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Abstract

The radiative losses due to free-free transitions, free-bound

transitions, and permitted and forbidden line emission have been evaluated

for all ions which are present in significant amounts in the extended solar

corona from 4R to 215R Most of the radiative losses occur interior to0 0

15R, and they are dominated by line emission in the extreme ultraviolet

and x-ray wavelengths. In general, the radiative losses are found to be

unimportant, and the consequences of this result are discussed in terms of

the semiempirical model recently presented by Brandt and Mi chie (1962).

1 This research was supported in part by The Office of Naval Research
Grant Nonr(G)-00051-62 and by National Aeronautics and Space
Administration Grant NsG-243-62.
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1. Introduction

The determination of the radiative losses in the solar corona and

extended solar atmosphere is of importance in discussions of the energy

balance and structure of the corona. Earlier estimates of these losses have

been made (Woolley and Allen 1948; Elwert 1954; Zirin 1957; Allen 1961; Lust

and Zirin 1960; De Jager and Kuperus 1961). However the observational

values of many of the physical quantities in the corona and interplanetary

medium have not been made certain as yet. As work progresses and more

observational material is obtained, the calculation of the radiative losses

which are based on this data must continually be revised.

In a recent paper, Brandt and Michie (1962, Paper VII) obtain a

theoretical expression for an expanding solar corona which they find to be

reasonably consistent with empirical evidence (Brandt 1962a); recently,

the values of the expansion velocity and density found by Brandt and Michie

(1962) have been confirmed by the results obtained from Mariner-II by

Neugebauer and Snyder (1962). In such an expanding corona, ifA and

4., are, respectively, the total energy per second and the total mass

per second which cross a spherical surface at a distance r from the sun,

then at a point beyond which energy deposition and radiative losses can be

neglected, the ratio 1e / (, will be a constant independent of r. Brandt

and Michie have evaluated this constant at 4 solar radii, thereby introducing

the assumption that radiative losses and energy deposition are negligible

beyond that point. It is the purpose of this paper to test the validity of the

assumption with regard to the radiative losses.

2. Preliminary Results

In order to find the rate of energy lost by radiation in the entire

region between 4 solar radii and the orbit of the earth, we must evaluate

an integral of the form
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215R

T = 47r /R (r)r 2dr erg/sec (1)

where F (r) is the rate of energy loss per cm3 by all radiative processes.

The quantity E (r) may be broken up into three contributions: continuous

emission due to free-free transitions, continuous emission due to free-

bound transitions, and line emission. These contributions must be

evaluated for all ions which are present in significant amounts in the'

extended solar corona.

The abundance of the various ions is determined first from an

assumption concerning the abundances of the elements in the region under

consideration and second from a calculation of the state of ionization of the

various elements. We base our calculations upon the relative abundances of

the elements as given by Goldbert, Muller, and Alley (1960); the elements

considered and their relative abundances are indicated in Table 1.

To determine the state of ionization of the various elements we

note that the ionization equilibrium in the corona is established by a balance

between radiative recombinations and excitation by collisions with electrons,

under the assumption that photo-ionizations and three-body recombinations

can be neglected (Woolley and Allen 1948). However the results of Brandt

and Michie (1962) indicate that the gas of the corona is expanding outwards

with velocities ranging from about 8 km/sec at 4 solar radii to 300 km/sec

at the orbit of the earth. Because of this expansion, the material at a

given point may not have had time to reach secular equilibrium between the

various stages of ionization.

Consider two points, A and B. The time for material to travel

from A to B is

t = D AB/(2)tj A/ Bv>2B
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where DAB is the distance from A to B and < v ý AB is the average velocity

between A and B. If the ions in stage of ionization p recombine and no new

ions in stage p are produced, then the time for the number of ions in stage p

to drop to I/e of its original value is

tr = a N d -1 (3)

where N is the electron density and a is the recombination coefficient toe

stage p-1. The quantity tr then is a characteristic time for recombination

of ions when the material moves to a region favoring lower ionization. A

sufficient condition that the relative number of ions in a particular stage

not change when the material moves from A to B is

t. < < tr (4)

We find, using the estimates of expansion velocity by Brandt and Mfichie,

that for A= ZR, and B = 4R a, tj t r/8; and for A 4R. and B = 15R,,

t -= t r/20 for an ion of charge Z = 14; furthermore tj will be even smaller

compared to tr for ions of a smaller charge. Therefore we conclude that

the state of ionization of the elements in the outer corona beyond 4 solar

radii is the same as it is in the corona within 4 solar radii.

In the corona we may assume that secular equilibrium holds,

that is, at a given point the rate of formation of ions of stage p equals the

rate of disappearance of ions from stage p. An ion in stage p can be

created through recombination from stage p + 1 or through ionization from

stage p - 1. Under the assumption that three-body recombinations and

photoionizations can be neglected, we arrive at the secular equilibrium

equation

Ne Np (Sp-p+l + ap1p.1p-) (Np iS p 1.) p + Npp+lap+l-4pe) Ne

(5)
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where Ne represents the electron density, Np, Np 1 , and Np+l represents

the ion densities of stages p, p-1, p+l, respectively, Si..>j represents

the collisional ionization coefficient for stage i, and Cý _4j represents the

recombination coefficient onto stage j. If stage p corresponds to a

completely ionized atom, equation (5) reduces to

Npap---1 Np-lSp-1-4p (6)

Now, by replacing p by p- I in equation (5) and by substituting equation (6)

into the result, we obtain another equation of the same form as (6). Thus

we find that for each stage of ionization the following relation (due to Woolley

and Allen 1948) holds:

X Sp--p+l (7)

l-x a

where (Woolley and Allen 1948, Allen 1955b)

SP- =3 xl10 8 T 1 /2  -2ep _10~ (8)
T

a= 1.5 xlO 1 1 Z 2 T-I/2 (9)

Z is the ionic charge of stage p+l, •. is the ionization potential of stage p

in ev, and x is the number of ions in the p+l stage divided by the total

number of ions in the p and p+l stages.

From equation (7) we calculate the ion densities of the more

abundant species relative to hydrogen, assuming a temperature of 10 6 °K

and using the cosmic abundances from Table 1. The results are shown in
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Table 2. The method is not used for the elements hydrogen and helium; we

assume that both elements are essentially completely ionized in the region

under consideration.

The calculation of radiative loss also requires a knowledge of the

temperature and electron density distribution in the outer corona. The

temperature distribution near the sun can be obtained from the observed

densities by use of the assumption of hydrostatic equilibrium (Pottasch

1960, Chapman 1961). We use two different temperature distributions,

both of which agree with the Chapman values between 4 and 5 solar radii.

Distribution (A) uses a probable upper limit of 100, 000°K for the tempera-

ture at 1 A. U., while distribution (B) uses a probable lower limit of

30,000 0 K at that point (Chamberlain 1961). The intermediate values are

obtained by interpolation.

Two distributions of electron density are obtained in a similar

manner. Between 4 and 6 solar radii the values in both cases are those

observed by Blackwell (1956, see also van de Hulst, 1950). Near the orbit

of the earth the value N = I (Brandt 1962a, Ingham 1961) is used ine

distribution (a) while in distribution (b) the value N = 4 is used as ae

reasonable upper limit. The intermediate values are again interpolated.

Since we take the ratio of abundances of hydrogen to helium as 10:1 and since

both are completely ionized, the density of hydrogen ions is Ni = 0. 83Ne

In our calculations we shall assume a Maxwellian velocity

distribution, which is a reasonable approximation at points close to the sun

but which breaks down at large distances. Fortunately the calculations show

that most of the radiative loss occurs at distances of less than 15 solar radii,

therefore the introduction of this assumption should not result in appreciable

error.

3. The Method of Calculation

We now turn to the actual calculation of the quantityE (r). The

intensity of the free-free emissions is given by (Allen 1955a)
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E ff= 1.44 x 10i 2 7 gT 1 / 2 Z 2 Ne Ni ergs/cm3 sec (10)

where g is of the order unity, Z is the ionic charge, N and Ni are the

numbers of electrons and ions, respectively, per cm 3 . Using the fact

that for a given ion

N. = 0. 83 Nepi (11)1 N~

where pi is the abundance of the ion relative to hydrogen, we obtain

ff = 1. 19 x 1o27 T 1 / 2 N 2 Z 2 Pi ergs/cm 3sec (12)

where the summation is over all the ions of interest. Calculation of the

quantity F Zi2 pi gives a result of 1. 4 for hydrogen and helium and 0. 076

for all the other elements. Thus the final expressions become

Sff(H + He) = 1. 67 x T1 2 N e2

(13)

f ff(total) = 1. 76 x 10.27 1" Ne cm sec:

The rate of free-bound emission is derived by Menzel (1937); the

total energy emitted in transitions from the continuum to a level n of a

hydrogen-like atom is

E = N.N kKZ 4 gbk/n 3 T1 / 2 ergs/cm 3 sec (14)
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where bk indicates the departure from a Maxwellian velocity distribution.

Summing over n, evaluating the constants, setting bk = 1, and making use

of equation (11) we have

E fb =4. 52 x 22Ne2T 1 2 1z 4 Pi ergs/cm 3 sec (15)

This formula is applicable to the calculation of the free-bound energy

loss for H II and He III only; for these we find that z Z4 pi = 2. 6. For

the heavy elements we use equation (21) below.

In the calculation of the bound-bound energy loss we first note

that at the dilute radiation densities and low particle densities under

consideration, the times for particle or photon excitation or de-excitation

of bound electrons are much greater than spontaneous radiation times

(IV0-8 sec). Thus an electron in an excited state will, in general, cascade

to the ground state before any other process can occur. Therefore part of

the bound-bound emission will be due to electrons which cascade to the

ground state after they arrive at levels n = 2 or higher by processes of

recombination. To find the energy from this source we multiply the total

number of recombinations to each level by the energy difference between

that level and the ground level. The recombination coefficient to the nth

level of a hydrogen-like atom is given by Cillie (1932) as

a n=3. 26 x 10 6 n 3 T' 3 2 Z4  exp n/k EI(X n/kT) (16)

-t 

7

where E(x) = - dt (17)

x t

and where X n for a hydrogen-like atom is given by
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157900Z
2

2 n/kT -- = T (18)
nT

The energy is then

(bb(l) = L (Zi Xn) anNiNe ergs/cm 3sec (19)

where 11 i is the ionization potential. This formula is used in the

calculations in the case of hydrogen and heliurn. For the heavy elements

we estimate the energy loss due to free-bound transitions and subsequent

cascades to the ground level by using the generalized recombination

coefficient of a non-hydrogen-like atom, given by Allen (1955b):

a '1. 5 x 10-1 ZZT-1/Z (20)

The energy loss becomes

fb + bb(l) LEheavy elements] =aN eN.(E + • i) (21)

where - is the average kinetic energy of the recombining electron, assumed

to be 100 ev. This formula is used for all ions listed in Table 2.

The second source of bound-bound emission is collisional excitation

by electrons from the ground level followed by cascade back to the ground

level. For the case of hydrogen and helium we follow the method of Zirin

(1957). To determine the energy due to bound-bound transitions he assumes

that ionization-recombination equilibrium holds:

N(H I) x ionizations= N(H II) x recombinations. (22)



However our calculation is based upon a model of an expanding corona;

therefore we would not expect such an equilibrium to hold. Since hydrogen

is completely ionized in the inner corona, the number of H II ions at any

point in the outer corona is actually greater than the number one would expect

under conditions of equilibrium. Our calculation of the bound-bound energy

from this source therefore represents an upper limit since it is based on

the equilibrium assumption.

The hydrogen line emission is given by Zirin (1957, eq. 4A)'

recombinations
Sbb(2) = N(H IH) x -" x excitations x X i (23)

ionizations

A similar equation holds for helium. However, Bethe (1933a) shows that

for hydrogen-like ions, the rate of collisional excitation to all levels and

the rate of collisional ionization are in the ratio of about 54:36 for electron

energies of 1000 electron volts, which corresponds to an electron tempera-

ture of 107 oK. Furthermore, extrapolation of Bethe's table indicates that

the ratio tends towards 1 for lower electron energies. Therefore we can

take as valid Zirin's assumption that the rates of collisional ionization and

collisional excitation are roughly equal in the case of hydrogen. Bethe

also shows (1933b) that the rates of collisional ionization and excitation

both depend on Z , so the ratio is independent of Z and the same assumption

can be applied in the case of helium. We use the following expression in

the determination of the bound-bound energy loss from hydrogen and helium,

based upon a formula from Cillie (1932):

bb(2) = 3. 26 x 10- 6N N. N .Z4T-3/Z exp(Q)E,(Q) (24)
e 1 1 nl= 3

n

where , i is the ionization energy and Q is given by equation (18).

We now turn to the calculation of the radiative loss due to

permitted lines of the heavy elements. Because 1/A >> t. for distances
J

over which T and N change, secular equilibrium for excitation is valide
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at any point, and the number -of bound electrons collisionally excited in

a given time interval equals the number of photons produced. Following
3

the development of Woolley and Allen (1948), the energy loss per cm per

sec in a given multiplet whose lower term is the ground term is

1.88x 10- 15N 2 I /

p- T e exp(-y)-yE1 (y) (25)permitted TI1/2 fem] iI

where y = Xt/kT, •' is the excitation potential of the multiplet, and

f is the absolute value of the emission f-value for the transition. The
em

f-values used in the calculations are those recently computed by Varsavsky

(1961).

A number of important permitted lines fall in the X-ray region,

primarily below 100 A; f-values for these transitions are not given by

Varsavsky. In order to take these into account we make an estimate

based on the calculations of Elwert (1954, 1958). He gives (1958, eq. 12)
3

the energy loss resulting from collisional excitation per cm per sec as

3L = E(X-ray) = f3 * 4x 10-19 2Yzi (26)
1 9( 1/

where the summation is taken over all the elements and stages of

ionization under consideration; x-ray lines considered are listed in Table 21

Here, f 3 is an uncertainty factor of the order unity and the quantities Y .

include abundance factors as well as collisional cross sections. The ions,

the wavelengths of the lines considered, and the Y . as a function of

temperature are listed in Elwert (1954), Table 5. The calculation was made

with our electron density distribution and an assumed T = 6 x 105 oK, a

simplification which can introduce only negligible error since the quantity

JL turns out to be only weakly dependent on temperature. We note that two

lines in Elwert's table,, 40 of C V andA33 of C VI, are also included in our
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calculation of equation (25). A comparison of the radiative loss due to these

lines, based on the two independent methods of calculation, shows reasonable

agreement; therefore we feel justified in using Elwert's formula for

calculating the X-ray emission.

In turning to the calculation of the radiative loss from forbidden

lines, we first note that only photons arising from collisional excitation

will affect the flux balance. Unfortunately, the excitation cross section

has been calculated for only one line, the X5303 line of Fe XIV, in which

case the excitation cross section is given by

-2 2
eývj) = 0.78 v cm (27)

It follows that the collisional excitation rate from level a to level b is

(Firor and Zirin, 1962)

Cab = 1. 60 x 10-6 T-1 /2 N (28)ab e

If we assume, as do Firor and Zirin, that the excitation cross sections

for all the forbidden lines under consideration are about the same, we may

estimate the emission due to forbidden lines by the iormula

=forbidden 1. 33 x 10- 6 T-1/2 Ne 2  p. PilY ergs/cm 3 sec (29)

In the calculations, all of the forbidden lines listed in Table II of Woolley

and Allen (1948) were considered.

To summarize, the formulae used in the calculations are (13),

(15), (19), (21), (24), (25), (26), and (29). Substituting Ni = 0. 83 piNe

into equations (19), (21), and (24), evaluating F h 1p. in equation (29)
2 1 1n"6and 7-Z p.(r +i ) in equation (21), usingE Yzi = 27 x 10- in equation (261

including an estimate of the bound-bound contribution from upper levels of

the heavy atoms in equation (25) (see Results), and combining terms where

possible, we arrive at the following expression for the total emission per
3cm per sec:
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- 1. 76 x 10- 2 7"T 1/2
N e 2Ux

e

+ F. 8 1-20 +2. 82 x10 15 ' f ePi [exp(:"y).-yE I(y lTl/2

[.X ~~heavy em (J
elements

+ 2.70 x 10- 6 T"3/ 2  , HeZ4pixi exp((Q)E,(Q)

+ ( X1-Z.) -- p- e"/"l• (30)
n2n

i=H, He

where

y= k-- and 'is the excitation potential for a heavy element

15790O0 2

n2T

x i = ionization potential

Si-Xn = excitation potential for H and He II

pi= abundance of ion with respect to hydrogen

Z. = ionic charge

•j•x,2, uncertainty factor explained in section 5

l/Xvl/3, fraction of space occupied by matter, explained under

Results (5).

Evaluating equation 30 for the case of a constant temperature of

T= 106 K we arrive at the following expression:
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E tot 32.25 x erg cms ec . (31)N 2 UxY
e

With the various ionic abundance as calculated for T = 1 x 106 oK but

with T = 7.5 x 10 5 oK we obtain

-tt 2.34x 10 23 oK erg cm ec (32)

N 2 UX
e

The individual sources of radiative loss have been computed

separately, and the results are shown in Table 3. The total has been checked

by substituting equation (32) into equation (1).

4. Results

In summarizing the radiative losses due to the various processes

described above (see Table 3) we make the following observations:

(1) The overwhelming contribution to the radiative loss occurs within 15

solar radii. As a result the energy losses differ very slightly when

different models of temperature and electron density are employed, since

the models differ significantly from one another only at large distances

from the sun.

(2) The single most important source is the X-ray lines which contributes

a little over half the total.

(3) The heavy ion which makes the largest contribution to the radiative

loss in the ultraviolet region is Si XI. However, it is probably not safe

to give strong weight to the calculations for individual lines or ions.

(4) The total radiative loss from. the heavy elements in the ultraviolet region
121

is about 9 x 10 ergs/sec. However, in the calculations only the transitions

from the first excited level to the ground level were accounted for.

Transitions between the higher levels, with subsequent cascades to the

ground level, were not calculated since no reliable f-values are available

for such transitions. However, in order to estimate the relative importance
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of the higher levels, we may look back at the calculations for H and He.

Here the calculations did take into account the upperolevel transitions and

subsequent cascade to the ground level; such transitions constituted about

1/3 of the bound-sbound radiative loss for H I and He II. If it is also true that

1/3 of the radiative loss from bound-bound transitions in heavy elements comes

from the upper levels, then the total radiative loss in the ultraviolet from the
121 121

heavy elements should be 13. 5 x 10 ergs/sec instead of 9 x 10 ergs sec.

(5) The total, computed radiative loss from all sources is ^-,4. 9 x 1022

2
ergs/sec. However we must note here that actually < Ne )2 = 1/X.Ne >

where l/X can be thought of as the fraction of space occupied by matter

(see UnsOld 1960 and Brandt 1962b). Thus we are underestimating the

quantity N 2 which appears in every expression which we evaluate by thee
factor 1/X. The estimates of the quantity 1/X (valid near 5R ) are about

1/5 (UnsObld 1960). This correction would raise the radiative loss to about
023

2 x 10 ergs/sec.

(6) The diffuse intensity of the permitted ultraviolet lines contributing to

the radiative energy loss is very small (4ira-e<e'.O R) for observations at

elongations corresponding to distance from the center of the sun of 4R or

greater.

5. Comparison with Other Data

To check the calculations we may compare them with the rocket
2.

observations of the solar flux per cm in the ultraviolet and X-ray

regions at the earth's distance from the sun. To carry out the comparison

we integrate equation (1) backwards to the inner boundary of the corona

(r = 1. 015 R0 ) using the electron densities for solar minimum given by

de Jager (1959). This is essentially a calculation of fJNe dV,; we note

that the same integral for the solar maximum data given by de Jager

is 16 times the value for solar minimum. The comparison can at best be

a rough one, principally because (1) the experimental results are

uncertain by a factor of 3 to 5 and (2) and because of the uncertain role of

the transition region in the production of ultraviolet photons.

Elwert (1961) quotes the measured values 0. 13, 0. 3, and 1. 0

erg/cm sec for the minimum, mean, and maximurm solar flux outside the

earth's atmosphere in the X-ray region between 44 and 100 K. His

corresponding theoretical calculations give a mean value of 0. 12 TY erg/cm2
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sec, wheretT indicates the uncertainties in the theoretical cross sections.

Elwert's calculation agrees with the observations if LI is taken between

2 and 4. Our calculations, on the other hand, give a result of 0. 05 'J
erg/cm sec; for solar minimum. We consider that only one-half of the

X. rays produced escape into space, and that XR1 2. Our calculations then

require V.• 2. Such a value is quite reasonable sinceTU must include

errors in the observational results as well as in the theoretical cross

sections, it also must include all sources of radiative loss which were not

taken into account in the calculations (incompleteness).

Hinterreger (1961) has also published observations covering the

ultraviolet and X-ray regions. His total observed flux due to the

metallic lines in the region \ < 1300 A., corresponding in the most part

to our calculated lines, is about 1. 5 erg/cm sec. Our theoretical result

(assuming XZ2 and that half the photons escape) is 0. 08 tTerg/cm sec

for solar minimum and 1. 3T7erg/cm -sec for solar maximum. Since

Hinterreger's observations refer to solar maximum conditions (Cragg 1961),

we haveUý- 1, i.e., satisfactory agreement.

Woolley and Allen, in their 1948 estimate of radiative losses from

the corona, obtain a value for line emission in the ultraviolet which is

about 10 times the value we have obtained for solar minimum. This figure

is easily explained by the following two considerations: (1) use of the

mean Baumbach-Allen densities raises their value by a factor of three

and (2) lacking both observations and f-values for the far ultraviolet, they

assumed all line emissions to be concentrated into ultimate lines for which

f = 1, whereas the average f-value for lines in this region is much less than

this (Varsavsky 1961). Our calculations are also in satisfactory agreement

with the recent calculations of Allen (1960), when differences in assumed

abundances and f-values are considered. We expect that our calculations

are an improvement over Allen's (1961) because of the use of Varsavsky's

(1961) fUvalues.
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6. Consequences

Brandt and Michie (1962, eq. 20) derive an expression relating

the conduction, velocity space anisotropy, expansion velocity, temperature,

and heliocentric distance at points in the corona. The derivation of this

expression is based on the assumption that ' e/g'm' the ratio of

energy flow to mass flow across a spherical surface at distance r from

the sun, is a constant, independent of r, beyond a certain distance which

is assumed to be 4 solar radii. The derivation did not take into account

radiative losses. We now re-derive the expression with the inclusion of

a radiative loss term in order to demonstrate that the assumption made

earlier still is, in fact, valid.

Equation (13) of Brandt and Michie (1962) for the energy flow is

modified to become e= 41rr (m/2){ ýiv 3  2wv 2 dov r 2 >

+ Nw 5 .v2 + w2 - 2GM0 + 4r 2'rad (33)

r

where F(l, ;', • ) is the distribution function in terms of the peculiar

velocity, v is the peculiar velocity vector, w is the mean expansion

velocity, S is the angle between the radius vector I and the peculiar

velocity, ýr, R = cos L9 , m =(I/4mH (the effective particle mass),

N = j j F( 1, ,L Zwv 2 ddv (34)

and is the radiative flux (The subscript r refers to the

radial component. ) Since the mass flow is given by
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= 4wr 2mNw (35)m

we have

V'e/6m 41/2) 7/1 .v 3 F 2,rv2 d pdv + 2 < v 2) +v 2> (36)

-42GM N) +rad
+w2 r )- mNw

Let

vZ> A3kT (37)
m

[3 < r > +1 (38)

I- Ff 3 2Ziv 2 dpdv (39)
Nw TO 1

and (36) modifies to

Se = 22GMo a kT /+•frad
-_ -/2 M+ w + -- (40)

m m) mNw
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Evaluating the quantity 'e/•m at some inner position r° we obtain

2€
1 w GM kT rad, o I w2  GM
0 + o 0 + 070 + _= + - -

2 2 r m mN w 2 2 r

(41)

kTy I r
+ + v rad, or rad, ro r

m mNw drr

where t o is the radiative flux originating below r and,
rad, or 0 rad,ror

is the radiative flux originating between r 0 and r. Noting that

0rad, o rad,or (42)

mN w mNw
0 0

and simplifying the resulting expression, we obtain

kTy 22- GM r + 2T°_° 1 Ir= (1/2)(IoIRw° 0 w M0(/ -Ir (r)4ffr dr

m m 4*nC Or
0

(43)

where we have written

S4,f Wr (r2dr 1 r

rad, ror ro 2 r (r) 4,r 2 dr (44)
mNw 4wr Nmw 4wmC C

In an entirely analogous manner we may include a term which accounts for

the energy deposition, ad (r), between r 0 and r, giving as a final expression
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kTy 2 2
(•/2)(0 wI+W _w) GM (1/tr .1/r) + 0 +

m m

(45)

(r)- E(r 4)r2dr
4TmC

o5

Evaluation of the quantities in equation (45), taking T = 105 °K and • - 2. 5,

shows that T m 5 1013 while the radiative loss term has a value

of 2 x 10 if the flux near the earth is taken as 3 x 107 electrons/cm -sec.

The quantity y, which indicates the velocity space anisotropy, must satisfy

the relationship (Brandt and Michie 1962 eq. (21)) 3/2 < 5-P 9/2. Therefore

for all temperatures greater than 10 5 oK we can say that the radiative loss

term is negligibly small in comparison with the quantity . Evenm
if the radiative loss must be corrected by a factor -TX 3 this statement still

holds. Only when the temperature drops to 1 0
4 oK or less does the

radiative loss amount to an appreciable fraction of k ; however
m

temperatures as low as this do not occur in the models of the interplanetary

gas which we use, and, in fact, a temperature of about 2 x 105 oK was

found from the Mariner-Il results by Neugebauer and Snyder (1962). Thus

we may safely assume that 'e/Ir m is a constant beyond r= 4R ; this

conclusion may be regarded as the most important consequence of the

radiative loss calculation. It is still subject to the condition, hoa evex, that

the energy deposition also be small beyond 4R Further calculation is

necessary in order to bear out this hypothesis, but if A (r) is small it

serves to cancel the effects of e (r) and therefore to reinforce the conclusion.

The calculation also has implications regarding the quantity 10 .

The expression mw 0NI0 represents the energy flux transported by conduction,

evaluated at the point r = 4R . This was calculated by Brandt and Michie;

they obtained a value of 4 x 10 ergs/cm which they took to be a maximum

value, since it included a number of quantities which had not been

specifically taken into account, notably, the radiative losses. To cbtain

consistency of the theoretical model with observation, they found that I had

to be reduced. This reduction can be accounted for by one or more of the
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following effects: (1) coronal magnetic fields which would tend to inhibit

conduction; (2) radiative losses beyond 4R ; and (3) an actual particle flux

in the solar wind greater than that adopted on the empirical model. As a

result of the present calculation, the hypothesis that radiative losses

between 4R and the orbit of the earth form a significant part of I must be

discarded. This result is in agreement with the recent rocket results

(Neugebauer and Snyder 1962) which give a flux ~l x 108 electrons/cm -sec.
Thus, all or part of the discrepancy is resolved with the new value for the

flux Cpoint (3) above]. We still have the possible problem of the coronal

magnetic field.

The existence of irregular or non-radial magnetic fields could

easily be quite important in determining the thermal conductivity in the

corona near 4R,. The thermal conductivity appears to be reduced by a

transverse magnetic field by a factor of (I + wce 2 t 2 2 (Spitzer 1956,cece

Cowling 1954), where ce is the cyclotron frequency for electrons and

tce is the collision time for electrons. Thus, for the magnetic field not

to be important in inhibiting heat conduction, we must have

eB T3 / 2

S<1 (46)
cm 15N

e e

When values of the various parameters appropriate to the corona at 4R
0

are inserted into equation f46), we find that a transverse magnetic field
-10

must be less than 10 gauss not to inhibit conduction. Since the

magnetic field expected in the neighborhood of 4R is many orders of

magnitude greater than this limit, we conclude that any reasonable

transverse magnetic field at 4R will seriously inhibit conduction. Thus,

a knowledge of the structure of the solar magnetic field at some distance

from the sun would seem to be most desirable. We note that the

contribution to the radiative loss term from magnetic bremrnstrahlung

is probably quite small.

It should be mentioned that the low densities found on the semi-

empirical model (Brandt and Michie 1962) and the Mariner-If results

(Neugebauer and Snyder 1962) are supported by additional evidence. The
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low densities are favored on the basis of Wurm's (1962) study of comet

comas and on, the basis of Opik's (1956) estimate of the upper limit
3

('~ 5 electrons/cm ) of the density of the solar wind consistent with the

existence of meteoric particles in the interplanetary medium. The plasma

probe measures of Bonetti, Bridge, Lazarus, Lyon, Rossi and Scherb

(1962) are also consistent with a low mean density (see Piddington 1962).

Finally, we remark that equation (30) is a general expression

which can be used to evaluate the radiative losses in any rarefied gas with

a temperature on the order of 106 oK in which statistical equilibrium and

the Maxwellian velocity distribution hold. In the paper the expression was

evaluated over the ranges of temperature and pressure in the outer solar

corona; however it could also be applied in other situations. In particular,

the spectra of the recurrent nova RS Ophiuchi showed coronal forbidden

emission lines in the outbursts of 1933 and 1958, indicating a temperature

- 1 0 6 oK. Wallerstein (1961) has estimated the electron density after the

outburst in the circumstellar region to be on the same order as that of the

inner corona of the sun, indicating that the work presented here could also

be of value in the explanation of the coronal lines of RS Ophiuchi.

The authors would like to acknowledge the valuable criticisms

and comments of Drs. H. Zirin and G. Wallerstein. We acknowledge the

assistance of L. Giver, J. Pollack, K. S. Krishna Swamy, and C. Sturch

in performing a portion of the calculations presented here.
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TABLE 1

Abundances of Various Elements

Element log NE/NH + 12 Element log NE/NH + 12

H 12.0 Si 7.5

He 11.0 S 7.3
c 8.7 Ca 6.2
N 8.0 Fe 6.6

O 9.0 Ni 5.9
Na 6.3 Ne 8.1
Mg 7.4 A 6.3

Al 6.2
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T ABLE 2

Ion Densities and Bound-bound Radiative Losses for Heavy Elements

Radiative Loss x X-Ray Lines Included

Ion Pi = Ni/NH ?\(A) 10-21 erg/sec. in Calculations

Mg IX 1.5 x 10 6  368.1 .25 Element (A
Mg X 7.5 x 10- 5 625.3, 609.8 .55
Mg XI 1._6x 10-6 --- + --- C IV 312
"O VI .4 x 10- 4  1037.6, 1031.9 .24 N V 210
"O VII 9.7 x 10- 21.60 --- N VI 29
Ni XII 1.l x 10" 7 299,322 .06 NVII 19
Ni XIII 2.86 x 10- 304-332 .10 O VI 150
Ni XIV 2.7 x 10'-7  311-323 .05 O VII 22
Ni XV 1.0 x 10- 7  316, 333, 346 .02 Ne VII 95
A IX 8.0 x 10- - + --- Ne VIII 85
A X 9.0 x 10-7 166, 171 .27 Mg VIII 75
A XI 3.2 x 10- 190 .18 Mg DC 63
C V 3.0 x 10- 5 40.27 .21 Mg X 58
C VI 2.5 x 10-4 33.2 .26 Si VIII 67
Na IX 2x? 0- 6  681.7, 694.3 .02 Si IX 55
Na X 1.8x106  --- + --- Si X 51
Ne VIII 2.56x0_ 792.5, 782,4 .25 Si XI 42
Ne IX 1.2 x 10 --- + --- S VII 70
Al X 4.8 x 10-7 332.9 .08 S VIII 60
Al XI 7.0 x 10-6  550. 0, 568.5 .04 S IX 52
Si iX 4.7 x 10 7 342-350 .42 S X 43
Si VIII 4.7 x 10- 314, 316, 320 .04 Fe IX 150
Si x 1.38x105 356.1, 347.4 1.05 Fe X 97
Si XI 1.38x 10 303.6 1.76 Fe XI 88
Si XII 4.5 x 10-7 521. 1, 499.3 .27 Fe XII 73
S VIII 6.3 x 10- 198. 6, 202. 6 .14 Fe XIII 65
S Ix 4.0 x 10 - 222-228 .56 Fe XIV 62
S X 9.8 x 10- 6  258, 260, 264 .64 Fe XV 55
S XI 6.2 x 10-6 290 .36
S XII 6.0 x 0-.7  302, 290 .03
Fe XII 3.5 x10- 356, 360, 369 .07
Fe XIII 9.6 x 10-6 360, 373, 386 .20
Fe XIV 1.8 x 10 6'6 346, 370 .37
Fe XV 1. 2 x I0-6 288 .44
Fe XVI 2.6 x I0-" 361.7, 336. 2 .04
N VI 7.5x 10- --- +Ca XI 1. 5 x 10-6 --- +

TOTAL 9.0 x i021 erg/sec 26. 2 x I021 erg/sec

no lines calculated for this element
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TABLE 3

Contributions of the Various Processes to the Radiative Loss (equation 1)

(Unit: 1021 erg/sec)

Hydrogen, total 3.5

Free-free
Free-bound 1. 1
Bound-bound 0.6

(upper limit)

Helium, total 4.3

Free-free 0.7
Free-bound 1.8
Bound-bound 1.8

(upper limit)

Heavy elements, total 41.8

Free.free 0. 1
Free-bound 1.9
Forbidden lines 0. 1
Permitted lines+ 9.0

(upper levels)* 4.5
X-ray lines 26.2

Total 49.6

+For details see Table 2

*See (4) under results.
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