with values obtained by laboratory testing. In some instances, these tables show a considerable difference between the two values. This difference can be attributed primarily to a variation of the reactance factor due to the effects of proximity. These effects are basically the interaction of magnetic fields on current distribution within a conductor and the resulting change in apparent reactance. It should be noted that only the impedance factors obtained by testing were used in demonstrating the characteristics shown in this report.

As stated above, the characteristics shown herein, are for stranded wire types. If Litz type wire were used, the impedance factors would have to be modified to indicate a reduced resistance (approximately the DC value) and a decreased reactance. Since the stranded wire characteristics are more severe, they were chosen for the purpose of this report.

It is realized that there are a variety of methods and test procedures which could be employed to determine the impedance factors of various wiring configurations. The one used in the preparation of this study was chosen because of the simplicity and low cost. The procurement of special test equipment as required by alternate test methods could not be justified under this phase of the basic contract.

B. Two Conductor System

A single phase, two conductor system is one in which a single conductor is used to transmit electrical power from a generating source to a load and a second conductor completes the return circuit to the generating source. Tables 1, 2, 3 and 4 have been included in the following pages to show the distribution impedance characteristics for various wiring configurations. The configurations analyzed are: two conductors side by side; two conductors side by side on an aluminum plate; two conductors spaces two inches apart; and two conductors cabled. Wires sizes #6, #10, #16, and #20 are analyzed.

Table 5 provides a comparison of the resistance and reactance components of various wire sizes for the referenced distribution configurations. The figures for the intermediate wire sizes were obtained by interpolating between the values shown on Tables 1 through 4. It should be noted that as the result of proximity, a very slight reduction in resistance is achieved by a spacing between conductors.

In order to provide a bettere indication of trends and to ease making comparisons, the details contained in Tables 1 through 5 have been plotted to provide Figures 4 through 7.

Figure 4 shows the 3200 CPS resistance for various wire sizes. Included in this figure are the characteristics for a two-conductor system and a single-conductor system which uses an aluminum plate as the ground return. Since the effective resistance of a large aluminum plate is negligable, the curves show the resistance of two conductors as compared to that of of one. Cabling (twisting conductors around each other - as per MIL-C-7078A) of the two conductors would tend to increase the resistance per foot of distribution length above that indicated for a two-wire system primarily because more wire per foot would be used.

Figure 5 shows the effect of the various wiring configurations on conductor reactance for wires between sizes #6 through #22. By comparing Curves 1 and 2, it is apparent that a reduction in reactance can be achieved for smaller wire sizes by placing them on

an aluminum plate (simulates an airframe). This reduction can be attributed to an increased capacitive reactance between the conductors and the plate.

As Curve 3 indicates, increasing the space between two conductors will tend to increase the apparent reactance. By spacing conductors, the capacitance between conductors is reduced thereby resulting in a higher net inductive reactance.

Curve 4 shows that for small wire sizes a decreased reactance can be obtained by cabling. This difference in reactance is compounded by the fact that more turns per foot can be used with smaller wire sizes.

Figure 6 shows the total 3200 CPS impedance per foot of distribution length for various wire sizes. Each of the four wiring configurations are considered. It should be noted that for larger wire sizes the major portion of the impedance is made up of inductive reactance. Therefore, in this area the curves approximate the impedance of the inductive reactance (see Figure 5). As wire size decreases, the resistive component of impedance becomes more predominant. For wire sizes #20 and #22, the total im pedance approaches that of the resistive component as shown in Figure 4.

The ratio of resistive to reactive components also affects the power factor of the wiring configurations. The power factor variation with wire size is shown in Figure 7. Each of the four wiring techniques are presented. In all cases, the large wire sizes reflect a smaller power factor due to the magnitude of the reactive factor as compared to the resistive impedance factor. The predominance of the resistance factor for smaller wire sizes results in an increasing power factor. The reduction in reactance obtained by placing two conductors on an aluminum plate can be seen by comparing Curveş 1 and 2. This technique, however, is only beneficial for larger wire sizes.

The effects of cabling, as indicated by Curve 4, provides a definite

[

power factor advantage for smaller wire sizes. Of course, with the smaller wire size, a greater number of turns per foot can be realized.

T.

ļ

Curve 3 indicates that spacing wires will result in reducing the power factor of the distribution system.

Comparison of calculated impedance with impedances obtained by laboratory testing. Impedance is for a two conductor system with conductors side by side. ("O"spacing.)See Procedure I in Appendix A and B for test procedure and laboratory data.

Wire	Method	Temp	I	mpedance		Average	Test Im	pedance	@25°C
Size		°C	R	X	Z	R	X	Z	pf
#6	Calc		.000923	.00398	.00408				
	Test	34	.000923	.00404	.00413]	
	Calc		.000925	.00398	.00409				
	Test	35	.000925		.00503*				
	Calc	0.0 5	.000890	.00398	.00407		00400	00440	
	'l'est	26.5	. 000890	.00412	.00422	.000890	.00408	.00418	.213
#10	Calc		.002135	.00410	. 00461				
	Test	44	.002125	.00383	00438				
	Calc		.002085	.00410	.00460				
	Test	39	.002085	.00381	.00435	s A			
	Calc		.002040	.00410	.00460				
	Test	32	.002040	.00381	.00431	,002032	.00382	. 00432	. 469
110			00074	00400	01010				ļ į
#⊥6	Calc	CA.	.00874	.00493	.01010				
	Test	04	.00874	00/92	.01180				
1	Calc	55	.00000	00795	01110				
		00	.00850	00720	.01110				
	Test	37	.00799	.00433	01042	00792	.00728	.01075	.736
	1000	01		100000					
; #2 0	Calc		.02300	.00535	.02360				
	Test	76	.02300	.01480	.02915				
	Calc		.02120	.00535	.02200				
1	Test	51	.02120	.01855	. 02820				
	Calc		• 0 2025	.00535	.02090				
	Test	38	02025	.01878	.02765	.02015	.01738	.02651	.759

* Not Used

Table 1

Impedance In Ohms Per Foot of Distribution Length °C indicates average measured conductor temperature.

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance is for a two conductor system with conductors side by side on an aluminum plate. See Procedure 2 in Appendix A and B for test procedure and laboratory data.

	Wire	Method	Temp	I	mpedance	· · · · · · · · · · · · · · · · · · ·	Avera	age Test	Impedan	ce @25°C
-	Size		°C	R	X	Z	R	X	Z	pf
	#6	Calc	38	. 000925	,003175	. 00330				
		Calc		000925	.00290	00329				
		Test	36	.000924	.00326	.00338				
		Calc		.000895	.003175	.00330				
		Test	29	. 0008 9 5	.003215	.00334	. 000890	.003152	.00327	.272
	#10	Calc		.002125	.00410	.00461				
		Test	44	.002125	.00358	.00416				
		Calc		.002080	.00410	.00460				
-		Test	35	.002080	.00356	.00411				
		Calc	•••	.002040	.00410	.00459	000000	00000	00400	470
		Test	32	, 002040	.00358	.00411	.002032	.00382	.00432	. 470
	# 16 '	Calc		.00840	.00493	,00975				4 -
	1	Test	53	.00840	.00726	.01110				
-	•	Calc		.00817	.00493	.00955				
'		Test	44	00817	00717	.01088				,
,		Calc		,00786	.00493	,00930				
ļ		Test	33	, 00786	.00787	.01205	.00792	.00728	.01076	.736
	# 20	Calc		. 02295	. 00535	.02355				
		Test	74	.02295	.01850	.02945				
, :		Calc		.02120	.00535	, 02185				
		Test	50	02120	.01185	.02440				
		Calc		. 02025	.00535	. 02095				
		Test	38	.02025	.01120	,02315	.02015	.01738	.02660	.756 [,]

Table 2

Impedance in Ohms Per Foot of Distribution Length °C indicates average measured conductor temperature.

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance is for a two conductor system with conductors two inches apart. See Procedure 3 in Appendix A and B for test procedure and laboratory data.

	Wire	Method	Temp	Ŀ	mpedance	e	Average	Test Im	pedance	@25°C
•	Size		°C	R	X	Z	R	X	Z	pf
•	# 6	Calc Test Calc Test Calc Tost	40 33 27	.000927 .000927 .000921 .000921 .000892 .000892	.00606 .00815 .00606 .00822 .00606	.00615 .00820 .00615 .00825 .00615	000802	00820	00922	108
•	#10	Calc Test Calc Test Calc Test	42 33 30	.002122 .002122 .002075 .002075 .002035 .002035	.00695 .00940 .00695 .00937 .00695 .00949	.00727 .00963 .00726 .00960 .00725 .00970	. 002025	. 00942	. 00964	. 210
•	# 16	Calc Test Calc Test Calc Test	53 43.5 34.5	.00840 .00840 .00817 .00817 .00788 .00788	.00830 .01260 .00830 .01240 .00830 .01253	.01180 .01512 .01165 .01487 .01147 .01480	.00785	.01251	.01476	. 531
3	#20	Calc Test Calc Test Calc Test	74 50 38	.02295 .02295 .02120 .02120 .02025 .02025	.00908 .01740 .00908 .01702 .00908 .01598	.02460 .02880 .02310 .02720 .02220 .02575	. 02010	.01682	.0262	.766

Table 3

Impedance in Ohms Per Foot of Distribution Length °C indicates average measured conductor temperature.

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance is for a two conductor system with conductors cabled. See Procedure 4 in Appendix A and B for test procedure and laboratory data.

! .	Wire	Method	Temp	I	mpedance)	Average	Test Im	pedance (@ 25°C
r	Size		°C	R	X	Z	R	Х	Z	pf
{	#6	Calc Test Calc Test Calc Test	40 33 . 29	.000946 .000946 .000940 .000940 .000913 .000913	.00264 .00356 .00264 .00360 .00264 .00364	.00281 .00368 .00280 .00372 .00280 .00374	.000913	.00360	. 00372	. 245
	#10	Calc Test Calc Test Calc Test	31 56 44	.002140 .002140 .001995 .001995 .002050 •.002050	.00341 .00378 .00341 .00451 .00341 .00438	.00402 .00434 .00395 .00495 .00398 .00398	.002135	.00426	.00477	. 44 7
	#16	Calc Test Calc Test Calc Test	57 50 35	.00895 .00895 .00870 .00870 .00839 .00839	.00411 .00682 .00411 .00820 .00411 .00606	.00985 .01125 .00936 .01192 .00906 .01025	. 00832	.00703	.01090	.764
	#20	Calc Test Calc Test Calc Test	65 51 37	.02475 .02475 .02285 .02285 .02185 .02185	.00446 .01295 .00446 .01295 .00446 .00692	.02515 .02785 .02330 .02620 .02230 .02285	.02175	.01295	. 02532	. 858

Table 4

Impedance in Ohms Per Foot of Distribution Length

ĺ

L

°C indicates average measured conductor temperature.

Į

I

l

I

ſ

ľ

Ľ

Ľ

Ľ

ľ

¢

Two Conductors in Various Configurations (Summary)

3200 CPS @ 25°C Temp.

Stranded Wire

R - Resistance X - Reactance

1	Length	
	UISUTIOUTION	
	L FOOT OI	
	Comms rel	
	npedance in	•

Spacing		0"	0" (On Alu	m. Plate)		=	Cab	led	DC
Wire	Я	Х	54	Х	R	Х	Я	×	Ohms/Ft
Size									(2 conductor)
9#	. 000890	.00408	. 000890	.003152	. 000892	. 00820	.000913	. 00360	06790.
#8	.00132	.00370	.00132	.00325	.00131	. 00860	.001290**	.00385	.001256
#10	. 002032	.00382	. 002032	.00357	. 002025	, 00942	. 002135	. 00426	.001998
#12	.00345	.00402	.00345	.00425*	.00342	, 00995	. 00365	, 00500	. 003176
#14	. 00505	.00485	. 00505	.00555*	. 00503	01090	. 00575	. 00600	. 005050
#16	.00792	.00728	.00792	.00743*	. 007.85	. 01251	. 00832	. 00703	.008032
#18	.01275	.01160	.01275	.01045	.01273	. 01445	.0134	. 00950	.012704
#20	.02015	.01738	.02015	.01385	.02010	. 01682	.02175	.01295	. 02020
#22	.0310	.02505	.0310	.02255	. 03095	. 02070	.03310	.01740	.032128
*Variatio ratio of] thickness	n in react proximity	ance trend effect and	due to insulation	Tab	** Shculd le 5 Variat	be slight! ion due to	y greater to meter readi	follow re ings or ca	sistance trend Iculations.

Page 15

Red Bank Division THE BENDIX CORP. G. T. H. 6/8/61

RED BANK DIVISION THE BENDIX CORP

FIGURE 4

معدرة ورجوه والا

GTH CIAL

DISTRIBUTION CHARACTERISTICS WO CONDUCTORS IN VARIOUS CONFIGURATIONS

REACTANCE VS WIRE SIZE

Ī

I

I

3200 CPS 25°C STRANDED WIRE

DISTRIBUTION CHARACTERISTICS TWO CONDUCTORS IN VARIOUS CONFIGURATIONS

IMPEDANCE VS WIRE SIZE

DISTRIBUTION CHARACTERISTICS TWO CONDUCTORS IN VARIOUS CONFIGURATIONS

POWER FACTOR VS WIRE SIZE

3200 CPS 25°C STRANDED WIRE

E

C. Single Conductor Systems

The single conductor systems referred to in the following paragraphs are distribution systems in which electrical power is transmitted from the generating source to a load by means of a single wire. The encluit of completed by a return through an aluminum plate. This aluminum plate is treated as a ground and is intended to simulate the frame of an airborne vehicle. Since the impedance of a large aluminum plate is very small as compared to that of a single conductor of the size being tested, it will be considered as negligible throughout this report.

The main variable to be analyzed in a single conductor system is the distance between the conductor and the aluminum plate ground return. This distance is referred to as spacing. The spacing variations analyzed in this report are zero inches (conductor lying on a plate), one inch, three inches, and five inches. The effect of these spacings on system impedance is demonstrated in Tables 6, 7, 8 and 9 respectively. These tables were originated from laboratory test data and are limited to Wire Sizes # 6, #10, #16 and #20. For a comparison of the impedance factors of these wire sizes and the intermediate sizes, refer to Table 10. The intermediate values shown here were obtained by interpolation. A slight reduction in resistance is noted with metered spacing. This reduction is attributed to the proximity effects.

Figure 4, in the previous pages of this report, shows the variation of 3200 CPS conductor resistance with wire size for a single conductor system. The variation of the reactance factor with wire size and spacing is shown in Figure 8. As shown by these curves, any spacing will result in a considerable increase in reactive impedance.

The impedance per foot of distribution length for various wire sizes and with the referenced spacings is shown in Figure 9. The predominant reactive factor for larger wire sizes results in the curves resembling the curves of Figure 8 (Reactance vs. Wire Size). However, as the wire size decreases the resistive factor becomes more predominant and the resulting curves approach the characteristic shown in Figure 4 (Resistance vs. Wire Size).

The effect of wire size and spacing on power factor is shown in Figure 10. The increasing relative magnitude of the resistance factor with decreasing wire sizes is indicated by an increasing power factor. Under all conditions, however, the maximum power factor can be obtained by minimizing the space between the conductor and aluminum plate.

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance is for a single conductor system using an aluminum plate as ground return (conductor lying on plate - no spacing) See Procedure 5 in Appendix A and B for test procedure and laboratory data.

T	Wire	Method	Temp	I	mpedance	2	Average	Test Im	pedance @	25°C
-	Size		°C	R	X	Z	R	X	Z	pf
	# 6	Calc Test Calc	26	.000445 .000445 .000445	.00125 .00209 .00125	.001328 .00212 .001328	000445	00814	000100	20.4
	#1 0	Test Calc Test Calc Test	26 28 26	.000445 .00108 .00108 .00100 .00100	.00219 .00157 .00217 .00157 .00290	.002230 .001865 .002435 .001865 .003070	.000445	.00214	.002183	. 396
	# 16	Calc Test Calc Test	48 33	.00450 .00450 .00435 .00435	.00216 .00426 .00216 .00392	.00498 .00616 .00486 .00586	.00435	. 00409	. 00597	.728
	#20	Calc Test Calc Test	40 31	.01025 .01025 .01020 .01020	.00262 .00905 .00262 .00732	.01115 .01370 .01105 .01253	.01020	.00819	.01308	.780

Table 6

Impedance in Ohms Per Foot of Distribution Length °C indicates average measured conductor temperature.

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance for a single conductor system using an aluminum plate as ground return (conductor located 1 inch from plate) See Procedure 6 in Appendix A and B for test procedure and laboratory data.

Wi	re	Method	Temp		Impedance	e	Average	Test Imp	bedance	@ 25°C
Siz	ze		°C	R	X	Z	R	X	Z	pf
#6	3	Calc Test Calc Test	27 25	.000445 .000445 .000445 .000445	.00346 .00436 .00346 .00437	. 00340 . 00439 . 00340 . 00440	. 000445	.004365	. 00437	.102
#1(0	Calc Test Calc Test	34 25	.00106 .00106 .00101 .00101	.00406 .00503 .00406 .00504	.00409 .00514 .00408 .00515	.00106	.005035	.00513	. 206
#10	6	Calc Test Calc Test	51 47	.00450 .00450 .00445 .00445	.00488 .00645 .00488 .00668	.00666 .00785 .00665 .00803	.00430	.00657	.00778	.553
#20	0	Calc Test Calc Test	43 31	.01025 .01025 .01020 .01020	.00544 .00985 .00544 .00927	.01162 .01472 .01153 .01380	.01020	.00956	.01410	.723

Table 7

Impedance in Ohms Per Foot of Distribution Length °C indicates average measured conductor temperature.

F

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance for a single conductor system using an aluminum plate as ground return (conductor located 3 inches from plate). See Procedure 7 in Appendix A and B for test procedure and laboratory data.

Wire	Method	Temp	1	mpedance	2	Average	Test Imp	edance @	25°C
Size		°C	R	X	Z	R	X	• Z	pf
#6	Calc Test Calc Test	26 26	. 000443 . 000443 . 000443 . 000443 . 000443	.00483 .00582 .00483 .00589	.00487 .00585 .00487 .00592	. 000443	.00586.	.00589	.133
#10	Calc Test Calc Test	27 33	.00098 .00098 .001005 .001005	.00539 .00650 .00539 .00600	.00554 .00655 .00555 .00608	. 00098	.00625	.006325	.155
#16	Calc Test Calc Test	55 36	.00434 .00434 .00397 .00397	.00612 .00820 .00612 .00823	.00803 .00925 .00800 .00915	.00425	.008215	.00925	.460
#20	Calc Test Calc Test	47 34	.01060 .01060 .00996 .00996	.00680 .61185 .00680 .01058	.01488 .01522 .01485 .01459	.01122	.01005	.01501	.747

Table 8

Impedance in Ohms Per Foot of Distribution Length °C indicates average measured conductor temperature.

Comparison of calculated impedances with impedances obtained by laboratory testing. Impedance for a single conductor system using an aluminum plate as ground return (conductor located 5 inches from plate). See Procedure 8 in Appendix A and B for test procedure and laboratory data.

Wire	Method	Temp	I	mpedance	2	Average	Test Im	pedance	@25°C
Size		Ő	R	Х	Z	R	Х	Z	pf
# 6	Caic Test Calc Test	26 25	. 000430 . 000430 . 000428 . 000428	.00547 .00685 .00547 .00685	.00551 .00686 .00551 .00685	.000430	.00685	.00686	.0625
# 10	Calc Test Caic Test	32 28	.00099 .00099 .00098 .00098	.00600 .00745 .00600 .00738	.00615 .00750 .00615 .00745	.00097	.00742	.00748	.130
# 16	Calc Test Calc Test	51 32	.00426 .00426 .00389 .00389	.00683 .00916 .00683 .00919	.00858 .01010 .00855 .009 9 7	.00420	.00918	.01042	. 402
# 20	Calc Test Calc Test	47 33	.01062 .01062 .00994 .00994	.00745 .01243 .00745 .01179	.01522 .01639 .01520 .01542	.01005	.01211	.01570	. 636

Table 9

Impedance in Ohms Per Foot of Distribution Length [°]C indicates average measured conductor temperature.

4.1

Ł

Red Bank Division THE BENDIX CORP. G. T. H. 6/8/61

Table 10

Spacing Indicates Distance Between Conductor and Aluminum Ground

Ľ.	Shacing		0"	1	=		3"		5 ir	DC DC
1	Wire	R	X	R	Х	R	Х	ዚ	X	Ohms/F't
	Size #6	.000445	.00214	. 000445	.004365	.000443	. 00586	.000430	.00685	. 000395
	# 8	.000722	.00235	.000722	.00458	.000720	, 00602	.00715	. 00703	.000628
	#10	.00108	.00254	.00106	.005035	. 00098	.00625	. 00097	.00742	. 000999
	#12	.00165	.00295	. 00162	.00545	.00161	.00658	.00159	.00780	.001588
	#14	.00265	.00345	.00261	.00595	.00260	.00723	.00258	.00842	.002525
	#16	.00435	.00409	, 00430	. 00657	.00425	.008215	.00420	.00918	.004016
	#18	.00685	. 00565	.00682	. 00765	.00681	, 00956	.00679	.01025	.006352
	#20	.01020	.00819	.01020	. 00956	.01010	.01122	.01005	.01211	.01010
	#22	.01650	.01115	.01645	.01280	.01640	.01375	.01635	.01495	.016064

R - Resistive X - Reactive

Impedance in Ohms Per Foot

Single Conductor with Aluminum Ground Return

Distribution Impedance Characteristics

Ľ

E

E

I

3200 CPS @ 25°C Temperature (Test Results)

Stranded Wire

P_{age} 26

¥∏ ≮

DISTRIBUTION CHARACTERISTICS SINGLE CONDUCTOR WITH ALUM. PLATE RETURN

IMPEDANCE VS WIRE SIZE AND SPACING

Ī

ľ

I

Ι

RED BANK DIVISION THE BENDIX CORP

FIGURE 9

GTH 6/13/61

Section IV Mutual Inductance Characteristics

A. General

The term "mutual inductance", as used in this report, refers to the induction of a potential into a conductor which is in the local vicinity of another conductor which is carrying a 3200 CPS AC current. This potential is referred to as induced voltage. The conductor transmitting the 3200 CPS current will be called the primary. The conductor being affected by the induced potential is referred to as the secondary.

For the conditions described in this section, all test conductors are parallel. Conductors not directly involved with the test condition are perpendicular to the test plane or are at a distance sufficient to prevent their magnetic fields from influencing the given test condition. Test Procedures 9 through 18 in Appendix A and B provide details of the test set up and corresponding laboratory data.

Since the curves and pictures referenced in this section were extracted directly from the data of Appendix B, detailed tables have not been used to outline characteristics.

B. Induced Voltage

The basic effect of placing a 3200 CPS current carrying conductor in the local vicinity of a second conductor is shown in Figure 11. These curves show the induced voltage impressed by a 3200CPS primary current for various distances from a secondary conductor. It is noted, that as the distance between conductors (spacing) increases, the induced voltage decreases.

Also shown in this figure are the characteristics of a 400 CPS distribution system operating under the same conditions. As anticipated, the potential induced by a 3200 CPS line is approximately 8 times that of an equivalent 400 CPS line. This characteristic can cause a considerable problem area in high frequency power systems.

Since induced potential is dependent upon primary current and exposure length, values of Ampere Feet have been included in Figure II. These values were obtained by multiplying the test current by the exposure length (50 feet). These ampere feet characteristics can be utilized in analyzing other 3200 CPS distribution configurations. The induced voltage of a 30 amp 50 foot system will be equivalent to that of a 50 amp 30 foot system for a standard set of conditions.

In order to determine the effect shielding would have on mutual induction, Test Procedure II was included. The initial test with the secondary shielded by aluminum thin wall tubing showed no effect on induced voltages. The shielding was then placed on the primary conductor (see page 12 of Appendix B) and only a minor reduction was noted. A comparison of test data from the two identical conditions, one with primary shielded and one without, will indicate only a few tenths of a volt difference. Since the difference is so slight, only the 5 inch spacing test was conducted.

The fact that only a very small reduction was noted on the secondary induced voltage can be attributed to the eddy currents which were generated in the shielding. These currents, in turn, induced a potential into the secondary conductor. Proof as to the presence of eddy currents was noted when the aluminum tubing became extremely hot.

Test Procedure 10 was designed to determine the amount of potential which would be induced into a secondary winding if the primary was energized but not carrying current. This induced

a server as some a share to share an entering and the server as

potential can be attributed to capacitive coupling between the two conductors. The data from this test is included with that of Procedure 9. The readings are shown as O current or "C Open". From the data it can be seen that the effect of capacitive coupling is in the order of millivolts.

Figure 12 shows a general comparison of the effect of primary current, spacing, and wiring configuration on induced voltages. Also included are several 400 CPS characteristics which are intended to be used for comparison purposes. These curves are based on an exposure length of 50 feet. Similar curves for other lengths can be originated by assuming this to be a per unit basis and increasing the induced voltage by the ratio of exposure length.

Curve 1 shows the induced voltage characteristics of the primary and secondary conductors are side by side. The induced voltage of a comparable 400 CPS system is indicated by Curve 4.

If a two conductor primary is used (assuming the second wire to be the return), and the conductors are cabled, the induced voltage into a secondary winding will be reduced considerably. Curve 3 shows the condition with the single secondary wire at zero spacing with the primary conductors cabled. Cabling appears to reduce the induced voltage by approximately a five to one ratio.

If the primary is a single conductor, and the secondary a two conductor system, cabling the secondary will result in reducing the induced voltage to the limit shown by Curve 2. It should be noted that a slight advantage can be obtained by cabling primary conductors rather than secondary conductors of approximately the same size. This advantage, however, can be offset if the primary conductors are very large as compared to the secondary.

The relative effects of cabling the primary conductors of a 3200 CPS system and 400 CPS system can be seen by comparing Curves 2 and 5. As anticipated, the voltage induced by a 3200 CPS system is several times greater than that of an equivalent 400 CPS system.

- - - -- --

Γ.

DISTRIBUTION CHARACTERISTICS MUTUAL INDUCTANCE IN PARALLEL CIRCUITS AMPERE FEET VS INDUCED VOLTAGE AND SPACING 3200 CPS VS 400CPS

TEST PROCEDURES # 9 4 412

RED BANK DIVISION THE BENDIX CORP.

*exposure length soft

FIGURE II

GTH 6/13/61

EFFECT OF PRIMARY CURRENT, SPACING, AND WIRING CONFIGURATION ON INDUCED VOLTAGE

() 400 N PRIMARY CONDUCTORS CABLED WITH SINGLE SECONDARY CONDUCTOR (PROC +15)

RED BANK DIV. THE BENDIX CORP.

FIGURE 12

GTH 6/13/4

C. Effect on Wave Shapes

ոց հետալոիստենին, ի է բուցումը ու տուշու

It is interesting to note the effect a 3200 CPS current carrying conductor will have on another conductor carrying a different type of electrical power. For this reason, test procedure numbers 16, 17 and 18 were originated.

From the test data on Pages 21, 24 and 25 of Appendix B, the effects of 3200 CPS power on DC power can be seen. With a 10 amp DC load the maximum ripple measured was .83 volts. With a 50 amp 3200 CPS conductor along side for an exposure length of 50 feet, the ripple was increased to 16.5 volts.

If a two were 3200 CPS by them were used, and conductors cabled, the ripple was reduced to 3.2 volts. This approximate 5 to 1 reduction in hipple is comparable to the induced voltage characteristics previously discussed.

The actual change in wave shape can be seen by referring to Photograph 1, 2, 3, and 4 on Pages 24 and 25 of Appendix B.

The effects of 3200 CPS power on 400 CPS power is also interesting to note. Page 22 of Appendix B denotes the change in harmonic content of a 400 CPS potential before and after a 3200 CPS current carrying conductor is placed in close proximity.

The eighth harmonic, as would be expected, is increased considerably--from 1.2 to 5%. The actual change in wave shape can be seen in photographs 5 and 6 on Page 26 of Appendix B.

It should be noted that if the 3200 CPS system employed cabled leads the 400 CPS harmonic content would be expected to approach the initial readings.

Section V Conclusions

L

The detailed information contained in this report is intended to show the basic characteristics associated with the distribution of 3200 CPS electrical power. There is no intent to analyze a specific application but to provide general information which can be utilized at some future time to assist with system design by suggesting methods of circumventing possible problem areas.

The distribution characteristics of 3200 CPS electrical power are quite different in many respects than those associated with power of a lower frequency level. In most cases these characteristics can be considered as limitations to using a high frequency electrical power. By the same token, however', higher frequency power does provide many advantages in other areas of system operation and performance. Therefore, by necessity, each application must be analyzed independently and completely. From this analysis the choice can be made as to which type of electrical power is most advantageous.

- ----

APPENDIX "A"

I

Γ

Bendix Red Bank Report No. 331

3200/CPS Electrical Power Distribution Test Procedures

Object

Observe and record the distribution characteristics of single phase 3200 cps electrical power.

Equipment

6 KVA, single phase breadboard generator (rheostat controlled with a 17.5 mfd series compensating capacitor.)

Variable resistance load bank capable of providing a maximum load of 50 amps.

Various lengths of stranded wire, sizes 6, 8, 10, 12, 16 and 20.

Standard laboratory meters and measuring devices. 10 AMP DC supply.

400 cps supply.

1/4" x 6" aluminum plate of various lengths.

Test Conditions

All tests to be conducted under room ambient conditions.

- All sensing and instrument leads must be kept perpendicular to primary power leads for a minimum distance of 6 feet.
- Uniform wire spacing from aluminum plate may be accomplished using low density wood strips or blocks.

Where cabling is required, the lay of cable shall be from 8 to 14 times the diameter of the cable (two times the diameter of an individual wire). Value shall be recorded.

- All tests shall be conducted in an area relatively free from other possible sources of induced signals or power.
- Where thermo couples are required, they shall be placed at the beginning, and at five foot intervals to the end of the indicated transmission distance. The installation shall be made on the wire to insure a true indication of conductor temperature and to minimize the effect of ambient conditions. Thermo couple locations and readings shall be indicated on data sheets.

APPENDIX

بور المراجع ال

1.

Line Impedance

Determine line impedances in ohms/ft. for the following dual conductor distribution conditions. The test circuit shall be connected as follows with the conductors placed side by side (no spacing). Thermo couples shall be used to sense conductor temperature over the indicated transmission distance.

Wire Dr I VD VD VG VD+VDI Z/2DT Con-ductor 6 30 50 Volts) (volts) (volts) 0hm/ft. °C (volts) 6 30 50 VI VI VI VI VI (volts) 6 30 50 VI VI VI VI (volts) 6 30 50 VI VI VI VI (volts) 6 30 50 VI VI VI VI (volts) 10 30 40 VI VI VI VI VI VI (volts) 16 20 25 22 VI VI </th <th>Reco</th> <th>ruat</th> <th>i parai</th> <th>lieters a</th> <th></th> <th></th> <th>mperatur</th> <th></th> <th></th> <th></th>	Reco	ruat	i parai	lieters a			mperatur			
6 30 50 10 30 40 30 25 16 20 25 20 20 15 11 8	Wire Size	D _T (ft)	I (amp)	V _D (volts)	V _{D1} (volts)	V _G (volts)	$\frac{\frac{V_{D}-V_{D1}}{V_{D}}}{I}$ (Ohms)	Z/2D _T ohm/ft.	Con- ductor Temp. °C	VL (volts)
10 30 40 16 20 25 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 11 8 11 20 20 15 21 11 12 21 12 12 21 12 12 21 12 12 21 13 14 21 14 14 21 15 15	6	30	50 40							
16 20 25 20 20 15 20 20 15 11 8 11 2. Repeat No. 1 with conductors laying on an aluminum plate which has been grounded to earth (to simulate aircraft ground). 3. Repeat No.1 using a 2-inch spacing between center lines of conductors. 4. Repeat No. 1 with cabled conductors. Record valve of turns per foot. 5. Determine single conductor impedance characteristics using the setup shown below. The impedance (ohms/ft.) shall be determined for the following conditions with the insulated conductor adjacent to the aluminum plate (zero spacing) throughout the entire transmission distance DT. TRANSMISSION DISTANCE (Dr) Ventate As GROWND RETURN	10	30	30 40 30							
 20 20 15 11 8 2. Repeat No. 1 with conductors laying on an aluminum plate which has been grounded to earth (to simulate aircraft ground). 3. Repeat No.1 using a 2-inch spacing between center lines of conductors. 4. Repeat No. 1 with cabled conductors. Record valve of turns per foot. 5. Determine single conductor impedance characteristics using the setup shown below. The impedance (ohms/ft.) shall be determined for the following conditions with the insulated conductor adjacent to the aluminum plate (zero spacing) throughout the entire transmission distance D_T. TRANSMISSION DISTANCE (D_T) Vg vizo Vg vizo<!--</td--><td>16</td><td>20</td><td>25 25 22 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td>v_L (volts) m e stics is/ft.) th the (zero ce D_T.</td>	16	20	25 25 22 15							v _L (volts) m e stics is/ft.) th the (zero ce D _T .
 Repeat No. 1 with conductors laying on an aluminum plate which has been grounded to earth (to simulate aircraft ground). Repeat No.1 using a 2-inch spacing between center lines of conductors. Repeat No. 1 with cabled conductors. Record valve of turns per foot. Determine single conductor impedance characteristics using the setup shown below. The impedance (ohms/ft.) shall be determined for the following conditions with the insulated conductor adjacent to the aluminum plate (zero spacing) throughout the entire transmission distance D_T. TRANSMISSION DISTANCE (D_T) Verizo 	20	20	15 11 8							
 4. Repeat No. 1 with cabled conductors. Record valve of turns per foot. 5. Determine single conductor impedance characteristics using the setup shown below. The impedance (ohms/ft.) shall be determined for the following conditions with the insulated conductor adjacent to the aluminum plate (zero spacing) throughout the entire transmission distance D_T. 		3.	pla air Re lin	rcraft gro peat No. les of cor	has be ound). 1 using nductors	en grou a 2-inc 5.	nded to ea h spacing	artn (to s between	center	
 Determine single conductor impedance characteristics using the setup shown below. The impedance (ohms/ft.) shall be determined for the following conditions with the insulated conductor adjacent to the aluminum plate (zero spacing) throughout the entire transmission distance D_T. TRANSMISSION DISTANCE (D_T) CONDUCTOR VOLTAGE DROP (Vc) V_c - IZO V_c - IZO V_c - IZO V_L ALUMINUM PLATE As GROUND RETURN 		4.	Re of	epeat No. turns pe	1 with r foot.	cabled	conductor	rs. Reco	ord valve	
TRANSMISSION DISTANCE (DT) CONDUCTOR VOLTAGE DROP (Vc) VG = 120 ALUMINUM PLATE AS GROUND RETURN		5.	De us sh in: sp	etermine ing the s all be de sulated c acing) th	single o etup sho termine onducto roughou	conducto own belo ed for th r adjaco it the er	or impeda ow. The ne followi ent to the ntire tran	ance char impedanc ng condit aluminu smission	acteristi ce (ohms, ions with n plate (distance	cs /ft.) the zero DT.
CONDUCTOR VOLTAGE DROP (Vc)				TRANSI	MISSION	DISTAN	CE (DT)-		_	
VG = 120 ALUMINUM PLATE AS GROUND RETURN	:			Condu	CTOR VO	NTAGE 1	DROP (Vc)			لح ا
ALUMINUM PLATE AS GROUND RETURN	5 '	/ _G =120))		V.	
	ノ			· · · · · · · · · · · · · · · · · · ·	ALUMINUI GROUND	M PLATI Return	As			15

Appendix A

~ A., a tuma 4 0

- 3 -

	Wire Size	D _T (ft)	I (amps)	V _C (volts)	V _A .(volts)	VG (volts)	V _L (volts)	$\frac{Z_{C}=V_{C}}{I}$ (Ohms)	$\frac{Z_{A}=V_{A}}{(Ohms)}$	^z C/ _T	Z _C	Temp Con- dictor °C
-	6	30 30	50 40									
-	10	30 30	40 30									
	16	20 20	25 15									
	20	20 20	15 10									1

Record all parameters and conductor temperature

6. Repeat No. 5 with conductor 1 inch from (aluminum) 0 = 0 plate.

7. Repeat No. 5 with conductor 3 inches from aluminum plate.

8.

Ι

Repeat No. 5 with conductor 5 inches from aluminum plate.

APPENDIX A

Mutual Inductance

9.

Determine induced voltage in resistive loads due to inductive coupling. The test set up shown below shall be used. Primary power leads shall be size #8, secondary leads shall be size #20. Record the voltage induced in each resistive lead for the following conditions. The following load currents shall be used for each test condition: 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, and 1 amp.

- 5 -

]	Induc	ed Vo	ltag	e	42
Spacing	Exposure Length (ft) D _E	Current I (amps)	R 1	R 10	R 100	\mathbb{R}_{IK}	$\mathbb{R}_{10\mathrm{K}}$	R_{100K}	$\mathbb{R}_{1\mathrm{M}}$
*Togther	50	50 ↓ 1				, k			
* 1"(C/L)	50	50 ↓ 1							
* 3"(C/L)	50	50 1							
* 5"(C/L)	50	50 ↓ 1						,	

- 10. Repeat No. 9 test conditions with primary 3200 CPS power energized but with the circuit open at point C (I=0).
- 11. Repeat No. 9 with the secondary circuit conductor shielded between points A and B. Record length of cable shielded.
- 12. Repeat No. 9 test conditions shown by asterisk (*) with 400 CPS power in lieu of 3200 CPS power.

APPENDIX A

- 13. Repeat No. 9 with primary power leads cabled instead of using 6-foot spacing. Secondary leads should be spaced.
- 14. Repeat No. 9 with secondary power leads cabled instead of using 6-foot spacing. Primary leads should be spaced.
- 15. Repeat No. 13 test conditions shown by asterisk (*) using 400 CPS power in lieu of 3200 CPS power.
- 16. Determine induced voltage affect on DC power line. The test setup should be as shown below. Primary power leads to be size #8, secondary (DC) leads to be size #12.

With a 10 amp DC load and no 3200 CPS load, measure DC ripple and take photo of wave shape. Energize AC load to provide 6 KVA, 3200 CPS output. Record DC ripple and take comparison photo of wave shape.

17. Repeat No. 16 with 3200 CPS power leads cabled in lieu of using 6-foot spacing.

Repeat No. 16 using a 10 amp 400 CPS supply in lieu of the 10 amp DC supply. Measure harmonic content prior to and during the 3200 CPS loading. Take corresponding photos.

Revision A - Changed reference test numbers to be compatible with desired results 4/3/61 GTH 2000

Revision B - Changed in accordance with Douglas -Bendix TelCon on 4/14/61 4/17/61 GTH

GTH/is

18.

APPENDIX A

APPENDIX "B"

Į

ľ

•

	G.HI H. DI P.H ENC	E/NZM DUGHT ARTLE 3. FILE	AN 2 16 1 Y			TH	E BEND NED I EATO	DIX COF	RPORAT	ION		Te Da By	st Repo Ite of T C-SW	ort No. est_S IGON	ESO 1 - 4 - 6 R.Will	AMEON
Ţ	itle 3	200	CACT	<u> </u>	LEC	TRIC.	AL F	0 W 1	<u>P</u>]	STR	18 01	. ION	TES	T 3		
		08	JEC	<u>†: (</u>	BSE	RVE		DR	E COF	<u>0 7</u>	HE	DIS.	TRIC	UTI	<u>bn</u>	
		C I	VAR	ACT	ERI	BTI	<u>ts (</u>	<u> </u>	ING	<u> </u>	рн 🛦	SE	3200	<u> </u>	5.	
		E	EC	TRI	EAL_	Pou	BR.	 		 			 		 	
		O	PACI			0.0	TOUT				e/	- 06				
	·	<u> </u>	C DI	R	AEN	bix	REO	BA	NK /	DE P		NA. 7	21	ENTI	TLE	
		<u> </u>	200	eve	LA	EL BO		KAL	P0 1	ER	DIST	PIB	UTIO	N T	EST.	
		F	ROC	FOU	RES	1 71	IN I	8 V	ERE	RE	ORDI	DA	SA	OLLO	ws,	
·																
<u></u>									 						Ì	
		(N	0TE)		ļ											, ,
•			PR	OC EI	DURE	*		- 2/1	16 <u>5</u>	<u>IN Y</u>	VIRI	16 4	AY O	ν τ		·····
			<u> </u>	TE:	#12	WIR	<u>e</u> P	EPLA	CING	- ++ -	20 W	186				· · · · · · ·
			<u></u> N1	TB !	CONI	V BCT	A ,	<u>, c, l</u>	D PO	NTS	70	ALUI	UNI	M PL	7E'	
			SEE		GE	23								0.6		
		No 		<u>IND</u>		VEO			EAD	NG	60		NOI	-05		
					785	1.50. 7 6	6515	TAN	с г .	#XC	_R.E.J	IVE	INDI	C. B.C		
			URR	ENT	S RE	SUL	TEO	1.	BUR	NING		PTA	ER	SIST	ORS	h
														- 9 e		
······																
															·,	
										<u> </u>						
			•							*				•		•
				<u></u>												
										}						
•																
<u>`</u>	<u></u>				L	I	NGIN	ERING	COPY		<u>.</u>				Pages	
۰. ۲۰		Book	<u>P-3</u>	70	r	oge		OF 24	6 . 2				•	•	rage*	*** *********************************
						/+	- LEV	л х с	2					· -		
		··· ···						•			•		,			

THE BENDIX CORPORATION RED BANK DIVISION EATONTOWN, N. J. Test Report No. ESO 1068-1

Date of Test 6-4-61

By C. SWIGON R. WILLIA MSON

Title 3200 CYCLE ELECTRICAL POWER DISTRIBUTION TESTS

۰,

		.82.00	CPS	GENER	ATIR	SER #	רוון	218	HETER				<u> </u>	<u> </u>		 	
		Pr.	be es	L HERE	-	1		1-110	5-62		ļ				_	ļ	
	1-121 G-48	e- 'R-	Lo	E-65	E-66	-#	6 H	IRE				A7					
DT	IL	0	Pr	V GEN	V LOAD	1 2- PI	Z	If	EF	Amb		2 M P. 1	ح ک ر ا	4	5	6	
0'	50	3.0	3.2	120	117.1	.124	.0020	2.05	187	19	35	38	3/	32	35-	30	3
0'	+0	2.45	3.6	120	117.4	./01	.0017	1.91	168	19	31	34	29	30	32	28	2
0'	30	1.87	1.94	120	118.1	.0762	.0013	1.79	15.7	20	275	28	24	25	27	23	2
<u> </u>							# 10	WIR	ε		<u> </u>		<u> </u>				
<u>, </u>	40	2.66	2.60	120	116.1	.131	.00.218	1.92	17.4	26	35	42	45	++	51	36	4
01	30	1.17	1.95	120	117.2	.130	.00216	1.81	16.2	26	32	34	36	36	40	33	34
30'	25	1.63	1.61	120	117.9	,130	.01216	1.75	15.5	26	29	3/	32	32	35	27	3
							# 16	w/	RE			↓ ,,	<u> </u>		+		
0'	25	2.80	3.10	120	114.5	.236	. 60 59	1.74	15. Z	22	50	79	76	7 +	12	·	
e'	12	2.42	2.50	120	115.0	.2236	00 658	1.73	15.1	22	44	66	64	63	40		
20'	15	1.55	1.58	120	[[6. 8	.2087	. <i>005</i> 23	1.66	14.6	22	34	42	41	40	30		
		·				-#	20	wi	RE			<i>t</i>					• ·
10'	15	4.55	4.20	120	.0	, 5833	.0)455	1.68	14.7	24	46	105	94	84	50		
101	11	3.0	3.2	120	114.0	.5636	D/405	1.64	14.2	24	38	64	60	54	38		
20'	8	1.12	2.20	120	116.0	.5525	<u>.438</u>	1.63	14.2	20	30	44	44	42	30		
		T	HER	MO C	OUP	LE	LOC	TIO	vs:							-	
			EIV	E F	6ET	AP	RT	F	MO	GEN	ERAT	OR 7	O LI	AD	BANK	•	
			ТНЕ	RMO	COU	LE	; # /	AT	HE	BE	GINN	ING	QF	 			
		7	RAN	5 M I	5510	<u>v</u> 0	157	NC	E., 74	7 A	T EI	ID,					• •
															· ·	•	
	•										*			• ••••	- Perior	*****	
		·			<u> </u>		NGINE	ERING	COPY						a ruges		

-301

30'

20'

Test Report No. 550 1068-1

Date of Test 5-5-61

TEMPIN

By C. SWIGON R.WILLIAMSON

سى

که محس

Pages

Page*.

<u>7</u>

¢

.

····

-

.

THE BENDIX CORPORATION RED BANK DIVISION EATONTOWN, N. J.

Test Report No. 50 1068-1

Date of Test 5- 4-61

By C. SWIGON R. WILLIAMSON

Title 3200 CYCLE ELECTRICAL POWER DISTRIBUTION TESTS

	Pr	OCTO	inre	# 11	(P	rime	ry	vire	shi	ld ed	5 "	APA	RT	_	
		ļ				B	,	-		ļ	 		 		_
	LOAD		1a	in	100-2	in	IOK	1004	IN					<u> </u>	
	50		 	L	15:8	16.0	16.0	16.0	16.0	L					
	15			12.5	13.6	14.0	14.0	14.0	14.0				L		
	40		5:2	11.6	12.6	11.8	12.8	12.8	12.8						
	35		4. B	10.0	11.0	11.2	11.2	11.2	11.2						
	30		1.1	8.8	9.6	9.7	9.7	9.7	9.7						
	25		3.39	7.25	7.9	B.0	8.0	8.0	8.0						
	20		2.75	5.9	6.4	6.5	6.5	6.5	6.5					Ì	
	15		1.9	4 Z	4.6	9.62	9.62	4.62	4.62						
	10		1.4.2	2.95	3,25	3.3	3.3	3.3	3.3						
	5		.73	1.65	1.70	1.72	1.72	1.72	1.72						
	1		.15	,32	,33	135	135	175	.35						
	Pro	erdy	r = `	13	5	" A F	ART		47	IRNS	76 M	FT.)		
	50		2.05	3.3	,3, 5	3.55	3.55	3.55	9.55						
	45		1.7.	3.0	3.19	3.21	321	3.21	3.21						
	40		1.60	2.75	2.83	2.90	2.90	2.90	2.90						
	35		1.42	2.46	2.61	262	262	2.62	2.62						
	3.		1.21	2.07	2.19	2.19	2.19	2.19	2.19						
	25		1.0	1.75	1.85	1.86	1.86	1.86	1.86						
	20		, 8	1.41	1.49	1.5	1.5	1.5	1.5						
•	15		.61	1.01	1.09	1.1	1.1	1.1	1.1						T
	10		, 3 8	.725	.77	,78	,78	,78	,78				· ,		1
	6		.22	.3750	,4	, \$.4	.4	.4						1
			. 044	. 074	.0 R	.00	,00	.08	.08		-			1	†
				·····	····· ¥····										T
														†	+ i
<u>}</u>															

Book R-370

Page 12 12 0526 APPENDIX B

1914 - June II Apr 444-1949 - 1914 - 141 - 1

.

THE BENDIX CORPORATION RED BANK DIVISION EATONTOWN, N. J.

Test Report No. ESO 1068-1

Date of Test 5- 5- 6 1 /

By C. SWIGON R. WILLIAMSON

stant update day willing as if were to be

•

1	
	,
ENG. FILE	

THE BENDIX CORPORATION RED BANK DIVISION EATONTOWN, N. J. Test Report No. 250 1069-1

Date of Test_1-24-6/

By C.SWIGON R.WILLIAMSON

Title 3200 CYCLE ELECTRICAL POWER DISTRIBUTION TESTS

	<i>P</i> r	ecea	ure		5		" A	PART	╡──┤─	 			╄	
		ļ	R	Z	NPU	EED	KOF.	AG E	· 	 _			+	
	10+0		1.0-	10-2	100-	1km	Nr.n.	loor-	imm	 		_	\downarrow	
	50		.72	10	1.20	1.22	1.22	1.22	1.22	 				
	45	ļ	1665	1.03	1.10	1.12	1.12	1.12	1.12	 		_		
	40		158	.94	,99	1.0	1.0	1.0	1.0	 				
	35		,495	, 810	.880	.885	. 885	,885	.885	 				
	30		,425	710	.762	1770	.770	.770	.770					
	25		,360	1585	.625	,630	.630	.630	.630					
	20		.205	.465	.50	,505	,505	.505	505					
	15		,20	,304	,362	1365	.365	365	.365					
	10		.120	,752	.152	,255	255	.255	-255					
	5		,068	.115	.122	.124	.124	.124	124					
	1		.0130	.0135	,0752	.026	.026	,026	.036					
		Proc	edu	ne	#15		3"	AP	APT					
	50		. 625	1.0	1.06	1.08	1.08	1.08	1.08					
	45		,595	.945	,990	1.0	1.0	1.0	1.0					
	40		,460	,835-	1905	910	,910	,910	,910					
	35		, 395	.725	.780	.790	,790	,790	,790		Τ		Γ	
	30		.35D	.628	.670	.680	.190	,680	.680					
	25		,30	, 575	, 550	1555	.555	,555	,555			Τ	Γ	
	20		12 در	405	,437	.440	,440	,440	,440	 				
	15		.180	. 30	.322	.325	325	. 925	,325				<u> </u>	
	10		.119	. 1/0	.231	.234	.234	, 234	.234	T	T		Ī	
	5		,053	.079	,107	. 109	.109	,109	.109		1		Γ	
	,		,0110	.020	.022	,023	.023	,023	.013				ŀ	
			·				~~~~~			 	1			
	-				·····					 1	1	1	T	
•										-	1		1	
										 -+	\uparrow	Page		
						ENIGIN	EERING	COPY		 				

THE BENDIX CORPORATION

Test Report No. EBO 1669-1

Date of Test 5-25-61

By C. SWIGON R. WILLIANSON

····

--

					RED BANK DIVISION EATONTOWN, N. J. •								Date of Test 5-29-6/ By C. SWIGON R.WILLIA					
	<u>P. H</u> En	G. FILE																
	Title	320	00 C	YCLE	E	LEC	TPIC	AL_	Pow	ER	DIST	RIB	0710	N 7	est	<u>s</u>		
		PR	CED	URE		6	<u> </u>			T		1	1		<u>i</u>			
					IND	VCE	io v	OLT A	GE	ON		OWER	1.11	E				
		10	AMP	DC	LOAD	NO	3200	CPS		1					1			
			RIP	PLE														
			. 80	5+-						S	EE /	HOT	0 0	= w	VE			
			183	-+						5	HAPE	P	AGE	2.	•			
	. مر.	10	AMP	DC	600	D W	ТН 3	200	c PS					 	 			
			RIP	PLE						1					†			
		VOLTS	16.4	+-														
		YOLTS	16.5	-+														
							ļ							 	L			
		P	ROCE	DUR	F ≠	17	ļ			ļ	 							
			/	NDUC	ED	VOL.	AGE	ON	DC	Pow	ERL	INE						
				Por	VER	LEI	os	CA	GLE	Þ								
			AM	P DC	_601	0 1	0 3	100 C	PS									
•	<u></u>		RI	<u> PPL I</u>]						SEE_	PNO	<u>ro o</u>	= w	VE			
		VOLTS	1.1	+1	_ 						SHA	PE	PAG	F . 3	5			
<u></u>		VOLTS	1.15	-+	ii													
		4	0 AM	P D	- 60	AD Y	WITH	54	<u>, , , , , , , , , , , , , , , , , , , </u>	3			·					
			<u> </u>															
		VALTS	3.2	- <u>+</u>														
				-														
		M	ETER	NOS														
				E-65														
				6-56			<u> </u>											
		· · ·		K-116							·							
							·											
		1		ł	1		ENGINI	ERING	COPY	<u>.</u>		<u> </u>			Pages			
		Book	<u>R-3</u>	70	P	age 2	ε <u>ι</u> : Δο	21.0	F26 10 D						Page			
							14141	FEND		· · ·								

111 +

. .

÷

.

RED BANK DIVISION + THE BENDIX CORPORATION EATONTOWN NEW JERSET

Induced voltage affect on DC power line DC ripple with a 10 Amp DC load with no \$200 CPS and with AC load to provide 6 KVA, \$200 CPS output.

ŧ. •

3

With 3200 CPB 6 KVA Load 120 Volte 1 Divisions - 1 Volt

ESO 1088-1 5-4-61

I

I

Book R-370 Page 31 **.** APPENDIX B

se in the

RED BANK DIVISION - THE BENDIK CORPORATION

EATONTOWN NEW JERSEY

Induced voltage affect on DC power line with power leads cabled. DC ripple with a 10 amp DC load without \$200 CPS, and with \$200 CPS 6 KVA 120 volt load.

No \$200 CPS Load 4 Divisions = 1 Volt

With 3200 CPS 6 KVA Load 120 Volts 4 Divisions = 1 Valt

5-4-61

Book R-370 Page 21

PAGE-25 25 15 18 26 APPENDIX B

RED BANK DIVISION . THE BENDIK CORPORATION

EATONTOWN NEW JERSEY

Harmonic content using a 10 Amp 400 CPS 120 Volt load. Without 3200 CPS 6 KVA 120 Volt load, and with a 3200 CPS 6 KVA 120 Volt load.

. . .

No \$200 CPS Load 4 Divisions = 1 Volt

ESO 1068-1

5-4-61

With 3200 CPS 6 KVA Lord 120 Volts 4 Divisions = 1 Volt

APPENDIX B