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ABSTRACT

The simplest relativistic wave equations for a particle
which in the classical 1imit possesses moments of inertia
about more than one axis are Dirac and Kemmer-Duffin
equations contalning extra terms which cause these equa-
tions to describe a variety of spin states. The classical
field theory of'such wave equations is developed and the
generalized Dirac equation for pafticles of spin % and g
is examined in detail. It is found that with the choice
of only one parameter, which merely determines the scale,
this equation not only correctly describes the spin and

- - - 0

charge states of the particles and resonances = ,

- 14

N, P, Nxx’ Yoxx; it also ylelds their masses correct to

. better than 2%06. In addition, with the same choice of

this parameter, the theory has so far yielded the correct
masses, to the same accuracy, for the resonances Nxxx,
lex' Yoxxx’ NN oiving their spins as 5/2, /2, T/2

and 9/2 respectively. The =~ - % and N - P mass diff-
erences have the correct sign but are several times their
observed values. Choice of one other parameter to give
the correct N - P mass difference would lead to even
better agreement with experiment for the other states,
but would also lead to proton and neutron isobars lying

20 MeV above the ground state.
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1. Introduction

Each level of theoretical effort, from Newtonian

BN LT Gy Yo s S £, STt e Tindie S P RBRP I T

physics to relativity to relativistic quantum field theory,
is solidly based on the discipline which preceded it.
The Correspondence Principle shows us how each quantum
theory has its classical point-particle 1limit, and how
each second-quantized theory has its classical field-
theoretic limit. It is reasonable to expect, then, that
% a dynamical theory of elementary particles and nuclear

forces will also have its roots in classical mechanics

and quantum mechanics.
(» For some years there has existed, within the appro-

_ ximation of classical relativistic particle mechanics,

a theory of the dynamics of a spinning particle which

possesses moments of inertia about more than one axis.l)

As a consequence of the equations of motion for such a

TRRSERESEN e o T om s

particle, it was found that the mass of the particle is
not required to be a constant of the motion and that
the intrinsic spin angular momentum is the sum of two

vectors, along and perpendicular to the angular velocit 2).

gD U IR TG S S T - s sy

For the case of a pure gyroscope, for which the moments
of inertia about all axes normal to the spin axis are
zero, the theory reduced to the classical limit of the

Dirac and Kemmer-Duffin theories, in so far as it is

possible to distinguish spin and quantum effects in going
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% to this limit.

? More recently, the quantum theory corresponding to
the more general case was rormulatedj). The essential
features of the more general classical case were showm
to be retained in the quantum theory. The variable mass
of the classical particle theory became an operator in
the corresponding quantum theory, and, as in the classical
case, the spin became the sum of two operators, one of
which is the usual spin operator. Thus the generalized
Dirac equation, for example, now includes an extra term
and may describe a particle of spin other than %.

‘b In Ref. 3 the laws pf conservation of momentum and
angular momentum were shown to lead to an expression for
the mass operator, so that we obtained the relativistic

wave equation

o -

e

(1 € P+ Me) =0 (1.1)
e
where Pu - pu % Au
- ' ' .
M=ms+m €. kuy +m euxu (1.2)

and m, my» m' are arbitrary parameters.

‘The spin of the particle is now
S,y = - 11\'(ew + Ay ) (1.3)

B w

where
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6 -
uy o Lo yo Yy uo
(1.4)

wy o )‘u v o y 6uo

'{ woyr * Sue B0 T e Pyo oty ]

[Auo v * vrﬁ»o - uero Ay uc‘]

—
]

(1.5)

py '’ )‘or) =0

Hence (Suy ,M) = 0. '
For m' = O, the theory exhibits a detailed corres-

pondence with the classical theory. The classical point-

particle equations relating the spin Suﬂ , angular velocity

1,2)
u)uv and mass M are

"8 = Telw, . + a ) = -(v P U',Pu) )

wy wa T TR

X = r . r "' M -

X, U " (v " 1u 1)
. K . Ve (1.6)
'Qu.v . (wuo Psy P00 ou.)

- ) :‘
M o1 > Q)uv ol.l-U
M z - K w (.J; + M (1 7)
Te (V> RETRY) *

These may be compared with the similar equations derived

from (1.1) for m' = O:
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> -- \ .- -
8,5 11?(ew ) 1(¢,P, - ¢, P)

x = U =

X w i cu
. 21m o (1.8)
wy " TR [potar = €5 oton)
. 1m o] .
M = 4 vy Tuy
M =m, o€ luy +m (1.9)

If we write

Ie wuu = -1 % eu

Ic.flw = -11h 2

Y

. Wy

¢ h K &S;W ~2im c® TN,
"we note that each of equations (1.6) becomes formally
identical with the corresponding equation of (1.9) and

that (1.7) assumes the form of (1.9) apart from a factor 2.
Equations (1.5) are satisfied if ¢

g 2 e

wy and ku)l usuf
; the form of either of the operators
3 Yoy =% (v, -v,v,) | (1.10)
or '
. Buy =88, -8,8, (1.11)

where Yu’ 5u reapectiéely satisfy the Dirac and Kemmer-

Duffin commutation relations:

W * YN " 2 bu,_.

BBy By + BgB, B, =B, 0, o+ B, 0, .
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Equations (1.4) are then satisfied if €. ‘Au are propor-
tional to either 'yu or Bu. ' |
Ir €Ly is given by (1.10) and € is a constant

times yu, equation (1.1) becomes a generalization of the

Dirac equation to describe a particle of spin given by

(1.3) .
s ik b ) (1.12)
py T TTE Wy Y My el

On the other hand, if €1y is given by (1.11) and < is
a constant times Bu, Equation (1.1) becomes a generaliza-
tion of the Kemmer equation to describe a particle of spin

S = -1k(aw + N ) (1.13)

Wy Ha
y are also of the form (1.10) or (1.11) (in a
different space, since they commute with eu_ v ) the general-
ized Dirac equation will then describe particles of spin
0, %, 1, g, and the generalized Kemmer equation will yield
all values of the spin up to 2. More general forms for
"u.u lead to particles of higher spin.

In this paper we first develop the classical field
theory of the generalized Dirac and Kemmer equations
derived from Equation (1.1) when M is any hermitean operator
vhich commutes with Pu but not with €, We then consider
in detail the particle states of sp:l.n% and g obtained .
from the special case of the generalized Dirac equation .

when we set A, =B, A, =8 in equation (1.1):

wy
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' - .14
(1euPu+mc+m°ceuyBuy+mceuﬁu)qj 0 (1.14)

with
1 1
In general, this equation leads to eight distinct

eigenvalues for the i'est-energy of particles of spin% and

four such eigenvalues for particles of spin g, but for the

speciallcase m' = 0, which exhibits a closer correspondence
with the classical point-particle theory , there are four .
mass eigenvalues for spin % and two for spin'g. ,

For m' =0, 7 5 =" ")2-')3"]u comnutes with the Hamiltonian
(17u - 2Bﬁ - 1) and it is found that neutral particles are

(i characterized by 175 = -l,echarged particles by'475 = +1,
0 . X
the charge density being ~— '71&(1" ')5) 4’

For m' = o, my, = - % m, Equation (1.14) becomes

[1 euPu + me (1 - % u(i» €y 5“:’ )J \I/ =0 (1.15)

o AR v o

It is shown in this paper that for the choice m = 1297 my.
of the single parameter m, Equation (1.15) with € = %vu
not only describes correctly the charges and spins of the

hyperons and resonances > ~, = %, N, p, N*™%, Yon, it also

Y B 5

y:lelld‘s values for their masses which are'accurate to hetter

g e

than 2%/ 0. The neutron described by Equation (1.15) is
found to be heavier than the proton, and the T~ heavier

than the = °, although the magnitudes of these mass dif-

ferences are several times the observed values. Particles
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resembling the A £ le \(0’t are not described by
this special case of Equation (1.1) and a study 6r the
other fermions and bosons gi?en by Equation (1.1) is in
progress. )

While perhaps one should not expect greater accuracy
from a classical field theory, the case in which m' is a
small imaginary quantity has also been investigated. The
choice m' = 24 1 m,, coupled with the values m = 1297 m,,
m, = - % m as before, not only gives the correct values
for both m, and m_ and their difference, it also materially

n
improves phe agreement with experiment for the masses of
other particles described by this equation. Such a non-
zero value for m' would split the proton-antiproton
stapq‘ giving an excited level of the proton (and its
corresponding antiproton) lying approximately 20 MeV
above the ground state. An excited neutron state lying
at approximately the same height above the ground state
is also predicted by the case m' = 24 { m,: together
with some fine structure for the E,°, N** and YO““ states.
The term proportional to m' leads to exchange forces
between the neutron and proton states, which otherwise
ﬁould remain uncoupled.

In Sec. 4 it is shown that Equation (1.15) aiso leads
to approximately correct energies for the resonances Nm,
YI'“, YO“““, N"XR and to the correct spin in the one

case (N™**) where it is known.
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2. Field theory of generalized Dirac and Kemmer equations

We first consider the equation
(@, + Ry =0 (2.1)
where yu are the Dirac operators and K is an operator
which commutes with o ,» but not with v, . We define
RN S

where X is an operator possessing the properties

(7(, b‘l) = 03 ()(. 'Vu) = 0; (YM;K) =0 (2'2)
It then follows that, if K is hermitean™
2,4 v, -t =0 | (2.3)

80 that we may define a conserved density
+
( AR AN (2.4)
The energy momentum tensor
ik ¢ + +
Ty =~ ~% (p Vv‘)uq’ B ‘)u"" YY) (2.5)

satisfies

by Tyy =0
as in the constant mass case, but the symmetrized tensor
e 1
Ty =5 (T, +T,,) | (2.6)

is now no longer conserved. If, however, we introduce

the tensor

X The case in which K has a small anti-hermitean part

must be treated separately.

——
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) ‘ 1.';0 + T '
SR S P O R LA R AR 2N AL
o (2.7)
it 1s found that J, 9, =0 where

T+ &
ow-'rw»f wv

ihe)d W+ -
=Ty *+E— P[\P SARNERNANN Y] (2.8)
The tensor $ uy Vvanishes for K = const., but here it

is non-zero and antisymmetric.

The usual angular momentum of the Dirac theory
i
Pik=-¢ J (x40 = X Ogy)aV
-8 f A - s e (29)

- %‘f‘V"u’Vik‘f’ LA P R AR
is no longer conserved, since now the tensor Ouy is not
symmetrichl:
ap
3= - j Oy = Ogy)

b S PO

i However,
‘ Tik = Py =B Ay (2.10)
’ is then conserved 1if
{ d/\
ik 3
-4 fyttyen)y .

writing Ay = fptmdy b o
vhere kik commutes with 7.1’ we then have

[STRRE—————
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dA
ik - - 1ic f“',-i(xik”c) 4, dV

s0 that we reuire that
fq;* hlmu + MoK )Q' avV = 0 (2.11)
This condition is satisfied if (%"ﬂc + Ay,) commutes with

K . The conserved angular momentum Jj.k is obtained from
(1.9) by replacing v,, in the last term by v, + %ﬂc’
The equation then describes a particle of spin (ec.r. (1.12))

Sk " % fq; 'yu('ym#n k)cP av. (2.12)

Ir Xu.v commutes with Vo? the antisymmetrical part of Ouy

may now be expressed as a divergence:

i‘h
ihc + 1
- I ap[ 4' 'pru,v “J
Purther Oyy = Ty = Tyy = - W(¢™X ) (2.13)
for an eigenstate ¢/ of ifi g'E belonging to the eigenvalue
w. '
The conditions
1
(N, %) =0 (g, +1A, ,x)=0 (2.18)

are those used in Ref. 3.

The generalized Kemmer equatibnu)

8,2, +x) ¢ =0 (2.15)

may be developed in a similar manner. Here i is an
operator which commutes with & , but not with B,. Ve
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now define
+
VAR EN A XY
where "]u = 2“5 - 1 and X possesses properties similar
to those of Equation (2.2): ()(,au) =0, (47“)(,*() = 0.
It then follows that
a +8 - 1+K =0 (2.16)
u‘P w Y .
and that
+ '
T Yy By 4
is conserved. We then have
BBk = kI W
+ +
¢ ke B, = 9 ¢
80 that
au(4’+""P) = "P+5w Bu")v“' + 2v4’+K5“ﬂ,'~P
In this case we define

1 - -e[PrB A, - 3% 0 Y]

12 4

- mc[.y*(py BK + KBS, I - Guvw“'#] (2.17)

8o that

Ou_y

vigv A,Ou,)-
w " N cb“’(apu» vﬂp’*’]‘zla)

Ow is symmetrical only in the case in which X 1is a

c-number, s0 that we define

1 .
T = - 'é's (x0py = X 04) &V - & Ay
where '

and O
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+
AP .“' By My v
and ()‘uJ’ , Bp) = 0. Thus J,i 18 conserved if
Pty + Ao )Y av =0 (2.19)
the spin of the particle being (c.f. (1.13))

84y = nf ey By + M) Y v (2.20)

We may now define a symmetrical energy-momentum

tensor which differs from °uv only by a divergence:

L .!g.sm, +{ (B8, 46, B )k +K (B8, +8, Bu)}\P

( EATAMLD (2.21)
- Ou” + %—c- 4r+ (5uv ,K)\,}
-9, -4y Ay o)
-0, +iB2 9, (p BN, ¢)  (2.22)
Further
; r“‘ehh'}%gqﬁ ("7“'(-&«"“)44
"‘%4’“ (AR +nX) ' (2.23)

- - mc"tﬁ“t}l for X =1, K = i'-'% = gonst.

st o S 8 T e ——————— sy . [P
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3, The generallzed Dirac equation

If one of the ¢ is a set of Dirac operators

w My
%Yu and the other is a set of Kemmer-Duffin operators 5, »
the resulting equation describes fermions with spin

tensor given by

s,y =-inle,, +11;yw]
Although the mass operator is the same in each case, the
operators multiplying the pu are different, and we there-
fore obtain two distinct equations describing particles.
of spin % and g. In this paper we consider only one of
these (Eq.(1.14)). We use the notation Yy = pag'(i =1,2,3)

Ty = P3 and
é = -1 (62)’ B}l’ Bla) -
A= - 1By, Boys Bgy) (3.1)

.E. = (ﬂl’ th B})

so that the spin of the particle is

s-ﬁ(%g+§) _ (3.2)
The spin % states are therefore characterized by

€ =-2(£2=-2 (.1 o (3.3)
or by

L =0 (g2=0) (T,..) (3.4)

The spin g states are similarly characterized by
o-§ =1 (£2-2) (o,T) (3.5)

“

If in Equation (1.14) m, Mmqs m' are real parameters,
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the conserved density (2.4) may be written

&, 7~ 104”!7!&‘)1& 'Yu,"y (.6)
where 4, = 28,° - 1, so that 47, commutes with p, and
anticommutes with Bl’ 52, ﬁ}. For the special case m' = ),
however, we note that ¥ 5 = 411072 0]} "7“ commutes with
the Hamilt-nian so that in this case we may define annther
consevved  four-vector J N which we identify with the
charge-current density:

o gt ey (3
where ‘P+ =1y * v,
The charge density is therefore, for m' = O,

Pl -BYr L)  (3.8)
In the 5 x 5 representation of‘the 5u, '7 5 is diagonal
with the value -1 for the first four elements and +1 for
the fifth, while in the 10 x 10 representation it is +1
for the first six elements and -1 for the others.

We note that for m' imaginary the four-vector
4,4»75 A qli is strictly- oonserved, and that for small

imaginary m' the currents (3.6) (3.7) are separately
conserved only approximately.

In the rest system of the particle (g = 0) the energy ‘
operator according to Equation (1.14) is given by

.‘é’.a-\’l -{2p3m - em (qu_,g + 192‘1.-_?;)

(3.9)
- m' (10,9.8 - B,)] ¢ ‘
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The eigenvalues of W for the case m' = 0 have been computed
in Ref. 5 (although their physical interpretation in that

reference is incorrect). More generally, we now write

W - 2me® _ . Weeme? B, ol - ¢
= » EeEa— TR ’ -
2m 002 2m ocz EI'"o

For the 5 x 5 representationu) of the Bu_, the 20-
component spinor 4/ decomposes 1f1to four separate 5S-com-

ponent spinors, e.g.

a 1 -1 ) | ie 4’1
-1 B -1 1 e v,
-t B 1 el dgl Lo (3.0)
-1 1 -1 B e ¥y
-ie  ie e ié «a \’15
In this sub-space
0.§ = {o, 0, 0, O, o\ Sz-%ﬁll, 0, 0, 0, 0
o, 0, i, "1’ 0 0, -1,-21’ 0, o
C" -1, 0, -i, 0 O, 21, -1; 0’ 0
0, "1, 1, 0, 0 O’ 0, O, 1’ 0
\ o! o’ o! o) 0} \ 0, 0, 0, 0. 1
(3.11)

The characteristic equations for the other spinors are

obtained by replacing a by -8, and p by -a (i.e. changing

the sign of W) and by reversing the spin direction. -
Three solutions of (3.17) for states of :pin%
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(2’§ = -2 or 0) are
g A | ate - 1)
2 aa + 1)
fa(a + 1) (3.12)
a(a + 1)
\ 1e(B-3a-4)
with
a(ap + 22 + 3) = €(B - 3a - 4) (3.13)

These are also eigenstates of Sz belonging to the eigen-
value %h

For m' = 0, Equation (3.13) breaks up into three
states

a=0, W= 2me2, "75-1, ‘Iu-l

a3 +2a+ 3 =0, 475--1.

(3.14)

According to (3.8), the first of these is negatively
charged and has a mass 2m = 259%13, and we identify 1t

with the = hyperon. The other two particles of Equation

(3.14) are neutral (")5 = -1) and we identify them with
the neutron and = °. (see Table I).
Equation (3.11) also gives rise to two states of

spin 3/2 (0.£ = 1):

y =[O} . ’{T’ y = [ ©
32, - 3/2 ) 1302,
1 ¢ 11 (3.15)
-1 1
0 -2
0 0

&
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where the second suffix on tp refers to the eigenvalve
of 8. These states have the same mass:

B=1, W=2(m -me* («,T) (3.16)
with 'v, s = -1, »75 = -1, We identify this particle with -
the Yo’m resonance.

For the values of m ,m given in Equation (1.15)
the masses of these particles assume the values given
in Table I.

In the 10 x 10 representation of the Bu, the spinor

fp Has 40 components, decomposing into four spinors of

ten components each, e.g.

@ -1 1 0 ‘1 4 i 0 0 -i¢ |¢¥,

1 a -1 -1 0 1 0 ¢ O -e ¥,

1 a 1 -1 0 0 1e e dfu

0 1 1 p 1 -1 O0-ic € O L

-1 0 1 -1 B 1 1e O -te o} "’25 =0
1 -1 0 -1 -1 e i¢ 0 O ¢ 36

-4¢ 0 O O 1¢ -¢ a - 1 1 ¥

T an

0O -ie 0 -ie O 1¢ i a -1 -4 “' 8

0 0 -ie-¢ -1¢ 0 1 {1 a -1 Y19

e € 1€ 0 0 0 -1 -1 1 B [V,
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In this sub-space

0 x O

0 0 x . 0 0 ¥y

-1
with
x= /0 -1 1 y = l, -21, O
i 0 -4 21, 1, 0O
1 i 0 o, 0, -1

the dots representing a single row and column.
Four solutions of (3.17) for states of spin %
(g.ﬂg = -2 or 0) are given by

¢
-1y

-¢ (a=2)y - 215 + 1eX - 1eN = 0
¢ 21§ + (B+2)p - 2eX -0
-1g wich

-led + 2¢f + (a-2) X+ A =0

-# -3ty - 3K + BA =V

r—,

80 that
(aB+20-28) (aB-28+3) + ¢®(ToB-p+6a-28-24) + 12¢* = 0
(+.,T) 1.0 (3.18)

et st dn s o = 9 s o ensfoomspeota——— . ot
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For m' = O, Equation (3.18) separates into four states,
two of which (= ° and N) also appeared in the (5 x 5)
representation (Equation (3.14)):
B -B+3=0, YNg=-1
o + 2a - 28 = O, '75-+1

(3.19)

The first of Equations (3.19) is obtained from the
second of Equations (3.14) by replacing a by -8 and B
by -a, .1.e. by changing the sign of the energy. The
second of Equations (3.19) now represents charged (4] 5 = 1)
particle and anti-particle states

W=+ 2 /mf 4 bmm

which, with the same value as before for m and m, have
the mass of the.proton i.e. & /2m = 1835 My A

The coi'responding spin g states are described by
the following six solutions of the same equation (3.17) -

for the case g.g = 1:

! 1)
o 2¢
g [
Var | Yoy |
. .- $
3 3 X 3/2,- 5 X
1X -1X
o} X
0 0
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with
(a+1)4l + 1 + leX = 0
1g+ (B-1)g + eX ='o
-le¢ - ef + (a+l)X = O
so that

(B-2)g = -1(as2) , (a+l) (B-2)X = -1e(a-B+¥)y¥
and o
(a+1) (oB4p-a) + c*(a-psd) =0  (af) (3.20)
For m' = 0 the sping solution corresponding to
the proton state (second of Equations (3.19))is (X = 0)
af + Bf-a = 0, "]5-4-1
again representing charged particle anti-particle states
/m® = 2mm

m -2mm°

Again with the same values of m and m,s this leads to a

w-iécz

spin g excited proton state at 2900 me.' The corresponding
neutral state from Equaticn (3.20) is given by a = -1,
for which ¢/ =0, g = 0 so that % 5 = -1. Its mass is
therefore 2(m-m°) = 2918m_. We are therefore led to
identify the solutions of Equation (3.20) with the N*¥
resonance.

Finally, for the 1 x 1 representation of the bu(au = 0)
Equation (3.9) describes a particle of spin %g, mass
2m = 2594m,, (75 = 1), According to (3.8) its charge
is positive. It could transform to the other states only
through an interaction which could not be expressed in
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terms of the three inequivalent irreducible representations
of the Bu considered here.

In general, then, apart from the sign of W, there
are eight distinct values of the rest-energy given by
Equation (3.9) for states of spin %. These are solutions

of the equations

W= 2m (3.21)
W + 2(2m_-m)W* + 2 [6m 2-Bum_ - 2m?4m'2] W (5.22)
+ Bm(m-m ) (m3m_) - 8m'Z (m-m ) = O '
y" - 4m M + 2[6m 2 - 1omm - 4m® + 3m'2 ] we
b (4mm® + 16mm?Z - mm'2 + 2m m'* ) W
+ [ mo m mo o _] (3.2})
+ 16 m(mebm ) (n?+2mm_ - 3m ?)
|u - o

- 32m'2 (m2+mmq + jmoa) + 12m

For the case m' = 0, these ' equations reduce simply to four

distinct eigenvalues:

W= 2m
W= -2m +2 /m®+2mm -om * (3.21),(3.22)
.24
Weom t2 /m2+2mm°-2m°2 ) (3.24)
(3.23)

W= 1'2‘ /mZm+Fm°5

Similarly, for states of spin 3,2, there are in general

four eigenvalues, which are given by
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{
W o= 2(m° - m) (3.25)
W 4 2(mo-m) w2 + hm(?mo-m)w
+ u(m-amo) (2m2-2mm°-m’2) =0 (3.26)

For m' = 0, these reduce to two distinct values
We=2(m - m) (3.25)
W= -2(mo - m)

W=+ 2\/m2m-2mo) (3.26)

All of these eigenvalues for the case m' = 0 are

given by the formula

Womm (S, - 8y) & JLm(5,+5,) - 2m] 2 - m Z(e.2)?
( (3.27)

where S, and S, are the eigenvalues of g.i :

ng:gégn Components S, 8, [(o-))%
(3.12) First four -2 0 3
(3.12) Fifth o 0 0
(3.15) "All non-zero 1 1 0
(3.18) F?§§€°Ziit° -2 -2 4y
(3.18) Last four -2 0 3
(3.20) First six 1 1 1
(3.20) Last four 1 1 o]

While the calculated masses agree with experimental

C observation to better than 2%0, the mass differences
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N -Pand =~ - = 2 are not accurately described by

the case m' = 0. We therefore suppose that m' is a

small imaginary quantity, the magnitude of which we
adjust to give the correct neutron-proton mass difference.
Writing m = -am (a = %) as before, m' = ..16m (6 << 1)
and neglecting terms of higher order than 62, we find
that Equation (%.23) becomes, with W = 2me?x

[xz . (2a.+1)x + bacl - == (1 ha"’)]
2a”

[x + (2a + ~S (2a+1))x + (3a®+22-1) - S (332-23—1)]
2a® 2a®

The masses of the N, = °, P states are therefore

( My = (1.44558 - 79.51 6%) m
M' o- (1.94558 + 0.49 85%) m (3.28)

Mp,Mp = [1.u1u21 + B2(42.43 + uo.o)] m

We therefore obtain two proton states, and the mass

‘difference between the neutron and the lower of these is
6m = (.03137 - 81.94 6%) m

This has the experimental value of 2.53 m_ if 52 = 3.59 x 10

-k

and the lower proton state then has the correct experimental
value of 1836.1 m, if as before m = 1297 m,. The theory
would then predict ‘the existence of an excited proton
state lying 37.2 m, = 19 MeV above the ground state.

The mass m'_ , of the = © particle given by (3.28)

1s 2524 m,, but this is not the T° which is coupled
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to the = -, for the evaluation of which we return to

Equation (3.22). We obtain from this equation

m ,(2-&’.6-?-

)m = 2581 m,

m_o = (1.94558 + 27.68 82)m = 2537 my

m'N = (1.44558 + 1.01 6%) m = 1875 my

giving an excited neutron state also lying 19 MeV above
computed

o
here is 1°/0 too low, so that the magnitude m'N - my

the ground state. However, the value of m_

may also be in error and may change by a large fraction
when the radiative corrections are taken into account.
The neutral and charged spin 3/2 resonances given

by Equations (3.25) (3.26) now split as follows:

Y™  2.250m = 2918 m_ (Eq.3.25)

[o]
NRxO 2.222 m = 2862 m,
NRX+- 2.235 m = 2888 m_

These values lie below the observed spin 3/2 resonances

by one or two percent.
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4, QOeneralization to higher spin states

To allow for the possibility of resonances with higher
velues of spin and charge (although states of spin % and
% also appear in such a generalization) we replace a”
in Equation (1.15) by the sum of n commuting f operators
1
so that the spin of the particle becomes (eu - gvu)

n
1 1
Sy = -0 [Wu» * Z Buz/( )]

i=l
or s -n[3e+£) (3.1)
where S - 2(1) é(a) + oee. + Z(n).
( If we aleo write ' -

A= h(l) + \N“(a) + 00 4+ l(n)

e

the eigenvalue equation for the rest-energy of the particle

assumes the same form as before (EqQ. 3.9), m'=0, my= - %.)

azca ¢ - [‘?3 ¥ %("3 0.5 + 1"2‘1:?&)]"” (s.2)
with m = 1297 m,.

We now consider the quantity n

= (1) tee ¥ 757, Py 1%1 P“)'Vu“‘

(4.3)

where

r® =4 45 -a)

In addition to being conserved, this four-vector has the
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ul’(n) = 0,

47!‘(“) - -1, 7 S(n) -1, pn 0) 1t reduces to that

property that, when the last set of ﬁu vmishes(ﬁ

ohtained from Equation (4.3) by replacing n by n-1. For

n = 1, the expression for Ju becomes
le ¢

fm - Py ey
which 1s the current density adopted in the above study of
the case n = 1 (Equation (3.7)).

Since the eigenvalues of ,,“(i) are +1, and those of
/—'(1) are 0, -1, Equation (4.3) describes charge states
for which the charge ranges from (n-1) e, to -e,, or from

e, to -(n-1)e_, so that the maximum isotopic spin which

)
a particle can have is n/2. From (4.1), the maximum spin
- which a particle can have is n + %

Since '

X

trA

aAxxA=1$

-

A

as before, we find that
0.3 -=%(-11 ‘/1+’+£2)

A Ve

so that the maximum spin value Jm =n + %- is characterized

by the values

s 2=n(n+1)=sz--],-i-, g.é =n=Jm-%

Lower spin values J = n + % - r (r an integer 1 { r < n)

are characterized by the values

$2 = (n-r)(n-r+1) = J2- 'llf' g_.é = n-r = J- %

22 = (n-r+l)(n-r+2) = (J+ %)(J+}/2), .°..§_ - -(n-r+2l)- -(J+3/2

B
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In the case in which the spin assumes its maximum
possible value for given n (Jm = n + %) the wave function
of the particle is an eigenstate of 9'§ and this allows
us to obtain from Equation (4.3) a simple expression for

the rest-energy:

W 4 J

amor = V(TR + B? - gilo-n)?

For the case n = 1, Jm = %, this quantity becomes
W 1 \/—"‘_‘5

2me? B

which for (o.A)2 = 0 led above to the Yoxx resonznce

(4.4)

(Equation 3.16)) and the neutral component of the N*X
resonance (Equation (3.20)) while for (g.)\)2 = 1, it led
- to the charged components of the N** resonance (Equation
(3.20)) all of spin 3/2.

In general, Equation (4.4) is not very sensitive to
the value of (0.))?, and the states of highest mass given
by this equation ((g_.zi)2 = 0) with the same value of m as
used previously, have rest-energies

W= (2432 + 328.3 J ) m_c?. (4.5)
as listed in Table 2.
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n 1 2 3 4 5

Theory spin 3/2 5/2 7/2 9/2 |11/2

Mass (me) 2918 3243 3567 3891 4215

Resonance Yoxx NRRX Yoxxx ity
Experiment | spin 3/2 5/2 | >3/2 ?

Mass (me) 2975 | 3290 3552 | 3800

TABLE 2. Highest mass and spin values possible for given

values of n, and comparison with experimentally ob-

served resonances,

The theory therefore predicts spin values for the particles

and resonances listed below:

Particle Energy (MeV) Spin
= 1320 3
X%
Y, 1685 2
AKX
Y, 1815 %
Nxxxx 1922 %

Another Y resonance is expected at 1940 MeV, wigh spin

1

%, and further N and Y resonances with spin l%, -% ete,

at intervals of 160 MeV until their line widths cause them

to become experimentally indistinguishable.

component of the spin % NI resonance at 1512 MeV 1is

o e e o s I s

The neutral
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predicted to lie 10 MeV above the charged component, but
radiative corrections could materially change this value.
Predictions concerning the isotopic spins of these higher
resonances require further analysls, and the validity

of the whole theory will depend on the charge spin and
mass eigenvalues presently being derived for the other
states described by Equation (1), and on the calculated
selection rules and transition probabilities between these
states.
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