
UNCLASSIFIED

AD 402 106

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



N•TICI: Mhen goverment or other dravings, speci-
fications or other data are used for any purpose
other than in connection vith a definitely related
goverment procurement operation, the U. S.
Goverment thereby incurs no responsibility, nor aMy
obligtion vhatsoeverj and the fact that the Govern-
ment my have forimnated., fturnihed, or in any way
supplied the said drawings, specificationsj, or other
data is not to be regarded by implication or other-
wise as in any --nner licensing the holder or any
other person or corporation, or conveying any rijts
or permission to manufacture, use or sell any
patented invention that m in any way be related
thereto.



A*? 8665-6002-RU4OOO

A DYNAMICAL THEORY OF BARYONS

_: by

H. C. Corben

ASTIA

~' APR 241963
I' "-L- -.-'

X PACE TECHNOLOGY LABORATORIES5. INC.
b ec 1 I ale rt r 0 fT DI ow Ra e Wnaam t iOll 0 lad r I.

ONE SPACE PARK REDONDO BEACH, CALIFORNIA

I ••.. l I Il II I IllII H -•-



8665-6002-RU-000

A DYNAMICAL THEORY OF BARYONS

H. C. Corben

December, 1963

Research Supported by the STL Company Independent Research
Program and by Contract Nonr-3769(00) NR 013-110

QUANTUM PHYSICS LABORATORY
Physical Research Division

Space Technology Laboratories, Inc.
OMe Space Park

Redondo beach. California



8665-6002-RU-000

ABSTRACT

The simplest relativistic wave equations for a.particle

which in the classical limit possesses moments of inertia

about more than one axis are Dirac and Kemmer-Duf'in

equations containing extra terms which cause these equa-

tions to describe a variety of spin states. The classical

field theory of such wave equations is developed and the

generalized Dirac equation for particles of spin t and

is examined in detail. It is found that with the choice

of only one parameter, which merely determines the scale,

this equation not only correctly describes the spin and

charge states of the particles and resonances T 0

4 N, P, N , Yo; it also yields their masses correct to

better than 20/o. In addition, with the same choice of

this parameter, *the theory has so far yielded the correct

masses, to the same accuracy, for the resonances NXXX

Y1 x, Y 0o , N , giving their spins as 5/2, 5/2, 7/2

and 9/2 respectively. The "- - - and N - P mass dif f-

erences have the correct sign but are several times their

observed values. Choice of one other parameter to give

the correct N - P mass difference would lead to even

better agreement with experiment for the other states,

but would also lead to proton and neutron isobars lying

20 MeV above the ground state.

r4
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1. Introduction

Each level of theoretical effort, from Newtonian

physics to relativity to relativistic quantum field theory,

is solidly based on the discipline which preceded it.

The Correspondence Principle shows us how each quantum

theory has its classical point-particle limit, and how

each second-quantized theory has its classical field-

theoretic limit. It is reasonable to expect, then, that

a dynamical theory of elementary particles and nuclear

forces will also havQ its roots in classical mechanics

and quantum mechanics.

c. For some years there has existed, within the appro-

ximation of classical relativistic particle mechanics,

a theory of the dynamics of a spinning particle which

possesses moments of inertia about more than one axis.l)

As a consequence of the equations of motion for such a

particle, it was found that the mass of the particle is

not required to be a constant of the motion and that

the intrinsic spin angular momentum is the sum of two

vectors, along and perpendicular to the angular velooity2).

For the case of a pure gyroscope, for which the moments

of inertia about all axes normal to the spin axis are

zero, the theory reduced to the classical limit of the

Dirac and Kemmer-Duffin theories, In so far as It is

C possible to distinguish spin and quantum effects In going



s665-600Z-Ru-ooo
Page 2

C

to this limit.

More recently, the quantum theory corresponding to

the more general case was formulated'). The essential

features of the more general classical case were shown

to be retained in the quantum theory. The variablemass

of the classical particle theory became an operator in

the corresponding quantum theory, and, as in the classical

case, the spin became the sum of two operators, one of

which is the usual spin operator. Thus the generalized

Dirac equation, for example, now includes an extra term

and may describe a particle of spin other than 1

In Ref. 3 the laws pf conservation of momentum and

angular momentum were shown to lead to an expression for

the mass operator, so that we obtained the relativistic

wave equation

j (i e P + Me) 0 (1.1)

where P p c jA

M m + mo0 q A + m'CA (1.2)

and m, n, m' are arbitrary parameters.

'The spin of the particle is now

where- i
( where

C
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(•.v'Eo a g )o Y r 'V a6g V-,oo

( ,, •) =o~ 8 (-)v bo"
~L ~ 0 X 0. ' L

Hence (S ,M) = 0.

For m' = 0, the theory exhibits a detailed corres-

pondence with the classical theory. The classical point-

particle equations relating the spin S,,,, angular velocity

C and mass M arelC')

I,(w , .+ ) =_-(r AP - trP )

X,.L - (v i - -1)

go -Wg OV 0) h.'O COI 16

KM 21. . , (1.7)

These may be compared with the similar equations derived

from (1.1) for m' = 0:

Sc21
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tr -

21moc (1.8)

M0 r
* imc--9- •

M mo C• - A4 + m(

If we write

Ic J1 . - -i AP

Li'1 0

"we note that each of equations (1.6) becomes formally

identical with the corresponding equation of (1.9) and

that (1.7) assumes the form of (1.9) apart from a factor 2.

Equations (1.5) are satisfied if e and • assume

the form of either of the operators

or

where Y , 0 respectively satisfy the Dirac and Kemmer-

Duffin commutation relations:

+W +,yi 2 5 AV

IISAI•, 1 + 00150 OIL - I1, 6,0 a + 0o -A,,
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Equations (1.4) are then satisfied if e€, • are propor-

tional to either or 13

If C is given by (1.10) and e is a constant

times 74, equation (1.1) becomes a generalization of the

Dirac equation to describe a particle of spin given by

(1.3

On the other hand, if e is given by (1.11) and t is

a constant times 0 , Equation (1.1) becomes a generaliza-

tion of the Kemmer equation to describe a particle of spin
SS• 4V - i I (0g) + N • ) (1.13)

If the X Lo are also of the form (1.10) or (1.11) (in a

different space, since they commute with e ) the general-

ized Dirac equation will then describe particles of spin

0, i, 1, t, and the generalized Kemmer equation will yield

all values of the spin up to 2. More general forms for

Aj lead to particles of higher spin.

In this paper we first develop the classical field

theory of the generalized Dirac and Kemmer equations

derived from Equation (1.1) when M is any hermitean operator

which commutes with P but not with e We then consider

in detail the particle states of spin ijand iobtained

from the special case of the generalized Dirac equation

when we set W. v in equation (1.1):
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(te P + mc + moC f', 1 + m'c E~0•) = 0 (1.14)
IL AVW 0

with

C Y1 , Ep, = ' , = 1. (cf. (1.6),(1.8))

In general, this equation leads to eight distinct
1eigenvalues for the rest-energy of particles of spin 7 and

four such elgenvalues for .particles of spin i, but for the

special case m' - 0, which exhibits a closer correspondence

with the classical point-particle theory , there are four

mass elgenvalues for spin and two for spin

For m' = o, 1'5 =413 '72'104 commutes with the Hamiltonian

- 2p - 1) and it is found that neutral particles are

characterized by 175 - -1, charged particles by 175 n +1,

the charge density beingta 0 X 4 (l+ 5 ) /.

For m' - o, mo - - m, Equation (1.14) becomes

[iEIL +mcl- 4 EAý)J -Q 0 .15)

It is shown in this paper that for the choice m - 1297 me

of the single parameter m, Equation (1.15) with e. 1

not only describes correctly the charges and spins of the

0 X XXhyperons and resonances N , o , N Y, it also

yields values for their masses which are accurate to better

than 20/n. The neutron described by Equation (1.15) is

found to be heavier than the proton, and the !- heavier

than the _ o, although the magnitudes of these mass dif-

ferenoes are several times the observed values. Partiale"
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resembling the A Y yIx Y0 X are not described by

this special case of Equation (1.1) and a study of the

other fermions and bosons given by Equation (1.1) is in

progress.

While perhaps one should not expect greater accuracy

from a classical field theory, the case in which m' is a

small imaginary quantity has also been investigated. The

choice m' = 24 i me, coupled with the values m - 1297 me,

mo - 1 m as befbre, not only gives the correct values

for both mp and mn and their difference, it also materially

improves the agreement with experiment for the masses of

other particles described by this equation. Such a non-

zero value for m' would split the proton-antiproton

state. giving an excited level of the proton (and its

corresponding antiproton) lying approximately 20 MeV

above the ground state. An excited neutron state lying

at approximately the same height above the ground state

is also predicted by the case m' - 24 i me! together

with some fine structure for the 0 o NXX and Y states.

The term proportional to m' leads to exchange forces

between the neutron and proton states, which otherwise

would remain uncoupled.

In Sec. 4 it is shown that Equation (1.15) also leads

to approximately correct energies for the resonancNM1  ,

YJ( Y1, YoK, NAXXUI, and to the correct spin in the one

case (NX"T ) where it is known.
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2. Field theory of generalized Dirac and Kemer equations

We first consider the equation

- ) =o (2.1)

where y are the Dirac operators and PC is an operator

which commutes with • but not with Y,. We define

where X is an operator possessing the properties

0, Ox , 'Yd - 0; (Y 4 ,k) - 0 (2.2)

It then follows that, if K is hermiteanK

b I - t,+ -0 0 (2.3)

so that we may define a conserved density
a ýL- +* +,, 'Y., (2.4)

The energy momentum tensor

•,c (+ C,,,) (2.5)
Tý ' ýk --J LP + 4i V

satisfies

•T4 V 0

as in the constant mass case, but the symmetrized tensor

Tu (T, + T ) (2.6)

is now no longer conserved. If, however, we introduce

the tensor

K The case in which K has a small anti-hermitean part

must be treated separately.

I N .. M-_ _ _ _ _
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15 itC[-(-, l + I~ýy, -5,,7+

(2.7)

it is found that 0O = 0 where

0 LY- To+ t

=-T +4-2. c (2.8)
p

The tensor ý v vanishes for K, - oonst., but here it

is non-zero and antisymmetric.

The usual angular momentum of the Dirac theory

pik " - J (xik - xk i)dV

f - XiJ 'dk - xk4'y,4 ý ') dV (2.9)

f + f 'Y4Yik + dV (Yik T- Yik -ki

is no longer conserved, since now the tensor 04 is not

symmetric&l:

dPik f - 9 1k) dV

ar j~i ci
i:~~ + 'r- +('Yik• )K dVnf

However,

Sik " ik " Aik (2.10)

is then conserved if
d/Ik ic +

dV.

Writing A "ik " J +*ik 1+ d ' "

C where Alk commutes with yj, we then have
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dik -- ic W-) 4dV
d-a-

so that we reuire that

f ')4+ (1, I dV -o0 (2.11)

This condition is satisfied if ( + ik commutes with

K . The conserved angular momentum Jik is obtained from

(1.9) by replacing 'Yk in the last term by YIk + 4iIk"

The equation then describes a particle of spin (c.f. (1.12))

8 ik - ',4(',ik ik) + ..

If 'A oommutes with yVo, the antisymmetrical part of 0,

may now be expressed as a divergence:

"- 1c 4[ +- +4, qJ

Further 04- T4 - - - W( q" ') (2.13)

for an eigenstate 9' of in belonging to the eigenvalue

W.

The conditions

(4,v v,y) - 0 (1 yý,. + A4 K 0 (.w

are those used in Ref. •.

The generalized Kemmer equation't)

(• + K, ) 4 - 0 (2.15)

may be developed In a similar manner. Here K is an

operator which commutes with tl but not with A$,. We
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now define

where -4 2-22 _ 1 and )( possesses properties similar

to those of Equation (2.2): (,0 ) - 0, (17,D) - 0.

It then follows that
+ q 0 (2.16)

and that

is conserved. We then have

130 tLKa,, 'ki &- ~ K VL

so that

ý9+++)- 4,0% 044. +

In this case we define

TI~

0 Ly22M4+c + K01  + 0 ,40~] (2.17)

so that

T - -"o
and 9 gy , wV + i13ý- ,,0p)j (2.18)

G is symmetrical only in the case In which K is a

c-number, so that we define

- - (xi'Qk4 * Xk'Oi14) dV - A
where
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A ik= • + 4 'ikI dV

and (-h 4 P) ,.0. Thus J1k is conserved if

f+4(Oik + "Ik ") 4+ dV - 0 (2.19)

the spin of the particle being (c.f. (1.13))

Si 1k " /dh f 0 0ik + " 1k) ý. M (2.20)

We may now define a symmetrical energy-momentum

tensor which differs from 9., only by a divergence:

( -i (, +O+xW,'• (2.22)

. -% + A• 4,÷ (••,, •

•"v+ i + , ( 2

Further

44 044 ••. q + (4• +. 4)4,

tic (2.23)

me for. , K t-Onst.
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3. The generalized Dirac equation

If one of the e•, )• is a set of Dirac operators

and the other is a set of Kemmer-Duffin operators p3

the resulting equation describes fermlons with spin

tensor given by

S - - i a4I.V + 'Y",

Although the mass operator is the same in each case, the

operators multiplying the pL are different, and we there-

fore obtain two distinct equations describing particles

of spin 1 In this paper we consider only one ofSand

these (Eq.(l.14)). We use the notation ,- p2 0 (i - 1,2,3)

-4 = P3 and

_ =- i(0230 031$ 012)

x =- 0i(14, P24, 034) (3.1)

_"(01' 02, 03)

so that the spin of the particle is

S + (3.2)

The spin states are therefore characterized by

or by

0. 2 o 0 ) (T .. (3.•

The spin states are similarly characterized by

.22) (_ ()
If in Equation (1.14) m, mo, m' are real parameters,
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the conserved density (2.4) may be written

le- ic4' Y4I4 4 y (3.6)

where 4? 4 - - 1, so that *74 commutes with 04 and

anticommutes with , 021 P.Y" For the special case mi' -

however, we note that 47 5 = ' 112 '13 1 commutes with

the Hamiltnnian so that in this case we may define another

conserved four-vector jV which we identify with the

charge-current density:

J"- --- L + ('+ 1 5) V Y9' (3.7)

where Y4414

The charge density is therefore, for m' - 0,eo
P j•/c -7 tP N-14 (1 + 47 5)4"(•8

In the 5 x 5 representation of the A ' 5 is diagonal

with the value -1 for the first four elements and +1 for

the fifth, while in the 10 x 10 representation it Is +1

for the first six elements and -1 for the others.

We note that for m' imaginary the four-vector

4 +15 YA is strictly, oonserved, and that for small

imaginary m' the currents (3.6) (3.7) are separately

conserved only approximately.

In the rest system of the particle (p - 0) the energy

operator according to Equation (1.14) is given by

W M. 2p~m - 2mo . + ip 2q)
-'i .- )(J.9)
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The eigenvalues of W for the case m' - 0 have been computed

in Ref. 5 (although their physical interpretation in that

reference is incorrect). More generally, we now write

W - 2MC2  W+2mc 2w- -_._c• = a, - -& e

2mC 2  2mc 2  0

For the 5 x 5 representation 4) of the , the 20-

component spinor q/ decomposes into four separate 5-com-

ponent spinors, e.g.

ai 1 -I 1 iC
-l • -i 1 iE J

-i i • i -€ +18 -o (0.10)-i 

I 
-i 

1 

ii

In this sub-space

.= 0 0, 0, 0, O\ SZ 01, 0, 0, 0

0, 0, i, -1, C Q, -1,-2i, 0, 0

-1, - , -i, 0 0, 21, -1; 0, 0

0, -1i , 0, 0 0, 0, 0, 1, 0

0, 0, 0, 0, 0) 0, 0, 0, 0, 1

(3.11)

The characteristic equations for the other spinors are

obtained by replacing a by -1, and 0 by -L (i.e. changing

the sign of W) and by reverslng the spin direction.
C Three solutions of (3.10) for states of spin
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(a... = -2 or 0) are

2 ,O(G +l)

ic(a + 1) (3.12)

c(Q + 1)

with

( +S + 2a + 3) ( - - 4) (3.13)

These are also eigenstates of Sz belonging to the elgen-

value .

For m' - 0, Equation (3.13) breaks up into three

( states

a - 0, W = 2mc 2 , 475 =14 (1.3.1)

a! + 2 + 3 0, 5 -.

According to (3.8), the first of these is negatively

charged and has a mass 2m - 2594me, and we identify it

with the " hyperon. The other two particles of Equation

(3.14) are neutral - -1) and we identify them with

the neutron and = o. (see Table I)

Equation (3.11) also gives rise to two states of

spin 3/2 (o. - 1):

-0
3/,29 -3/2 1 13/2,~ 1 30 (.

--- 2

•.0 0
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where the second suffix on ý refers to the eigenvalve

of S . These. states have the same mass:

1 1, W - 2(mo - m)c2  (i",t) (3.16)

with 1 4 "-1$, *75 - -1. We identify this particle with

the Yo0 resonance.

For the values of mo,m given in Equation (1.15)

the masses of these particles assume the values given

in Table I.

In the 10 x 10 representation of the 0,,, the spinor

tias 40 components, decomposing into four spinors of

ten components each, e.g.

a -i 1 0 1 i if 0 0 -i

i a -i -1 0 1 0 if 0 -C 2

1 i a i -1 0 0 0 it iE 13

0 1 i i -1 0 -iE e 0 24

-1 0 1-i 0 i i o 0-if 0 +25 0

i -1 0 -1 -i f f if 0 0 36

-if 0 0 0 if -e a -i 1 1 T

0 -if 0 -if 0 if i a -i -i 8

0 0 -if -f -if 0 1 i a -1 *19

-iE f if 0 0. 0 -1 -i 1 P 20

m I, I n H
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In this sub-space

a. x 0 0 Sz t y 0 0

0 x 0 .0 y 0

0 0 x 0 0 y

with

( 0 m1, 21, 1 0

1 1 0 0, 0 -1"

the dots representing a single row and column.

Four solutions of (3.l7) for states of spin

(a.'( -2 or 0) are given by

"÷ I (a-2)+ 21ý + ie;K - UAx = 0

with -214q + (0+2)% - 2eiX W 0

E -i+ + 2e6 + (a-2)X + A - 0

so that

IUD+2a51U,-2P+3 ) + + 1,. - 0
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For ml = 0, Equation (3.18) separates into four states,

two of which (-o 0 and N) also appeared in the (5 x 5)

representation (Equation (3.14)):
cO8 - 20• + 3,=0, 15 a -i1 (3.19)

c + 2 a - 2 0o , '7 5 ' + 1

The first of Equations (3.19) is obtained from the

second of Equations (3.14) by replacing a by -0 and P

by -a, i.e. by changing the sign of the energy. The

second of Equations (3.19) now represents charged (4 5 1)

particle and anti-particle states

W - 2c /2 M + 4mo0

which, with the same value as before for m and m% have

the mass of the proton i.e. + /fm - 1835 me.

The corresponding spin i states are described by

the following six solutions of the same equation (M.17)

for the case o.f - 1:

0 3/2,- 1 2A

ixi
0 2X

0 0

L___
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with

(a+l)* + i+ V + 10 0

i+ + (.-1)ý + CA( -0

-10 - co + (a+l)X -0

so that

(0-2)0 - -i(c+2)+ , (a+l) (0-2), -ie(a-0+4)+

and

(a+l) (ap -_a) + e2 (a-0+4) - 0 (,ti) (3.20)

For m' - 0 the spin i solution corresponding to

the proton state (second of Equations (3.19))is (( - 0)

S+3-a - o, 475 = +1

again representing charged particle anti-particle states

W = + 2c2  / 2m
0

Again with the same values of m and mo, this leads to a

spin excited proton state at 2900 me. The corresponding

neutral state from Equat.cn (3.20) is given by a = -1,

for which 0 - 0, -- 0 so that 7 5 - -1. Its mass is

therefore 2(m-m ) - 2918m . We are therefore led to

identify the solutions of Equation (3.20) with the N"

resonance.

Finally, for the 1 x I representation of the 0 (L - 0)

Equation (3.9) describes a particle of spin ,M, mass

2m = 2594me (15 - 1). According to (0.8) its charge

is positive. It could transform to the other states only

( through an interaction which could not be expressed in
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terms of the three inequivalent irreducible representations

of the 0 considered here.

In general, then, apart from the sign of W, there

are eight distinct values of the rest-energy given by

Equation (3.9) for states of spin ½. These are solutions

of the equations

W = 2m (3.21)

w3 + 2(2mo-m)W' + 2 [6m02-8m0 - 2m2+m W (3.22)

+ 8m(m-mo)(m+3mo) - _M'" (r-roo) 0

W- 4_4mOW3 + 2 L6mo0  - 12rmo0 - 4m2 + 3 M 2)] W2

+ 14 ( 4 m 0 m 2 + 16m M _ 1-2' + 2mom , J W(3 2 3 )

+ 16 m(m+rmo0) (m2 +2mmn0 - 3o2)

- 32m' 2 (m2+MMr % + 3mo 2) + l2m' 4 . 0

For the case m' - 0, these'equations reduce simply to four

distinct eigenvalues:

W = 2m

W - -2mo _ ± 2 / +im o-2mom ( 3.2 .),( 3.22) (3 2

W - 2m0 2 /m 2 +2nm°i-2m 2 (3.20)
W ± (3.23)

W -+ 2 /m~m+4o)

Similarly, for states of spin 3/2, there are in general

f rour eigenvalues, which are given by

__ _ __ _ _
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W - 2(m - m) (3.25)

W3 + 2(m -im) W2 + 4m(2m -m)W

+ 4(m-2m0 ) (2m2 -2mmoi-m' 2 ) . 0 (3.26)

For m' - 0, these reduce to two distinct values

W - 2(mo - M) (3.25)

W - -2(mo -m)

W - + 2Jm(m-2o) 1(3.26)

All of these eigenvalues for the case m' - 0 are

given by the formula

W - m o(S2 - Sl) +A /Lm 0 (S1 +S2 ) - 2m] 2 -mo'(s.W)2

(3.27)

where S and S are the eigr-nvalues of a.:
1 2 -

quation Components S1  S2 (o.)92

Number1 2

(3.12) First four -2 0 3

(3.12) Fifth 0 0 0

(3.15) All non-zero 1 1 0
Components

(3.18) First six -2 -2 4

(3.18) Last four -2 0 3

(3.20) First six 1 1 1

(3.20) Last four 1 1 0

While the calculated masses agree with experimental

(• observation to better than 20/o, the mass differences
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N - P and -_ are not accurately described by

the case m' - 0. We thertfore suppose that m' is a

small imaginary quantity, the magnitude of which we

adjust to give the correct neutron-proton mass difference.

Writing mo M -am (a =-Al) as before, m' - *.i5m (5 C< 1)

and neglecting terms of higher order than 82, we find

that Equation (A.23) becomes, with W - 2mc 2 x82
x2 -- (2a+l)x + 4 a-1 - -- (l-4a 2

2a 2  )J

+ (2a + (2al))x + (3ae+2a-1) - -L (3a-2a-)l -o
2a 2  2a2  J

The masses of the N, -_---, P states are therefore

MN - (1.44558 - 79.51 52) m

MI o (1.94558 + 0.49 82) m (3.28)- 0

M pMp' I [1.41421 + •2 (42.43 + 40.o)) m

We therefore obtain two proton states, and the mass

difference between the neutron and the lower of these Is

6m= (.03137 - 81.94 52) m

This has the experimental value of 2.53 me if 52 - 3.59 x 10-4,

and the lower proton state then has the correct experimental

value of 1836.1 me if as before m - 1297 me. The theory

would then predict the existence of an excited proton

state lying 37.2 me - 19 MeV above the ground state.

The mass m'. of the . particle given by (3-28)

( is 2524 me, but this is not the o which to oouple4

•i•:• : : i •:::' " gt
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to the -, for the evaluation or which we return to

Equation (3.22). We obtain from this equation

m_ (2 -- 6) M - 2581 me

,: 0 " (1. 945 58 + 27.68 62)m - 2537 me

m N . (1.44558 + 1.01 62) m - 1875 me

giving an excited neutron state also lying 19 NeV above

the ground state. However, the value of mo computed

here is l/o too low, so that the magnitude m'N - MN

may also be in error and may change by a large fraction

when the radiative corrections are taken into account.

The neutral and charged spin 3/2 resonances given

by Equations (3.25) (3.26) now split as follows:

YO 2.250 m - 2918 me (Eq.3.25)

NXXo 2.222 m W 28e2 me

2.265 m 2941 me (Eq.3.26)
Ny~+ 2. 23S m =2888 me

These values lie below the observed spin 3/2 resonances

by one or two percent.

aJ
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4. Oeneralization to higher spin states

To allow for the possibility of resonances with higher

values of spin and charge (although states of spin - aend

ialso appear in such a generalization) we replace P

in Equation (1.15) by the sum of n commuting P operators

so that the spin of the particle becomes (e~t -

i-i IL YJ

or so m~[~ +.)(1

where 1 . •¢l) + ( (2) + ... + (n).

If we also write

A . X(l) + A(2) + ... + •(n)

the eigenvalue equation for the rest-energy of the particle

assumes the same form as before (Eq. 3.9), m0O *-O- -m m)

2mc2 [P. + iP20 - 44 (4.2)

with m - 1297 me•

We now consider the quantity n

-Jp, (.l)n ieoc • x ,1 (1) 4(2)1... 04(n) 14(1+

where

C. In addition to being conserved, this four-veator has the
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property that, when the last set of 0 vanishesISF&I1(n) . O,

(n) (n) = 1. (n) - O) it reduces to that

obtained from Equation (4.3) by replacing n by n-i. For

n - 1, the expression for j 4 becomes

tei c ( (1) 5 (1)

which is the current density adopted in the above study of

the case n - I (Equation (3.7)).

Since the eigenvalues of 14(1) are +1, and those of

p•(i) are 0, -1, Equation (4.3) describes charge states

for which the charge ranges from (n-i) e0 to -eo, or from

e to -(n-l)eO, so that the maximum isotopic spin which

a particle can have is n/2. From (4.1), the maximum spin

which a particle can have is n + 1

Since

as before, we find that

-1. . =+ +4 2

so that the maximum spin value Jm = n + is characterized

by the values

2=n(n+l) ~m o. =n=Jm~

1Lower spin values J - n + - r (r an integer I < r < n)

are characterized by the values

2 2 1 1
(n-r)(n-r+l) = J- , o. - n-r = J-

( - (n-r+l)(n-r+2) = (J+ g)(J+3/2), o.- -(n-r+2)- -(J+3/2
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In the case in which the spin assumes its maximum
possible value for given n (Jm = n +-1) the wave function

m2
of the particle is an eigenstate of a. and this allows

us to obtain from Equation (4.3) a simple expression for

the rest-energy:

± + +( N (o)2 (I4.4~)2mc --

For the case n - 1, Jm ' this quantity becomes

W - + /81_ -

which for (O.X)2 = 0 led above to the YoxE resonance

(Equation 3.16)) and the neutral component of the N XX

resonance (Equation (3.20)) while for (q.X)2 - 1, it led

to the charged components of the NX resonance (Equation

(3.20)) all of spin 3/2.

In general, Equation (4.4) is not very sensitive to

the value of (o.X)2, and the states of highest mass given

by this equation ((O.X)2 = O) with the same value of m as

used previously, have rest-energies

W = (2432 + 324.3 Jm) meC2 . (4.5)

as listed in Table 2.

(
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n 1 2 3 4 5

Theory spin 3/2 5/2 7/2 9/2 11/2

Mass (me) 2918 324.3 3567 3891 4215

Resonance YOXX N YO X N

Experiment spin 3/2 5/2 >3/2 ?

Mass (me) 2975 3290 3552 3800

TABLE 2. Highest mass and spin values possible for given

values of n, and comparison with experimentally ob-

served resonances.

The theory therefore predicts spin values for the particles

and resonances listed below:

Particle Energy (MeV) Spin

S1320 1

Y1 NX3  1685

Y0 XXX 1815

N X3 X1  1922

Another Y resonance is expected at 1940 MeV, with spin

and further N and Y resonances with spin etc.

at intervals of 160 MeV until their line widths cause them

to become experimentally indistinguishable. The neutral

component of the spin i NXX resonance at 1512 MeV is
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predicted to lie 10 MeV above the charged component, but

radiative corrections could materially change this value.

Predictions concerning the isotopic spins of these higher

resonances require further analysis, and the validity

of the whole theory will depend on the charge spin and

mass eigenvalues presently being derived for the other

states described by Equation (1), and on the calculated

selection rules and transition probabilities between these

states.
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