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ABSTRACT

Approximate analytic solutions have been obtained to the lateral
motion of re-entry vehicles during constant altitude glide. The con-
stant altitude glide is maintained by banking the vehicle about its
velocity vector at a fixed angle of attack. Such a glide mode is often
used in design studies to achieve lateral range but no simple analytic
solutions have been available up to now. The approach taken here is
to first treat the "flat earth" case and then include the spherical earth
correction. Simple expressions have been obtained for the turn angle,
lateral range angle and the down range angle. A comparison with exact
numerical solutions shows that the approximate solutions are sufficiently

accurate for preliminary design purposes.

The approximate solutions, although simple, contain all the charac-
teristics of the glide mode in question. The results show that the lateral
range, being a function of W/(CDA p), exhibits a maximum for a given
L/D and initial velocity for the spherical carth case. In the flat earth
case, the maximum exists for suborbital and orbital initial velocities
and ceases to exist above a certain initial velocity depending on L/D.
The down range also exhibits a maximum for a given L/D and initial
velocity provided that the initial velocity is suborbital. The spherical
earth correction on the lateral and down rangc has been shown to be
small for low W/(CDA p), L/D and initial velocities and becomes signifi-
cant when these parameters are high. All these findings agree with

exact numerical solutions.
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I. INTRODUCTION

In many cases, a space vehicle entering the earth's atmosphere requires
lateral range capability for landing at a specific site. To gain lateral range,
the vehicle must be steered out of the original orbit plane and as a result one
needs an understanding of the lateral motion of such a vehicle. Slye (Reference 1)
has presented an analytical method for studying the lateral motion of re-entry
vehicles flying equilibrium glide trajectories. While this class of trajectories
is of great interest and importance in designing a re-entry flight path, its
practical use is limited to re-entry from orbital speed. When the vehicle enters
the atmosphere at superorbital speeds, a transition phase is required to bridge
the gap between the superorbital initial phase and the suborbital equilibrium
glide phase. One type of trajectory capable of carrying out this transition is th‘e
constant altitude glide. Constant altitude glide has drawn the attention of many
designers; for example, Smith and Menard (Reference 2) used a constant altitude
glide to maneuver for range near orbital speed. Ferri and Ting (Reference 3)
also studied constant altitude glide to reduce the second peak deceleration and to
control the vehicle from skipping. These authors, however, did not consider
the advantage of obtaining lateral range by banking the vehicle while maintaining
the constant altitude glide. Banking the vehicle not only produces lateral range
but also ease the problem of designing a thermal protection system due to the
fact that only one side of the vehicle is exposed to the free-stream. This sub-

ject has been discussed by Gervais, duPont and Lowe (Reference 3).

While the constant altitude glide is of great practical interest, it is not
without problems to get a vehicle onto such a glide from the initial phase of the
re-entry, especially when the speed is superorbital. It can be readily appre-
ciated that lift modulation in the initial phase is required. Wang and Chu
(Reference 4) have attempted to analytically solve the problem of re-entry
trajectory with vaf¥iable lift of a simple type. They have demonstrated that by
varying the parameters in the lift program, one is indeed able to make a smooth
transition from the initial plunge to a constant altitude glide. This can be done
either by pitch control or by bank control. In the present paper, it will be
assumed that the vehicle is already at the beginning of a constant altitude glide
and the initial phase of the re-entry trajectory is beyond the scope of this

analysis.
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The particular maneuver to be dealt with here, namely, constant altitude
glide by banking at a fixed angle of attack, has been studied by Skulsky (Refer-
ence 5). He presented exact numerical solutions to the equations of motion.
Later, Wang and Skulsky (Reference 6) discussed the characteristics of the
lateral range obtained during such a glide. Their discussion was based on the
numerical solutions presented in Reference 5. The present paper presents,
however, analytic solutions to the problem using a basic approximation. The
approximation appears to be crude at first but the results turn out to be quite
satisfactory. The "flat earth" solution will be given in the first part of the
paper and in the second part the spherical earth case will be dealt with. A

summary of the approximate solutions is given in Appendix A.
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II. EQUATIONS OF MOTION

The three-dimensional equations of motion of a hypervelocity vehicle flying
over a spherical earth have been derived by London (Reference 7), by Love and
Neustadt (Reference 8), and by Wang (Reference 9). In Reference 9, the lateral
centrifugal force term has been discussed extensively with regard to its origin
and physical identity. It is not considered necessary to include the derivation

of these equations in this paper. For constant altitude glide these equations

reduce to
2w > av 2
| = -ev (1
(CDAp dt
. r 2-«
2 1Ly [ 2w .. (v
V™ glcosg = | )l-x-——) (2)
'.\CDA P L \\Vs,' J
dy _ (L Vgsing Vg cos y tan\ (3)
a - ‘D7 2w T 2
— A
CDA P S

Here ¢ is the bank angle measured from the vertical, § is the turn angle
measured from the original heading and \ is the lateral range angle defined
as the ratio of the lateral range to the radius of the earth (equal to 3440
nautical miles in the calculations shown later). These angles are shown in
Figure 1. The other symbols have their usual meaning. Together with these

three equations of motion, there are two kinematic equations:

d\ _ Vg sin §

T (4)
s

dp Vg cos ¥ (5)

dt Vg cos\

Here u is the downrange angle as shown in Figure 1. It is to be noted that
Equations (1), (2), and (3) are applicable for a point mass. A point mass

vehicle is assumed in this analysis. The orbital speed Vs is assumed




Page 4

L COS$

Figure la. Definition of Bank Angle ¢.
(Velocity vector pointing into the paper)

POINT
OF ENTRY

Figure 1b. Definition of Turn ‘Angle Y, Lateral Range Angle \,
and Down Range Angle p.
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constant and equal to 26, 000 ft/sec in the numerical calculations given later
in the paper.

If we write
= oA , (6)

and transform the independent variable from time t to velocity V through
Equation (1), we obtain

d Ly . 2B
-V%: (5)sm¢--‘;2-cos¢tan)\ (7)
s
d\ 2B .
-V I = VT sin ¢ (8)
s
duy _ 2B cos |
-Vay = ? cos X\ )

S

Denoting In V = X, these equations become

-%{:%sinqy-z—Bzcoswtan)\ (10)
vV :
dx 2B .
3% C —2-s1n|j; (11)
Ve
dp _ 2B cos § ‘
“Tx ° TZoon (2)

v
s

Equations (10), (11), and (12) determine the unknowns 1, X\, and u in terms
of V. The bank angle ¢ can be readily written in terms of V by Equation (2)
and the velocity V can be found as a function of t by integrating Equation (1).

The main problem here is to solve the three nonlinear differential Equations
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(10), (11), and (12). One can readily appreciate the difficulties associated
with solving these equations analytically. The approach taken here is to treat
the "flat earth" case first and then take up the spherical earth case. Flat
earth means a condition when the second term on the right hand side of
Equation (10) can be neglected. This term is proportional to the lateral
centrifugal force. If the earth is truly flat, this term will of course drop out
but so will the (V/VS)2 term in Equation (2). In the flat earth solution pre-
sented below, Equation (2) remains the way it is and only Equation (10) is
simplified by neglecting the second term on the right hand side. By so doing,

it does not result in a true flat earth as the name implies.
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III. FLAT EARTH SOLUTION

For the flat earth case, although the equations to be solved are much
simplified, they are still difficult to handle analytically because of the trigono-
metric functions involved. One certainly can eliminate sin ¢ by Equation (2)
and integrate Equation (10) and in principle it is integrable for the case of flat
earth. But the resultant expression for § will be very complicated. In fact,
this has been done by Skulsky (Reference 10), and one still has to use high
speed computing machines to get a numerical value. As for X and p, numeri-
cal integration is unavoidable. What is done here is to further simplify Equation

(10) by making the following approximation:
sin ¢ = 1 (13)

Let us investigate this approximation. First, rewrite Equation (2) as follows:

5 v 2 a2
. ' S .
sin ¢ = ‘\\;1 -C (v) -1 . (14)
where
2B 2
C = g7 = 2W/(C ApV)) (15)
() Vs

Equation (14) is plotted in Figure 2. It is seen in Figure 2 that for small values
of C, sin ¢ is practically equal to unity for a wide range of V/Vs. For example,
when the initial velocity is Vi/Vs = 1.2 and C = 0.1, sin ¢ is practically unity
down to V/VS = 0.5 and rapidly decreases to zero at Vi/Vs = 0.3. Integrating
Equation (10) (when the second term on the right hand side is omitted for flat
earth) is effectively to find the area under each sin ¢ curve for various C.

The approximation sin ¢ = 1 will give the area of the rectangle bounded by
Vi/vs and Vf/Vs where V.

altitude glide where ¢ = 0. This area will not be much larger than that under

is the final velocity that is at the end of the constant

the actual sin ¢ curve. For high C, the error should increase. For low initial
velocities, the error should also increase. For example, when Vi/VS = 0.77

and C = 0.8, there is no point where sin ¢ is close to unity. Therefore,
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the approximation is the worst at high C and low initial velocities. The
numerical examples given later in the paper bear this out but the inaccuracy

in A and p is surprisingly low.

By this approximation sin ¢ = 1, Equation (10) for the flat earth case

reduces to

dir 0

L
"X "D (16)
Here the subscript 0 denotes flat earth solution. The initial condition is
q;‘o = 0 at Xi' Integrating Equation (15) gives the following simple result.
L
I = 5 (%X - X (17)
or
by = §ln (Vy/V) (18)
0~ D i

By Equation (17), Equation (11) can be integrated with the initial condition that

A,= 0 at Xi and the result is

0

)\0 = C (1l - cos \jro) . (19)
At the end of the constant altitude glide, the bank angle ¢ vanishes; that is to
say, the vehicle has reached the saturation point and cannot raintain a constant
altitude unless by changing the angle of attack. Since the flight mode considered
here is constant altitude glide by banking at a fixed angle of attack, the final
velocity must be determined by the condition ¢ = 0. Therefore, by Equation

(14), one has

vV, = —° (20)
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The final turn angle and the final lateral range angle are respectively

, _ L i 1
Wog = -f)-ln —V; 1 +E (21)
xOf = C(l - cos L‘uof) (22)

At this point, it is worthwhile to compare these simple solutions with
exact numerical solutions. The exact numerical solutions are taken from
References 5 and 10. Reference 10 gives the flat earth solutions and should
serve as a check against the sin ¢ = 1 approximation. Reference 5 gives the
spherical earth solution and should indicate the magnitude of the spherical

earth effect.

Figure 3 is a plot of \L'Of/(L/D) as a function of W/(CLA p) for initial
velocities 32, 000, 26, 000, and 20, 000 ft/sec. Equation (21) predicts too high
a turn angle as expected. The percentage error increases with increasing
W/(CLA p) for a given initial velocity and decreases with increasing initial
velocity for a given WKCLA p). These are the expected nature of the approxi-
mation. The absolute magnitude of the error in the quantity ﬁJOf/(L/D) is of
the order of 2 to about 6 degrees in the range compared. Generally speaking,
the accuracy of the simple approximate solution is satisfactory; it correctly
predicts the general trend and correctly establishes the functional dependence

of y,, upon B, L/D and Vi. Figures 4a, 4b and 4c show the same comparison

of
plotted in a slightly different form. Included in these figures are the exact
numerical solutions for spherical earth, which will be discussed later in

Section IV.

A comparison of the lateral range is given in Figures 5a, 5b and 5¢. For
all three initial velocities, the approximate solution, Equation (22), agrees
with the exact numerical solutions for flat earth well within 10 per cent. In
some cases when the initial velocity is high, the present approximate solution
is almost exact and so is it for low _W/(CDA p). The general characteristics

of the lateral range as a function of B, L/D and v, including the peaks are
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well preserved in the approximate solution. The striking feature that one finds
in these comparisons is that the accuracies of predicting wOf and )‘Of are not
at all the same. The approximate solution predicts the lateral range with a
much higher accuracy than it does the turn angle. This can probably be
explained in the following manner. For a given initial velocity and W/(CDA P,
the exact flight path might be represented by the solid curve of Figure 6 while
the approximate solution is indicated by the dashed line. Point A might repre-
sent the end of the turn. The lateral range in both computations might be very
close to each other while the approximate solution predicts a much higher turn
angle than the exact numerical solution . This explanation is fully supported by
the downrange prediction. The approximate solution always predicts a shorter

downrange as will be seen later.

Let us now return to the development of the approximate solution. Equations
(21) and (22) can be used to determine the maximum lateral range and the con-
dition under which it occurs. Differentiating Equation (22) with respect to C

and setting it equal to zero, one gets

d)\of . dll!of

a4c ° (1 - cos wof)+c sin Vof 9 ° 0 (23)

where dwof/dc can be found from Equation (21) as

Ao 1L 1 (24)
dC -~ 2D C(T+0)
Combining Equations (24) and (23), one gets
sin \ly*
* 1 L 0f
l1-cosi = = — (25)
0f ZD 1+ C#

Here the #* quantities denote the condition where the maximum lateral range
e
occurs. Using the trigonometric relation of half angles and eliminating ’J’(;f

by Equation (21), Equation (25) finally reduces to

Dr. Frank Billet analytically investigated the errors and showed similar
results.
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————  REPRESENTING EXACT FLIGHT PATH

A e o ame REPRESENTING APPROXIMATE FLIGHT PATH
w
(L]
z
-4
@
é’ (TWO DIFFERENT TURN
5 ANGLES AT ABOUT
5 SAME LATERAL RANGE)
>
POINT DOWN RANGE
OF
ENTRY

Figure 6. Schematic Diagram of the Exact and Approximate
Flight Path.
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n I | are "
Z —D-; ln “V— -\!1 + ﬁ = arc tan '-W.'I (26)

V.. ——1
i . 1
sin<z In | " 1+ >
R A TF .
of = |z Bi T (27)

These equations have been used to compute the maximum lateral range and
where it occurs. The results are listed in Table 1. Included in Table 1 are
also the exact numerical solutions. The comparison is extremely favorable.
It is found that for a given L/D there exists an initial velocity beyond which
there is no maximum for a flat earth. This is illustrated in Figure 7 in which

Equation (26) is plotted.

The downrange angle can now be integrated. Dividing Equation (12) by

Equation (11) one gets for flat earth,

dpo cot 1110

= (28)
dxo cos )‘0
By Equation (19), one can write
C - )\o
cot . = (29)
’ Vc? - (c - )
B o
The 1/cos )\0 term can be approximated by 1 + % )\g.' This approximation is

accurate within 5 per cent up to A, = 40 degrees which means lateral range =

0
2400 nautical miles. In Figures 5a, 5b and 5c¢, the lateral range is smaller

than 2400 nautical miles for all the conditions preéented. If the lateral range
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is of the order of 1000 nautical miles, the approximation has an inaccuracy of
about 1 per cent. Together with this approximation, Equations (28) and (29)

combine to yield

duy  (C-hg)(1+32D)
T (30)
0 -\ICZ -(C - )\0)2

The initial condition is Ko = 0 at Ay = 0. Onme finally gets by integrating
Equation (30)

Hof = <1+%i+i)\z(£>0-9;+—czi{arcsin(l-}t()-f->--}} {(31)
where
G = —\/c2 - (C - xof)z (32)
In terms of wOf’ Equation (31) becomes
Bos = C sin Yor t C3 (sin ¥of -zl-wof - i- sin 2 wOf - w> (33)
For practical purposes, Equation (33) can be approximaFed by
Mof = C sin .‘J’0£ (34)

Equation (34) agrees with Equation (33) within 1 per cent for lateral range up
to 1000 nautical miles and within 3.5 per cent up to 2000 nautical miles. Note
that Equation (34) would be the result of the integration if cos )‘0 = 1 were
assumed. The downrange is plotted in Figures 8a, 8b and 8c. Comparison
with the exact numerical solutions show that the approximate solution predicts
shorter downrange as depicted by the schematics of Figure 6, but the accuracy

is very high. In these plots, Equation (34) is used except for a few points where
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the lateral range is above 1500 nautical miles. It is observed that for a sub-
orbital initial velocity, there exists a maximum down range. No maximum
exists for orbital or superorbital initial velocities because the vehicle, at
these speeds, can always fly at a sufficiently high altitude and go around the
earth as many times as desired. This would produce no maximum on down-
range. Itis also noted that the maximum down range and maximum lateral
range do not occur at the same altitude for a given vehicle. The maximum
down range occurs at a higher altitude. One can readily find the maximum
down range at suborbital initial velocities by differentiating Equation (34) and

following the usual procedures. The result is given in Appendix A.

For completeness, the total flight time is given below. This is obtained

by integrating Equation (1) with the initial condition t = 0 at Vi and the final

. \'4
C f 1 s
+ v (-\1 te- —Vi> (35)

This essentially completes the development of the flat earth solution. It

condition t = t:f at Vf.

)-ﬁﬂ
"
ol

must be pointed out, however, that the solutions presented above must be used
with caution when W/(CDA p} becomes very small. In the previous figures,
the lateral and down range have been extended to zero at W/(CpA p) = 0 by
smooth curves. This was done as a matter of convenience. Strictly speaking,
this is incorrect. As one can readily see that for a given L/D and initial
velocity, the down range and lateral range expressions Equations (22) and (34)
can be combined to yield an equation of a circle with its center at A = C and
radius equal to C. When C is extremely small, although this may never
become the case in practice, the vehicle can circle around the A = C location
without gaining much lateral range and down range. The lateral range and
down range curves must have an oscillatory nature at very small W/(CDA p) .

A more detailed discussion is given in Appendix B.
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IV. SPHERICAL EARTH SOLUTION -

SPHERICAL EARTH CORRECTION

As can be seen from Figures 4, 5 and 8, the exact numerical solutions for
spherical earth deviate only slightly from those for flat earth when the initial
velocity is low. For‘ example, when Vi = 20,000 ft/sec, one can hardly see any
difference. This is true for the turn angle, the lateral range as well as the
down range. When Vi = 26,000 ft/sec, the spherical earth solution begins to
show some difference. The difference on lateral range is about 10 per cent at
WACDA p)= 1000 x 106 ft‘Z/sec2 and L/D = 2. The spherical earth solution
shows higher difference at higher initial velocities. For example, when Vi =
32,000 ft/sec, the spherical earth solutions deviate from the flat earth solutions
on lateral range by about 20 per cent at WACDA p)= 1000 x 106 ft;z/sec2 and
L/D = 2. This order of magnitude of the error produced by the flat earth solu-
tion is too high to be ignored and must be taken into consideration. On the other
hand, an error of 20 per cent or so can still be treated mathematically as a
second order. Thus, the second term on the right hand side of Equation (10)
can be treated as a small perturbation on the first term. Accepting this idea,

one is justified to speak of a spherical earth correction and treat it accordingly.

In the case of an equilibrium glide trajectory, Slye's solutions (Reference 1)
are for flat earth. The spherical earth correction in that case has been dis-
cussed by Jackson (Reference 11) and by London (Reference 12). London
advanced an argument that the proper criterion for determining the validity of
the flat earth solution is the relative magnitude of the integrated lateral
centrifugal force to the integrated lateral aerodynamic force, while the magni-
tude of the lateral range is not in itself a sufficient criterion. In the present
case, we also observe that it is not sufficient to say when \ is small, the
lateral centrifugal force term can be dropped from Equation (10). If one tries
to do this, he will run into difficulties, because the first term (L/D) sin ¢ tends
to zero toward the end of the glide while the second term (2B cos | tan X)/Vﬁ
can be very large. However, if one compares the integrated values of the term
(L/D) sin ¢ and the term (2B cos ¥ tan )\)/Vz , he will find that for most cases
the latter will be smaller than the former. If the latter is so small that one can

neglect it, the flat earth solution becomes valid.
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The spherical earth correction for constant altitude glide has been dis-
cussed in Reference 6 where an empirical correlation was given for L/D = 2.
What will be done here is to find an analytic expression for this correction

within the present framework of approximation. Let us write
¢ ug (36)

thus

dir, . dy
™ - At (37)

Combining Equations (10) and (37), one has

dy dy
-H.)_?.-.a.}.{l.=%sin¢-2—g-cos‘ptan)\ (38)
v
s
By the sin ¢ = 1 approximation, the first term on both sides of the equation
cancels each other and one gets
dy
_d.—xl = 27B- cos {§ tan \ (39)
Vs
With fairly good accuracy, one can replace cos § and tan X\ by cos 'bO and
)‘0’ respectively, and get
dl]!l 2B )
aq% - cos 1];0‘ (40)
v
s
or
2
df; = -C (1 - cos 11;0) cos | dq;o (41)
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The initial condition is ¥, = 0 and by = 0. Integrating Equation (41) yields

2, . .
wlf = -C (s1n¢0f-%ﬂrof-—41—51n2\pof) (42)

Equation (42) relates the spherical earth correction and the flat earth solution.
It is noted that dfu is proportional to C2 and it is always negative. Equation
(42) is plotted in Figure 9 and also tabulated in Table 2. Applying this correc-

tion, the approximate spherical earth solution becomes
b = Upap- C2 (sin ., - ! Ve - 1 sin 2 ¢ .) (43)
f of '0f T Z Yof " 4 of

where q‘;of has been given by Equation (21). For comparison, Equation (43) is
plotted in Figures 4a, 4b and 4c as the dashed lines. The comparison is quite

favorable.

The spherical earth correction on lateral range is found as follows. With

Equation (36) one can write Equation (11) as

-%{ = 2B sin(yy + ¥)) (44)
VS

“3x C ;2- (sin \bo cos 11:1 + cos 1!;0 sin q,l)

S

Since iy is small, one is justified to assume
cos ¥ = 1 and sin “’1 = by (45)
Thus,
. 2
-.g.;l( = -2%-511111104»——%\]11 cos U (46)
v v
s s
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Table 2. Spherical Earth Correction on Turn Angle.

Yos b/ C°
0 0

10 - 0.063
20 - 0.384
30 - i.245
40 - 2.728
50 - 4.710
60 - 7.175
70 - 9.65
80 - 11.48
90 - 12.33
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Table 2. Spherical Earth Correction on Turn Angle.

Yot “’Of/cz
~ -~ (deg) {deg)
0 ‘ 0
10 - 0.063
20 - 0.384
30 - 1.245
40 - 2.728
50 - 4.710
60 - 7.175
70 - 9.65
80 - 11.48
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Following Equation (36), one can write

N = )\0 + )\1
and Equation (46) is reduced to
dx dx
0 1 2B . 2B
s o =—2-sm¢y0+—-z-\]ylcos¢yo
v v
s s
Cancelling the flat earth terms, i.e.,
- d)\o - 2B sin
I T Sz Y
s
one gets for the spherical earth correction
d)\l D cos ¢
aw = Tz 0

S

or

3 [ Yo sin2y,
d\y = C7 cos g (— sin § g + —> + ——p— dq;o

The initial condition is )\1 =0 at Yo = 0. Onme finally gets by integrating

Equation (51)

3(5,1 3 12 1 1 B
Mg = o€ (E*'G“s Vor -7 ¢08 ¥or -z 08 ¥gr - 7 Yoy Sin “’Of)

(47)

(48)

(49)

(50)

(51)

(52)

Equation (52) is plotted in Figure 10 and also tabulated in Table 3. Note that

)‘lf’ being negative, is proportional to C3. Applying this correction, the

approximate spherical earth solution becomes
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Table 3. Spherical Farth Correction on Lateral Range Angle

and Lateral Range.

Vot
(deg)

0
10
20
30
40
50
60
70
80

90

3

0

- 0.

(radians)

00075

.00170
. 00325
. 00730
.0157.
. 0266
. 0365
. 0458

. 0483

Lateral Range/C3

(naut mi)

0

.2.58

1

- 5.85

- 11.18

- 125.5
- 157.5

- 166.0
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A = C (!l - cos q,of) - C3 (2—+-é—cos3 bog - 11,- cos2 Vof - -i- cos Wy, - 21- Vos sin 'J’Of)
(53)
Equation (53) is plotted in Figures 5a, 5b and 5c as the dashed lines and is
compared with the exact numerical solutions from Reference 5. The comparison
shows that the corrected X expression can predict the lateral range very closely
for most cases. One interesting thing is that whenever the spherical earth cor-
rection is negliglble in the exact numerical solutions, it is also negligible in the
approximate solutions. When the spherical earth correction is large, the
approximate solution deviates from the exact numerical solution no more than
10 per cent in the range compared. As for the maximum lateral tange, it has
been noted in the flat earth solutions that there is nc maximum beyond a certain
Vi' With the spherical earth correction, the maximum lateral range at low Vi
is not affected but a maximum exists at high Vi due to the correction. This fact
has been observed in the exact numerical solutions. It can now be concluded that
the maxima at low initial velocities are caused by the integrated lateral aero-
dynamic force while those at high initial velocities are caused by the spherical
earth effect. This indicates the importance of the spherical earth correction at

high initial velocities.

The spherical earth correction on the down range angle p is found as

follows. Taking Equation (12) and substituting § by wo + q,l and \ by )\0 + )\1,

one gets
du 2B COS‘(\[IO +11’1)
"dx - Fcos o ¥1)) (54)
s

or

ds _ 2B COS\yO(cos *1 - tan \1:0‘ sin 11;1> (55)

dx. ;: cos A {cos X - fan X sin k)

Since ¥y and A, are small, one can write

cos §, = cos )‘l = 1, sin ¥y = Yy sin xl = )\1 (56)
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and Equation (55) becomes

du _ 2B cos ‘1'0 "’1 tan
dX ;IZCOS)‘O T-X, tanx,

(57)

Since )\1 is always small and )\0 very rarely reaches beyond 45 degrees, one

can assume

A tan Ay << 1 (58)
thus
du _ 2B cos 1110
AR T ST wesx, (T en ) (59)
s

Writing u = Bo t M and substituting in the above, one gets

duy 2 (¥ sin ¥ 60
ax = ;Z' — cos XO (
s
and by Equation (16),
. sin ﬂyo
by = -G ey, Yo (61)

Using the approximation cos )‘O = 1 which has been proven adequate in com-

puting the down range, one gets
d‘pl = - Cy, siny, ddyo (62)

or

3 W sin 2 ﬂlo
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The initial condition is My = 0 at Vo = 0. Integrating Equation (63), one gets

311 . 1 . 3 ‘
Kig = C [z-(l+cos ﬁ:of) (q;of- sin wof) - ¢ sin \110;1 (64)
Equation (64) is plotted in Figure 11 and also tabulated in Table 4. It is noted

that is positive and proportional to C3. Using this correction, the approxi-
Mg P prop g pp

mate spherical earth solution for down range is

. 371 . 1 .3
B = C sin bog t C LZ (1 + cos 11;0{) (q;of - sin q;of) - g sin ‘l’Of:| (65)

The corrected down range is plotted in Figures 8a, 8b and 8c as the dashed

lines. The comparison with exact numerical solutions is quite satisfactory.
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Table 4. Spherical Earth Correction on Down Range Angle
and Down Range.

¥og |.1.1f/C3 Down Range/C3
(deg) (radians) {(naut mi)
0 0 0
10 0.00001 0.0344
20 0.00022 0.7560
30 0.00119 4.10
40 | 0. 0045 15.50
50 0.0126 43.40
60 0.0276 95.00
70 0.0507 174.20
80 0.0823 283.00

90 0.1187 407.50
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V. CONCLUDING REMARKS

An analytic study has been made of the lateral motion of a re-entry vehicle
gliding at a constant altitude. The constant altitude is maintained by banking the
vehicle about the velocity vector at a consti_mt angle of attack. The analytic
approximate solutions have been compared with numerical exact solutions. It
has been shown that the approximate solutions predict higher turn angle, higher
lateral range but lower down range. The accuracy of the prediction is generally
satisfactory. Among the three variables, the lateral and down range can be pre-

dicted well within 10 per cent while the turn angle, with lower accuracy.

There are two important features about these approximate solutions. First,
they are simple and can be readily applied to preliminary design work. Secondly,
they preserve the characteristics and provide a good understanding of a constant

altitude glide.

The results of the approximate solutions show (and the exact numerical
solutions agree) that the lateral range, being a function of W/(CDA p) at a
given L/D and Vi’ exhibits a maximum. The maximum exists for all initial
velocities in the case of a spherical earth. For a flat earth it exists at low
initial velocities only. The spherical earth correction has been shown to be
small for low W/(CDA p), L/D and Vi and become significant only when these

parameters assume high values.




APPENDIX A
SUMMARY OF APPROXIMATE SOLUTIONS

I. TOTAL FLIGHT TIME (EXACT)

where
C 2w
T g2
CL Ap Vs
1I. FINAL VELOCITY (EXACT)
Vs
Vf = ; 1
’l + rel
III. FLAT EARTH SOLUTIONS
Basic approximation:
sin ¢ = 1

Final turn angle:

\'2 \
L i 1
Yot = D 1“(\7" “Jl *E}

Final lateral range angle:

N = C (1 - cos w‘of)

of

Final down range angle:

Fof = C sin mOf

Page 43
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C* for maximum lateral range:

vV, —— &
(IL'ln i 1+1 = arc tan 2D
2D V; - Cx |~ T +C§’

Maximum lateral range

%* 1 L.
Mog = (?'D')

C*’ for maximum down range

- 1L
(Y T3 e tan|-ZD
(D/’ \A C*) " T+ C*

Maximum down range

* 1L -
Bof = ZD T

IV. SPHERICAL EARTH CORRECTION

Correction on final turn angle
2 (. 1 1
hig = - € (Sm Vog "7 Vor "7 8in 2 “’Of)
Correction on final lateral range
3(56 .1 3 1 2 1 1 .
Mg = o C (E* §Co8” Vof "7 €08 Vop 7 08 Vo5 - 3 Wog SIn "’Of)

Correction on final down range

311 . .
wyg = € [*z (1 + cos ¥o0) (¥gg - sin ¥o) - g sin’ '1‘0f]
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APPENDIX B

DISCUSSION OF THE APPROXIMATE SOLUTIONS
FOR VERY SMALL c'

It has been mentioned in the text that the sin ¢ = 1 approximation becomes
more accurate when C gets smaller. The text also shows that the spherical
earth correction becomes negligible when C is very small. Furthermore, the
lateral range angle A must be small for small C (A is proportional to C) and
as a result the cos A = 1 approximation used in computing the down range
angle becomes more accurate as C gets smaller. Therefore, for very small
C , Equations (10), (11) and (12) can be written, with high degree of accuracy,

as

25‘1% - L
"dX T D (B-1)
-k = 25 siny (B-2)
v
s
- di}% = —Z—I;— cos § (B-3)
v
s
The solutions of these equations are:
Vv
_ L i
v = D In (v) (B-4)
A = C(l - cos ) (B-5)
p = Csiny (B-6)

*
The author is grateful to Dr. Frank Billet for his helpful suggestions in this
discussion.
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Combining Equations (B-5) and (B-6), one gets
(\ - C)2 + “2 = & (B-7)

Equation (B-7) represents a circle with its center at X = C and its radius
equal to C . Such a circle is plotted in Figure B-1. The tangent at any point
on the circumference of the circle makes an angle | with the X = 0 line. The
line of A = 0 is along the original heading of the vehicle and # must be the
turn angle. Figure B-l clearly indicates that the vehicle, while making a
constant altitude turn, describes a circular path. Depending on the aero-
dynamics, the mass characteristics and the altitude, the vehicle may find
itself anywhere along the circumierence of the circle at the end of the turn.

The final turn angle has been given by Equation (21) as

V.
= L (Vl J1 +-lc> (B-8)
S

l|lf =D

Here we drop the subséript 0 because Equation (B-8) can now be applied to a
spherical earth also. In the main text, most computations were made for

Lfyf < 900 . When C is very small, however, the final turn angle can be greater
than 90 degrees. If y[yf = 180° , the vehicle would have made a lateral displace-
ment of 2C with no forward displacement and would fly from that instant on in
the opposite direction to the original heading. If by = 360° , the vehicle would
have made a full 360-degree turn and find itself back to the original location at
a much lower velocity. In such case, the vehicle would be dissipating its
kinetic energy through drag while turning andl it would have no loss in altitude
and no gain in either the longitudinal or lateral displacement at the end of the

turn.

While maneuvers of 180-degree and 360-degree turn appear to be extremely
interesting, the obvious question that has to be answered is whether or not it is
practical. To answer this question, we examine a vehicle with L/D = 2,
W/CLA = 25 lb/ft2 ,at Vv, = 32,000 ft/sec . In order to have by = 180° ,
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the turn must be performed at an altitude of 184, 000 feet. For a 360-degree
turn, the altitude must be 104, 000 feet. The corresponding value of C is
0.0704 and 0. 00282, respectively. The radius of the turn becomes 242
nautical miles and 9. 7 nautical miles, respectively. The centrifugal force
created by these turns is in the tens of g's for *f = 180° and in the hundreds
of g's for *f = 360°. For lower L/D, higher W/CLA and lower Vi , it
becomes more difficult to perform such turns in the sense that the altitude will
be lower and the centrifugal force will be higher. Thus, one is led to conclude
at this time that constant altitude turns at very small values of C are not likely

to be practical.

The above discussion does clarify the statement made in the text about
the incorrectness of the curves of lateral range and down range at very small
W/(CDA p) as shown in Figures 5 and 8. As one can see from Figure B-1,
the lateral range and down range must have the characteristics of a damped
oscillation as W/(CDA p) goes to zero. This is schematically shown in
Figure B-2. Because of the smallness of the region in which the damped
oscillation character occurs, it was not shown in Figures 5 and 8 to avoid

confusion.
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A
¥ :180°
¥ 270 ¢ ¥ :90°
0 7 v m
¥ = 0°,360° ——
ORIGINAL HEADING
OF VEHICLE

Figure B-1. Vehicle Flight Path at Very Small C .

CoAp

Figure B-Z. Schematics of the Variation of A\ and p
with W/(CDA p) at Very Small C .




NOMENCLATURE
A = reference area
B = abbreviation for W/(CDA p)
C = abbreviation for 2 B/(L/D) Vi
C‘D = drag coefficient
D = drag force
g = gravitational acceleration
L = aerodynamic force p.erpendicular to drag
t = time
V = velocity
Vs = orbital velocity (= 26,000 ft/sec for earth)
W = vehicle weight
X = abbreviation for InV
A = lateral range angle
M = down range angle
P = atmospheric density
¢ = bank angle
¥ = turn angle
Subscripts
0 = "flat; earth" solution
1 = spherical earth correction
f = at the end of the constant altitude glide
i = initial condition
~ Superscripts
* = maximum
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11.
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