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Chapter I. INTRODUCTION

1. Outline

We shall presentunified treatment of boundary vaiue prob-

lems involving a system of ionized particles (i.e. a plasma) whose

singlet phase-space density is presumed to satisfr the linearized

form of the Landau-Vlasov equationA1 5p,,ifical,,/aw.ahalI

w A normal mode expansion in the singular eigenfunctions )f the

coupled Maxwell and Landau-Vlasov equationsX * - /,' -0

This first chapter, by way of introduction, contains a descrb -

tion of the nonstatistical approach to plasma oscillations, followed by

an outline of the ideas of various writers who have derived the Vlasov

equation using a variety of approaches. In the last section of this

chapter we explicitly present the basic equations to be considered in

the remainder of the text.

In chapter II we exhibit normal mode solutions of the coupled

equations for the case of transverse waves of fixed frequency. The

spectrum and orthogonality properties of these modes are discussed

and a fundamental completeness theorem is proved.

In chapter III we treat the problem of reflection of electromag-

netic radiation from a plasma half space and slab, and discuss the

modifications necessary when the plasma is located in a steady-state

magnetic field.

-1-
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Chapter IV includes an assortment of topics. The initial

value problem for transverse modes is considered from the stand-

point of both the singular eigenfunction expansion and the more

conventional Laplace transform treatment. Since this is the most

familiar problem is plasma oscillations, only the results are pre-

sented and these only in outline form. The long-time "Landau" damping

that results is discussed along with the corresponding damping in the

transverse mode initial value problem. The normal modes for fixed

frequency longitudinal oscillations are derived and the corresponding-

completeness theorem is proved. The eigenfunction expansion is then

used to solve longitudinal mode boundary value problems, resulting in

expressions for the penetration of an oscillatory longitudinal electric

field into a plasma half-space and the impedance of a plasma-filled

parallel plate capacitor. Finally, we mention a rather indirect applica-

tion of the singular eigenfunction method to the problem of electron

migration in a discharge tube.

2. The Plasma as Dielectric

The most well known theory of plasma oscillations is Langmuir's

characterization of a plasma as a collection of mobile electrons at zero

temperature, and essentially immobile ions.* According to this very

*In fact, Langmuir2 was the first to use the term "plasma" to denote

a region in an ionized gas containing equal numbers of ions and electrons.
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rudimentary model, an electron, normally at rest, moves under the

influence of the electric field which arises from the displacement of

all other electrons from their equilibrium positions. From this

interdependence of electric field and electron positions originates the

characteristic collective behavior of the plasma. In particular, in

this simple model the plasma behaves like a homogeneous dielectric

medium (with respect to sinusoidal disturbances of frequency W

with permeability

]lq :,z(1. 1)

e and m are the electron's charge and mass respectively, and n

is the electron density.

It follows that the plasma can support longitudinal oscillations--

"plasma oscillations"- -of the frequency

(4"5L )

for which the permeability vanishes. That is, Maxwell's equations

-- AL (1.3)

£V.E =V.B=O

are satisfied for disturbances of the form
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AA

J t) E°k e

-A (.0 (1.4)

for any wave vector k

These oscillations can never be utilized to propagate a signal

(the group velocity awp /ak vanishes identically), but a plasma can

be caused to oscillate in such a manner that surfaces of constant

phase will move forward - "a situation like the familiar barber poles

which appear to move steadily without rising".

The characterization of a plasma as a dielectric medium whose

dielectric properties are determined by relating electron positions to

the electromagnetic field and vice-versa, places plasma problems on

an equal footing with problems of the electromagnetic behavior of more

familiar materials. In this approach, the plasma is characterized

entirely by its permeability, and its unique behavior stems from the

peculiar frequency dependence of the permeability.

For example, consider the case of an electromagnetic wave

normally incident on a plasma half space. The familiar formulas of

electromagnetic theorl yield

S-nO) M 7 (the index of refraction) (1.5)

and



TMw (the transmission coefficient) (1.6)

TO('h)=-1

A complete exposition of the applications of this approach to

problems of wave propagation in ionized atmospheres may be found

3 4
in the review article by Mimno . Also, Ford exhibits the various

modes of oscillation of a zero temperature plasma under the influence

of a constant magnetic field, and utilizes them in the solution of

boundary value problems in the transmission and reflection of electro-

magnetic radiation from a plasma half space.

3. The Vlasov Equation

A more nearly rigorous description of the plasma as a collec-

tion of charged particles with random motions demands a statistical

treatment. This is given through the Vlasov, or "collisionless-

Boltzmann" equation.

Let r (r, u, t) denote the phase space single particle density.

It obeys the Boltzmann equation

-4 (7
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where a is the local acceleration produced by external forces

(if any) and the right-hand side may be evaluated explicitly by

examining the binary collision mechanisms in detail. Vlasov 6

noted that if the plasma is sufficiently ionized and not too dense (as

is the case, for example, in the ionosphere), the individual electron

collisions via both short range and Coulomb interactions occur with

frequencies far lower than the plasma frequency. On the other hand,

the long-range effects of the electromagnetic forces due to every other

charged particle ("many-particle" collisions) may be taken into account

through the a • V term. Thus Vlasov asserted:u

t ... fX] (1.9)

where the plasma particles themselves serve as the source of the

electromagnetic fields E and B Hence the electromagnetic fields

are made self-consistent through the coupling of the Vlasov equation

IT A + =0
"I•t (1.10)

and Maxwell's equations.

4. The Vlasov Equation (continued)

Vlasov's heuristic "derivation", despite its aesthetic appeal,

is actually quite unrealistic. The Boltzmann equation rests on the
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hypothesis that the particles spend a negligible fraction of their time

colliding, whereas the electrons are constantly interacting through

the Coulomb force. On the other hand, the separation of Coulomb

effects into binary collisions and an "external" interaction via the sel

consistent field possesses no rigorous meaning. In actual fact, the

"smearing" of an electric field produced by a collection of point

charges into a smoothly varying self-consistent field must be viewed

as some sort of an approximation.

The nature of this approximation appears directly from con-

sideration of the Liouville equation for an N particle system with

binary interactions:

N N

where 0 is the binary interaction potential.

Integration of this master equation over position and momentum

coordinates of all but s particles (s = 1, 2, ... N) leads to a

hierarchy of equations, the familiar B-B-G-K-Y hierarchy. If we

define reduced distribution functions

i,=S+1

and set

(1.13)



we obtain the equation for

and similar equations expressing 'T in terms of

bt l i~j=I

(1.15)
e S• I,, '&SZ jU3- .i'tt z -.~ , 7

In order to close the hierarchy, some statistical assumption

is necessary. In particular, if we assume that there are no correla-

distribution is the product of the respective single-particle probability

distributions

and the '•i equation decouples from the rest of the hierarchy:

+ LtE-Stt

This is just Vlasov's equation with the self-consistent field obtained

7 7through the soluption of ions eqution. Harris , starting from

Liouville's equation withthe correct (retarded) electromagnetic inter-

I

ditiuin
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action, instead of (1.13), shows that the resulting Vlasov equation

contains the Lorentz force term as well, as might be expected.

Intuitively, the assumption of no correlations breaks down

is two particles spend much time "close" to each other. Hence,

the factorization (1. 16) rests on the assumption that the density is

low enough so that individual particle effects may be neglected with

respect to long-range effects. The criterion for this may be taken

to be

(1.18)

whe re

.xD -(---- ..1 .Tthe Debye shielding length. (1. 19)

Equation (1.18) implies that the long-range effects predominate, since

a) it insures that many particles lie within the range of the

shielded potential of a single electron, and

b) by virtue of the relation

I 10/3 0

it has the effect that the average potential energy of a binary

interaction is much less than the average kinetic energy of

a particle.

Laboratory plasmas and plasmas of astrophysical interest (solar corona,

gaseous nebulae, etc.) satisfy the criterion (1.18) with several orders of

magnitude to spare.

1"
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Rosenbluth and Rostocker8 have developed a consistent

expansion of the hierarchy (1. 15) in powers of g = 1/n A 3

similar to the Mayer cluster expansion. Write:

4. -)

-S US - L J:d pig

s ~(1.21l)

T-'2 rjkL) T['h + P(J-k)PL T +~~
of P.fvi

where the pair, triplet ..... correlations are defined recursively.

For example:

p(~i4~',) ~T~~Yt .~-(1.22)

Then if dimensionless units are chosen in terms of the basic length

Xr and the basic time 1/w , (1.15) becomes:

Sp

I. -I S aj,

(1.23)

and one may assume an expansion of the form

I



where ?,(n) is of order gn . To order g 0 , the third term in

(1. 23) may be neglected and a solution is seen to be:

(0 (1.0)

where ? (o) satisfies the Vlasov equation.

Although this is enough for our purposes, it should be noted

that the expansion may be carried to higher orders in g quite

straightforwardly. In particular, Rosenbluth and Rostocker obtain,

but do not solve, the integro-differential equation for P in terms of

1
"T, , correct to order g I

Bogoliubov9 treats the deeper question of whether or not a

kinetic description is even possible. That is, under what circumstances

does the single particle distribution obey an equation of the form

;F A (r j U1 T (1.26)

In this notation, A (r, u I ?) is an expression which depends upon

time functionally through 71 . i.e. 8 T /8t is completely deter-

mined by the distribution t, at time t.

Bogoliubov notes that after a time t after the system is set

into motion the correlations become synchronized with the single

particle distributions to the extent that the s-particle distributions

depend upon time only through •1

I



. ... (ls (1.27)

epS -UIer

Of course, for long times, the particle motions become entirely

uncor related.

T -- V so 3'~i 4~)(.8

an expression which is indeed of the form (1. 27). However, Bogoliubov

argues that this process of synchronization takes place very rapidly,

in the time it takes an electron to travel a Debye length

S'p

and it is from this time onward that a kinetic description exists.

Granting this assumption, one then expands

. , ) + -' (1 . 31)

- '•__T, = Ao(,, ) ("AiA,(• •) + , , .. l l
Tt

and requires that (1. 23) be satisfied to all orders in g. This results

in a set of differential equations for the functionals an)r subject to

the boundary condition (1. 28). The zeroth order result is again

i " =i1~ (1.32)

along with the Vlasov equation.
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Guernsey1 0 extends Bogoliubov's treatment to a detailed study

of the approximation to order g . He obtains an integral equation

for T2(1) in terms of T , and solves it by means of the technique

described in Chapter II, section 5 of this work. The result when sub-

stituted into (1.14) yields a correction to the Vlasov equation in the

form of an additional collision-like term. In fact, he shows that the

presence of this collision term insures that an H-theorem is satisfied

and the sj stem is driven to equilibrium. I.e.

with equality only when is Maxwellian.
S. . 11, 12

Balescu and Prigogine obtain the same results as Guernsey

by means of a direct expansion of the full Liouville equation using dia-

gram techniques to evaluate the complicated sums that arise.

5. Linearization

Our starting point then is 'the Vlasov equation which represents

the effect of the Lorentz force on the electron distribution function,

+ e -A, XB~,-?T =- -F E t)+C (1.34)

and Maxwell's equations, with the charges and currents being given

explicitly in terms of the velocity moments of the electron distribution.

I
I
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- , ~ - • = Aae -A('1.5 - 1

3E -Ax Oft 0

c't

We have assumed that the ions, by virtue of their greater mass, are

relatively immobile and simply comprise a uniform background of

density N.. This restriction is relaxed in chapter IV. These equa-

tions may be linearized under the assumption that the electron distri-

bution does not deviate substantially from its spatially uniform steady-

state value. I.e.

I U, (1.36)

n is the electron density)

f (r, u, t) is to be regarded as a "small" quantity.

Since n = N. for a neutral plasma, and since we will be deal-

ing with situations in which the steady-state electron distribution does

not contain currents, the charge-current distribution will be due entirely

to f (r, u, t).

f r . (1. 37)

I "j f A7 Lt , U (1.38 )

I
I
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Thus the electric and magnetic fields are also "small" quantities

and to first order in small quantities we obtain.

nex LE We fa3I-" E• c (,9b

.... .,b t (.rf - -,.,~ ~ xBr).

7.E = 41r•_ff Pit = 0
(1. 39c)

6. Separation into Longitudinal and Transverse Modes

It is easy to see that for isotropic f (u) , i.e.

T -- 1) (1.40)

(the Maxwell-Boltzmann distribution is such a function), the equations

(1. 39) may be separated into three independent sets of equations. First

note that in view of (1. 40)

X a). -71. - .[, . ,--o (.•

We shall seek plane wave solutions of the coupled equations (1. 39).

Set 8/8x 8/ 8 y = 0 , write u = (u , u u) and define"x y

I A 1. 2
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Now for isotropic 0o

Jf .~U xc 74?r&iuj Ei (t)0Fj (1) (1.43)

if

(no sum convention implied)

where

=x -(u)u~iu (1.44)

USF(u (1.45)

pit ER9 (1.46)

We obtain three equations satisfied by the g, (z, u, t) by multiplying

(G. 39a) by u. and integrating over du du . These three equations,
1 x y

together with Eqs. (1. 39b) written componentwise, comprise the three

independent sets of equations to be considered in the next chapter.

4,A E,](zt)F•')

"E• mode - - j., = -- .t. (1."47x)

xC, V

ID
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E mode IE. ± 67) ý , (1. 4 7y)

- -J E c 0t(.4O

longitudinal •L', = /rr e
or "Plasma" t 00 (1.47z)
mode -00

I



Chapter II. THE NORMAL MODE EXPANSION FOR FIXED

FREQUENCY TRANSVERSE WAVES

1. Introduction

In this section we present the complete normal mode decompo-

sition for transverse disturbances of fixed frequency. This speciali-

zation is made in order to illustrate the main features of the method

which is actually quite general. It will be seen that a normal mode

decomposition is feasible provided we do not restrict ourselves to

"functions" in the ordinary sense of the word, but allow generalized

functions13 or "distributions" as well. Except for this, the normal

modes of the Vlasov equation are similar in character to the normal

modes of any nonsingular problem. They are orthogonal to the solu-

tions of the corresponding adjoint equation, and they form a complete

set in that any well-behaved function may be expanded in terms of them

with the expansion coefficients determined through the orthogonality

relations.

2. Matrix Notation, the Adjoint Equation and Orthogonalit,

We choose the electric field to be plane polarized in the x-direc-

tion,

E E

Z -18-
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and take the Fourier time transform of Eqs. (1.47x). I.e. we seek

I solutions whose time dependence is of the form - e"i~t through-

out. Dropping subscripts we have

(

OLB a)E -c7C

It is convenient to combine the coupled Vlasov and Maxwell

equations into a symbolic matrix equation for the "state function"

where * is written in the form of an array containing the three

field quantities. (.)

(2.2)

(the z-dependence is suppressed)

Equations (2.1), when combined,

L 01 0
o - 0- n e o E 2.3)

-!
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become, in this notation

H" (2.4)

(the operator is defined by

The scalar product is defined in a natural manner. I.e. if

X ) (2.6)

then

(xt ,l-) =)+ etE t-U 8 (2.?)

In this notation, the adjoint equation for the row matrix *II corres-

ponding to * becomes

I- (2.8)

with the adjoint operator Ht defined by the requirement

( rptH H•t (2.9)

By direct computation we find that 0 is given by

0

o 4
0C (2.10)

L4ItI L_ 0

I"
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where the operator IF is defined by

1F 9t =f (IA)c3 2.1

The reason that we write the adjoint equation is that solutions of

Eq. (2.4) and the adjoint equation (2.8) are complementary in the

following sense: If we seek solutions V/ I, V/ to Eqs. (2.4) and

iWz/V
(2.8) with spatial dependence e , then B/Oz i w1P and

(2.12)

Ty'tH'..IL)I (2.13)

Using (2.9) and the fact that p is self-adjoint, we obtain

v ~ T&,J= (r~f~)(2.14)

or

This is the basic orthogonality relation.

The orthogonality relation will turn out to be of practical value

in computing expansion coefficients. That is, the composite quantities

V.' are to be thought of as the normal modes of the plasma, and will

serve as the basis for normal mode expansions. The orthogonality

f relation implies that

I
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N m (2. 16)

(it will be necessary to make precise the meaning of the 5- symbol).

Then if

L (2. 17)

(the sum may run over continuous as well as a discrete range of

values of the variable V ), we immediately obtain

In the following sections we shall discuss the spectrum of allowed

values of the wave velocity v , and obtain explicit expressions for the

normal modes •f and the normalization function N (V). Finally, we

shall prove that the W, form a complete set- -that an expansion of the

kind considered in Eq. (2. 17) is, in general, possible.

2. The Form of the Normal Modes

Let us choose:

Bv 4 tevc
Be (Z. 19)

This choice is quite arbitrary inasmuch as Eq. (2. 12) is linear and

homogeneous in the three field quantities, and is made for convenience.*

The three rows of the matrix equation (2. 12) then become, after rearranging:

It is simple to see that there can be no non-trivial solutions with Bv = 0
(cf. eqs. (2.20)).
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E' (2. 20a)

00

f "jm(u) u ca- a (2. ZOc)

(W0= (4 w n e 2/m)/ is the plasma frequency.) For a given value of v

Eq. (2. 20b) determines gV(u). Eq. (2.20c) then serves as a sub-

sidiary condition restricting the possible allowed values of V . The

solutions are similar in form to those exhibited by Case14 for the

longitudinal electric field problem. It is convenient to classify them

in four groups:

Class 1.

These are solutions for complex v . We have

W z 3F(u)
5Qj(U) = - -

where, as required by Eq. (Z.20c), v. is one of the roots of the

characteristic equation
g f F(•)U-- ~~~ ~W ^ - -v- V•.3_ = oA~01 fd U F-~L V (2.22)

It is not difficult to show that there are only a finite number of such

roots. Note that the characteristic function A (M) is analytic in the

complex v-plane cut along these parts of the real axis where F (P) 4 0.

!
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Class Z a.

I For these solutions V is real and F(p') 9' 0 . Then the solu-

f tion represented by (2. 21) is indefinite until we give a prescription for

treating the singularity in the denominator. The general solution of

I (Z.ZOb) for real v' is

tv(~- = 3~ R +P M RU -1- (2.2.3)

I The P indicates that in integrals involving g V(u), the Cauchy prin-

c ipal value is implied. X((v) is arbitrary and is chosen so that (2.20c)

is satisfied. This condition becomes:

) C 2- V2 p3 F(U) -A (2.4)

A+ (v) and A-(v) are the boundary values of A (v) as v approaches

the cut from above and below respectively.

Class Zb.

Here we have v real and F(v) = 0. The results are essentially

the same as above: g (u) is given by (2. 23) and X(v) by (2. 24). In

this case A+ (v) and A- (v) take on the same value, since the integral

contained in the definition of A (p) is continuous across the real axis

when F (P) = 0 . Also, the principal value sign is not now necessary,

but it is carried along as a reminder that when integrating with respect

to v we are to omit points of class 2 c.

1
I
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Class 2 c.

For these solutions P is real, F(M) = 0 and X(V) = 0 as

well. Just as in class 1, there are only a finite number of P.

satisfying these conditions. The solution for gVi (u) is
iv

If F (u) vanishes at least linearly as u -, then g.(u) is a per-

fectly well-behaved function. We shall assume this to be the case.

At any rate, the (possibly improper) integral f gVi du is well

defined.

To recapitulate- the fundamental equation (2.12) possesses

solutions

of two basically different types. There is a discrete set of values

V., v. with either a) v. complex, 0. O

or b) v. real, 00) F (vi) = 0

The respective g (u) and g (u) are well-behaved functions. The

remaining (continuum) real values of v are associated with solutions

J for which the g V (u) are singular and are inter-reted as distributions

in the Schwarzian sense.I

Il
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3. Solhtions of the Adjoint Equation

"For every allowed eigenvalue of the fundamental equation (2.12).

"there is also a solution of the adjoint equation (2.13). The decom-

position:into classes is essentially the same.

Class 1 : v complex

We take, for convenience

tY - epc (2.2?)

Then the three columns of the matrix equation (2.13) read

kt nev.'c(.
(2.. 28 a)

m Li)

4I-V.I.) Svu.(t) V (2. Z8b)

j ri wL

J

,)s%.•-U)o6n = ('-V." (2.Z8c)

The solution of (2.28 b) is

Q(1A -~V3  
-(2.29)

(U) v 14- u

J which when substituted into (2.28 c) yields the condition

A (-) o 0 (2.30)

as before.

Class 2a. v real and F v)1 0

Again we choose

I,
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Ir Ei-- W (2.27)

I which implies
"ev I-c (Z. 28 a)

I Equations (2.28 b, c) are also still valid, but the solution for this casp

is

J (U) 1V.;P~~. + (y)(2)(. 31)

J with

(v) - ----

F M'i

Class 2b. v real, F(p) =0, but A(v) M 0

Here we must take

E t =0 (2.33)

A nonzero choice for E must be avoided. It would lead to solutionsV

of the same form as those of class 2 a. But this is impossible, since

Eq. (2. 32) cannot be satisfied. The matrix equation (2.13) becomes:

Bt=o (2. 34a)

(2. 34b)

I (O21 0 (. 34o

I1
•,L
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The solution of Eq. (2. 34b) is

&( -V) (2.35)

which when substituted in Eq. (2.34 c) yields an identity.

Class 2c. vi real, F(v.) = 0 and X(Y .)= 0

As before, we take

E. i eic (2.27)

which implies

t~ -nev;c (2. 28 a)

u- Vi ) 9 •-) = X 2 V. •(2. 28b)

" F('.RL) 5,(A)&n = C"-L
""0 (2. 28 c)

The solution for g (u) is

13 Pi (2. 36)

4. The Normalization Coefficients N (v)

The general orthogonality relation (2.15) may be verified by

direct calculation, using the solutions obtained in the preceding sec-

tions. It remains to define precisely and determine the normalization
'-

coefficients N(v) referred to in Eq. (2.16). It is simplest to consider

the discrete spectrum first.

I
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Suppose we have a v. • Then the orthogonality relation implies

and since

-00 LA

+ y4e 1  i e V' ~ ~ v (2.37)

V a~. ~~v) ZCJ
[W& &j 1-0 k .)a•,

which becomes after a little algebra,

(cr~i~ =-~~ AMv (2.38)

Thus we say

t N W-) Ev . (2.39)
J ?

with

N- (v) . A( .W) (2.40)
J

0 is the Kronecker 8 -symbol. Since V. is, by assumption,ii, V. .

a simple zero of the characteristic equation, N (v.) will not vanish

S~(cf. (2.18)).
.1

I
I
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The result is essentially the same when we consider a i.

" w-_o '(2. 391)

N ~ Nj) -P Ug Rt3 ± + cAC
(2.41)

-- - "•{ •Av) +__6jo

When P belongs to the continuum, the situation is somewhat

different. The corresponding normalization integrals are undefined.

We write, however,

j -= (2.42)

where the (Dirac) 6 -symbol is nothing more or less than an abbrevia-

tion for the following statement: if
6

[ A(v'4%. adv - e,.$ (2.43)

then

0 otIaerw;,se

It is a simple(and familiar) matter to calculate N( v) when v belongs

to class 2b. Then ' is of the form

I.

I
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" = E -- E,, A(M•J)4v' (2. 45)

But since E = B = 0 we have

V~ ~) = fV t  d
" -- w "-Co

(2. 46)

dof4( ) ti& ý F~t)Pf-A(Y').Y± NX1.AMIA OL<(14- L = J 1-V, L0 otherwise

The first term in the braces does not contribute to the final result

"since F(p) 0 . Thus

L 0 otf keewise (2. 47)

which implies

N(v) V A(1) V In class (2. (.48)

The preceding result is little more than a partly rigorous justification

of the often used symbolic relation

= f~v)v-~")(2.49)
,s0

but it is important to make precise the meaning of the normalization

f for the continuum functions. This requires that we consider not the

I
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functions themselves but "wave packets"- -superpositions of the kV

where v varies over a continuous range. Equations (2.43) and

(2. 44) follow immediately. It would be tempting to conclude (incor-

rectly) from (2.42) that

N~~~v)~ <f~~'l)v av.b (2.50)

but in fact this is just Eq. (2.44) with the orders of integration inter-

changed. This point is emphasized because when v belongs to class

2 a, we come upon one of the rare instances that care must be taken

to perform the integrations in the correct order.

In calculating N(V) for v in class 2a, we note that there is

no objection to letting a =- 0, b = o0 in (2.43), just so long as we

make sure to choose A (v') so that all the integrals exist. Aisuming

this to be done, we have,

W&AV Jd 2V )N+A v-)6N- ']vv)4
•-. -wO Z' O 3

+ ne• *c 4"ieV_'A__V')d____ viev"3-c 4 1 ie v'c Aw)dv'

-F __ P i W

V) 3pf CO iAR)dtA pjs: iPA(vl~dv' +

I

I
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+& ( ~ v),y pjv"w 3ANI) dv'

A- AM + 0C (vv'l+V'VL) A(vla9d ,
F(v) c 1  6 (2. 51)

The first term,containing the iterated principal value integrations,

is the only one that presents any difficulty. Here we use the Poincare-

Bertrand formula to obtain

00 )v3 p4 . P Do v' A(v)cdv'

(2.52)

00 0

3)V F(P) A(W VI (V)13 VAPv')4v' V)(A -RU ) l

The integration over u may now be performed using partial fractions

and the definition of A(y) . The result exactly cancels all the remain-

ing integrals in Eq. (2. 51) leaving

) F(n s a (2. 53)

v in class 2 a.

5. The Normal Mode Expansion and the Full Range Completeness Theorem

" Here we prove that the normal modes IP form a complete set,

in the sense that an arbitrary state function * may be expanded in terms

I.
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of them.

Once we know that the expansion is possible, then the expansion

coefficients are determined using the orthogonality relation (2.15)

and the known normalization functions. viz.

OL- [*. 'eC[
r~vj &$s~) (2.55)

with N(v) given by (2.41)

i 3 pflt \ [ " + -- e V- CEB[C
""NWu 102 _Uvi)2. 56)

with N(vi) given by (2. 40). When i' is in class 2 a,

' case

N(V) t RV•)J U ---
A~v) No (2. 58)

which is just Eq. (2.57) with F(v) 0

I
I
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The full range completeness theorem can be simply stated as

follows:

THEOREM I.

Given a state function * with g (u) everywhere well-behaved,

f g (u) d u < 00 but otherwise arbitrary, then an expansion of the

form presented by Eq. (2. 54) exists, and the expansion coefficients

ai, a. and A(v) are unique.

In the proof "well-behaved" will be taken to mean "satisfying

a Holder condition". That is there exists a pair of numbers M and

y (V > 0) such that for any u

9(U)M~-UI (2.59)

Actually, the theorem holds for a much wider class of functions g (u).

For example, g (u) may itself be a Schwarzian distribution. In the

same spirit we shall assume that F (u) also satisfies a Holder condition.

The proof of the theorem involves an actual construction of the

expansion coefficients. That is,. we show that (2. 54) possesses a solu-

tion by solving it. Write

with aagi b (2.60)
I. 1iwt i jgvnb (2.55,56)

We note that the expansion of h' in terms of the continuum functions

"alone

is equivalent to the expansion (2. 54) of * in terms of all the

11
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SP must satisfy

Y. t = ( ,t? T) 0 (2.62)

as well as the conditions imposed on ' in the statement of the theorem,

but is otherwise arbitrary. The three components of Eq. (2.61) are

F ? -- ' + A(u)A('A)
W& J00U-1 (2. 63 a)

so

E ' - . ---. v 2-A ('•) cv ¢Z..63b)

v e A(v)dv (2. 63c)

Equation (2.63a) is a singular integral equation of a type treated

extensively by several Russian mathematicians. The solution closely

follows Muskhelishvili. We shall make use of the following properties

of singular integrals of the Cauchy type:

Suppose M (x) satisfies a H6lder condition and f M(x') dx' < 0o

then

a) M -X ,)

is an analytic function in the complex z-plane cut along the
real axis form a to b, vanishing as z - 00 at least as
fast as l/z

b) 'M + (x) and ')rt (x), the boundary values of 'M (z) as z
approaches the cut from above and below respectively,
each satisfy a H6lder condition.1!

L
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c) X) - 'ITt(x) Mr M W (Z. 64 a)

(the Plemelj formulae),

d) .l fX'M (K) vanishes as z -0

The converse also holds: if "W(s) satisfies a) and b), then it may be

represented as a Cauchy integral of the form

- •M(9X,)
-276 XI (2.65)

M(x) will, of course, be given by the first Plemelj formula.

We combine (2. 63a-c) into a single equation for A(p).

"= -[ r ' '- r'--I.,
~UF~)IW~e (E'4B)+ fI+X u) .A (u.) (2.66)

Now define

-80 U (2.67)

00_) F )d _

-- • D U-2 (2.68)

"'a" a, so v AMu)•v
S(a) -1 - -"-' (2.69)1[ -

II
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(z) and 'f(z) are analytic in the cut plane and vanish at infinity.
Their boundary values +- (u) and (d) satisfy a H6ider condi-

tion. If a solution A(P) to (2.66) exists, then a(z) will have those

same properties. We shall show that such an A(y) exists by con-

structing the appropriate Cj(z) and showing that it does in fact possess

the properties we require it to have. We would then find A(v) by

using the Plemelj formula

Avv) - aV)] (2.70)

if we didn't already have the orthogonality relations. In terms of the

boundary values of the functions q , f and OL, Eq. (2. 66) becomes,

after some rearranging and dropping primes

g(A+ -(~-B Z~~(A} (tt) -( z~t) L2tt

(2. 71)

+ W E i )+ 2.lt6 OcCIA)] T3: -(C. 2 - e.)C-(U.)

Now consider the function

is•f ý §,), + r w--(E+ •B)+ + It c , acz) (2.72)

J (z) is analytic in the cut plane, since T and are, and a is

assumed to be. But according to (2. 71), 3 (z) is continuous across

the cut. Therefore, J(z) is an entire function, and may be found

simply by observing its behavior for large values of I z . We note

that

1;



-39-

- (2.73)

X •L • F- )A- I FL-./t -- " (2.74)
IA-Z 00C - - a

C{(61) =0 v - - IJd'A

+2:Avd Jt v A-~d

(the fact that M v A(z) dv < 00 will be verified later). Thus

:~ ~ 3(k) -- -" (E + Bs)"Z I l---.v o 4•i ri C- (2. 76)

We conclude, from Liouville's theorem

Axi otie(2.77)

which gives the solution

•L(•) G(Z) + -W (E+-r + ,..z
4nie)L 

(2.78)
S2.

Now we must examine the function a(z) and see if it has the proper-

ties demanded of it. We note that j(z) vanishes as I z 1 . and

is analytic in the cut plane except possible at the zeroes of the denom-

inator, where OL(z) could have simple poles. But these points are

just the v., and when v= vj. the numerator may be shown to

vanish, viz.



-40-

( nume rator] 2Clf 3.Zxi !f"=v aim)f +EjW ~ V3~J *F(L)d!, -U J -H- • ."J-

t t =0(Z. 79)

Thus the singularity is removable, and Q(z) is analytic in the cut

plane. We need look only at its boundary values. As z approaches
the ut rom { above

the cut from abelow the denominator becomes

[denominator] C V &2-••- (v;inX,,J-X•,• I:iL)3F(,) (2.80)

The boundary values are well-defined except possibly where the denom-

"inator vanishes, so the points in question are just the v.. And, at

these points, the numerator also vanishes, since by direct calculation

numerator] %xi i ýi = ~( Vt~v O(.1

Finally, we must show that the various integrals involving A (V) actually

exist. By direct calculation, we find

C --------__- ±!8 __ I (2.82)

This implies (cf. condition a), page 36) that v v A(v) dv <0

(It is, in fact, given by WB/47 ie c.) Moreover, by condition d), the

Cauchy integral

f- ) (2. 83)
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converges, and another straightforward calculation yields

~ Ct~) ~,f V~i~dii-~ ~ cE I
iale k Ot (1 k''e ~X84)

which implies that V v A(p) dv converges and its value is

WE/4 w ie . Finally, we note that this means that the Cauchy

integral f V3 A(v)/(P-z) dv converges. Hence ((z), the

Solution of (Z. 71) does indeed possess the properties we assumed

it had. This completes the proof.

For future reference we note that by virtue of the Plemelj

formulas N(v) may be expressed in terms of the boundary values

of the analytic function A (z)

AN)I FavA)

_ _____ _ A"(v)- ATv) (Z.85)

where

S(2.86)

"T 6. Specialization to the Boltzmann Distribution

We consider now the particular case where 'o ( is the10

Boltzmann distribution for electrons at temperature T = O/k.
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U I - 2u

Z Ir e (2. 8?)ie
Then

FN'~ ~IL W7 (2.88)

Some of the results of this section will depend only on the general

shape of F (u) and not on its exact functional form.

It is possible to ascertain the number of elements in the dis-

crete spectrum; i.e. the number of roots of

Ad= - - -0 (2.89)-00

First note that since A (z) is a real function of z, the roots occur

in complex conjugate pairs. But since F(u) is an even function, A(z)

is also even and - z is a root along with z . Thus in general, the
0 0

roots occur in groups of four: z and -z 0* in the upper half plane,0 0

symmetric about the imaginary axis, and -z and z * in the lower
0

half plane. We shall show that there is at most one root in the upper

half plane. This root, when it occurs, must then lie on the imaginary

axis.

We seek to find the number of zeros of A (z) in the upper half

plane, using the argument principle. Consider the contour C in the

upper half z-plane. (See Fig. 1.) Let us follow the behavior of A(z)

as z traverses the contour C. The change of argument of A (z) will be

equal to 2ir X (number of zeroes of A(z) inside C). The semicircle

I
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1-2-3 is large enough so that A (z) assumes its asymptotic behavior

along it.

3 1

Fig. 1 The contour C

For z on the large semi-circle

-" ( j (2.90)

and when z = x + ic is just above the real axis, we have

A(6) (2 C - - ,.92)

Since F (x) is positive and nonvanishing, when z is on the upper lip

{p rnegative}Sof the real axis, Im A(z) is neaie}frIp jv x and
Stegative• positive

vanishes only when z = 0. Thus, as z traverses the path 3-4-1,

1"- A(A) crosses the real axis only once. There are, then, only two

possibilities.
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1) W > W The image of the contour C is shown in Fig. Z.p

A arg A(z) = 0 and there are no zeroes of A(z) inside the

contour C; hence no zeroes in any finite part of the upper half plane.

Fig. 2

- 2) W < W The image of the contour C is shown in Fig. 3.
p

A argA(z)= 2 7r and there is one zero in the upper half plane.

Thus, for Boltzmann F (u), the set of allowed values of v

includes the entire real axis (class 2 a) and sometimes the two dis-

crete roots + iv . (class Zb)

1-
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We may also obtain an estimate of the value of the discrete

root ii •. We have, from Eq. (2.89) using the explicit form of F (u)

z 3 00I~r "en

(F~~-~ - 0 & =~ 0 (2.93)

Assume, for the moment, that Iz is large enough so that the

asymptotic expression

I - I

is valid. Then

or

. - "V (A)- C (2.96)

This result is correct so long as (2. 94) holds, which amounts to

or

(2.98)

which, for T • 6000 0 K, becomes

I4
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Below this frequency, we may try to approximate the result by assum-

ing that j(m/? G)1/2 z I turns out to be small. Then we may use

the power series expansion

Mr X - (2.100)

To lowest order, this yields

0 1 (2.101)

0-5
valid (at T = 6000°K) when &' 4 X 10 (0 , and an iteration

p

"give s

{ii( W~)}(2.102)
T-0 

[ rrL C Z 1

We note that except at extremely high temperatures or very low fre-

quencies, the location of the two modes with imaginary wave number

is correctly given by the zero temperature treatment.

Finally, we may obtain an approximate expression for the

normalization coefficient N (_ i v ) defined by

1. N(~V~--~(±iW04 a AMv) (2.103)

1" By direct calculation, for Boltzmann F (u), this becomes

1.

w
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N tV)-v tip" )f (2.104)

Except at very low frequencies, to first order in 2 e/mc we get

N (±i1 = F z i = L - W 2 W_________ C (2.105)

- ( 4 I- )3/1

1.

1.~
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Chapter III. BOUNDARY VALUE PROBLEMS

FOR TRANSVERSE WAVES

1. Introduction

In this section we shall utilize the normal modes of the Vlasov

equation in the solution of some typical boundary value problems. The

method is straightforward: we write the state function of the me dium

under consideration as a superposition of normal modes, and apply the

boundary conditions to determine the expansion coefficients. In certain

cases (the degenerate problem) the expansion to be performed will utilize

the full set of normal modes, and the orthogonality relations may be used

to determine the coefficients. In any event, we will arrive at an integral

equation for the expansion coefficients, part of which (the so-called

"dominant" part), by virtue of the singular nature of the g (u), will con-

tain singular integrals.

We shall consider the reflection-transmission problem. An electro-

magnetic wave of frequency w is incident on a plasma. What is the strength

of the reflected wave ? It will be convenient to ignore the fact that the

actual plasma oscillations are "forced" by the impinging wave. This avoids

the problem presented by the presence of an external force field whose

effect has not been taken into account in the linearization of the basic equa-

tions. The electromagnetic fields throughout the plasma, in particular at

the boundary, are to be viewed as "small" in the sense of the original linear-

ization (Chapter I). We simply construct a solution representing a plasma

-48-
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configuration consistent with the presence of an incident and reflected

wave, and only afterwards do we interpret the plasma motions as the

V effect and the impinging wave as the cause.

Z. Boundary Conditions

The boundary conditions for the electromagnetic fields are simple.

Since all disturbances are small, there can be no surface changes or

curren.ts and the fields must be continuous.

E (-÷=E ( 0- -)
7- (3. 1)

0+ ( 0.) - - -)

We must specify, in addition, the behavior of the electron distri-

86
bution function at the boundary. It is simplest to assume, with Landau,

that electrons experience specular reflection back into the plasma at the

boundary. This automatically implies that at the boundary the distribution

function is symmetric in the normal component of the velocity

5(3.2)

or

Vj 1~MA) U) (3.u3
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This is the degenerate case, and the solution may be written in terms

of the normalization integrals using the orthogonality relations.

The opposite extreme, one might term the "diffuse absorber."

In this model, the electrons are returned to the plasma at the boundary

in a manner essentially independent of the velocity distribution of the

electrons which leave. This implies:

9 (I 2a=0) I = C-(u) (a given function) (3.4)

This boundary condition leads to a singular integral equation which is

equivalent to the inhomogeneous Hilbert problem.

The intermediate case, too complicated to be considered here,

allows the distribution function of the incoming electrons to depend on the

outgoing electron distribution in an arbitrary (but linear) manner. This

leads to a singular integral equation for the expansion coefficients which

contains a Fredholm term as well.

3. The Electromagnetic Fields at the Boundary

We consider a plane polarized E electromagnetic wave impinging

from the left on the surface of a plasma (interface at z = 0). In Chapter I

it was pointed out that the transmission and reflection coefficients for an

ordinary dielectric medium may be written in terms of the index of refrac-

tion of the medium. (cf. Eq. (1.6).) Of course in this general treatment,

the plasma is not simply a dielectric medium. For a given frequency, waves

(I
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of all wave numbers can propagate. Nevertheless, it is an easy

matter to define a quantity which plays the same role as the index of

refraction.

The incident wave is of the form

El -- Ej

a= t (3.5)

The reflected wave is of the form

7- ~Eric =Ee e +

If ES,.r.e - .- t) = Er (3.6)

Hence, by (3.1) the electric and magnetic fields at the boundary are

given by

E , (,z = o) = oE - t -( Ei -I Er ) e " t( ")

(3.7)

Thus

El I-- ( (3.8)

where n is the ratio of the magnetic and electric fields at the boundary

EO (3.9)1!7
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Note that this is a reasonable analogy to the index of refraction of an

ordinary dielectric medium, since if we assume a disturbance in such

a medium to be of the form

, 1 ^- (3. 10)

then it follows from Maxwell's equations that n represents the ratio of

magnetic and electric fields throughout the medium.

4. Reflection From a Plasma Half Space

"We consider the state function of the plasma to be expanded in

terms of the normal modes

The summation incorporates an integral over the continuum modes and

a discrete sum. The boundary condition

0(o, A) (0 o,-tI)

implies that

A (v) (3.13)
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We will deal here only with the case treated in Chap. II, sec. 6,

where F (u) is assumed to have such a form that there are either

no discrete eigenvalues (when w >w ) or two imaginary eigenvalues
p

= : i V° (when <w ). In this case
0 p

v(U)

(3.14)

for both the discrete and continuum modes, and hence from (3.13)

(3.15)
Moreover,

,S' L -A(-v'j Ev
1/

(3. 16)

simply because E is even in v . Also, since B is odd in v

(3.17)

Therefore, if we define

C 0j) = A0)) -A -v)

e 13. 18)
we obtain the concise relation

I."

I
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0 (3.19)

which implies that C ( v) is the coefficient in the expansion of

(3.20)

in terms of the iV . Hence, by the orthogonality relation (2. 18)

N~v
(3.21)

"Having obtained C (v), in order to obtain the desired coefficient

A (v) we make use of the fact that the system must be well behaved as

z -- Oboo.

a) A(,vo) v
(3. ZZa)

6)AW•-o v<o

(3. ZZb)

Condition a) insures that we exclude the exponentially growing modes,

and b) may be thought of as a radiation condition ( no incoming waves) or

Ii

I-
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a regularity condition which results if we assign to to a small imaginary

part. This last point will be discussed in section 7 of this chapter.

Combining (3.18), (3. Z1) and (3. 22), we obtain the expansion

coefficients:

N(u)

(3. Z3)

t

TA A(i Vo) =0

from which g (z, u), and E (z), and B (z) may be computed. In particular,

since

E A ()E,, (3. 24)

we obtain for the index of refraction n

E [•- Ba too . (3.25)j • 8oNN(V)- N-,J

where the discrete term is to be included only when appropriate (i.e. when

"W <W)

iip
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Using (2. 85-6), the integral term in (3. 25) may be written as

a contour integral.

N (W) tj L• Ntv)

(3.26)

00Moreover, in view of (Z. 40), the discrete term becomesa simply the

residue of 2- c/A (z) ] at z =-i Y This leads to the compact expres-
0

s ion

- - I (3. 27)

In the zero temperature limit

F(A) = S(u) (3.28)

This implies

and the contour integration may be performed easily, to yield the

familiar result

1i
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(3. 30)

The zero temperature result, which predicts a purely imaginary

index of refraction (and corresponding complete reflection) for frequencies

below the plasma frequency, has well-known experimental consequences.

It provides the explanation for the "plasma b lackout" which inhibits

communication with a reentering space vehicle. It is evidenced also in

the relative ease with which the low frequency AM signals may be trans-

mitted over large distances by reflection from the ionosphere, whereas

transmission of the higher frequency FM signals is limited by the curvature

of the earth. Nevertheless, at finite temperatures, since the integrand in

(3. 26) is explicitly positive definite, there will be a small contribution to

the real part of the index of refraction at frequencies below the plasma

frequency, the real expression (3. 26) serves as a slight modification to

the zero-temperature result n =( -(I /p

-* For purposes of computation, it is convenient to write (3. 27) in

the form

AI 2, (331)S]" ~ ~- -- -J -

I[
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where U is the velocity of light in units of (Z QiM)l/Z, and

fCO X

,! ~~ ~ t eV2 =u-2- • --- uý•- z .

-D (3.3Z)

Z (z), the "plasma dispersion function, " is tabulated.17

5. Reflection From a Slab

We consider the reflection of an electromagnetic wave of

frequency w incident on a slab of thickness a. As in the case of

a half space, we write the state function as a superposition of normal

modes and apply the boundary conditions. We again obtain:

C C(y) m A(v)-A(-lj) = 28 eo

0 N () (3.33)

We must also apply the condition of specular reflection to the far side

of the slab.

(3,34)

This gives

a t

N(u) (3.5)

where B is the magnetic field at the surface z = a,

Ii[
A
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Combining (3. 33) and (3. 35) we obtain the expansion coefficient

P~) I(zSo e, _7X)

(3.36)

which we use to obtain the electric fields at the boundaries in terms

of the magnetic fields

, , . a 3,, , , s -..- + B Y. t,,, , ,

T E -X (,>•- o(., :Bo +.3~ (337)•, .- B, ,q, ,,,,:,',

0 ' 0-•. -Nta, .i,,

-B (3.38)

The above expressions have been simplified by the use of the fact that

B and N ( v ) are even and odd functions of v respectively. The
V

last boundary condition to be applied follows from the requirement that

the electromagnetic field in the space behind the plasma slab represents

an outgoing monchromatic wave

Ot (3,39)

Ji Combining the laqt three equations, we obtain the result

o L- Io-,- O •(3.40)
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The singularities in the integrals defining a and A are to be resQlved

by ascribing to w a small positive imaginary part, as will be discussed

late r.

Therefore, with respect to a normally incident plane wave, the

slab behaves like a half space with index of refraction given by

I -5](S= -
71 L -(3.41)

The coefficients a, P may be simplified via contour integration

(3.43)

S= wct c -I)"

(3.43)

For the zero temperature model [ A (z) C' - E ea] , we obtain

i -L

C (3,44)

which is in agreement with the result obtained by elementary methode.

I

I'
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6. Reflection From a Half-Space: The Diffuse Absorber

The problem of the diffuse absorber is of interest because it

illustrates a situation where the eigenfunction expansion must be per-

for rne d without the aid of an orthoganality relation.

We assuire that

-) !(-e/ e (345)

which implies

0(o0w J 0> (3.46)

Then with w w so that there are no discrete v. , the eigenfunction
The p >

expansion becomes

ojA0') fAw 'Vo

(3.47)

Thus, we are presented with a "half-range" expansion--the expansion

of * (o < u < co) in terms of the p (o < v < co). The resulting

integral equation is

F~u) P A(u•,(%)u•

o (3.48)

. subject to
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0f jvAIl)clv m 4i
1' (3.49)

fvaA(v)cju 4.JE-

(3. 50)

Now define

(3. 51)

[- f(z) should be analytic in the complex plane cut from 0 to co (the

"cut plane"), vanishing as Iz I---* co. (3.48) becomes

u)AM) -C 6(4)A-(A) =0 U~(3.52)

To solve this, we construct a function X (z) which is analytic, and,

along with its boundary values X* (u). non-vanishing in the cut plane,

such that

Consider the function 

(3.53)

[
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in ( A +/ A -) is that branch which vanishes as u ---*co. Then

• r(z) satisfies (3.53), since

(e r A(e0)- e - (^/^- A-

I (er.Y )
Ii +(3.55)

However, since ln [ A (0)/ A=(O)] Z 7r i, we find[
e" (3.56)

in the neighborhood of z = 0. Thus an appropriate X(z) is given by

X(;') r•

(3. 57)

Combining eqs. (3. 52) and (3. 53), we find

Sx4(U) Q +(U) -X- ) •-(IA)
(3.58)

which shows that X (z) OL (z) must be an entire function. But since

.a I(oo)=0 (3.59)

IT
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X(z) ( (z) must be a bounded function. Thus

" X M) (Liouville's theorem) (3.60)

We may obtain the index of refraction from this general resultI-
simply by noting that

so V 3A(v)dv

0, V -?- = _- -_X?

l[ (3.61)

[ Thus

"BO C f vA(Y)dlv -C X(o)Eo • A•e X(o)
X (3.6Z)

0

This may be simplified by means of the identity18

X (z)X(-)=• A(-=)
E- (3.63)

which is most easily verified by noting that in view of (3. 53). R (z)

defined by

AM)
R Iz R(Xa) X (3.64)

ii,
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F is an entire function. But

"111 
(3.65)

Hence,

(Liouville's theorem) (3.66)

S- It follows that

-CFX(o) = re
l_ (3.67)

[ (the phase is easy to verify). Thus

I. Y X. =re
(3.68)

which is just the zero temperature result with the correction factor

18
X1 (0). X1 (0) may be approximated through the use of the identity

X(g) -X(O) + Z t f 4 w~- ) X(&U) (.9
0 (3.69)

I. To prove this second identity we make use of the fact that (X(z) - z - X(O)] z`1

is analytic in the cut plane, vanishing as I z - . Hence, by Cauchy's

theorem:

[xr,)-I -Xo) if x(,'•- 0x•)w, .Lf JX1,,X(.)dU

[ (3.70)
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1 But

)(*U) x ~u A-W ~

= -A'W AA)j4 LAt -A(u)JC- (3.71)

from which the identity follows.

Using (3. 69). we obtain the result

x'(,) =I~ J- -X-,) = X- U- ,

(3.7Z)

Since F(u)s..ve - Ize it is reasonable to approximate X(-u) = X(0)

in the integrand. Thus

-,O 2X (a) •o !m

(3.73)

to first order in (2 G/mc)1. Higher order corrections may be

-o t obtained by iteration.

1-
I.

Ii

[i
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7. Digression on the Outgoing-Wave Boundary Condition

In treatment of half-space problems in this chapter, we have

somewhat arbitrarily required that there shall be only "outgoing waves"

(section 4) or that the frequency should be considered to contain a small

positive imaginary part (section 5). The second prescription actually

incorporates the first, and both are the results of attempts to correct

the mistake made in posing the problem of a wave which has been in

existence for an infinite length of time, rather than treating the factual

build-up of the wave as an initial value problem.

By way of illustration we solve the initial value problem for the

zero temperature plasma, a case where the results are well-known.
I"

The plasma fills the half-space z > 0 and for t < 0 the electromag-

netic fields are confined to a finite region on the vacuum side. In general,

for x-polarized disturbances

10 = - L 12 (,t
C It

I I ~ (3. 74)

D(,t): E t,) 7 < o

Taking the Laplace transform with respect to time, we obtain

___- - Bzo~

-_ C (3.75)
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We need, oa course, the constitutive relation between D and E. As

a rule one writes

(3.76)

The rationale for this is well known. If we consider a disturbance

-i w t
of time dependence e , then the equation of motion for each electron,

r W(3.77)

automatically yields as a solution for the polarization

I

IF m(3.78)

and hence

(3.79).

This, of course, assumes that the oscillation was initiated far enough

in the past for the polarization to build up to its final value.

In the initial value approach we write

•'()----• 411' E'tgdt'

0 0.
it )(* -t')A(t')o t' (Euler's identity) (3.80)

0

Ii
[i
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D(10 E (t) + 4-tne r(t)
St

E M+ 'L Io (t-to) F(t,)Olt°
(3.81)

and

where we have used the convolution formula to write

F0 e
o (3.83)

Thus the expression (3. 76) is valid if it is interpreted as the

complex Fourier time transform of Eq. (3. 81) where we have the

usual correspondence w = ip. As an indication of what we can expect,

we note that for p on a typical Laplace inversion contour, (parallel to

the imaginary axis in the right hand plane) tw will have a positive imag-

inary part.

In order to avoid loss of generally, we shall write instead

of (3. 82)

D P Ep
(3.84)

We now take the Fourier transform of (3. 75) with respect to the

Is
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-'pikE((k = (~o
-. kk p(k) B

(3.85)

where the Fourier transform is defined by

fE~,(~)ekad
Er-(k) O etc. (3.86)

Eliminating B p(k), we obtain

SP (- .(k,o) o(k,o)

Ji (3.87)

where we have used

3(k,0a)E= E(k,o) (3.88)

which represents the fact that the initial disturbance consists of

waves traveling towards the interface with velocity c. Now make

the separation

E(k) E (k) -o-Er(c ~,ekd f'(2) e"d

D ( k ) (k) k) =DE (k) E'(k) (.8

This yields

NO + )k"4k) + (k3 .k0

(3. 90)
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Besides enabling us to express D conveniently in terms of E.

the separation (3. 89) places our equation in a form suitable for treat-

"ment by standard complex variable techniques. The function L (k)

-" may be analytically continued into the upper half k-plane, and is, in

fact, analytic throughout the upper half plane and vanishes as k-.-i w.

Similarly, E- (k) is the boundary value, as k approaches the real
p

axis from below, of a function analytic throughout the lower half k-plane,

vanishing as k--- i co. Since the initial disturbance is confined to the

1. region z <0, E (k, t = 0) is a boundary value in the same sense as E- (k),
p

"and the (-) superscript on the right hand side of Eq. (3. 90) serves to

remind us of that fact.

SEquation (3. 90) is of the form

A+(k) Eý_(k) + A"(k) Ep(k)= C(k) 91)

which may be solved by the same technique used in section 8. We must

factor the function

A(k) k 2. + -X _ (k)
(3.92)

where X (k) is the boundary value of a function analytic and nonvanishing

upper

in the[ lower ]half plane. In this case, the result is obtained by inspection:

Sk- CA k + _k +- x()
C.4 C. 

2.

k1! +- -X()

S1(3.93)
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(It is assumed that we may define the square root in such a manner

that (p i p) lies in the right half plane whenever p lies in some

appropriately chosen half plane Re p >p o .) Then

V� (•_-k) (k• - ) -- k•• (ko)

(3.94)

from which

C. (. 5

S|"or

[ I_ ' i+§

+ k (3. 97)

i(k 2- Ei-(- T 0) + d

~ (k~o)

'I where
I o e (the dielectric coefficient) (- . 98)

[L.=._.
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and where we have written w + throughout to indicate that whenever

w appears in the integrand, it should be thought of as having a small
I-

imaginary part which is allowed to tend to zero after the integration

"is performed.

We interpret the different terms in E (z, t) as superpositions

of transmitted, incident and reflected waves respectively. Having done

this we see that the transmitted and reflected electric field amplitudes

for waves of a given frequency are given in terms of the amplitude of

I the incident field, viz:

Ii= E ~ - E. E
S+I+YN(3.99)

F~~~ ~ Er =L!!.E= jni~.)E

v" (n(w) is the index of refraction)

Note that the solution to the initial value problem automatically satisfies

the condition that the electric field inside the plasma does not contain

incoming waves. This condition is usually introduced ad hoc.

We have shown that the initial value problem has a unique solution,

without the imposition of arbitrary subsidiary conditions. In fact, we have

constructed the solution. This, therefore, is the "correct" way to solve

the problem, or rather, it is the correct way to pose the problem. What

I Tthen is meant by a solution to the artificial problem, which specifies

steady-state time dependence e- ? Nothing more than the interpre-

tation of the above result as a superposition of steady-state solutions.

IL
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Working backwards, we will agree that we have a correct solution for

the reflected and transmitted amplitudes E (a), E t(w), if a superposition

of such solutions yields the correct solution to the well-posed initial value

problem. This, of course, is a general criterion which should be applic-

able to the case where the medium fills a slab rather than a half-space,

or even if the medium does not satisfy phenomenological equations of the

form (3.74).

The above result (3. 97) suggests the assertion that in considering

more general problems from the steady-state (time dependence e i W t)

point of view, all ambiguities will be correctly resolved by assuming that

w has a small positive imaginary part and requiring that the fields vanish

as z--*m. Of •0urse, in any particular practical case, one would use

this prescription to solve for E (w) and E (w), and then justify it ar t

forteriori by examining the solutions so obtained in the light of the corre-

sponding initial value problem.

The preceeding remarks may be seen in a more general light by

understanding that causality lies at the root of all these considerations.

Suppose we restrict our attention to the vacuum side of the interface, with-

out any restriction on what lies beyond, except that it be a linear system,

Then, quite generally

" -it 01, W z,6

-o (3.100)



-75-

Mathematically, t- firendt term represents a disturbance which ise[secon
right] without change in spatial form. The conditiontraveling to the I lef t

that the initial disturbance consists entirely of waves propagation towards

the interface from the left and is localized to the left of the interface

requires that at t = 0 the function F, (z - c t) is non-vanishing only

for z <0, and the function FZ (z + c t) is non-vanishing only for z> 0.

(Of course, the expression (3. 10) is valid only for z <0.) Hence, E.i(W)

and E (w) are boundary values of functions analytic in the upper halfr

plane.

17 As before, we shall interpret the functions F, and F. as

incident and reflected fields, the reflected fields being caused by the

I"t response of the medium behind the interface to the incident field. Caus-

ality then, is simply the requirement that there can be no reflected field

until the incident field distrubance has reached the interface. Moreover.

in this interpretation, since the medium is linear, the reflected field F,

must depen d linearly upon the incident field FZ which causes it. Thus

Er 4J) = V&ow)Ei') (3.101)

where •w() the "response function" depends only upon the properties of

the medium, and is the boundary value of a function analytic in the upper

I half plane.

All this serves as a justification for including a small imaginary

pr -i £tpart in w when solving the steady-state problem--time dependencee

I.
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Since all field amplitudes are boundary values of analytic functions,

we may seek steady-state solutions with cw in the upper half plane,

with the assurance that the resultingg(w) will be the analytic contin-

uation of the desired response function. In other words, we insure

that the field amplitudes will possess the required analytically properties

by working in a region of the w plane in which they are known to be

analytic.

"8. Propagation Along a Constant Magnetic Field

If the plasma is located in a steady magnetic field (not assumed

"small¶, then the Vlasov equation takes on an added degree of complexity--

f in particular, it becomes a differential equation in the velocity variable.

The general treatment may be approached through the "Fessel"

transformation, 19 which transforms away the magnetic field term at the

start. However, in the special case of wave propagation along the steady-

state magnetic field, the problem becomes almost identical to the case of

zero field. We sketch the results here.

In the linearization of (1. 34) we require

S n ,.) . •,t •"s l"(3. 102)

1 "small"

as before. On the other hand, now:

A
ii k ""small" (3.103)
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where k is a unit vector in the z-direction. Note that if F (0)0

is a function of energy alone, it will be independent of B since
0

there is no magnetic potential energy. Hence, if is isotropic

in the zero field case, it will also be isotropic in this case. The

linearized equations are then

U. t ) ,* +, £oot'^k) .Vuf neE
It

V E(Ft,t)- C Zt 4effd(3.104)

We have used Eq. (1. 41) to simplify. Otherwise, except for the1-
I. B term, these equations are identical with Eqs. (1. 39). Because

o

of the presence of the B term, the Vlasov equation does not separate
0

into plane polarized modes. The equations corresponding to (1. 47x)

and (1.474y) are

S+ .SL 9, (z,) a, -Ex (Zt,_0 F )

(3. 105 x)

S(3. 105 y)

where we have introduced 2 = - e B /m c (the cyclotron frequency).

However, these do separate into right and left circularly polarized

Ii modes: writing

I
L[
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]gx iE (3. 106)

we get

circularly (3.107+)
polarized
modes C + c-÷

f ~~~lef t l fE
circularly . ._ i2.E._ -. _F4) (3.107-)
polarized ?

modes -a --

-i C_ '•- cJ•-

The plasma oscillations are the same as in the zero field case, since

electrons undergoing longitudinal vibrations (JIB' ) do not experience

any u x B force.
0

- The normal modes may be exhibited by reproducing the zero field

treatment of chapter HI, in fact, the remaining equations in this section

Il will be seen to be almost identical with corresponding equations in chapter II.

Fourier analysis in the time variable yields (the z - dependence and

the L subscript is suppressed)

iiI,
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01 a 0 0 Eu 108)u

0 0 0 t L~{ ~A

or:

(3.109)

The corresponding adjoint equation is:

'b 4 ~tt
'Et Lk 0 0 . ) MIF 0

"0 - 0 t (3. 110)

0 0 /
or:

(3.111)

The solutions of (3. 108) and (3. 110) with space behavior of

the form e will satisfy the orthogonality relation (2. 15). In

this case, discrete solutions will exist whenever v. is a root of

100 (3.112)

- 00

where

C< t~ (3. 113)I[
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The continuum iqcludes the entire real axis. The solutions to (3. 108)

are 4V2VC

4 e (3.-114)

Li - C

for the discrete modes.- For the continuum modes

-~ F + x (V)LC.4-odV)

!i ;(u) • A*() +A" 0).](3.115)

"F The adjoint solutions are

Bt -nevJJEt 'n evc 2 (3.116)

9v =) ' 1.

for the discrete modes, with9t (U) =- W 1) p• (V EW(-a
W U

M() F(,1) = A(v)

(3. 117)

for the continium modes. By direct calculation, we find

r F(mv) (3.118)

jj which may be written in the form (cf. (2. 85))
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{M /V216 -Wv_ ATLOJ (3. 119)

I-

The discrete spectrum also is modified by the presence of the magnetic

field. Consider first the " +" or "ordinary" modes.

61,

AM (- 3(. IZO)

At zero temperature (F (u) = 6 (u)) we find

P L
+jzI 1'1¶1

1" which yields

a) no complex roots: two real roots, when w7(jw, + (/2)) •'/z
b) two complex roots at v i io + when w<(w: + (fw Z)2)) 1 /2 (/z

with

\LA. (WO* + .W (3, 1ZZ)

At finite temperatures, the situation is similar. There will be { O)discrete
1/2 1 ,j

modes when wj(u(w + (S2,/2)z ) - (l/2. The real roots have wandered off
p

the real axis to the other sheet of the double-valued function A(). In other

words, if we consider the expression (3. 120) for A(z') with Yd in the upper

half plans, we will find no zeroes, but if we analytically continue it into the

I" lower half plane, we find (among other's) two zeroes which, at low temperaturee

it
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at any rate, are near the real axis. Of course, these seroes do not

represent actual discrete modes because the expression (3. 120) for A (v)

does not represent its analytic continuation across the real axis. This is

no different from the case when there is no magnetic field.

The "-" or "extraordinary" modes are somewhat different. At

zero temperature

2.
SI P •--.o, =" C

(3.123)

I.e.

a) no complex roots; two real roots, when w>( 2 + (.1+/2)2)/ ,

b) two complex roots at v = L i v when 1' ( <( 2 + (,1/2)2)/ +AIz

with

& &(3. 124)

c) two real roots when w < A

In cases a) and b), the situation is the same as for the ordinary mode. There

will be 0 and 2 discrete modes for cases a) and b) respectively. In case c),

something new develops. The real zeroes of the zero-temperature A( v)

become complex at finite temperatures and give rise to four complex roots,

two each in the upper and lower half planes, of the dispersion relation

A (v) = 0 with corresponding discrete modes. In fact, if we were to apply

the argument principle to obtain the number of roots in (say) the upper half

[ I
|i
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plane, we would find that the curve corresponding to figure 2, p. 44, would

look like

I-

1.

which encircles the origin twice, so 0 arg A = 4 v. The discrete roots

are symmetrically located at L ve, ±- Ve*, and at low temperatures, near

the zero-temperature values

V.N + •(o..)C

/ *(3. 125)

We find

Ve leo~t go< 4 (3. 126)

with

A_____ xe4

2~ I - • (3. 127)

~ ii~= ~(i ~(3. 128)

ItA,



-84-

The presence of these discrete modes has led to some confusion in

the literature. 20 For example, in the transmission of electromagnetic rad-

iation through a half-space (in the extraordinary mode with o<.wa ), the spatial

dependence of the amplitude far from the boundary will be given by the slightly

damped discrete modes. In the paper cited above, this behavior is incorrectly

attributed to Landau damping, a phenomenon discussed in the next chapter.

1
I

II



Chapter IV. OTHER APPLICATIONS

1. Initial Value Problems

In thp initial value problem, the boundary values specified are the

values of all field quantities for all points in space at a fixed initial time, to.

It is desired to determine the complete behayior of the system for later times.

There is, then, a basic difference between the initial value problem and

boundary value problems of the kind considered previously, where the data

was specified for all times at a finite number of space points. The nature of

V the initial value problem boundary conditions requires that the problem be

Fourier analyzed in the space variable rather than in the time variable as

previously (cf eq. (2. 1)). Also, as a rule, in the initial value problem, the

I- plasma is taken to be an infinite medium. * Nevertheless, in terms of the

resulting equations to be solved, these differences are purely formal. Actually,

the singular eigenfunction method we have been using has been applied more.

often to the initial value problem than to other types of boundary value prob-

lems. In fact, the initial value problem was the subject of van Kampen's

pa per 21 in which singular normal modes were introduced.

2. The Initial Value for Transverse Modes

This is by far the most often treated problem in plasma oscillations.

The discussion in this section is included as background material, and contains

"" Montgomery and Gorman Z" have shown that in certain cases, slab geometry
may be treated by using the method of images to convert the slab problem into
an infinite medium problem.

S~-85.
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only an outline of the results in the quoted papers.

Consider the spatial Fourier decomposition of eq. (1. 47s), I.e.

let

E ,O( ,t) - (t)eik(

(4. 1)

Then

.- lt) + iku9  - L- EM FIN)
(4.2)

and
..-

ikE = 41 = 41rej du
-_ (4.3)

The coupled equations (4. 2, 3) were first solved by Landau16 using the Lplace

transform. The result for the Laplace transform of the electric field is

.P [(t f e (t)ý Wt & -L U I
-k j_, UI- /ik (4.4)

Van Kampen utilized the normal mode approach. Under the ansatz that

the solutions have time dependence e" i k v t eqs. (4.Z,3) reduce to

"E , (4.5)

I if



-87-

The normal modes are then

• -' + 2.(lOS(u-') (all real 1/) (4.6)

with

-f ~F'(Wd du
-6 (4.7)

Discrete modes would also exist for those v which are roots of

]. -,o (4.8)

but for the case when o (u) is Maxwellian, the discrete spectrum is empty.
0

1 Note that the denominator in eq. (4.4) is just A (12).

Van Karmpen proved that the g. (u) formed a complete set, by means

of the singular integral equation technique discussed in chapter II. ie proved

completeness by constructing the solution to the integral equation implied by

(u (4 .9 )

where g (u, o) is an arbitrary function, (the initial perturbation in this

"instance). The solution is

[

A ) A'() (4.10)

where

Sco (4.11)
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The solution to the initial value problem is then simply

E,• 4X - D-okv- d,,
oo (4. 12)

Case14 placed the normal mode treatment on a more formal basis.

He showed that the g (u) are orthogonal to the solutions of the adjoint-equation.:

--t S D (4.13)

That is

00

J S.(~S~~dL -N~v)g(v-i") (.4
i" -- •e(4. 14)

-" The adjoint solutions are

(1At) i fi~ + X ~V)S(14- V)L - V (4.1iS)

with

F'v (4.16)

Then an arbitrary initial perturbation g (u,o) may be expanded in terms of

the g (u) with the expansion coefficient given by

A (•-0 ' 9t. (U)9U)o) A•
NA(V) f N )(4.17)

I-

The normalization coefficient is found to be

- N(v) = FI(v)J (4.18)M

F'(v)



-89-

which may be written

mu Mm A(v) AQm) (4. 19)

Case also pointed out that in view of the Plemelj formulae, these

apparently different approaches to the initial value problem are actually

equivalent. That is, it follows almost by inspection, that the normal mode

expansion (4. 12) for E (t) t >0 and the Laplace inverse of (4.4) are actually

the same contour integral taken along two equivalent paths.

This last result is quite general, and is valid even when the steady-

state distribution function T (u) gives rise to discrete modes.Ii 0

f 3. Stability and Landau Damping

It is clear that if there is a complex root v of the secular equation

(4. 8), the system will be unstable, since (at least for some initial perturba-

tions) the electric field will contain a term e" i k vo t which grows

exponentially either for k or - k. It has been pointed out that for Max-

wellian Jo (5) there are no discrete roots. In fact, it is simple to show that

the discrete spectrum will be empty if F (u) represents any "single-humped"

distribution. I. e.

SIL(4.20)
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Single -humped Dis tribution

We prove this by applying the argument principle to A (z) as z

traverses the contour C

I .

The contour C

SAlong the large semiircle

A e ri (4. Z1)
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Along the real axis

A+() - I<- - 00 j. '- k&
(4. Z2)

and since F (u) is single-humped

A+(x 0 IKZ14,(4.2z3)

Thus the image of the path 34I J lies entirely abeow the real axis.
L 4---l Jlabovej

The image of the path 3 - 4 - 1 will then cross the real axis only once, at

the pointA +(u). But

A~(u& [ 4F'(tA)OII >1
(4. Z4)

I. since S(u) is negative definite. Thus the image of the contour C looks
U - U0

s some thing like

I

i which does not encircle the origin, and there are no discrete roots.

I I
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When there are no discrete modes, the system will be stable. This

follows from the normal mode representation (4. 12) of the electric field.

For any g (u, o), the function G (z) will be analytic in the cut plane, and

if (as we will assume) g (u, o) is reasonably well behaved, the boundary values

c* (v ) will be non-singular. Thus, for t > 0

E(t)- k fo A t) (4.25)

(the term involving G" v gives no contribution, since G:- is the boundary
A'(v) A

value of a function analytic throughout the lower half plane).

The asymptotic behavior (t--co) of E (t) is governed by the singularity
p. G+

nearest the real axis of the analytic continuation of - into the lower half

1. plane. Landau showed that if o (') is Maxwellian, the integral expression

vW (4.8) with Pz > 0 when continued into the lower half plane, has a zero (for

small k) given by

0o = Wor "oi (4. ý6)

wher-e

P M (4.27)

and

3/2.-

, I0

tI:
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23
Jackson has shown that a slightly better approximation is given by

W 'r Lornk~

-0  - i (4.2 8)

At any rate, a non-singular initial disturbance gives rise to ar, electric

field which after long times undergoes damped oscillations -e 1i or a •o

This "Landau" damping may (in keeping with the van Kampen singular normal

mode picture) be thought of as the result of the phase-mixing of an initial

disturbance composed of oscillations which propagate with a continuous spectrum

of velocities.

J 4. Landau Damping of Transverse Modes

The initial value problem for transverse modes may be treateC in the

same manner. The discrete modes of the system would have space-time
ikz -ik v,.t

behavior ,.,* e e j , where the v are the zeroes of the dispersion func-

tion A (v). In this case, however,

60 (4.29)

V " with fixed, real k and complex v - w/k, and it is easy to show that there are

no discrete modes. Hence, for positive [negative] k the long-time behavior
Sikz -ikvot1 of the system is of the formtue e 0  t, where v is the zero lying

nearest the real axis of the analytic continuation of A + v) [A'4] into

the lower [upper] half plane.

LI
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We note that the analytic continuation of (4.Z9) from the upper half

plane into the lower half plane is given by

Acont (V) = Ca_-V1'- "l a- - ý 16v F(V)
SV -(4.30)

Then, if we assume that k vo lies near to its zero-temperature value of

2 2 2 1/Z
(W P + k c ) , we may compute k v by means of successive approx-p 0

imations. In particular, the attenuation decrement Im (k v. ) is found to be

21C 0

5. Longitudinal Oscillations: Fixed Frequency Modes

p" The longitudinal oscillations, like the tranverse oscillations, may be

analyzed into fixed frequency modes:

9t¢A, t) =A 9 •(P) U -)~
V 1 i,iA:,t)= il-'t

Eý( -) t) E e -iwt(4.32)

The equations corresponding to (4.2-3) are

E4o E (4.33)

or

(4.34)

The adjoint equation is

I~ [(4.35[)
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where

Ht ft -
(4.36)

Here we must modify the procedure used in the transverse mode

case. Zero is an eigenvalue of the operator H. I.e.

H To = 0 t tHt (4.37)

with

1~~0 0 _

1. •(4.38)

Thus the set of solutions of (4. 34) contains the spatially uniform solution 4 o

as well as the modes obtained by the separation tP = a. • i i'". These last

solutions are obtained in exactly the same manner as the transverse modes

derived in chapter II.

The continuum modes are

Wa1. -

V El (4.39)

t, (440
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with

2()=X(v) F'W)= -P -l)l
(4.41)

When W>w,, there are no roots of

10A) fe- IA.j1 F -l.)d (4.42)

and when w < w p, there are two imaginary roots ± i vo and coirresponding

discrete modes. Note that

(4.43)

As before, we have the orthogonality relation

I(rv, ) =(N{v)Ev -,) (4.44)

where

d- F'L'-')
(4.45)

which may be written

N(Av W,•: AII (4.46)

"Of course, the discrete modes, if any, are orthogonal to the continuum modes

and to each other.[ I

[
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The set {j '• (discrete and continuum) is complete when supplemented

by the spatially independent solution i o" The completeness proof is straight-

forward. We attempt to expand a state function i in terms of the continuum

modes.

@0

Do~ A M V) , J V
-1 (4.47)

or

IL. (4.48)

(4.49)

Combining:

(4.50)

where we have defined

atz) = -LfW,.VA- V'(d l
- 00 V-2(4.51)

a(z) is, by assumption, analy&,. :,n the cut plane, vanishing at least as fast

as 1/ jzl as Izl-.*oD. In fact,

(4.52)

which is a subsidiary condition that N(z) must satisfy in order that A (v)

T
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given by

v A (v) - CC.(v)
(4. 53)

shall be a solution of (4.47).

The solution of (4.50) is clearly

),)7i A(?) (4.54)

which is, in fact, analytic in the cut plane provided that

t
V (cf. eq. (Z. 79)) (4. 55)

The subsidiary condition (4. 52) becomes

00

This may be written, using (4. 38)

t(w ) -I) (4. 56)

Thus, any function which is orthogonal to o as well as to the

Vo may be expanded in terms of the continuum tdj. This completes

the proof, since an arbitrary function T may always be written

+r \

(4., 57)

wher re is orthogonal to ytl and to the

0 jii
0LI o±i
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6. Boundary Value Problems (Longitudinal Oscillations)

By virtue of the completeness proof of the last section, we may

use the representation

- so (4.58)

and apply the boundary conditions appropriate to the problem under consid-

eration to evaluate the expansion coefficients. We have assumed W > W3

only to avoid the necessity of carrying the discrete terms along in the calcu-

la ti on.

One consideration may be applied to the distribution function at the

start. Regardless of the nature of the reflecting surface, there will be no

"net current carried by the electrons across a plasma boundary. Hence, at

a boundary z = a, fug (a, u) du must vanish, which implies

V --

4F tt J o +
= E( 0) o

On the other hand, if the plasma fills a half-space, then

A0  E(oo) (4.60)

which follows from

E,(1) A(V)E e (4.61)
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since the integral term vanishes as z .- pm* by virtue of the Riernann-

Labesque lemma. Thus, the familiar result

I - (4.6Z)

for a half-space with boundary at z a 0.

Now consider the boundary condition for the electron distribution.

If the boundary is perfectly reflecting

cjtIA) = • ,-(4.63)

This condition, together with the relations

(assuming F (u) F(u) (4.64)

yields V

--. : E0(1 (4.65)

which is of the form of an expansion of the function 0 in terms of

the ý and t * and the expansion coefficients may be found by rmeans of
V o

the orthogonality relations:

NI•) (4.6S)

Thus, if the electrons reflect specularly at every boundary, we have

immediat ely:

~ I.a) For the half-space, boundary at z u0

L
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A~v-A( w.' 2 E o)~ -

A(Vu) . 0 (v< o) (outgoing wave condition)

E(o)
A = Eto) = - o/ (4.66)

which yields

o N~vJI +•'/o)'J
- -eo)-•wt .r .o ,L A

b) For th. slab

7-0

V N ) (4.68)
AVo) -eirZ~)- (.9

and

Of particulazr interest is the irmpedence Z of this "plasma capacitor, "

L] defined by:

5' : f E(z')c:Iz (4.71)

j 0

I
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where J is the net current flowing into the condenser, and is given entirely

by the displacement current at z = 0, since there is no net electron transport

across the boundary, i, e.

(4;7Z)

Hence

. _.._. JE(, i I

iwC. E(o)a - iWCo reff (4.73)

with

" o= A0 4ic a (4.74)

r the capacitance of the condenser without the plasma.

1+ eff, the "effective dielectric coefficient" may be written in terms

of the function A(z), since
V: I' --Cos•. V L

w~rete Eo)---~6i 10v (4,75)

where the singularities in the integrand are to be avoided by ascribing to

w a small positive part. Thus, we may apply (4.46) and write the result

as a contour integral, which may be evaluated in a residue series:

Eeff + i L jrI-•. • ,, " A^+(*) i- €,.J,
W& 011 (4.76)

Note at at zero temperature, the term in braces vanishes identically.

1. Finally, we may treat the half-space with diffuse reflecting

boundary. In this case

(ou) = CE(o)F(U) 'A>0(i(4.77)
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which represents the fact that the wall remits the electrons in a thermal

distribution at the same temperature as the plasma. C is a normalization

constant to be determined. (4.77) and (4. 59). along with the outgoing wave

condition A (v) = 0 (Y <0). imply

E()OM =-EW C Fu - 5() 14)• If (4.78a)

which amounts to a half-range expansion of the left hand side in terms of

half of the continuum modes. This is of the same form as the expansion

treated in Chapter III, sec. 6 , and we only sketch the results. We define

fvA(v)av

J7Vo (4.79)

"J Then (4.78) combined with (4.59) and (4.61) gives

(o),� A FM - 90(u)1 = O1+(,A)A+(tA) - '(u);A'() AA.>o

LO U I(4.80)

0k(z) is to be analytic in the cut plane (cut from 0 to co along the real

axis). A•(s) does not have this property, but we may write

Mu()- . X+(IA) U)>o

where X (a) is analytic and non-vanishing in the cut plane. An appropriate

X (z) is

(4.82)

Note that

iAV X, (2) - (4.0a3)
2--0
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In terms of the X function, (4. 80) becomes

E(o)hL[CF(u)- o '. 4>o
[( -4.84)

Thus J (z) defined by

,J'(X) -X)oo) -- Eof X -(cF -)'Uxu) du

- -(4.85)

is an entire function. But since we require that I(z) vanishes as z --.*cc,

J (z) must also vanish at co. Hence

JT(7) = o (4.84)

and

c00~ [CF(M-9e+Cj
= (o)X Z•ri o 'M) (4.87)

with the desired expansion coefficient A ( v) given by

"P A(M )- clV() - a.(v) (4.88)

The normalization constant C may be obtained by letting z --- aD in (4. 87)

'iA-0L (4.,89)

The integrals in (4. 89) may be simplified through the use of the

18
identity

" "0 (4.90)

I f 'x jo( UL -f u - fci - W -L~V Zill'i
A-u N 0
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which follows from the fact that X (z) - 1 is analytic in the cut plane,

vanishing as lzj--.* co. For our purposes, we need only

X(o)- I =-._.!#f X'(1__) IF'•)du (4.91)
0lA) 

(

X' (o) = - - (, )

0 A- (4U) (4.92)

Then, using the definition of g 0 (u) (4. 38) and the fact that

A F(u) = - I M'hA)r (4. 93)

we may obtain the normalization constant

C = I X-o X,
W&, (4.94)

1* which could be further simplified slightly since we know (cf. eq. (3.61

X(o) 0 - IL (4.95)

7. Conclusion - General Considerations

We have carried out the eigenfunction expansion and its application to

boundary value problems in plasma oscillations. It is seen that the equations

treated contain a continuous spectrum of allowed values with associated singular

normal modes. In other, more fundamental respects - completeness and ortho-

gonality to the accompanying normal modes of the adjoint problem - the eigen-

function expansion for plasma problems does not differ from the eigenfunction

expansions that arise in all branches of physics. Thus the main effort in this

SI.
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dissertation has been the attempt to place boundary value problems in plasma

oscillations on an equal footing with other, perhaps more familiar, boundary

value problems.

The existence of a continuous spectrum with singular norrm I modes is

not peculiar to the plasma problem. Actually it is a characteristic outgrowth of

D
the D- or "streaming" operator that appears in the equations governing a

D24

wide variety of transport phenomena. Along this line, Case and Dyson 2 4

have presented the continuum modes for the Euler equations of hydrodynamics

.25
(linearized about a linear velocity profile). Also, Cercignani has obtained

the solutions to certain boundary value problems in gas dynamics through an

expansion in the (singular) normal modes of the linearized Boltzmann equation

"for a gas after approximating the scattering kernel by a kernel of finite rank.

Finally, Case26 has provided a comprehensive singular-normal-mode treatment

of one-velocity neutron transport theory, and his results have been applied and

generalized.273

In Case's treatment, the time-dependent homogeneous neutron transport

equation with plane symmetry and isotropic scattering

C I

under the ansatz

'1i~xp~ e e ~kQA (4.97)

takes on the familiar form

k QA 

(
-J (4.98)I -
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Ainstances are measured in unit of the absorption mean free path, •a time

I in units of 1 /v and c is the average number of neutrons emerging from a

-sca ttering event.

The solutions to (4. 98) are

a) for any k, a continuum - 4 0( < 1

= I I~J~-~L. - ~4(4.I99)

1i b) for Ik( <Cl1r/2 one discrete mode

'C +

f + A- (4.901)

The orthogonality relations are

-Wk

dependentb) oree' kuto < the/ oneudsrterondesrbto u oasuc

-I

Zk 0( -4
Ct

jfjq[t oold,4 I 9a (2 (4. 1OZ)

I. The nornz~s1 mode expansion may be used to obtain the general time

dependent Green's function - the neutron distribution due to a source



q ( 2 z 5e:x: - x p-). For our purposes, it suffices to statea less general result: the tota.l neutron density (~x. t) = fir do produced

by an isotropi plane source q (t - to (x - ) is given simply by

Air L , (4.103)

(here I means adding the discrete term to an integral over the continuum).

There is an interesting connection between this neutron transport

problem and the transport problem of the gaseous discharge. 3 1 Let Vv, vZ, z, t)

be the distribution function for electrons in an electric field diffusing among gas

molecules. The electric field is in the z direction and plane symmetry and

elastic isotropic scattering is assumed. Then Y satisfies

#1" IN

W f dar+ Q,(4.104)

where gaa nd t" are the absorption and scattering cross-sections. If,
5

finally, we assurme that the cross-sections are proportional to 1/v and choose
-1

units in terms of the mean free time (v 0,,) and the basic acceleration eE/m,

we get

It'iT v 47 t,fVr t (4.105)

I. where c = T / .

We seek a Green's function solution q = S(v) S (z) W (tM corresponding

t !t

tI
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a factor S(v - 0 Z), by conservation of energy; no information is lost by

integrating (4. 105) over z to obtain

IMt (4.106)

where

(4.107)

Now if we use instead of v, vz, the velocity variables v and p4 = Vz/v

the transport equation takes on the form

I ( 4.108)

which is identical, under the transcription v-.-.r to the neutron transpoL,

equation in spherical geometry. Thus, the solution § corresponding to a

point source in velocity space is obtained immediately by transcription from

the neutron transport point source Green's function. Thus, the results of

the eigenfunction expansion in neutron transport may be applied directly to the

gaseous discharge problem.

IL
S-

II
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