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ABSTRACT

The transmission of digital information is a problem that has attracted

a great deal of interest during the past decade. In the beginning, transmission rates

were low and the accuracy required usually not too well specified. As digital

communications grew in sophistication, the requirements for increased speed and

accuracy in transmission grew also.

From the outset it was assumed that the speed and accuracy of trans-

mission was limited by bandwidth and Gaussian noise. It was, soon realized that

this was not a valid assumption for many systems. In particular, in the case of

digital data transmitted over a telephone channel it was observed that the accuracy

was limited by noise of a great amplitude that occurred only seldom and occurred

in bursts. This type of noise was named impulse noise.

It was observed that impulse noise occurs relatively seldom but when

it occurs it is of an amplitude that often far exceeds the signal. These observations

were put to use in the design of suitable signals to be trans'mitted. By coding

the information in the proper ways one can always correct the bits that have been

corrupted by the impulse noise. This, however, is done at the cost of adding re-

dundant information to the transmitted signal. Since the signaling rate is limited by

the bandwidth of the channel, this results in lowering the effective information carry-

ing capacity of the system. By constructing very long codes, this lowering of the

signaling rate can be made very small. Long codes on the other hand require compl-

icated coding and decoding equipment.

This is where we presently stand. If we want to prevent burst of impulse

noise of a certain length from corrupting the transmitted message, we must choose

a balance between reduction in channel capacity and increased equipment complexity.

The investigation carried forward in this thesis looks for a third way

out. It seeks a solution to the problem of obtaining the maximum transmission rate

subject to a fixed permissible error rate and a fixed equipment complexity.

The method by which this is accomplished is to use an error correcting

device (ECD) that examines the signal for signs that a burst of impulse noise is

likely to have occurred. The bits that are in doubt are erased and replaced by use

of a two-dimensional parity check. This method allows a few errors to pass un-

detected by the ECD and will therefore give a small but definite probability of errors

in the presence of noise bursts. Some of these errors can be corrected if the code

used has some error correction capability.



The purpose of the two-dimensional code which is used here is to

break the received string of bits up into sequences that are used as rows. By

making the rows sufficiently long the probability that one noise burst will cause

more than one error in any column can be made very small. A figure of merit,

M, is defined by which different transmission systems can be calssified as to

burst length. The problem will be attacked from the following point of view.

Given a permissible probability of error and the maximum channel

capacity an ECD will be constructed in such a way that will maximize the effect-

ive signaling rate.
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I. INTRODUCTION

a) Digital Data Transmission

The transmission of digital information is a problem that has attracted a great

deal of interest during the last decade. In the beginning, transmission rates were

low and the accuracy requirements usually were not too well specified. As an

example of this we may take teletype transmission. -The limits of acceptability

might vary from error rates of one error every other line to one error per page

between different operators.

Today with computer to computer data transmission, very much lower error rates

are usually required.

In the early analysis of data transmission systems the speed and accuracy of data

transmission was assumed to be limited by bandwidth and Gaussian randurn noise.

It was soon realized that this model was not a very accurate one. Noise of a

particularly troublesome kind was observed.

This type of noise occurred in bursts with relatively long periods of quiet. It

had a peak amplitude very much greater than that of the Gaussian random noise.

Since the shape of these noise bursts often resembled the impulse response of the

transmission channel, this type of noise was termed impulse noise.

In the case of Gaussian noise, errors occur with a random spacing. A string of

consecutive errors is therefore not very likely. Error correcting codes such as the

Hamming code were developed based on the Gaussian noise model. Since the most

important type of noise turned out to be impulse noise where the probability of

consecutive errors is very great, these codes did not perform very well.

New codes were developed that worked well in the presence of burst type noise.

For these codes to be effective they had to contain a large number of digits per code

block.' This leads to very complicated coding and decoding equipment. For this

reason these codes are not frequently used in comnmnunications systems.

If the code is to be able to correct long bursts or several bursts in a short time

interval the redundary added to the information digits must be great, thereby causing

the effective signaling rate to be low, or the code block must be very long resulting

in very complicated equipment.

Looking for a way to avoid some of the problems associated with lowering of the

signaling rate or equipment complexity this investigation seeks a different solution

to the problem. The maximum signaling rate is sought subject to the constraints of

a given error rate and equipment complexity.



2

b) Organization of the Investigation

The purpose of this investigation is to seek a more efficient solution than is

presentlyavailable to the problem of reducing the effects of interference to data

transmission. More efficient in the sense that it is simpler to implement or requires

less redundancy to be added to the data bits caused by impulse noise. The investi-

gation is divided into two parts. The first part deals with the nature and statistics

of impulse noise and the selection of suitable mathematical tools for this task. This

will be done by observing certain parameters of the noise and forming a model from

which these parameters can be obtained.

The second part of the investigation is concerned with a system which we will

call an Error Correcting Device (ECD). The parameters obtained in the first part

of the investigation will be used to calculate the performarnce of an ECD system and

to compare the performance of this system with a symmetric binary transmission

system.

Finally there are some ideas on how the performance of this system and in

general any digital data transmission system that operates over a nearly linear

channel can be improved. These ideas are based on results obtained in the course

of this investigation.

c) Impulse Noise Characterization

The communications channel under investigation can have either a linear or a

non-linear amplitude response. In this investigation we will treat only the linear

case. The non-linear case can be treated employing similar techniques but the out-

put from the channel must be evaluated when both signal and noise are present at

the same time. Many channels employing active elements are nearly linear over

a substantial dynamic range and will therefore also fall into the category of linear

systems.

Only two particular types of channels will be discussed here. They are the channel

which has the transfer functions of an RLC circuit and a telephone circuit made up

of type N carrier.

Type N carrier systems have widespread application in the Bell Telephone

System.

The two most important parameters of impulse noise are the number of bit

intervals it takes for a noise burst of a certain peak amplitude to decay to a certain

level and the probability distribution of the peak amplitudes of the noise bursts.
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To arrive at results that allow us to calculate these parameters we will use the

following model for impulse noise. The impulses picked up by the channel are

assumed to be perfect impulses and the resulting channel output is the impulse

response of the channel between the point where the impulse entered and the

observer.

A figure of merit for the system, M, is defined. M is the maximum number of

bits that may be in error due to a noise burst resulting in a certain- ratio. S
N

is the peak amplitude of the signal and N is the peak amplitude of the noise. M
S

is therefore a function of the - ratio but comparison can be made between different

systems once a value for R ratio is selected.

IM can be evaluated from the transfer function of the channel for the various data

modulation methods that may be used. If a code that is sensitive to burst lengths

is used, Mvi will be useful in synthesising the code. M is a suitable figure of merit

for a binary system. The ECD requires that the received signal voltages are with-

in close limits of its expected value. Therefore a new figure of merit, M 1 ,is

defined as the number of bit intervals the noise causes the voltage to deviate more

than 10 % from its expected value. The peak amplitude distribution of the noise

bursts is also of great importance but it does require further measurements to be

made on the channel. In this case instruments have been built at Bell Telephone
10

Laboratories and at MIT Lincoln Labs that are triggered on each noise burst

above a certain level and measures the peak amplitude and number of occurrences

in a certain interval of time.

When a function that closely approximates the peak amplitude distribution has

been selected and the impulse response of the channel. is known the probability

density function of the sample voltage at the detector output, or if an integrator

is used at the integrator output, can be calculated. The probability density function

of the noise output voltage will allow probable error calculations to be made. In

particular, it may point the way toward improved system performance.

d) The ECD

The ECD is a system that is designed to give the maximum effective signaling

rate in the presence of impulse noise and subject to limitations on error rate and
equipment complexity.

The basic ECD consists of a decision device with three regions, one, zero,

and erasure,used in conjunction with a relatively simple error detecting code.

Ideally all zeros and ones are correct and the erasures represent suspisious bits

that might have been in error. The erased bits are replaced cyclicly by a shift

register, until the error detecting code is satisfied. If the number of erased bits
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was less than the error detecting capabilities of the code, the word is now correct

since the erasures indicates the location of the suspisions bits and the error de-

tecting code investigates if there are still errors present. A block diagram of a

digital data system employing an ECD is shown in Fig. 1.

Fig. 2 shows a probability density function for the second bit interval from the

start of the impulse burst when a typical telephone channel is the transmission

medium. The sample voltage is taken at the integrator output when a zero was

transmitted. Fig. 3 shows the probability density function at the integrator out-

put when a one was transmitted. Actually all zeros and ones are not error free.

To make the analysis more accurate these errors must be accounted for as well

as the errors caused when the number of erasures exceeds the error detecting

capabilities of the code. To improve the efficiency of the ECD by minimizing the

effect of the errors in the zero and one decisions a code with some error correction

capabilities is used.

In the example used in this investigation a code with a single error correcting

single error detecting or triple error detecting capability will be used.
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II. IMPULSE NOISE CHARACTERIZATION

a) Burst Length Analysis

Digital information is usually not transmitted from one place to another over

large distances as a video signal. Usually the video information is used to modulate

a carrier in some way. To what extent the transmitted signal is contaminated by

impulse noise existing in the channel is dependent on what system of modulation is

used.

At the outset it is useful to define certain quantities. The signal to noise ratio
S will be defined as the ratio between the peak signal and the peak impulse noise
N
voltages. The quantity M, a figure of merit of the transmission system, is

defined as the maximum number of bits that may be in error due to an impulse

resulting in a certain ratio.
N

Two different channels will be investigated for the burst length analysis. The

first will be one with the response of a simple RLC circuit. This approximation

is often usable as a first approximation to systems that do not have loaded cables

or much filtering. The second type channel we will consider is a type N telephone

carrier channel. This type of carrier is very much used by the Bell Telephone

System for medium distances.

We will assume that each noise burst is caused by one impulse and that the

frequency of occurrence of impulses is low enough so that we do not get overlapping

bursts. Experimental evidence obtained by Bell Telephone Laboratories10 indicate

the validity of this assumption. The bursts are assumed to be caused by perfect

impulses so the received noise bursts are the impulse response of the intervening

part of the channel. It will be shown later that the statistics obtained are not

excessively sensitive to the actual noise burst shape so the transfer function of the

intervening part of the channel can freqendy be lal-n as the transfer function of the

1khole channel.
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Xla. 1. Channel with the Response of an RLC Circuit

Many practical transmission systems can be approximately

represented by a channel with the transfer function of an RLC circuit. Since this

channel has a simple impulse response it is well suited to demonstrate the ideas

behind this analysis. This type of channel is introduced heie mainly to concentrate the

use of the figure of merit, M. The response of such a channel to an impulse is

n(t) = Ae -a(t-T) (2-1)cos C(~t + 0)(-)

The parameters a and w, are determined by the transfer function of the systerm.

A is a function of the energy of the impulse. T and Q gives the timing of the

occurrence of the impulse. The impulse noise is therefore treated on a mixed

statistic deterministic basis. The shape of the noise burst, itself is deterministic

while the amplitude, A, and time of occurrence, as given by T and 0, are random

variables.

One word of caution is required here. Since the noise bursts obtained

using the proposed impulse response model for the phenomenan are not exactly

equal but only very similar to many of the actual noise bursts observed, any

attempts to take advantage of this knowledge of the burst shape will not be very

suces sful.

The figure M will now be calculated using several different modulation

methods and using the RLC channel. For more complete calculations, the reader

is referred to the appendix.

a. AM Envelope Defector - System I

The received signal is:

s (t) = S ( I + cos W t) Cos (ot (2-2)

Bit interval = T 2T r

m

Time required for the noise burst to decay to a value less than i- as

required for unique determination of the signal in an on-off carrier system.

i ZA (2-3)tI = -L I

t 1 I S (2-4)
M- =_ -=Z N

M is independent of whether a string of zeros or a string of ones are

transmitted.
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b. Vestigal Sideland. AM.Synchronous Detector - System II

n(t) = Ae - a (t - T) cos (W2t +9) (2-5)

s(t) = [(cosWt;+ Cos ( mo (2-6)

2 o

M 2 n i S (2-7)
T 4 N

c. AM& Fynchronous Detection - System III

S 1 S
M - - in (2-8)

d. PSK. Synchronous Detection - System IV

s(t) =S cos 0ot (2-9)

M - ins (2-10)M 1 In- S

e. PSK. Differential Phase Detector - System V

s(t) = S cos W0 t (2-il)

Detector output: V(t) = SI cos Wot - S2 cos [w 0 t- 2] (2-12)

M = _I- IIn S (2-13)rr N

When we use the simple RLC model for the channel we obtain a closed

form expression for M that allows direct comparison between systems. We see

for instance that the burst length in a PSK system is one bit longer when a differen-

tial phase detector is used as compared with a system employing synchronous

detection.

In the following, in connection with the ECD, we shall have occasion to

use a 'quantity MI, IM I is defined as the number of bit intervals it takes the

detector output to settle down to within . 10%o of the correct signal value. When M

is represented in closed form, M i s found simply by replacing s by 1 s

For the systems studied previously we obtain:

System M -- Lin - +-L In 10 (2- 14 a)
S I1 -N - r

2 In 2 2-1
System II M 1 = - -L-In. + -- in ZO (-14b)

1 S 1 10 (2- 14 c)
System III M - T In s + 1 In
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_ 1 S 1System IV M I.In - + -I In 5 (2-14d)

System V M - 1 , -S + 1, 5 +1 ( - 14 e)

These values of M together with M, for an actual telephone channel

composed of type N carrier are platted in fig. 6.

The values used forplotting the curves for the type N telephone channel

with synchronous demodulation are obtained from fig. 8, 9 and 10 and from the

asymptotic expression for the impulse response of a telephone channel. Since se

those curves are plotted for a unity peak amplitude noise burst they represent the

actual noise oatput voltage from a symmetrical binary channel with a unity signal

to noise ratio.
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ia. 2. Actual Telephone Channel.

We will now attack the problem of impulse noise bursts in an

actual telephone carrier channel. If necessary the problem may be split into

two parts. One transfer function can be used for the carrier channel to the central

office and another from the central office to the subscriber, In this way the noise

burst picked up along the carrier channel will have a form different from the one

picked up in the central office. If an open wire line- is used between the subscriber

and the central office, this may be necessary. If on the other hand loaded cable

is used for this run, use of the overall transfer function will usually suffice.

The transfer function of a typical medium distance telephone connection
containing type N carrier channels is represented by the amplitude and phase

response curves shown in fig. 4 and 5. 2

The envelope delay of this channel can be approximately expressed as:

6 d = K (1700 - f) 2  (2-15)

Where K = 10-9

The corresponding phase vs. frequency response is

f= 6d = i0-9 f(1700-f) 2 df

4= .33 . 10-9 (f - 1700) 3 + C

Since we are interested only in relative phase distortion we may set

S(1700) = 0 : C = 0

And obtain:

S= .33 . 10-9 (f- 1700) 3 (2-16)

The amplitude response of the channel is approximately 300 to 3000 cps.

but this has less effect on the transient response that the phase distortion.

We will assume that the modulation system to be used is phase shift

keying (PSK) with synchronous detection. This system was shown in fig. 6 to have

the best figure of merit for the IPLC channel and is a linear system where super-

possition applies. Since the synchronous detector is a linear device, our channel

will appear to have a 1300 cps band with and a phase function

p = .33 . 10-9 f3 (2-17)

When viewed from the video output terminals of the demodulator, the

transfer function of the channel can therefore be approximated by

Hj( )j w e-a J - jb 3W3 (2-18)
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The Gaussian amplitude characteristic is a res6nable approximation tog. 5

and leads to a closed form answer. It is therefore chosen.

The parameters a and b are calculated as:

a2 -2 ln
3db -

33

And .33-10- (ZT)b

Therefore"a = 6. 7 10 -

b = 1.54 10-4

The impulse response of a channel with the transfer funtion

22 ' 33
H(jw) ea

is:

y a at 2-19
3 6/ -5b e 3b I J1 (u) + J (u)]

where:
2 1 a 4] 3/2 3/2

Uj= -7372 1--F-- -Ski) J ý 2. 10 t

(t) ;:zt1 e 5 (2.10 t + J I (2. 0 t 5 ,tin sec. 2-20

This expression for y(t) even though, it is in closed form is still too

complicated for easy evaluation. It can be shown to be closely approximated by the

.4ymptotic expression:

y(t)= At-e 4 tcos 6.3t3/2+.7] , tisinms. 2-21

for t > 2.5 ins.

The development of this approximation is 'shown in the appendix.

A plot of y(t) for o<t < 2.5 ms is shown in fig. 8. The origin

has been shifted slightly to make the function causal.
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I1b Peak Amplitude Distribution of Impulse Noise

When one considers the various ways by which an impulse can enter the

transmission channel one concludes that impulse noise is usually picked up from

the electromagnetic fields generated by the noise source. If the noise source was

a piece of wire that was radiating, the potential in the vicinity would be roughly

proportional to - log x where x is the distance between the pick up wire and the

noise source. This is the closest form of coupling that would exist in a telephone

plant.

In the majority of cases the distanzes between the noise sources and sinks

axe so great as to make them appear more nearly as point sources. This is the

kind of coupling one would expect to get with an arching relay contact or with a

distant thunderstorm.

In the case of point sources the resulting potential is proportional to

In this investigation we will use the 1 law for peak amplitude pickup.X

Besides being an appealing physical concept it also leads to expressions

which agree well with experimental evidence.

In the following we will assume that the noise sources are located with

probability c at any distance away from the point where the noise is picked up

by the channel but that the noise sources are restricted to lie along the x-axis.

All impulses are assumed to be radiated with the same strength. Stronger

impulses can be considered as veaker impulse occuring nearer. This assumption

is therefore not very restrictive. The assumptions about the geometrical

arrangements are quite reasonable since the physical layout of relay contacts is

usually as a row and in the case of overhead wiring it follows the surface of the

earth.

We will call the peak amplitude of the observed impulse noise burst, V •o

The minimum peak amplitude that is counted as impulse noise is V min ' V main

is the voltage resulting from an impulse occurring at a distance X away from the

channel. Based on these definitions and assumptions we obtain the following

results:

p(x) = (2-22)

0
fp (x) dx - x 1
0

V
V-0 (Z-Z3)

V 0
o0Vinir•f -= X V 0

0

P(v)-- p(x) (Z-24)
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V
dv 0--x2d .--2 dx

P(v) = E X2
V--

P(v) = E Vo-----
v

P(v) = mnin
(2-25)

where:

fP(v)dv=-VnI V i
Vmin m vVmin

P(v) is therefore a properly normalized probability density function.

To compare this expression with available data we must find the

distribution function which is usually the quantity that is measured.

The corresponding distribution function is

P(V) 'Pr[ v > V1 ] - Vmnin

V.
P(V)= mi (2-26)

This function is of the same form as the one deduced empirically
Ifrom experimental data by Mertz . The function is compared with data published

2 10by Alexander in fig. 7. Results obtained by J. H. Fennick at Bell Telephone

Laboratoies from measurements made on a large number of switched telephone

circuits along the East Coast also confirms the form of P(v). From these

measurements it seems like an equation of the form

P(v) = k
V7

would fit the data even better. As will be shown later, in the section on

Deviations from the Assumed Conditions, the original form leads to more

conservative estimates of error rates and will, therefore, be used in the

following calculation since it represents an upper bound on the observed

phenomena. The question of the exponent of V will also be treated under
5 Deviations from the Assumed Conditions w.

In telephone systems a 600 0 load is normally used. In this case zero
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dbm corresponds to . 774 volts. Using Alexander's data to determine the

constant Vmin, we obtain the expression:

P v > V 0= 02 for V1 Vmjn (2-27)
-V1-

This corresponds to a normalization such that P IV > V1] -M average

number of impulse counts per second that exceeds V 1. In this case a 15 min.

averaging time is used.

Fig. 7 shows Alexander's results plotted together with

[v> V1 .0024

And P rv >V] 000262 
(2-28)

L ]
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lIc. Integration Output Voltage Probability Density.

This section will deal only with the telephone channel. The same

exact method can be used in the case of any linear channel and modulation

method. In the case of a nonlinear channel the same basic method of approach

can be used but it will be necessary to handle the noise and the signal simul-

taneously since superposition does not apply.

It is seen from fig. 6 that the figure of merit for the system, M1 is

considerably improved if the defector output is integrated before sampling as

compared to a system simply sampling the detector output. It will be shown

later in the section " Effect of Integration on the Noise Output Voltage from the

Demodulator" that integration after demodulation greatly reduces the expected

burst lengths. This section will also go into the reason for this phenomenon.

The methods used apply to any linear system even though the spesific

results are for the system shown in fig. 1.

If an impulse occurs within a bit interval, its peak amplitude and time

of occurrence within the bit interval are random variables. Since we have already

selected a suitable peak amplitude distribution, what remains to be evaluated is

the effect of the randomness of the time of occurrence.

For this part of the investigation numerical methods were used with

the help of an IBM 650 computer.

The impulse response of the channel when viewed from the detector

output is
'I 2 4 F 5 )3/ • (2-20)

l(t) = A t J1 (2. 105t3/2) + JI (2. 105t3/ tin sec.S101

This function for t < 2. 5 ms and unit peak amplitude is plotted in

fig. 8.

For t > 2. 5 msI the asymtotic form1 - 41t r 3 /2 1 7 i rs Z l
y(t) = -. 52 6 t - Ie - cos {6.3t3 + .7 ] tiims. (2-21)

is used. For computational reasons and also since it represents a logical choice

in view of the available bandwith, the transmission rate will be chosen equal to

1000 bits per second.

We will assume that any time of occurence of the impulse within the

bit interval is equally likely. This is in agreement with data published by Mertz.

The first calculation to be done is the evaluation of the integrator

output due to a unit peak amplitude noise burst occurring at different times within
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the bit interval. Initially a power series approximation to Y(t) was tried.

This power series was integrated and evaluated to give the integrator output at

the sampling intervals.

This method was found difficult to work with and gave results of

insufficient accuracy. It was therefore abandoned and numerical integration was

used instead.

The output of the integrator is designated Z. Z is the output atn
the sampling instant at the end of the n'th interval. The impulse response was

sampled at 20 equally spaced times with the I ms bit interv'al and the integral

evaluated as:
tinl + 0[•

z f ydt= Yk- (Yk- Yk + 1) (2-29)
n t k= 1

The impulse was assumed to have occurred at 20 equally spaced

times within the bit interval.

The integrator output voltage z is evaluated for each possible time

of occurrence. Fig. 9 and 10 shows z 1 and z 2 for the two first bit intervals,

as a function of time of occurrence of the impulse within the first bit interval.

The 20 values of 2 for each bit interval are now arranged in

increasing order. Since each of the Z0 possible values are equally likely, each

is assigned a probability of From these values the probability distribution

function of Z for each bit interval is found. P( z,) and P( z2 ) are shown in

fig. I1 and 12.

The functions P(z n) are now differentiated to obtain the corresponding

density functions. p(ZI) and p(Z 2 ) are shown in fig. 13 and 14. For further

calculations, it is convenient to have analytic expressions for Pn(z) over the

various bit intervals after the impulse has first occurred. This is conveniently

done by curve fitting on a computer. In this operation considerable care must

be exericsed so that the resulting polynomials are good approximations to the

desired functions. Since no further differentiation of the P (z) function isn

required, the requirements are not nearly as strict as if the polynomials had to be

differentiated. pn(z) is now in the form

Pn(z)= akzk + ak-l k- ... aI z + a (2-30)

The output from the integrator due to a noise burst of unit peak amplitude

is Z. Therefore, the integrator output due to a noise burst of peak amplitude V is

given by:
u = v z (2-31)
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Since Z and V are independent random variables

P(z, V) P(z) P(V)S P~) 1 )3zP (u, v) =P( 1) P() -z 2-2

And: P(u) f P(u,v) dv
-00

Go

P(u) n f P(u,v) dv
-(D

POoCI u n dv (2 -33)p~n) f P(v)P
-00

On different occasions the probability density function of z in the .Tt th

interval may be denoted.

P(Z n) or p n(z) according to which notation which is most convenient.

Substituting the expression for P (z) in the equation for P (u) we obtain:
n n

i 00f° u k+ dv (-4
Pn (u) Vmn Iak () ....... a dv (2-34)

R =Max of Vmiri or U
max

P (u) V- M in 1-(, a .u. a ] 0 co

Max of V min or -u
LVmi Z max]

For u < Z:max Vmin we obtain a ktth order polynomial in u. Plots of

Pl(u) and P 2 (u) are shown in fig. 15 and 16.

The most interesting also most useful behaviour of pn(u) is for

u > Zmax. Vmin. The signal levels we will be dealing with are in the . I V range

As can be seen from the graphs fig. 15 and 16 Zmax. Vmin. is less than I mv

which is small compared with the expected signal leves that are in the . I volt

range. Subject to this condition we see that

F u ak k + a.0 zzmaP~ VZk + .... ma
Pn~u = min I max UT z

This equation is of particular simple form

C
P n(u) = -- n (Z-35)

We see that the form of equation 2-35 does not depend on the actual

impulse waveform in the asymptotic region.

It is easy to show that this is true for any p(z) as long as the function is

well behaved.
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Pn(u) = nF(z) P(v) dv (2-36)
n

max

for: u > Zmax V~nin.

But: U = zv

The refore: PnU)= p(u dv
P(u) f0 P () P(v) --

"•max

V rain.

vd

P(u) u m (a)dv (2-37)PnU)-V m'in Pn( v -
U V

z
max

Since u is a constant in the integration

dv d. d

Let: - L
v

Equation 2-37 now becomes:
z

V max
Pn(u) - f Pn(L) L dL (2-38)

The integral in equation is a constant.

Therefore:
V miin

Pn(u) - -7-. const (2-39)
u

and the statment is proved.

In the appendix an approximate method by which p n can be quickly

approximated without the use of a computer is developed. This method allows a

quick estimate of the impulse noise performance of a particular system before

more accurate calculations with the aid of a computer are carried out.
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'JOINT PROBABILITY DENSITY FUNCTIONS

Pn (u) is the probability density function for the integrator output

voltage that is in effect in the n'th bit interval after the start of the impulse,

regardless of what happened in the previous n-I bit intervals. For many types of

codes it is important to have a probability function relpting the various bit intervals.

For this reason the joint probability density function for the noise output voltage

from the detector at the sampling instants will be developed.,

In developing the joint probability density function we will use

numerical methods in a similar way as was done for pn(u) . Let m and n denote

two bit intervals.

mn>n

We evaluate zm and z for 20 equally spaced times of occurrence of the impulse

in the first bit interval. Next we select the corresponding values of z and zn

and form the function

zm f(Zn) (2-40)rn

If the function 2-40 is well behaved and single valued the conditional probability

density of zm given z isn

p(znl zn)= 6 [z - f(z)J (2-41)

The probability density of z was calcultated in the previous section. The joint

probability density of z and z is therefore:

P(zn , zrn) =6 [ - f(zn)] p(zl) (2-42)

Since zn is independent of v we see that

P(zn , Zrm, v) = p(z n zM) p (v) (Z.-43)

We are ultimately interested in the probability density of Un and U and must

therefore make a change of variables.

Urnum vz - f fr(u')
um m m mr

un vz , z n -n f (u)n n n - n (-4
uk (2-44)

Uk =v , v ui frm(u)
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Here uk is a dummy variable introduced only for the purpoce of

making the transformation between equal numbers of variables. We obtain the

probability densities of the u' s as

p(un u U k) = P(z zm ,v) JI (2-45)

where

Of n f Ofkn m k

WJ- Fu- 7
n n n

n 0 fm 1k I 1 (2-46)TJ = --TU= --7 (2--6z
m m m Uk v

Of Of Ofkn m n

k k k

We now are in a position to obtain our desired result

p(un, Ur) = p(zn m z , V) 2  dv (2-47)0 m v

Because of the impulse in equation 2-41 , equation 2-47 reduces to
U

P(un Ur)P (--) p(vo) -7 (2-49)
0 v

0

where v is the solution to the equation:
U

U - v f(0 ) n 0
0

From equation 2-49 we can form an expression for v in terms of the U's. for

values, of U and U subject to the conditions:n mn

0_<u V. Z
n mrin n max

0<u V~ Z
m main m max

v = F (u n, uM) (2-49)

Upon substituting this solution back into equation 2-48 an introducing the probability

density of v we obtain the final result,

p(un u) Vn (Fn, m) 4 pn un (2-50)
n' mn' m

To conclude this section it is of interest to investigate p(u ur)M
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for the most critical intervals, n = , rn = 0 As a first order approximation to

equation 2-40 we obtain:

z2 .5-z, (2-51)

for:

0<_z <.5

0<zz _<.5

From equation 2-5 1 we obtain

v 2 (uI+ u 2 ) (2-52)

Substituting F1 12 back into equation 2-50 we get

in (2-53)2 16( ul + u.) -U + u2

"We not that equation 2-53 is of the form

P(u 1 ' u2) = f(ul ' un) (2-54)

This expression is seen to be similar to the asymptotic expression for pn(U) which

is
C

(u) = n
u

Since it is a function of two bit intervals one might resnably expect equation 2-54

to be to the fourth power rather than the second.

p(Un, urn) will not be used in the synthesis of the ECD system since
the correlation between errors in adjacent bit intervals is not of importance here.

It is needed for evaluate the performance of certain codes and also to evaluate the

imporovernent in performance that can be expected using the method described in

the section " Further Improvements of the ECD"
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SYNTHESIS OF THE ECD

The ECD system receiver

The ECD system receiver is shown in fig. 20. The modulation method that

will be used is phase shift keying (PSK) since this system lends itself well to analysis

and has the shortest burst lengths. The maximum transmitted signal level on a

telephone channel is -4dbm. This will be assumed to be the transmitted power level.

The average loss over a medium distance telephone circuit is 15 db resulting in a

channel output level of -19dbm. Into a 6000 load this is . 123 volts peak. The output

from the synchronous detector is therefore +. 123 V corresponding to a zero and

-. 123 V corresponding to a one. Since the integretor has a gain of 1000, and the

integration-time is one ms, the integrator output is +. l23Vfor a one and -. 123V for

a zero in the absence of noise. The integrator is followed by a decision device with

three output leads. The decision as to which lead should be activated is based on the

integrator output voltage, u, at the sampling instant as shown in figs. 2 and 3.

Estimation

When a noise burst occurs and a digit is transmitted we do not know that

the burst has occurred nor do we know what the transmitted digit was. We must

rely on the detector or in this case the integrator output at the sampling instant to

inform us about the likelihood of what noise voltage has been picked up and which

bit was transmitted. The sample voltage may be in one of five regions corresponding

to one, zero or the three erasure regions. Consequently we are faced with the

problem of testing between three possible hypothesis.

This problem can be simplified by taking advantage of the symmetry involved

in this situation as shown in fig. Z and 3. Since a one and a zero are mutually exclus-

ive, only one of the two probability densitites pn(u/ 1) or pn (u/ 0), can be in effect.

We will assume that zeros and ones are equally likely as is usually the case in binary

communications systems. By taking advantage of the symnmetry we will reduce the

three possible choices to two.

We will choose as our two possible hypotheses that the output from the

detector is correct, HI, or that it is incorrect, Ho. HI therefore includes the

cases where the received bit is the same as the transmitted bit and when an erasure
is received regardless of what was transmitted. H only includes the case where the

received bit is the opposite of the transmitted bit. This corresponds to the case

where the decision device does not catch an error and is knows as an error of the

first kind. We will designate this type of error by a or a where n refers to the bitI n
inferval since the start of the impulse.
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When a signal is received we will designate the probability of the erasure
in the received bit interval or by P or Pn" We are now ready to apply the hypothesis

n
test to the integrator output

b
CLn f pn (u/0) du (3-1)

a

where a and b are the decision thresholds as shown in fig. 2 and zeros and ones

are equally likely. The probability of an erased bit in the n'th bit position is

-b a 00

n = f pn (u/i1) du + f pn (u/l) du + fPn (u/ 1) du (3-2)
- 0 -a b

according to fig. 3',

Since an << Pn we can make the approximation that

a co

Pn f . pn (u/l) du+ f Pn (u)du (3-3)
-00 b

The code that will be used in connection with this investigation is a 25 x 32 bit code

which breaks up the bursts as far as the coding is concerned since the error correc-

tion is done along the columns while the bits are read in along the rows. For this

reason the correlation between errors or erasures is the same burst are of no

importance to the average error rate since the arrangement of bursts within the

code block is random. This subject is discussed by Feller and others.

As will be shown in the section on coding, errors in the output can be

caused by an excess of errors of the first kind or an excess or a combination of

both. It will be shown that the error rate E equals:

E = EP + E a + EaL (3-4)

Where EP are errors caused by an excess of erasures, EB are errors caused by

an excess of errors of the first kind and. The object of the decision test is to

minimize E. An analytic method for this might be worked out but would be

analytically complicated and successive trials has been chosen as a relative-

ly quick way to solve the problem. The solution can be obtained the following way.

a) Select a value for a.

b) Calculate the minimum value of P for this value of a.

c) Evaluate the error rate E.

d) Repeat the calculations for a different value of a.
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This method will quickly lead to an optimum choice of a and b, the decision

thresholds, such that E is a minimum.

As a guide rule to the selection of a value for a that will minimize E the

following statement can be made.

E will be close to its minimum value when

EE (3-5)

That this is so can easily be seen if one realizes that there exists an inverse

relationship between Ea and E . Let us assume that E. >E As E. decreases

E will increase. A point is reached when E will account for most of the errors.

Since

E = Ea + EP + EaP (3-6)

the error rate will be almost independent of Ea and nothing will be gained by increas-
ing E P further.

It is therefore to be expected that the error rate is close to a minimum when

the three terms are about equal.

If Eap is very different from Ea and E the code that is used is probably not

the most efficient under the given circumstances. We will now show the method by

which the calculations of optimum threshold are carried out.

Since we are not concerned with corrolation between errors the probability

of an error of the first kind is appriximately:

n

S= La (3-7)

As we see from fig. 19, this sum converges very rapidly. We need therefore

only take into account the three first terms.

S= 1i + a 2 + a 3  (3-8)

In the case of the telephone channel we are investigating, we have shown

that the signal levels at the output of the integrator can be expected to be . 123 volts

at the sampling instant. The probability densities at the output of the integrator at

the sampling instant due to signal plus noise when a zero was transmitted are
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calculated as previously explained to be:

pf (/ 0) 2. 07.10- 4

(u +. iZ3)2

u< -. 125
4. 55610-4 or (3-9)
(u+ • 123)2 u> -. 121

p3(U/0) 
4.09. i0-6

P3 717712)(u +. 123) 2

We notice that p3 (u/ 0) is already small campared io p1 (u/ 0).

The probability densities of the integrator output due to signed and impulse

noise for the three first bit intervals following the occurrence of the impulse are

calculated to be:

-4
S * .07. 0

(u - •.123)

4.55.10-4 u> A25

p 2 (u/ 1 ) ( - or (3-10)(u - . 123)2

(U ) 4 . 0 9 . 1 0 -6- 
"

p3 (u/1) -
(u - .123)

After making several tries it was found that a = 2. 10"7 results in an error

rate which is close to a minimum. This value of a will therefore be used to illustrate

the method by which the threshold values are selected.

The problem is, given a= 2. 10-7 find threshold levels a and b such as to

make P a minimum. The probability densities as given by eq. (3-9)and (3-iO)are

for a one sec. interval. Since the bit rate is 103 bits per sec. eq. (3-9) and (3-10)

will be multiplied by 10-3 to give the respective probability densities per bit. This

is in good agreement with experimental data reported both by Mertz and Fennick.

We will assume that a one was transmitted and calculate the probability of

receiving a zero.

Since pn (u/ 0) is of the same form for all n we can sum before we integrate
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and obtain:
3 b

CL = c f du (3-1i)
n= d a (u+.123)2

c a + .123 - (3-12)

This equation is plotted in fig. 18 for a = 2. 10-7 to show clearly the relation-

ship between a and b for a fixed a.

Any combination of a and b along this curve will result in the same value for

a. The desired value is the one that minimizes r3.

a Co

c f du + f du (3-03)
-Co (u - .123) b (u- .123)

where c c 1 + c2 + c3 since : c < < i for n = 1, 2, 3.

C + 1 l(3-t14)
1 = 12. 3 -a b ' - . Z

This equation is plotted as a function of a for a= constant in fig. 18.

Fig. 18 now allows us to choose the optimum values for a and b. Fig. 18

also shows how sensitive the erasure rate is to threshold location.

From the values obtained for a and P the error rate, E, can be calculated

as is shown in the section on Error correction capabilities of the code.

This process can now be repeated until a minimum value for the error rate

is obtained.

For the case of the telephone carrier channel under discussion and for

CL 2. 10-7 the minimum erasure probability is any one bit interval is found to be
-41.5. 10 . The corresponding error rate is calculated in the appendix to be

E = . 9.*0"9. In this case the threshold values are seen from fig. 18 to be

a= .125

b= .133

with the channel centered at + . 123 volts for one and zero.

It is of interest to note that the threshold levels are not symmetrically

located with respect to the signalling levels.
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Coding

The code that will be used in this investigation is a two dimensional block

code with one simple parity check along each row and a cyclic Hamming code along

each column. This type of code was picked because of simplicity of implementation

and its suitability for the task in question. The received bits are read serially in

along the rows. Since the errors due to impulse noise tend to come in bursts the

rows are made longer than the longest bursts that can be expected. The maximum

burst length equals M for a simple bymrnmetric binary channel or approximately Mi

for the ECD system. From the peak amplitude distribution we can determine the

maximum peak amplitude noise that will occur sufficiently seldom to be tolerable.
S

This gives us the minimum - ratio that may occur and subsequently an M i max

can be found. To be on the safe side we may let the rows be from two to several

times IMf max.

In the particular example used to illustrate this investigation it is seen from
S -

fig. 6 that a ý ratio of 10-4 is required to give rise to a burst lasting six bits. By

extrapolating fig. 7 we find that the probability of this happening within a one second

interval is 1.5. 10-7 if we use curve II.

It is important to make a distinction here. 1. 5. 107 is not the probability

of a six bit long burst but the probability that such a burst is at all possible. The

major part of the error control is done along the columns. Since the probability

that one burst will cause two errors or erasures in the same column is vanishingly

small we can consider the errors along the columns to be independent. The code

therefore allows the errors or erasures to be considered as if they were caused by

random noise.

Let the code block have m rows and n columns. The redundancy along each

column is:

R= m (3-15)
w

where w is the number of information digits per column and m is the total number

of digits per column. The number of check bits is k where:

k = m- w (3-16)

To construct a single error correcting code we proceed as follows: Since the

checking number must indicate which bit is in error and what it should have been

the checking number must describe m + i different things.
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Therefore:

2k> w+k+ i (3-i7)

or
Zm

w< m (3-18)

By use of this inequtality we can determine the least amount of redundancy required

to construct a code that will be able to correct a single or detect a double error. If

we add one additional check bit to the column this code will be able to detect three

or correct one and detect one error.

S
From fig. 6 and 7 we see that a ratio of one resulting in not more than a

maximum of 6 erasures will happen very infrequently. As was calculated in the

beginning of this section on coding conditions for this porribility will exist only

1.5. 1-7 of the second interval. A row length of 25 bits is therefore sufficient to

break up the bursts.

To minimize the redundancy of the rows let us satisfy the inequality with

u+w p (3-19)

where
p + 1 = u (3-20)

This equation is satisfied for

p= 3f, u 5, w= Z6

resulting in a column with 26 information bits, a 5 bit Hamming code and one parity

check, bit. The final code block is a 25 x 32 bit matrix. It has the capacity to

detect any three or correct one and detect one bit per column.
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Error Correcting Capability of the Code

The code as developed in the previous section consists of a 25 x 32 bit

matrix. Each row has 24 information digits followed by a parity check bit. The

code block is transmitted row by row.

Each column is constructed of 26 information bits followed by 5 bits which

together forms a one bit error correcting Hamming code. The column is completed

with a parity check bit. The 32 bit column vector can be viewed as a number in

32 dimensional space.

To clarify the geometric picture let us take a three digit code word abc which

represents a vector in three dimensional space. The various numbers that can be

represented by this word are the lattice points of the cube shown in fig. 21. We

see that there are four combinations that have even and four combinations that have

odd parity. To make a single error detecting three digit code we can use the last

digit for parity check. Let us select odd parity. In this case all the white spheres

represent valid code words. When this code is working with the ECD, a single erased

bit can always be replaced cyclicly and the correct code word will be found by the

parity check system. If two erasures have occurred such a replacement is no

longer unique. To clarify this let us investigate a specific case.

Assume that a 100 was transmitted and that a xx0 was received. When the

two first bits are replaced, both combinations 010 and 100 will be acceptable to the

parity checking registers. In the first case two errors are committed, in the

second case no errors are made. The average number of errors committed is

therefore one per code word.

From this analysis we can generalize. In a code with an N error detection

capability and Q erasures, all erasures can be replaced as long as Q < N in the

absence of errors. This is clear since the erasures indicate where a possible

error is. The suspected bits are now replaced cyclically until the code indicates

that no errors are present. If Q > N, as many as Q errors may be committed in

any one code word. The average number of errors committed in a large number of

code words is Q - N.

For the 25 x 32 bit code all cases of E ? or ??? along one column can be

corrected. Here E indicates an error and? an erasure. If four erasures occur

along one column one wrong bit will result on the average. If one error and two

erasures fall in the same column one error will also on the average result.

Based on this reasoning we will assume all erasures exceeding the detecting

capabilities of the code to result in errors.
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The probability of one erased bit per bit interval is:

P (f) = PI + P2 + P3 - PIP 2 - P2P3 - P1P3 + PIP 2P3  (3-21)

if we neglect Pn for u > 4.

During a time less than one second pn (u) is approximately proportional to

time. For long intervals of time, I - pn (u) has a hyperbolic distribution. 3 The

probability of one erasure in any particular bit interval is therefore:

p (t) = Pi + P2 +P3 (3-22)

since P << for all n.

Since at least four erased bits are required per column to give one error on

the average, the probability of an error due to this cause is:

P f 1= [ (1)] 1 2.'(3-23)

Pr {4} is the probability of committing one error on the average due to four erasures.

Correspondingly pr {5} is the probability of committing on the average two errors

due to five erasures.

fr5) [p (f)]4 32! (3-24)

The error rate due to this erasure pattern is:

E 03 [Pr{4}+Zp{r 5} + 3 p{6} + (3-25)

F 32 i n p{rnf3 (3-26)

Errors can also be generated if there is more than one error per column or one error

and more than one erasure.

The probability of two errors in a column is:

rhe 32. [ 3 (3-27)

where
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p (IE) = CI + 2 + C3 -"a 2 -C -a f a3 + a iOZ3

(3-28),
"Pý a + a + C3

The probability of one erasure and two errors is:

P{ }= [ (iE)] [P (')1,3 2  ! (3-29)

Continuing this reasoning for a greater number of erasures we obtain:

30

E, np (iE) + n 32. (3-30)CL n~ p3 ([ + n).! (30 -n)! -

The error rate is now

"E " CE + Ep + Ea, (3-3f)
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The ECD Integration of the Detector Output

The threshold levels that will be used here are the ones that were found

to result in a minimum overall error rate

Errors of the first kind

b i -
cL1  f p I(u/ 0) du 2 . 07 -I (-2a. 123  (3-3?)

CL = .302.2.07. t0-7= .625. WO7

b

cL2 = f P2 (u/0) du .302.4.55.10"7 (3-33)
a

CL2 = f.374. 10-7

b

CL3  f P3 (u/'O) du .302.4.09.10"9 (3-34)
a

* 3 = O24. 10-7

*L• P0 for n > 4
n

Erasures or errors of the second kind

a O

f=-o p (u/i)du+ f pi (u/ i)du Z. 07. i0 7  .

(3-35)

2. 07.10 7.225= . 66.10-4

a O

Pz = f pZ (u/1) du + f P2 (u/I) du (3-36)
-00 b

132 = 4.55. 10"7. 225 = 1.023. 0W4

a 0

P3 = J' P3 (u/i) du+ f P3 (u/ i) du (3-37)
091 b

1P3 = 4. 09 . 1 O '9 . 225 = 0. 09Z. 10O "4

Pn < < P, for n > 4.
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n and Pn represents the average number of errors or erased bits per bit intervaln

due to the n'th bit interval following the bit when the impulse occurred. For short

time intervals the probability of an error is approximately proportional to the length

of the interval if only one error is counted per burst. This was shown in data

published by Mertz.
3

The probability of one incorrect bit per interval is approximately:

CL = I + a 2 + a 3

a= 2.10"

The probability of one erased bit per bit interval is:

P = P1 + + P3 - PIPZ - P2P 3 - PIP3 + PiPZP3 (3-38)

p= 1.5-"iO-4

The error rate calculated on this basis is carried out in the appendix and is found

to be:

E a= +E+Ea

E (.63 + .70+ .57) . 0"9 (3-39)

E= 1.9 .10"9

E is the average number of incorrect bits in the output per second.
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Comparison of Error Rates

The ECD system will be compared with two other digital data transmission

systems. The first is a simple binary system, the second is the same system but with

the addition of an error correcting code with the same correction capabilities as

the one used with the ECD system. The row length in this code can be reduced

since for a symmetrical binary channel the figure of merit is M rather than M .

Since Mi corresponds to a S five times as great as the one needed for M we see

from fig. 6 that for a telephone channel with integration of the detector output

M = 5. 3 bits corresponds to I = 6 bits. Since the code was choosen to have

4 M + i bits per row for a S = i0-4 the code used with a symmetrical binary

channel could have a length of 23 rather than 25 bits for the same performance.

This last system would be further simplified since no memory for the erasures

would be required.

Symmetric Binary Channel

In this case all errors of the first kind are real errors and the threshold

level is zero volts. Assume zeros and ones are equally likely.
3 0

E = Z f Pn (u/ i) du (3-40)

2. 07. 10-4 4.55.10-4 4. 09. i0-6
- + +

. 123 .123 .123

E= 5.3.10-3

Symmetric Binary Channel with a 23 x 32 bit Code Block

E 3 o du (k+k). (31 - k). -3 (3-41)

kZ Z~ f~ Pn (u/) (k . 32 1
k7- In7I - oo

E= 4.4. 10-7

Comments

From these calculations we can see the relative performance of the three

systems subject to the same amount of impulse noise. We see that the ECD system

is best with about 2. 10-9 incorrect bits per second. The symmetric binary channel
-7

using the 23 x 32 bit code is second with an error rate of 4. 10-
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The symmetric binary channel with no error correction is worst with an

error rate of 5. 10-3 wrong bits per second.

The second best system has improved the error rate by a factor of 104 at

the cost of a redundancy of 1. 23 and some equipment complexity.

The ECD further improved the error rate by a factor of about 200 without

additional redundancy at the cost of a modest increase in equipment complexity.

Effect of Integration on the Noise Output Voltage from the Demxodulator

We will now investigate the effect on the noise voltage available at the

decision device with and without first integrating the demodulator output voltage.

To do this we will evaluate the probability of error for a simple symmetrical

binary channel due to impulse noise for various bit positions after the impulse

first occurred. We will first treat the case where we sample the demodulator

output. The channel is the telephone channel we have been analyzing where

zero = -. 123 volts
one = +. 123 volts

The average error rate per second is approximately
N

a= aI + Ca + CL3 + .... £ L a1 ~nzl n

since errors are mutually exclusive and an is a small number. Correlation betweenn

bit intervals is not important if we are interested in the average error rate.

O. = co d 7.2.10- 4-3

p f p (u/0) du .13 21'93"2
0

Ca = 0P0 (u/0) du 3.34.10 = 1.36. 10-3

o 2. 123 (3-42)

0 15.4. 10-4
CL n f pn (u/O0) du-n1 fon>30 , 12 3 . 2n+1  fon> 3

4.32. 10-3
n 2n+

The probability of an error due to the impulse noise burst in the n'th bit interval is

shown in fig. 19.
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We will now calculate the error rate for the same channel with the

difference that the detector output voltage is integrated before it is sampled.

In this case:

a, = f p1 (u/ 0) du 4.15. = i.69.10-3
o 2 (u-. 123) 1 o

a2=OD.f o oo=395 3

a 2 f= p. (u/O) du 3.95. 0-
o 2 (u-. 1 2 3) o (3-43)

L f0 3 (u/0)du- 8.19. 0-6 = 3.33.10-5
o 2 (u-. 123) o

For n > 4 an becomes neglibly small.

These values of error rate in the various bit intervals after the start of the

impulse are plotted in fig. 19. The error rate for the first system is a= 4.11. 10-3

while the second system has an error rate of 5.42. 10-3. The error rate is therefore

not significantly different for the two system when no coding or error correction is

being done. If some error control method is used that depends on short burst

lengths fig. f9 shows that the situation is quite different. While there is practically

no difference in the probability of making an error in the two first bit intervals after

the start of the noise burst the probabilities become very much favorable for the

system employing the integrator once the second bit position is passed.

The reason for this phenomenon is that once the catastrophic part of the

impulse is over what remains are mainly the high frequency components of the

noise burst. These components are approximately normal to the signal over the

bit interval. Integration over the bit interval will therefore result in a very small

detector output.

The reason why the high frequency components of the noise burst arrive

late is the phase distortion of the channel.

Since integration of the detector output will tend to result in fewer wrong

bits caused by a given impulse noise burst it can be considered optimum in the

sense that it is better than direct sampling of the detector output voltage.
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Implementation of the Code

A coding system of the type discussed in this thesis might conveniently

be implemented around a magnetic core or tunnel diode memory with a capacity of

800 bits. The row vectors containing 24 information bits and one parity check bit.

The generator polynomial for this code is

g (x) = x + i (3-44)

The circuit symbols that will be used are shown in fig. Z3.

A circuit that will generate a code with equation 3-44 as its generating function

is shown in fig. 24.

The input is connected to the transmitter coder. The row vector is being

stored as it is being transmitted. Following the Z4 information bits, the content

of the shift register stage is transmitted to make up the parity check. The 26 row

vector containing the information digits are transmitted during a 650 ms interval.

After 626 rns, all the information digits of the first column vector have been

transmitted and the error control bits for the first column can now be calculated.

Since the column vector is constructed with 26 information bits in the first places

we can form a complete column vector, F, by filling the rest of the spaces with

zeros. The six parity check positions now make up an additional vector, R. By

use of the Euclidian division algorithm

s (x) = d (x) g (x) + r (x) (3-45)

we can form the complete column vector. If we let s (x) = F the information

column vector and let r (x) = R equal the parity check vector, we can

obtain the column vector:

f (x) - r (x) = d (x) g (x) (3-46)

Here g (x) is the generator polynomial for this code. The parity check vector is

therefore calculated as the remainder in the calculation

f (X)f Fx) (3-47)

This calculation can be done by synthesising a circuit that will divide a polynomial

by g (x). First we must determind g (x). Since there are 32 bits in the code and

all bits equal to zero is not a valid code, g (x) must be a root of

32 0, (3-48)
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This expression can be factored as

32f(x26 +24 x18÷x16 xI 0 8 x
x 32 _f= (6+ X 4+ x 8+ x6+ Xo+ X8+ X2+ 1)

5 4 (3-49)(x5 +x4 +x+I) (x+ 1)

bearing in mind that + and - have the same meaning modulo two. Since we have

six parity check bits our division polynomial must be of sixth degree. We can there-

fore let

g (x) (X 5 + x 4 +x+ 1)(x+ i)

6 +4 2  (3-50)=X +X +X +

We can now proceed to synthesize a circuit that will divide a polynomial of 32 degree

by g (x) and storing the remainder.

The circuit in fig. 25 operates as follows. The gate G is closed. The data

bits from the colmun being processed are read out from the matrix. They are not

needed for further use so this can be done destructively if this is most convenient.

After the 26 data bits have been read in , -R has been calculated by the circuit and

is stored in the shift register. Since addition and subtraction modulo two are equiv-

alent we now have R. G is now opened and the error control bits are shifted out from

the shift register and placed in the last six rows of the dolumn vector. This process

continues until column 25 is reached.

To see the sequential operation of the matrix and the coding circuit more

clearly let us retrace its functions.

As the data bits are being transmitted to the channel they are also being stored

in the matrix. The bits are transmitted by rows. Simultaneously the circuit in

Fig. 24 calculates the row check bit used to complete each row. Since this bit is

not needed again they need not be stored. The transmitter memory need therefore

only be a 32 x 24 matrix. As soon as the last data bit of the first column has been

transmitted, the corresponding error control bits can be calculated.

This process continues for the rest of the rows as they become ready for it.

While the problem of coding is fairly straight forward, the problem of decoding is

much more complex. The reason for this is that while the transmission is done in

a binary system, three different symbols are available at the detector output. First

of all a matrix capable of storing trinary digits must be available. Such a matrix,

could be made up of Esaki diodes as shown in fig. 26.
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In this memory all cells would be set to zero at the beginning of the cycle.

As the various bits come in, a circuit as shown in fig. 24 will calculate the row

parity check. The result of this calculation is compared with the received check

bit and both are stored at the end of the row. This can only be done if no E signals

have occurred. If it does not check an E is stored.

This process is continued until the whole transmitted word has been received.

When this has happened there are two possible groups of occurrences.

A) No erasures have been received.

B) One or more erasures have been received.

We will first consider A. The fact that no erasures are received does not necessarily

mean that no errors have been committed. It is therefore necessary to check the

rows4 The gccnratc:r polinomial for the row code was:

g(x)= (x + 1) (x 5 + x4 + x + 1) (3-51)

Since this polynomial can be factored as shown, the two factors can be calculated

separately. The checking of the code can therefore be done by the circuit shown

in fig. 27.

The column vector under test is fed from the matrix to the circuit shown in

fig. 4. As soon as all the symbols have been read from the column, the checking

calculations are finished. If r (I)= r (a) = 0 it is assumed that no er±or has occurred.

If r (i) = i, r (a) / 0 it is assumed that a single error has occurred. This error

is corrected by reading once more the digits from the stored column vector and at

the same time moving the shift register with no input. When the combination 10000

appears in A, the incorrect bit is just coming out of the matrix. This bit is inverted

and the error is corrected.

If r (1) = i and r (a) = 0, a multiple error has occurred. This kind of error

may be corrected by observing the row checks. If any of the row checks failed it will

be assumed that the errors occurred at the intersection of the corresponding rows and

columns. This check can not be carried out until all the columns have been checked.

Now the cross check can be carried out.

If one or more erasures have occurred we are confronted with case B. In

this case the column check of any columns without erasures should first be carried

out and possible errors corrected. Following this the procedure explained under case

A will be repeated by replacing the erased bits sequentially with zeros and ones until

all the checks are found valid. This process can be simplified if in addition to storing

erasures, information is stored about whether the erased bit was closest to a zero

or a one.
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Discussion of Other Impulse Noise Error Control Methods

As a result of this investigation into the nature and effects of impulse noise,

results have been obtained that are valuable in evaluating the performance of various

channels and impulse noise control methods. From the plot of the figure of merit of the

system, M 1 , as seen in fig. 6 we see that the system which has the shortest impulse

response is the best in the sense that it will cause the least amount of consecutive

wrong digits. To obtain a short impulse response, the amplitude cutoff of the

channel should be gentle, and the phase distortion as small as possible. From

fig. 19 we see, however, that integration of the detector output will greatly decrease

the effects of phase distortion since the received impulse noise is approximately

normal to the signal after the first two or three bit intervals.

Clipping of the Received Signal

Clipping is a frequently used method to combat the effects of impulse noise.

If the energy from the impulse is stored in the transmission channel, such as the

case is in most telephone channels, clipping will merely cause distortion of the

received signal and be of little value. If, on the other hand, the receiver contains

filters that can store the received energy , ver several bit intervals, clipping at a

level slightly above the signal will probably improve the system performance

considerable.
13

Smear Desmear Filtering

The effect of smear desmear filtering is to distribute theenergy of the impulse

over several bit intervals. If no error correction is done by the system, this method

will cause a trade of several single bit errors for fewer longer bursts occurring

more seldom since the basic principle of smear-desmear filtering is to spread the

energy in the impulse over several bit intervals.

While this may be an efficient trade off if no error correction is done, the

trade off is not a good one if a simple error correcting code is used.

If clipping and smear desmear filtering is employed, the performance of the

system can be considerably improved. Such a system is shown in fig. 28.

In the system shown in fig. 28, data which is modulated onto an appropriate

carrier is passed through a smear filter, possibly one with severe phase distortion.

The output of the channel passes an equalizer which equalizes for the phase distor-

tion of the channel. This will shape up the impulse response so that maximum

advantage can be obtained from the clipper.
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The clipping level should be set only slightly higher than the data level.

From the clipper, the data is passed through a desmear filter, possibly one with

the inverse phase response of the smear filter, and is further passed on to the

demodulator.

While a system such as depicted in fig. 28 has probably great merit in any

data transmission system, further investigations of it will not be carried out here

since they are outside the scope of this investigation.

Deviations from the assumed conditions

It is of interest to investigate what the effects of variations from the assumed

probability law for v Let

p (v) o _o A v>V() 2 + A min (3-52)v v

where - i < A
co f u

p (u)= 2 a A p (a - ) dv (3-54)
vV v

mrin

p (u/v) can be expanded 'in a power series.

n n-I
2pa1)=b (2 +b 2) + b. u + b° (3-55)

v n v nb .+

for Z < a < Z
in- v - max

a--> Z
2 p (aU)= 0 for v- max

v

a- < Z
v min

where Z and Z are obtained from the given impulse response.whr max mai

By use of(-55), equation (3-54) becomes:

p (u) = a A f b n + ... b U + b dv ( 3-56)
v1n .. 3++A b 1 - b-0 -dV I _ v v o

Where V i = Vmin if a u _< max
min

and Vt = a Y u if a uV----- max
max min
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Since the first condition is true only for very small values of u since Vmin =. 00Z4

and we are primarily interested in the effects on voltages of ma'gnitudes much

greater than this, we will only explore the second condition. If the second condition

is applied to equation (3-56) we obtain:
co r nu

p (u) = a A f [b vn+3+A b u + b v dv (3-57)

max

p(u)aA b nn bI b O (3-58)
np+Zu+A n+2+A n +. (3-721

v v v au
z

max

b_ Z n+Z+A b1  Z max 3+A b0  ( max 2+A }p(u):= n+; + +A a• +'" "+ 3 \--T-- + •35

If we let

m[Z n+Z+A bi Z 3+A b Z 2+ A]b ax )max) o Imax % (-0

a ''- a " +A a

We see that K is regular if a / 0 and A>-2. Both of these conditions agree well

with our previous conditions and results. We can therefore write equation (3-49) as:

K z v.
K f u> max min

u

The probability of committing an error in any particular bit interval is:

b +. 123

S= f pn (u) du (3-61)
a + .123

K,
n (3-62)

n +A (a + .123)1 + A (b + 1 2 3 ) + A(
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As A-b- -f, the error rate as given by equation (13) becomes indeterminate.

In order to determine Lim an ad A-b- -I we apply L'Hospitals theorem and obtain

Limr a = K in b+ 123
n n a + 1 23 (3-63)

A- -f

From equation (3-62) we also see that no finite value of A> -f will cause any sudden

changes in a.

From equation (3-63) we see that the error rate is a well behaved function of

A that does not depend critically on any particular assumed value.

The error rate a is as can be seen from equation (3-62) proportional to

Kn which again is proportional to E V . It may therefore at first glance seem like

the estimate of this value is very critical. The voltage Vmin = c V is, however,

quite well defined since it represents the amplitude threshold which is exceeded or

reached on the average once a second. It should therefore not be excessively

difficult to obtain a rather good estimate of this value.

It is of interest to see how much our results would have been changed if we

had used A= + I.

If A= 0:

aI K n -a-+ (3-64)
n~ZK a + •.123 + .T 1  (3-64

If we let A= t:

-''-i Ti - - z - (3-65)
CL (a + .123)2 (b + .123) 2

For the limiting case A= -1:

Cl = K1 
1 n b + .123 (3-66)

Obtaining numerical values to facilitate the evaluation of these results when

a= .115, b= .133

we obtain from. equation (3-64)
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K [ - = .19 Ki , A= 0 (3-67)

From equation (3-65)

C i F n ' - = 1.2Ki , A= 1 (3-68)
[.238 .256 j

From equation 18

a= K n .256 -. 07K1  , A 1 (3-69)

This result is not unexpected since for all three cases, the average number of

impulses per unit time and there minimum amplitude is fixed. Since a more positive

A indicates that the picked up noise decreases more rapidly with distance, we would

expect a greater number of stronger impulses.

Experimental evidence10 indicates that A> 0 is the usual case. For this

reason we will consider in more detail the case where A= t.
exo AIp 1  (3-70)

V V

00 A f A1  o A1dv== - j " (3-71)

V min rminmin

Vmin - 2 (3-72)

If the two probability distributions are fitted to the experimental data at the point

where they cross:

A A ex0
-- V 

(3-73)
0 V 0

0

A.i = Gxo Vo

VV/----0-- (3-74)
Vmin~ 34
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But:

[b n+2+ i b ]Z+i [bn n+Z b 0 l
n + Z2x+ 1 ( Z ) + .. F (Zmax)" < + (Zmax) ax

(3-75)

Therefore

= A - KAA= 0 (3-76)

If we use the equality:

A
KA= -A K A= 0

0

Vo K A = 0 (3- 7 7 )

V is the voltage at which the two curves intersect. In the present case V 0 109

volts. Equations (3-67) and (3-68) can therefore be directly compared.

o i9 KA= 0 (3-78)

SA= '1.2 .1f09. K A= K = * 131 KA= 0 (3-79)

-,= J < .69 aA= 0 (3-80)

We notice that for A> 0 the error rate decreases somewhat compared to the case

when A• 0. Since not enough data is as yet available to justify using A> 0 we will

use A• 0 and the results obtained are therefore on the conservative side.

Further Improvements of the ECD

The results obtained by use of the ECD in the previous described manner look

very promising. There is, however, still room for improvements. Since in order

to commit an error when a one was transmitted, u most satisfy the requirement.

1.2Z3 - b= u< - .13- a
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This condition implies that the probability for the next bit to be erased is very

great since noise burst of large amplitude must have occurred. We can calculate

the probability that an error will be followed by an erasure by use of the joint

probability function pmn (urmn un). Instead of actually calculating this probability

we can make a good estimate of it. If the one is followed by a one we see from

fig. ii and 12 that for the two first bit intervals u does not change sign. Therefore

since the probability of an erasure during the second bit interval is

P2 = i- CL (3-81)

in this particular case. An error in the first bit interval is therefore always followed

by an erasure or error in the second bit interval. Since two consecutive errors are

not very probable, the conclusion is that an error in the first bit interval is almost

always followed by an erasure in the second bit interval. The converse is also true. An

error in the second interval is almost always preceeded by an erasure in the first

bit interval.

From this reasoning it is seen that the efficiency of the system could be

improved by in addition to the erased bits also erasing the bits immediately preceeding

and following the erased bits.

Detailed calculations of the magnitude of this improvement has not been

carried out. The procedure is to calculate

-a -b
rn= f p pn (urn/ /, un/ i) dun dura

-b -oo

-a a

+ f f Pmn Cum/ i un/ i) dun du
-b -a (3-8Z)

-a O0

+f f Pm (u m/ un/i)dundu
-b b m m

where m= n + I

The magnitude of this improvement is uncertain and furthermore it is uncertain

whether the additional equipment complexity would warrant it.

The method for finding the optimum threshold leaves + a and + b the same

as was used for the ECD system.
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Comments

Based on the calculations carried out in this investigation we can construct

an ECD system that using a 25 x 32 bit block code will give an error rate of 2. 109

errors per second under adverse conditions of impulse noise. The code used in

this system has a redundancy of 1.23.

The symmetric binary channel operating with the same signal levels and

subject to the same amount of interference would have an error rate of 5. O0 3 errors

per second. If the same Z5 x 3Z bit code block that is used with the ECD is used in

combination with the symmetric binary channel, the error rate drops to 4.f0-7 and

the redundancy is 1. 23.

The ECD system is therefore seen to give an improvement in error rate of

200 with no additional redundancy or slowing down of the signalling rate. This gain

is made at the cost of a modest increase in equipment complexity.

The ECD giving this improvement in performance has threshold levels of

+ . 115 and + .133 volts*when the expected signal level is + . 123 volts. The average

number of erasures is . 15 per bit interval per second.

The example of an ECD system worked through in this thesis is a very simple

one using a linear symmetric binary channel and phase shift keying with synchronous

detection. This is done Wo show clearly the method of approach rather than to solve

a specific problem. The method is quite general and can be applied to other systems

such as FSK or Kineplex with equal validity. Since the results obtained using these

two modulation methods will be more complex, it is felt that the chosen system is

preferable in order to demonstrate the basic approach clearly.

The results obtained agree well with experimental evidence, particularly

that obtained by J. H. Fennick at Bell Telephone Laboratories from measurements

made on switched telephone lines at various points along the east coast. The

agreement is less with data obtained from circuits where saturation effects are

important. Some workers in the field have also counted errors caused by interrupt-

ions of the transmission path as errors due to impulse noise. In this case there

clearly will be no agreement.

The results of this investigation show that when numerical methods are used,

polynomial approximation should be used as seldom and as late in the problem as

possible. This will lead to the most accurate results. Much was gained not only in

accuracy but also in ease of calculation when numerical integration and differentiation

rather than curve fitting was used for the first part of the calculations.
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Based on the calculations carried out in this investigation and on experimental

data it was found that the tail or extremal part of pn(u).Tle probability density at the

output of the integrator at the end of the n'th bit intervals,can be represented by

C
Pn (u)- kn_

u

where k = 2 in this investigation. Since pn (u) is of this simple form outside of the

small center region, the form of p n(u) is not influenced by the received waveshape.

The integral of the received waveshape determines the magnitude of C and hown

rapidly the sequence C n converges with increasing n values of n.

The agreement between calculations and experimental data shows definitely that

the tail ofp n(u) is inthe form of an inverse power law rather than an exponential law. This

is due to the inverse power law for p(v), the probability density of the peak amplitude voltage.

An approximate method was devised as shown in the appendix by which the

coefficients Cn can be estimated directly once the integrated impulse response is

known. This method is uiseful to obtain a first approximation to the error rate that

can be expected from a channel before it is decided to carry out more detailed

calculations .

The estimation test carried out to obtain the optimum threshold for the ECD

is of such a nature as to keep the size of the test constant while minimizing the

errors of the second kind. The test is therefore a uniformly most powerful test.

The basic idea behind the ECD is to concentrate as much as possible on the

impulse noise energy in a few bit intervals as possible. Because of this, the idea

of smear-desmear filters will be of no use here since their action is exactly the

opposite. The use of such filters combined with clipping in the proper manner,

smear - channel- equalization- clipping- desmear, will probably give considerable

improvement in system performance.

To sharpen the impulse response of the channel for a given bandwidth, it is

very important to keep the phase characteristics of the channel as linear as possible.

To minimize the effects on the impulse response, the band-pass character-

istics of the channel from where the impulse enters the system should be as close

to cosine squared as possible since this results in the smallest possible value for M.

It has been shown that integration and sampling of the detector output is a

more optimum method than direct sampling of the detector output in thecase of a

telephone carrier channel. This is in general true for any channel that possesses

a great amount of phase distortion since in this case part of the impulse response is
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approximately normal to the signal over the bit interval. This phenomeon can be

used to partly eliminate the effects of phase distortion in the channel.

This investigation should not be interpreted only as an investigation of errors

occurring in digital date transmission over telephone circuits. It should rather be

considered as a general approach to the problem where digital information is

transmitted over any communications channel perturbed by impulse noise.
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Calculation of M for the RLC Channel

AM Envelope Detector,.System I

Impulse noise:
(t -A (t-T) ( t + 0)n W') = A e T)Cos(Wft+0

Assume that the detector is centered at the center frequency of the whole system.

Signals:

One : Si (t)= S cos 0 t0

Zero: S (t) = 0

If data is transmitted at the Nyquist rate

s (t) (i + cos W mot) cos W otW o)

rrn

Bit interval :T
7r

m

Case I

Impulse occurs when a string of zeros are transmitted.

Detector output r (t).

r(t) = A e-a (t-T)

Time required for the noise burst to decay to less than is tt.

S Ae i

M m In '

-T -a w-

M - ln IS

Case II

A string of ones are transmitted.

( A- (t-T)
p (t) = A e cos (o t +e) + scosu 0 t

i O



Since the channel is centered at the carrier frequency

cW) = W01 o

p (t) = [A e (t-T) cos e + S] cosw t - A e-a (t-T)si n sinW t

After detection and filtering:

- rn(-T) s r (t-T)co S N
r(t)=j -2 m (tT)+ 2  e-m Cos +

r (t) takes on its maxim-um value when 8 = v (2 n+f) where n is an integer. In this

case:

r (t)~ A e-)m(t-T) + ()
S

r (t)> . after a time t1 since the start of the impulse.

S InS ml S
?ZA - e +N

I I ~m ln

m

1 SM= - -- in
7r 2N

We see that the maximum number of bits in error after the occurrance of a

noise burst is independent of whether a string of zeros or ones were transmitted

when the noise burst occurred.

Vestigal Sibeband, AM, Synchronous Detection. System II

The signal is centered at w

One: S (t) = Cos t.
Z 0

Zero: S (t) = 0.0

Signalling at the Nyquist rate:

s (t)= - [Cos Woot+cosw (•+ W ) t

Bit interval r - T____

m
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Noise:

n (t) = A e (t- T)Cos

Where:

m= 7--
W

+ m

Detector output, signal only.

r (t) + T Cos W t

when a one is transmitted, m = I

r (t) = S

Detector output, noise only:

Before filtering:

r' (t) = A e-( (-)Cos ( t+0)Cos o

-a (t-T) C.,

= A e cos E cos (co +---m )tcos Wot

Ae-a (t-T) sin6 -sin (w +---m )t cos W t0 2o

After filtering:

r Mt) A -a (t-T) tr t =T eCos 0 Cos Wnt

Since the synchronous detector is a linear device, the performance of the system

is not affected by whether the signal is a zero or a one.

Time required for the noise output from the demodulator to fall below half

the signal value, t1 .

S A A - t

1 15 CL
m

M - in --
T 4 N



53

AM Synchronous Detection. System III

Signal and impulse noise:

p (t) = ( + m cos w t) cos w t + A e-a (t-T)cos w + G)m 0 0

Demodulator output:

S A a- (t-T)r (t)= - +--g- e Cos

S
Time required for r (t) > - , t1 .

S S A e- ti

M= m In I S

S= - -i- e n-

T 7r Sn

M In i S
Tr 2 N

Phase Shift Keying. Synchronous Detection. System IV

Signal and impulse noise:

p (t) = S m cos w t + AeQa(t-T) cos (wt +)

After demodulation before filtering.

r' (t) Sm cos 2 w t + A ea (t-T) cos (.ot + 6) cos w to 0

Demodulator output.

S m A -ci(t-T)
r (t) + e cos 6

The most critical condition is when: m = - I, cos 0 =.

Time required for r (t)< 0 in this case, ti.

S A -c tIf -- -2-e

i S
t -- d In

ti 'MM -_ m i In _
I O S

T nN
m

M= i-- inS
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Phase Shift Keying. Differential Phase Detector

The differential phase detector is shown in fig. 2Z2.

S(t)=Scos (co t+P)

P changes by Tr from one bit to the next if a one is transmitted. If a zero is trans-

mitted there is no change.

x (t) S (t) + n (t)= S cos (w0t + )+A Cos (( + At + () cosm

Bit rate:'
T iT

y(t)S Cos (W0t + P2 - W0t) + A eL (t-T-T) COS(W t.- tW + 0)

Z (t) = S 2 co o + - t)

.2 0

S
2

+ ) cos (W-t + + W t+1P2  t)S2

SA -a (t-T)+--e cos (0-P 2 Z+wot)

e ea (t-T) cos(2 wt + P 2 -Wt)

+ SA -c (t-T-T) CO( - t- t )

SA -a (t-T-T) (Z w t + E t + Pi)+ -- e cos ( o +- +
20 0 1

A -a (Zt - ZT- T)
2 ecos (20 + 2 W t - W t)

A2 -a (Zt-ZT-T )COS W t+---- eco o

2 o

After filtering:

S 2  SA a(t-T) (0 P2+ t)
r (t) = os (P1 - P2 + wot)+-T e cos -

SA -a (t-T-T ) '0 w tO + e -ao(t-2T-
+ -S e cos ot) - -- e Cos W

20

since w t = 2nir0
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szsA -C;. (t- T) (
r (t):: 2 cos (1 3- P)+TSA e" cos (- T)

SA -a (t-T-T) cos A2 -a (2t-ZT-T)+Te cs(0-p 1 )+--

The worst case occurs when zeros and ones alternate. In this case the worst

demodulator output is:

S 2  SA -at SA -a (t-T) A -a (Zt-T)r (t) = • -- e + -2-- e + -- F- e

Time required for r (t) < 0 is t C

S2 SA - t± SA -a (tj - T) AZ a (2tt -tr - - FZ--- e + --Z -- e + T e " 0

tiI=- In Fe*-at

CL Nt = I--n in +- e

t i -+T n

M T TT r N
m

1 s
M = f - in

Asymptotic Expansion of y (t) for t> 2. 5 mis.

The asymptotic expression for f (x) is:

p 4

where:

ýx>>p and jR1
x3/ 2

Therefore:

J Wx) 2 cos (x +)
p '7rx

I 1 (x ) co s (x + ) 72 -

J(X) Cos (x + e2 7r2 -
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We desire to find the asymptotic expansion for:i

Y (t)= -0 5 t2 e -410t (2 I-05t3/2) + Jf (2. 105 t 3/2)

I3

for x> >! where: x= 2.10 5 t 3/2 .t is in seconds.

(t)z105 t1/2 e -L-45- os (2. 105 t3/2 + 9) + Cos (2. i05t3/2 + 92]

(t)•io 5  1 -41 e 0t s 3/2Se Cos (Z ", t + )

Since the bit rate is 1000 bits per second it was decided that it is more convenient

to use mns as a time unit. Upon this change of variable we obtain
i-.4 1 t 43 /

y (t) = Ae t cos (6.3 t + Y)

for t > 2Z,4ms

upon evaluation of A and y we obtain

y(t)- .526t 4 e cos [6.3 t3/ + .7]

Break point for p1 (u)

S= Z imax Vmin .3737 - .0024= .888 my

pu)2.07.i-

()= 2. 0for IuI> .888 mv= .888.10-3
u

Break points for p 2 (u)

4"55.10"2 4 for Jul> 1.332. i0-3
p 2 (u) 2

u

Upper break point of p 2 (u):

S=22 max V.min .5532• .0024 f.332 mv

Lower break point of p2 (u)

u2 = Z 2  i"Vrin .098 • • 0024 .266 mv

p2 (u)= 0 for lul<u52
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b

p2 (u) =f P2(z p (v) d~v
a

whe r e:

a = Max of ain of -
L n Zmax

b = Min of or z }
Umin

where z -
v

P. (z) 2586 z 6 10918 z5 + 13839 z4 -7805 z3

+ 2145 z2 - 2682 + 12.71

.0024p (v) = - ----
v

.00241 2587 (11) 6 0918 (u) 13839 
4  7805 3

P2 (u)= - - v ( - -7-- -- 5- --
v u

VV

2145 2 268 (i 12.71 v - .098+ _.H) -- --2- +
U

vMax of .0024 or .

P. (u) = 0 for .- < .00Z4 or u< .236 mv

Approximate evaluation of p(u)

P (2)

Z maK

(u/,) -FT7 P v)

co

p (u) f p (u/v) p (v) dv
Vm.
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For: u > Z
V -- max

min Ko co dv

p(u) f p (u/v) p (v) dv f- = f dv
U U U V

max max

p(u)=•v 0  P (u) -- =C V OV) + a -
UVU

Z Z-max max
(Z+-- ++ a n Z + a ]

an n-i a, Z°

_max + max max

p 6-0 max p(

p u) = -- V° (Zmax np(ZZax ' -- Za Z- ----

max
U

To obtain an approximaite expression for p (u), proceed as follows:

calculate Zmax

calculate the break point: uB Z V

evaluate p (Z

cacuat te rak on:uxmxri

p (u)is given by eq. 6 for ul > u,

Example. First Interval

Pi (Z )= m 1

E V = .0024
0

Z = .19
ma8 .5  -64

p (u) .s . 1 for Jul > 4.56. 10
u

Estimation of required row length

To insure independence between errors in the columns we will require the row

to be 4 M 1 + 1 bit long. The value of M 1 is choosen such that the possibility of

M corrupted bits occur sufficiently seldom.

It has been decided that the condition for M 1 corrupted bits to occur should

exist only 10 of the one second intervals. From curve II fig. 7 we can extrapolate

that this corresponds to an impulse of peak amplitude of 80 db. Since the transmitted

amplitude.
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is -4db., this corresponds to a -84db. From fig. 6 we see that this corresponds

with a row length of 25 bits.

Error Calculations. The ECD

a 2.10-7

P= 1.5.10W4

P ý{4} (1.5.10-4 3 3 302.3.41 - 13z 1°- 1

L" .82 . 10-11t. 03 57 0-9

3=4 32

E 5 is small

7 4 2-(1.5.I0-) 32.21.30 - 2.23.10-11
PrZ,iE 2.0

E 2.23 .0-8 = T. 10-9

pr{Z- E} =(2 10 7)2 32 3f 2- . to-n--

E=20 io-9 63. 10-9CL= 3-2Z =

E E +E +E +EP

E= 1.9. 10-9
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Fig,8 Normalized impulse response of a type N telephone carrier system.
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z FIRST BIT INTERVAL
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.2

o-" -. --ii

0 .2 4 .6 .8 1,0 ms

Fig. 9

6 -- - - SECOND BIT INTERVAL

o 4 .4--- .8 I' M

I-

o .2 .4 .6 .8 ,0 m

Fig. 10 Time of occurrence of the impulse referred to the first bit interval.
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.6~~
4/

.2 -- --

0 -

0 .1 .2 .3 .4

Fig. II Pl (z)
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5 PERFORMANCE OF TWO TYPES OF
SYMMETRICAL BINARY CHANNELS IN

__. THE PRESENCE OF IMPULSE NOISE

2.5 __

2.0 -- __ _-

1.5

INTEGRATION OF THE DEMODULATOR
OUTPUT AND SAMPLING OF THE
INTEGRATOR OUTPUT

1.0- - ____ ___ ____ ___ ____-

.5 /-SAMPLING OF THE DEMODULATOR OUTPUT

0 -------

0 2 3 4 5 6 7 8 9 10 n

Fig. 19. Probability of a bit in error per second as a function
of bit intervals from when the impulse noise burst
first occurred.
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Fig.20 The ECD System Receiver
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Fig.22. Differential Phase Detector
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