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ABSTRACT

A special structure in dynamic programming which has been studied by

Bellmnan,(21 Blackwell,[ 6' D'Epenoux,(71 Derman,(81 Howard,[9 1 Manne t 13]

Oliver, [4 3 Wolfe and Dantzig, [ and others is the problem of program-

ming over a Markov chain. This paper extends their results and solution

algorithms to programming over a Markov - renewal process - in which

times between transitions of the system from state i to state j are in-

dependent samples from an inter-transition distribution which may depend

on both i and j . For these processes, a general reward structure and a

decision mechanism are postulated; the problem is to make decisions at

each transition to maximize the total expected reward at the end of the

planning horizon.

For finite-horizon problems, or infinite -horizon problems with discounting,

there is no difficulty; the results are similar to previous work, expect for a

new dependency upon the transition - time distributions being generally

present. In the cases where the horizon extends towards infinity, or when

discounting vanishes, however, a fundamental dichotomy in the optimal

solutions may occur. It then becomes important to specify whether the

limiting experiment is: (i) undiscounted, with the number of transitions

n -- c, (ii) undiscounted, with a time horizon t - ooo, or (iii) infinite n or

t , with discount factor a - 0 . In each case, a limiting form for the total

expected reward is shown, and an algorithm developed to maximize the rate

of return. The problem of finding the optimal or near-optimal policies in

the case of ties in rate of return is still computationally unresolved.

Extensions to non-ergodic processes are indicated, and special results for

the two-state process are presented. Finally, an example of machine

maintenance and repair is used to illustrate the generality of the approach

and the special problems which may arise.



MARKOV-RENE WAL PROGRAMMING

I. Introduction

An important special structure of dynamic programming occurs in

the Markov decision processes first formulated by Bellman, [2] 3 ] developed

extensively by Howard, [9 and further analyzed by Oliver, 14 Marnne, [ 13

D'Epenoux, (7 1 Blackwell, E6] Wolfe and Dantzig, 120 ] Derman, (8] and

others. In this model, the system makes Markovian transitions from one

to another of a finite set of states, accumulating a reward at each transition.

A decision is made at each step from among a finite number of alternatives;

this decision affects both the transition probabilities and the rewards ob-

tained upon leaving the present state. The problem is to specify the policy

of decisions to be made in each state which will maximize the total expected

return at the end of the experiment.

The following cases are formulated by Howard:[ 9 1

I. Discrete -parameter Markov chain

A. Finite number of transitions

B. Infinite number of transitions

C. Repeat of both cases with discounting

II. Continuous-parameter Markov chain

A. Finite planning horizon

B. Infinite planning horizon

C. Repeat of both cases with discounting

The models with finite horizons are all expressed in terms of the usual

recursive relationships of dynamic programming, [z]( 4] whose solution

techniques are well-known. Howard's contribution was the development of

simple, finite, iterative techniques to find the optimal stationary policies

to be followed in the infinite cases; since the total reward is unbounded in

the Lvndiscounted, infinite horizon cases, the rate of return becomes the



system objective. Blackwell[ 6] shows a similar algorithm for maximizing

the return for a vanishing discount factor, and proves that among the optimal

policies, there is one which is stationary.

The purpose of this paper is to generalize all of the above models

and algorithms of Markov decision processes to a larger class of dynamic

models in which the Markov-renewal process is used to describe system

behavior. The important generalization provided by these processes is that

time spent by the system between transitions may be a random variable. The

resulting Markov-renewal decision processes will be seen to embrace a

wider range of important operational problems, without seriously compli-

cating the calculation of optimal policies.

The first three sections of the paper describe the properties of the

Markov-renewal process, the reward structure assumed, and the decision

process. The first cases analyzed are the finite-step and finite-time

problems, both discounted and undiscounted. Next, discounted problems

with an infinite horizon are examined, followed by a discussion of the diffi-

culties of undiscounted, infinite-horizon models. Three distinct "infinite"

cases are presented, with some remarks on the problems of ties and near-

optimal policies. Extensions to nonergodic structures are described in the

next section, followed by a comparison with some previous results. The

paper closes with explicit formulae for the two-state process, a machine

maintenance-repair example, and suggestions for further research.
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II. Markoy-Renewal Processes

The Markov-renewal processes and the related semi-Markov

processes were first studied by Levy, Smith, and Takacs independently in

1954. In References [ 15 ] and [ 161 Pyke has summarized current results

in this area, together with independent contributions and an exhaustive list

of references. Other specific results are in References [?], [ 18], and

[1].

Loosely speaking, Markov-renewal processes are generalizations

of both the discrete- and continuous-parameter Markov chains in which the

time between transitions of the system from state i to state j is a random

variable obtained from a distribution which depends upon both i and j

We shall only be concerned with Markov-renewal processes with a finite

number of states, [ 16] labelled by some integer i , i = 1, 2, ..... N .

A particular realization of a Markov-renewal process consists of an

initial integer i0 , followed by pairs of random variables, one of which is

an integer, and the other a non-negative variable , . viz:

i 0 ; i I, Prio0, iI1) ; i2, # rilIti 2) ; i3, 0 2 T i ) 2# Y.

The integer i0 represents the initial state of the system at time zero; it

may be given uniquely, or determined from some initial distribution. The

sequence of integers i,i 2 ,i 3 , ... represents the successive states of the

system as it makes transitions between its allowed states at steps J, 2, 3, .

These integers are generated by a Markov process, so that the conditional

probability distribution

S= Pr{ik+l = 'lik = i} k=0, l,2,... (1)

i,j = 1,2,...,N
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contains all of the information necessary to generate the successive states

of the system, once i0 is known. 11 ]

The sequence of non-negative variables represents the transition

intervals between successive states. Thus T(ik.i k+1) is the time between

the instants the system entered state ik at step k and the time it entered

state ik+I at the next transition. It is not necessary to describe the state

of the system between these transition instants, in general; however, for

convenience, one may speak of the system as being in state i , headed toward

state j . Notice that it is necessary to select the next state immediately

upon entering a given state so that the transition interval can be determined;

in Markov-renewal processes this transition interval is determined from

the stationary distribution functions:

Fij(t) = Pr {Jr(i,j) < t} t > 0 (2)
i,j = ... ,N

The moments of this distribution will be denoted by v!.) = E{ ([r(i, j) ]n)13

n = 0, 1, 2.... ; the superscript (1) is suppressed for the mean transition
interval. It is assumed that F. (0) = 0 for all i,j , so that 0 < V(n) <

for all n

For convenience, several results of Pyke which will be used in the

sequel are presented in Appendix A; full details and additional explicit

formulae may be found in References [15], [16], 171, (18], and[l].
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III. The Reward Structure

We next describe the reward structure which will be assumed for the

system. When the system makes a transition into state i , heading towards

j , we assume that a fixed return of Rij dollars is received. Also, a vari-

able running return of rij dollars per unit time is assumed to be generated

during the transition time, so that for a time t since the last transition, a

cumulative reward R.. + r t (0 < t < 'r (i, j)) is generated. The expected

return from state i , heading towards j Ls:

(R.. + r..t)dF..(t) = Rij + r ij 'ij (3)

If a discount factor a is used,

t

Pij (a) R 1. - r. e-a dx 'Fi t

r.. •t

=Ri..+---! 1 - e'°tdF. .(t) .(4)

for all i,j . More general reward structures may also be used.

IV. The Decision Process

It remains to describe the procedure by which the system behavior

will be governed. Let us assume that there are a finite number of alterna-

tives, z = 1, 2, ... , Z , available in each state oi the system; selection of

a certain alternative then influences the transition times and transition

probabilities to the next state, as well as the rewards to be obtained during

the interval until that transition. To put it another way, there are families

of QZ.(t) = pz.F(t) functions, as well as decision-dependent rewards R
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and reward rates, r., for each z = 1, 2,... Z • The operating policy of

the system is a selection of a z to be used in each state of the system,

possibly depending also on the remaining length of the experiment.

To summarize the system behavior under the influence of a given

policy:

1. System enters state i

2. Alternative, z(i) , is selected from among the available

alternatives; it is a function only of the current system

state i , and (possibly) the remaining length of the

experiment.

3. Based upon z(i) , a next state j is selected as a sample

from the conditional probabilities, p!zi) ; the sojurn time13
until that next state is entered, r(i,j;z(i)) , is selected

as a sample from the distribution F!ý'i(t)
13

4. For a clock time t since state i was entered, a

cumulative reward

R.!.) + rZ(')t 0 < t < T(i,j;Z(i))

is generated.

5. The system enters state j , and the process is repeated

until the experiment is terminated.

The fundamental problem which we shall consider in this paper is the

selection of the alternatives for each state, z(i) , which will maximize

total expected return over the length of the experiment.

As we shall see, determination of this optimal policy will depend

critically upon whether discounting is or is not used, or in the way in which

certain limiting experiments are defined. In some cases, general results

as to the optimal policy will not be obtainable.
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V. Finite Step, Discounted Case

The first experiment is the operation of the system for a fixed

number of transition steps, n . Following the usual procedure of dynamic

programming[ Z214] define for all i , n = 0, 1,2 ...

Vi(n) = expected return obtained from an n-step process

starting in state i , and using an optimal policy,

z (*, n) .

Continuous discounting with parameter a per unit time will be used, so

that Vi(n) also depends upon a •

Setting for convenience, Vi(0) = 0 (i = 1, 2, ... ,N) , the optimal

expected returns for a one-step process can be obtained for all i through

the relation:

V( I) = max pz () (5)Vi(
z

where

N N
z z z p. Rzi+ rz [I-_.!(&)]1a (6)

S(a) pij (a) =( + r[ - .) / (
j=l j=l

is the expected discounted, one-step return, starting in state i and following

policy z . In (6) a tilde is used to indicate the Laplace-Stieltjes transform of

Fii(t) , or the Laplace transform of its derivative, fi (t) , if it exists:

iii(s) = TO eSt dFij(t) = TO estfii (t)dt . (7)

Similar notation for other transforms will be used in the sequel. Using the

principle of optimality, 2 ]( 4 ] the recurrence relations for n = 2, 3,
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and all i , are:

F ~N1
V.(n) = max Pi(a) + P i.! (a)V(n - 1)1 (8

1 ~ i K. Ij nI(8I j--I

The appearance of the factor fi (a) is due to the necessity for discounting
IJ

the return with n - 1 steps left by an amount which depends upon 'T(i, j)

The expected discounted return is then

o e-atV.(n - l)dFi.(t) z(a)V (n - 1)

3 13• 13-I

Equation (8) suggests a simple technique for computing the optimal policies,

z *(i, n) . One begins with n = 1, 2, ... , building up the optimal policies,

and returns for successively larger problems. As Bellman and Dreyfus

have pointed out (4 ] the computation is not complicated so much by the

requirements for storing the sequences {Vi(n) } and {z *(in)} as it is by

the necessity of storing the 4Z matrices (R.z, (r!.) (pz) , and (iý(s))

each of which is of dimension N 2 . The last matrix must of course be

recalculated for each change in discount factor.

In the special case where transition intervals are all of fixed length

-r, then r ij (c) =e = ,and (8) may be written as

N -1

Vi(n) max pi. [nR+ r z (I + OVl(n - 1 (9)

for i = 1, 2, ... , N ; n = 2, 3 .... .. Upon redefinition of the expected reward

per transition, (9) is seen to be equivalent to the discounted, finite-step

Markov decision processes studied by Howard[ 9 1 and Blackwell. [ 6]
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In the more general case of the Markov-renewal process, we obtain a

complicated dependence on the discount factor because of the influence of

the entire shape of the transition time distributions, expressed through the

fi(a) .If the boundary rewards or penalties, V.(0) . are not zero, (5)

should be replaced by:

N

Sz ip.~ ? V
m j=l

or, equivalently, the range of (8) and (9) can be extended to n = I, 2, 3,.

Because of the discounting, the sequence of expected returns

{Vi(n)} approaches a finite limit as n approaches infinity, for all a > 0

It is not apparent what happens to the sequence of optimal decisions

(z *(i, n)} ; we shall return to this point in a later section.

VI. Finite Time, Discounted Case

Because the transitions in a Markov-renewal process occur

stochastically over time, another possible experiment suggests itself -

operation of the system for a fixed period of time, t . For example, in

certain operational problems it may be more realistic to think of a fixed

horizon in time, rather than a horizon of fixed number of steps. The

optimal policy, z (i, t) , now depends upon the length of time the experi-

ment has yet to run. Alternatives are still only selected at the transition

instants; however, it is now possible to break off the experiment in the

middle of some transition interval. Define for t > 0 , and all i :

Vi(t) = expected return obtained from a process which

continues for t units of time, starting in state i

and using an optimal policy, z *(i, t)
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Let V ii(0) be the return (or penalty) imposed when system operation is

terminated in state i , headed towards j .

Suppressing momentarily the policy to be followed, there are two

possibilities: either the system has not transferred out of the starting state

during the observation interval (0, t I , or it has made a transition to state

j at time x , 0 < x < t . In the first case, the total discounted reward if

the system was headed towards state j is:

Rij + rij[ 1 - e-atI/a + Vij(0)e-at

In the second case the reward is:

Ri. + rIj[l - eOX]/a + V.(t -x)e"x

The average discounted return for t > 0 , and a11 i , is:

S-•t c Ox e-FC.xd
V(t) = pij Vij(0)e Fij(t) + Rij + r i0 Cx

j=l

+ Ye"M Vl(t - x) dFij(x)j (10)

where F. c(t) = 1- F. (t).

Because of the impossibility of zero intervals between transitions,

the right hand side of (10) contains only the past history of V.(x) (0 <x< t)

The principle of optimality can thus be used to write the recurrence relation

for expected total return when following ar. optimal policy as:

-10-



N

V (t) max ýC (a, t) + YPz [S 1axV (t -x)dF!. (x] (11z Lj=l

for t > 0 and all i, with:

N

S(a, = [Vij(0)e'tF.Clz(t) + R. +
j~l

+ r~.z. e

+ r. (x)dx (12)

Ij i

With these definitions:

N

Vi(O) = max p + , (13)
z L

j =l

i. e., it is possible to have a reward with a zero-length experiment. If

desired, this anomaly can be removed by making the terminal reward a

function of state i only, i. e., V.i (0) = Vi(0) for all i,j , and by collecting

the return Rj at some time slightly after t = 0 . Or, R.j can be collected

at the end of the transition period, in which case Ri. should be replaced by

by R.ij Se dF .(x) in (4), (6) and (12).

There is, unfortunately, no general way in which (11) can be

completely resolved. There are various approximation techniques in return-

or policy-space " 2 ][4 ] which may converge on an answer; however, if in fact

digital computation is to be used, then one may proceed directly to discrete

approximations of the continuous time variable in (11). Letting t = kA

(k = 1, 2, 3....) , one obtains for all i , the approximations:
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N k

V1 (k&) =max {! (a, kA) + P! p 5  eAV((k -I)&)

j=l 1=1

A (14)

which can be built up in the usual recursive manner. Round-off and

truncation error limit the choice of small values of A , but the use of more

sophisticated quadrature techniques wil usually lead to results of sufficient

accuracy. (4]

It should be obvious that the optimal strategies deduced for a time-

horizon problem need not bear any resemblance to the optimal strategies

for a problem with a fixed number of transitions, except possibly in the

limit, if a stationary optimal policy exists. It is this point which we examine

in the next section.

VIl. Discounted Cases with Infinite Step or Time Horizons

It is a simple matter to verify that expected returns Vi(n) or Vi(t)

remain finite as n or t approach infinity in (8) and (11) for all a > 0 ,

since all elements of the matrix i = (Pij fij(a)) lie in the interval 0, 1)

for all s > 0 , and for all policies.

The limiting form of (8) as n - oo is:

N

V. = limr V.(n) = max p!(a) + Pif PZdi? V (15)1. n--o i. z I - I 13 j.
2 - j=l

for all i
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From the Laplace transform of (11) and the well-known limit theorem

of transform calculus, lir V(t) - lir [sw(s)] , the limiting form for
t--oo 0+

an infinite time horizon is:

N

V. lim V.(t) = max fp (o) + pij!.(a)V. (15-)t-'.W z j 13

since limo.- (a. t) =p i (a).
t-00o
Consider for a moment only the stationary policies; that is, ones

which do not depend upon the number of steps (or time) since the beginning

of the experiment, nor until the end of problem. It follows that the return

from every stationary policy in (15) or (15') must satisfy the simultaneous

equations (i = 1, .... N)

N

Vi =i() + P 3ij (a)V (16)

j=1

where the dependence upon the policy has been suppressed for clarity. In

other words, by following the optimal stationary policies in either the n-step

or t-horizon formuation, one obtains the same stationary policies, and the

same limiting values for the expected total discounted return starting in

state i I

We now present an algorithm related to the policy-space iterative

technique of Howard[" 4 ] [ 6 ] [ 9 ] to find the optimal stationary policy for an

infinite, discounted Markov renewal program. The flow chart for the

algorithm is shown in Figure 1. Basically, the algorithm uses (16) to solve

for a set of expected returns following some policy; then, those returns

are used to select a better alternative in each state. When two successive

-13-



Using the pij f..(°)' and pi(a) for the current

policy, solve the set of equations

Guess an N

initial policy Vi = Pi(a) + I Pij ij() Vj i = 1,29...,N

j=l

to determine the present expected returns, V.

OR .

For each state i , find the alternative z(i) ]

which maximizes

N

p z(ar) + Pý pZý (a~)V.
Guess an 1 ij 131j V.

initial set of j=1

returns using the present returns, V.. Make z(i) the
1

the new alternative in the ith state. (If there is no

improvement in the test quantity from the last

cycle, retain the same alternative. ) Repeat for

all states i = 1,2,...,N .

If the new policy is
Otherwise identical with the one
continue

from the last cycle,

Figure 1 - Flow chart of algorithm for optimal policy for
infinite -horizon, discounted Markov-renewal
program.
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policies are found to be identical, the algorithm terminates with an optimal

stationary policy, and the maximum expected, discounted returns.

To prove that this algorithm converges, one must show that:

(1) It is always possible to solve the set of simultaneous

equations.

(2) The policy-determining step strictly increases the

expected return of at least one state in each cycle

of the algorithm, if there was an improvement in the

test quantity which led to the change in policy.

(3) If two successive policies are identical, then the

algorithm has converged on the optimal policy, in

the sense that no other policy can lead to higher

expected returns for any state i .

(4) The algorithm terminates in a finite number of cycles.

The proof of (1) follows from the fact that all elements of the matrix q(a)

lie in the interval (0, 1) for all a > 0 , while the proof of (2) requires

the additional observation that the diagonal elements of the matrix

[I - i(a)]-I are at least as great as one. The complete proof oi this

algorithm closely parallels that of Howard for the Markov decision process,

and the reader is referred to Chapter 7 of Reference [9 ] for further details.

The fact that there are only a finite number of policies guarantees conver-

gence in a finite number of cycles.

There are also available some special-purpose linear programming

algorithms to find the optimal stationary policy in a Markov decision

process7 [ 20 1(14 1 [1(8 ] which could equally well be applied to this

problem.

It is important to notice that direct enumeration of all stationary policies

usually not possible, since there are ZN of them.
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VIII. The Optimal Policy with Discountinj

It is possible to produce a slightly stronger result than that of the

last section; namely: among all the optimal policies for the infinite-step

or infinite-time discounted case, there exists an optimal, stationary policy.

This is important operationally since it may be difficult to follow a non-

stationary policy. Our proof closely parallels that of Blackwell for the

discounted Markov decision process, ( 6 ] and we shall only sketch in the

major steps.

For the purposes of this section only, number the policy to be
,th

followed in the i state in terms of the number of steps from beginning

of the experiment, thus zn(i) is the policy to be followed if state i is

entered at the nth step fromn the beginning of the process. Letting zn be

the N-dimensional vector of policies at the nth step, call y = {zl, z 2, 23 .... }

the sequence of policies to be followed, starting at step one. Finally a

sequence of policies y * is said to be optimal if V(Y*) > Vi,(y) for all

i = 1, 2, ... , N , and for all possible sequences of policies y .

The essential step in Blackwell's proof lies in the observation that

the transformation which maps the returns at the (n - 1)st step into the
th

returns at the n step is monotone. In other words, if V1 > V. for3- .1

all j , then:

N N

P z+ ý jq.V!> P,+ 4V.Pi + J iJ -qJ V

j =1 j =1

-Zfor all i . But this fact follows from the observation that all of the qij

are non-negative.
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The proof then proceeds in the following steps:

1. If the expected returns following the policy sequence

{z } {zlz 2 ,z 3 .... ) are all greater than or equal

to the corresponding returns following the policy sequence

{f, z1 , z 2 ,... } , for all possible policy vectors f , then

the sequence of policies (z is optimal.

2. If the expected returns from the policy sequence

{f, zi, z 2 , . . } are all not less, but at least one is

greater than, the corresponding returns from the policy

sequence (zf, z2 , z 3 , • •. ) ; ýhen, the stationary policy

sequence {f, f, f, ... } stands in the same relationship

to the policy sequence {zi, zZ, z 3 ... ) .

3. Taking any stationary policy, either it is optimal, or there

is an improvement possible with another stationary policy.

Since there are only finitely many stationary policies,

there must be one over which no improvement can be

made; hence this orne, which is found by the algorithm

of Figure 1, must be optimal.

For details, the reader is referred to Section 3 of Reference [61.

A similar result is expected to obtain in the case of the infinite-time,

discounted process because of the monotonicity of the transformations in

(11), or the quantized equivalent (14), and because it is already been seen

that the stationary optimal policies for the infinite-time case give the same

expected return as for the infinite-ste? case.

IX. The Problem of No Discounting

When the discount factor a approaches zero in either the finite-time

or finite-step process, it is seeen fromy, (8), and (11) or (14) that no particular

difficulties are encountered.
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For the finite-step process, for n = 1, 2, 3,... , and all i

N

Vi(n) = max pz+ ! V.(n- 1) (17)
z 3j=l

with

N
z p ( + r5 5) (18)

j=l

which can be solved through iteration on n •

In the finite-time process, for t > 0 and all i

N

Vi(t) = max {r (t) + p V }

with

N F t
a'z(t) Z z [13 13,z t + 1!. + 13z jFj z(x)dxj (20)i I(t = ij ii10 ij tl + R j YO ii

j=1

which can be resolved through a quantized approximation such as (21).

As the planning horizons approach infinity, the expected total returns

without discounting also become infinite, and it is not clear what objective

should be set for system optimization. There are three distinct "infinite"

objectives which might be posed:

(i) Attempt to find policies in (17) which are optimal for all n

sufficiently large.

(ii) Attempt to find policies in (19) which are optimal for all t

sufficiently large.
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or

(iii) Attempt to find policies in (15) which are optimal for all a
sufficiently close to zero.

Unfortunately, there is no a priori reason to assume that the policies

which might be found from these three approaches would in any way resemble

each other. From Blackwell's investigation of case (iii) for the Markov

decision process, 6 3 it is known that there may be both optimal and near-

optimal policies as the discounting vanishes. He also shows that it may be

very difficult, computationally speaking, to find all of the optimal or near-

optimal policies. Finally, when discounting vanishes, the structure of the

underlying Markov chain becomes more important in determining the nature

of the limiting results, and this must be taken into consideration.

In order to partially circumvent some of these difficulties, the in-

vestigations of the limiting cases in the following rections will have the

following additional restrictions:

[ i ] Only stationary policies will be investigated.

[ii] The Markov-renewal process will be assurned to have a

single, finite, underlying Markov chain which is

.ergdic (irreducible and positive recurrent) for every

policy.

(iii] All of the v.. are assumed finite.

These assumptions are not too unreasonable f'r real problem solutions, since

a stationary policy is usually desirable for long-term planning - primarily

because of the stability it introduces, but also because of the ease of modi-

fication if the input data changes. The elimination of transient and absorbing

states, or of multiple-chain structures, also presents no problems, since

special extensions can be developed for these canes. If any of the vij are
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infinite, the process will tend to get stuck, on the average, in that state;

thus, this state behaves as if it were absorbing, and should be separately

handled.

The assumption of a finite number of states, and a finite number of

alternatives, is very important and cannot be easily eliminated.

X. Infinite Step, Discounted Case

The approach to be used is to show that (17) gives a limiting form*

Vi(n) " Gn + Wi for all i , and for a certain stationary policy z(i) .

An algorithm will then be produced which finds the optimal stationary policy,

in the sense that it produces a scalar G which is at least as large as that

obtained for any other policy.

Assume that we are following some stationary policy, and let

V(n) denote the column vector of expected returns at the nth step, p the

column vector of one-step returns, and f the matrix (p.j) of transition

probabilities. Equation (17) can be written as:

V(n) = p + pv(n- + + [ P 2 + + 1P

+ V(O) n = 1,2,... (21)

where I is the unit matrix. Then,

=_n- IV(n) - V(n - 1) = p

n-1But, if the Markov chain is ergodic, ý-I converges or is Cesaro-

summable to a probability matrix II, each row of which is the same (row)

vector ir = f{it W2 , ... . Wn n whose elements are all positive. In addition

w is the unique probability vector which satisfies iv = in ; that is, it is

*The scalar G should not be confused with the functions G ij(t)
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the stationary vector for the ergodic chain. I Thus,

lir V(n) - V(n - 1) = IIp (2Z)
n-...

or,

N

lrn Vi(n) - Vi(n - 1) = ipi = G
n- i=l

for all i . The scalar G is called the system gain by Howard; notice that

for a single ergodic chain, it is independent of the state i

Let W.(n) = Vi(n) - Gn ; then:

W(n) [I + + + + + -nI I p + V(O)

LI + 1j () ]p + V(O) n = 1,2,... (23)
j=l

n-1
But, if the underlying chain is ergodic, lir [I + 7- (•5 - converges

n"oo j=1
or is Ceskro-summable to what Kemeny and Snell call the fundamental

matrixIll Z = (zij) . By simple manipulations, it is seen that Z is the

well-defined inverse (I - (' - fl)) , and satisfies the relations

fZ = Z0, 7rZ =7 , and I - Z = II . Thus,

W = lim W(n) = [Z IIp + V(O) (24)
n-00

or,

N

Vi(n) Z. Gn - G ÷ z+ \ p + Vi(O) (25)

j=l
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for all i , where

N

G Trp Z = (I -;v + 1" (26)

i=l

There is another interpretation of (25) which is of interest. Let

M.n be the mean number of times the system enters state j in n

transitions, if the system was started in state i . It is clear that for all

i,j , and n = 1,2,...

n-I N

= y p!k)_ + " M (27)Mij, n - ij ij Pik Mkj, n- I

k=O k=l

so that, if Mn is the matrix (M ij,n)

V(n) = M p + V(O) ; n = 1,2.... (28)

that is, the expected value of a certain state above and beyond its terminal

value is equal to the mean number of times that other states of the chain are

visited in n steps times the expected one-step rewards in those states,

summed over all states which are visited.

Furthermore, it is known that for large n,[11] and all i,j

M • nnl + [Z - IT] (29)

or

M ij, n nw. + [zij - 'r] ,
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which is an alternate way of deducing (25). Thus the fact that the gain is the

same for all initial states is a consequence of the limiting properties of the

Mij,n which depends upon convergence to a stationary set of probabilities.

The constant term represents the bias due to the initial starting state.

It now is possible to produce an algorithm to find the optimal

stationary policy; this algorithm will parallel Figure 1, and the corresponding

algorithm for Markov decision processes in Chapter 4, Reference [91.

There are some computational simplifications which can be made. At

each step in the algorithm, we shall be testing to see which alternative will

g ive the greatest possible increase in return; substituting the asymptotic

expression (25) into (21), we obtain after clearing terms,

N N N

j Pij jk Pk (30)

j=l j=l k=l

for all i . There are N simultaneous equations in the N + I unknowns:
N

G , and the E z.. p. . Thus, as Howard has pointed out, the unknowns
j =I ,

cannot be resolved uniquely, but one can only find the relative values of the
N
E z.. p. These numbers are called the relative values of the policy, and

are denoted by Vi ; it is usual practice to set one of them, say VN , equal

to zero, and then solve the equations (30), which are now well-defined.

For i= 1,2..

N-i

Vi + G =Pi + I pij(V (31)

j=l

and
N-i

VN = 0; G = PN + I PNjVj

j=l
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Using the pij and pi for the current policy,

solve the set of equations

initial policy . + G = Pi+Ipij V. i =

j--l

for the gain, G , and the relative values V.I

by setting VN to zero. I
For each state i , find the alternative z(i)

which maximizes

Nz
Pi + I pj Vj

Guess an j~l

initial set of • using the present relative values, Vi * Make

returns z(i) the new alternative in the ith state. (If there

is no improvement in the test quantity from the

last cycle, retain the same alternative. ) Repeat

for all states i = 1,Z,...,N

If the new policy is
Otherwise identical with the one

continue
from the last cycle,

Figure 2 - Flow chart of algorithm for optimal stationary
policy for infinite-step, undiscounted Markov-
renewal program.
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The advantage of the equations (31) is that they are much easier to compute at

each step of the algorithm, rather than, say finding first TI , then Z , and

then the test quantities.

The right-hand side of (31) is used as the test quantity for policy

improvement in the algorithm shovn in Figure 2; the procedure parallels

that of Chapter 4, Reference [9 ], expect for the immediate expected reward,

p, , given by (18), which is different, due to the nature of the Markov-

renewal process. The same remarks which were made in conjunction with

Figure 1 still obtain: the policy-determining step strictly increases the

gain G ; the algorithm converges on the optimal policy, when two succeeding

policies are identical, and so on. The proof is elementary, and may be

found in the above reference.

When the algorithm is terminated, an optimal stationary policy

z *(i) will have been found, together with the maximal gain G* and relative

values V. . At this point, one may calculate the stationary probabilitiesI

and the fundamental matrix, and thence find the optimal total return as:

N

V"(n) ' G ~n - G + V i + VN(O) + z Nj pj (32)

j=1

for all i

XI. Infinite Time, Undiscounted Case

Because of the close relationship between the infinite-step and

infinite-time solutions in the discounted case, it might be expected that

this section would be a repeat of the last one; however, one of our main re-

sults is that this is not the case. First, it is shown that (19) gives a limiting
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form* Vi(t) Z gt + wI as t approaches infinity, for all i , and for a certain

stationary policy, z(i) . We shall then produce an algorithm to find the

stationary policy which maximizes the rate of increase of the expected value,

g.

Assume some stationary policy and take the Laplace transform of

(19). For all i , and for s > 0

N

V is -) • (s) + I q qi(s) V(s , )33)

j=1

with

N

oi(s) = pi P "ij (0)[ -f.i(s)]/s 4- Rij/s +

i--i

+ rij[1 - fTij(s)] /s21 (34)

Denoting the various column vectors by dropping the subscript, and the

matrix of (q..(s)) by q(s) , Equation (33) becomes

V(s) I - q(s)" 1s) (35)

The matrix I - q(s) has an inverse for s > 0 , but as s approaches zero

both the inverse and ;(s) become ill-defined. This difficulty can be resolved

through the use of first-passage time distributions, G ij(t) , and the mean-

entry counting functions, M ij(t) , which are discussed in Appendix A.

*The scalar g should not be confused with the functions g.j(t)
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Combining (35) and the transform of (A. 6),

V(s) = Rs) + ^(s);(s) (36)

or, for t > 0 , i = 1,2, ..... N:

N

Vi(t) "0 ai(t) + I So o0.(t - x)dM.j(x) (37)
j=l

The relationship between the expected return and the mean entry-counting

functions in (37) should be compared with corresponding relationship (28)

for the infinite-step process.

The M ij(t) are, of course, not the same as their discrete counter-

parts Mijn , but are related to the first-passage time distributions G ij(t)

through the transform of (A. 5), for a > 0 , and all i,j

mij(s) = gii(s) + mji(s).ij(s) (38)

Because of the assumption of finite vii , it turns out that all of the

mean first-passage times, jij , are also finite for an ergodic chain. At

this point, it is convenient also to assume that the diagonal second moments,

p!9 are also finite. Finally, it is important to distinguish between two

cases; either a Gji (t) is a lattice distribution, or it is not. In the first case,

our results (39) and (40) hold only when averaged over the lattice period in

question. It can be seen that a sufficient condition for a 0j. (t) to be non-

lattice distribution is that at least one nonzero Q ij(t) also be • non-lattice

distribution, for i = 1,2, ... , N
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With these conditions, one has the interesting result for large t

andall i,j :11[ 18]*

t ýL(2)

Mij(t) = - + )z(39)

This relationship may be found directly from (38), using well-known limit

theorems of transform calculus; or, it follows directly from the observation

that Mi (t)M is the mean renewal (counting) function for the renewal process

with inter-event distribution G.j (t) , and the use of a theorem by Smith! 19]

The limiting form of the mean entry-counting function is thus related only

to the first and second moments of the first-passage time distributions.

By using the key renewal theorem[ 19 ] or through direct transform

arguments, we then argue that (36) has the limit for large t , and all i

M F( _ (40)jol t +L Pi +u fP.uj
31j= ' i] Ljj

where r7j is the area under pj - a.(t) . From (20), this is:

N

7=.jk {='jk 'Vjk (0) + 1.2) (41)

k=1

If the fixed rewards Rj are paid at the end of the interval before transition,

instead of at the beginning, then a term. +.AjkRjk must be added under the

summation sign in (41).

* The slight discrepancy between (39) and Equation (A. 9) of Reference [1)

is due to their convention of smoothing out a lattice distribution function into
the following period, while we use a symmetric smoothing.
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Thus, the limiting form of the expected total return is of the form

Vi(t) Z gt + w, , with the gain rate g = Z pj/•jj being the same for all

initial states - a consequence of the assumption of ergodicity of the under-

lying Markov chain.

Appendix A presents formulae suitable for finding the ±.jj and the

S2 ; calculation of these moments is not essential, however, to find the
ji

optimal stationary policy. Substituting the limiting form in (19)

N

wi = Pi - g PijV.ij + j] + i(t) Pi- +
j zl

N

+ pii [g SQFiý(x) + w 6~tI} (42)
j=l

for all i . For large t , the terms in braces vanish because of the assump-

tion about finite V, - and one obtains the following equations in the N + 1

unknowns, g and the w. :
I

N

wi + g'i : pi + pi.j wj (43)

j=l

for i = 1,2,... N . Comparison with the corresponding infinite-step

relations (31) reveals that they are identical except for the coefficient in

front of the gain rate, g • Thus, unless all of the V. are identical, and

equal, say V1 = V2 = ."' N = v , then the solutions to the Equations (43)

will not, in general, be equal to the solutions of (31). We shall return to

a discussion of this point in a later section.
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Furthermore, from our previous comments about the form of the

Equations (43), we know that they cannot be used to solve for the complete w.

given by (40), but, will only find the relative values of v. = w. - wN after

setting the Nth variable to zero. The following modified equations are used

to solve for the relative values of the policy, v.. For i = 1,2, ... ,N-II

N-i

"vi + gVi Pi + 7 p..v. (44)
j=l

and

N-1

"vN = 0 ; EN = PN + I Pijv
j=l

Our algorithm for finding the optimal stationaly policy is shown in

Figure 3. Iz- basic structure, it is identical to the policy approximation

algorithms of the previous sections; relative values and a gain rate obtained in

a previous cycle are used in a test quantity to find a new policy with increased

gain rate; the new policy is used to solve (44) for the new values and gain

rate; and so on. The algorithm terminates when no change in policy can be

made.

The one new feature is the form of the test quantity; Equations (44) must

be divided through by the vi (which are nonzero and finite) to form a test

quantity which has the dimensions of reward rate; this seems logical in view

of the fact that the algorithm increases g at each step. An alternative test

quantity has been proposed by P. Schweitzer (Appendix B).

The proof is still elementary, and parallels those of the previous
z z

algorithms; basically one shows that g > g , if at some cycle the test
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Using the pij I Vi . and p. for the current

policy, solve the set of equations

Guess an N

initial policy v. + gv = Pi + pv. i = l,2, ... ,N
j=l

for the gain rate, g , and the relative values

vi by setting vN equal to zero.I1

For each state i , find the alternative z(i)

which maximizes

N
r z

V. Pi + p PiV 3 - v~}

i j=l
Guess an

initial set of using the present relative values v. • Make
I

returns z(i) the new alternative in the ith state. (If there

is no improvement in the test quantity from the

last cycle, retain the same alternative.) Repeat

for all states i = 1,2,...,N

if the new policy is
Otherwise identical with the one
continue

from the last cycle,

Figure 3 - Flow chart of algorithm for optimal stationary policy
for the infinite-time, undiscounted Markov-renewal
program, and for the infinite-time or -step, vanishing
discount Markov-renewal program.
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quantity indicated a change to policy z. using the relative values and gain

rate of policy z1 - When the algorithm is terminated, an optimal stationary

policy z (i) will have been found, together with the maximal gain rate g

and relative values vi . At this point, one may calculate the stationary

probabilities, wi in the usual manner, and the •ij and P from

Equations (A. 8), (A. 9) or (A. 11). The optimal expected return is:

N F " (2) N
Vi(t) t + vi + PN + pj (45)

j =1 ?.JJj) jj •jj

for all i

XII. The Vanishing Discount Case

The final limiting case to be in-restigated is that of the infinite-step or

infinite-time process whose discount factor, a , vanishes. Thus we seek the

limiting form for all i , with a approaching zero, of:

N

V1 =(a') + Z Pij Ti(a)Vj (16)

j=l

with

N

i I1Pij{R ij +j r.( ij~a]a 6j=l

A review of the steps encountered in finding the asymptotic form of

the transform of (40) in the last section will indicate the necessary parallel

between (33) and (16). It is easy to show that as & approaches zero, for

all i:
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N (2L)
Vi(a) = Pa + Pj + jýfj 3 - !I,]. } + O(ct) (46)

with

N N

Pj/Ljj ; j Pjk f+Irjkvjk] (47)
j=l j=l

U the fixed rewards Rij are paid at the end of the transition interval, then a

term +Rjk &'jk must be added under the summation sign defining the Ili.

Thus, rather suprisingly, the criterion for optimization turns out

again to be the gain rate, /= g . The algorithm to be used is a repeat of

that shown in Figure 3; even the same relative values vi being obtained. The

one slight difference in this case is that the terminal rewards no longer enter

into the calculation of the wi ; however, this does not affect the optimization,

but merely the final expected return.

XIII. Ties and Near-Optimal Policies

In each of the three limiting cases just discussed, the criterion for

optimization has been the dominant term in the limiting form of the expected

total return, either Gn , gt , or Pa . However, it may happen that when

the algorithms of Figures 2 and 3 are carried out, there will be more than

one optimal stationary policy - each with the same gain, or gain rate I

BlackwellU 6 ] has considered this problem in detail for vanishing

discount in Markov decision processes. It is shown that when the algorithm

terminates with a single policy z , and when the test quantity is strictly

less than VS+ * for all other alternatives, for each i , then z isI

optimal, in the sense that no other policy leads to a higher value for V2 (ar)
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for all a sufficiently close to zero. If a truely optimal policy cannot be

found from this algorithm, Blackwell points out that there may be nearly-

optimal policies, i. e., policies whose return converges to the return from

an optimal policy, for a - 0 . The near-optimal policies are just those

for which both the gains (or gain rates) and the constant terms, W. or w.,1 1

are comparable. The determination of all the near-optimal policies appears

to be an arduous task, in general, in the event that there are ties, since the

relative values, V. and v. , are not sufficient for absolute comparisons.

Direct evaluation of all of the nearly- optimal policies may be feasible

for small problems but is probably prohibitive for a "reasonable" real

problem. On the other hand, one might claim that a real problem which

gavetwo policies with the same gain rate had insufficient or inaccurate data!

Nevertheless, the problem of ties is still an interesting and unresolved

question, computationally.

XIV. The Difference Between Limiting Cases

A disturbing feature of the three cases of limiting programs:

1. a = 0 ; n -- oo

2. a = 0 ; t o

3. n,t = oo0; a - 0

is the fact that they may give different optimal stationary policies. As we

have seen, in the first case the algorithm maximizes the per-transition gain,
N

G = Z E ipi ; while in the second and third cases the algorithm maximizes
i=l N

the gain rate, g = / = N1 Pii.

A rationale for the equivalence of the second and third cases is that

discounting may be interpreted as an experiment in which in each dt there

is a probability adt of entering an absorbing state, i. e., discontinuing the

experiment. Thus, the behavior will reflect that of the time-horizon process,
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rather than a transition-horizon process.

Tho difference between the first two cases is due to both the reward

structure, and to the possible different sojurn times between transitions.

For instance, consider a one-state periodic process of period v , in which

a reward R is given at every "transition" from the state back into itself.

In order to select the maximum reward per transition, one would select the

policy with largest R , no matter how large n was. But in order to maximize

reward rate for a large interval of time, one would select the policy with

largest R/v !

The two criteria can be contrasted in more generality through (A. 10).

N
N Z Tripi

G L ripi versus g = i=1 - (48)

Zi Tk Vki=l

The gain rate is influenced by the mean sojurn times in the states of the

system, weighted by the stationary probabilities of making a transition to

those states - and this may change with a change in policy, even when G

does not.

In fact, one must make a distinction between two sets of stationary

probabilities in Markov-renewal processes. The y.i are the stationary

probabilities which are the limiting values of being in state i after n trans-

itions, as n -c w. There are also stationary probabilities, P. , which

are the limiting values of the probability of being in state i at time t , as

t -- 00 .16 ] For an underlying ergodic chain, the two sets of probabilities

are related by:
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V.
P -R (49)

r =k V k

k=l

for i = 1, 2, ... N • Thus, within the basic theory of Markov-renewal

processes, there is a fundamental distinction between behavior of state

probabilities from transition to transition, and behavior over time. This

distinction is also well-known in the study of queueing problems in which the

method of regeneration points is used.

We are thus forced to the conclusion that when considering Markov-

renewal programs with an infinite horizon, one must decide whether the

system will be operated for an infinite number of transitions, or for an

infinite period of time!

A pertinent question is, when will these two experiments converge on

the same stationary policy? From (48), a sufficient condition is that

EnrkVk be independent cf the possible policies; this would certainly be true,

if for every policy, and for every pair of states, the v..i were all equal to

S. Thus, for a Markov decision process, G = g,. , independent of the policy

under consideration. Of course, for some Markov-renewal programs,

the policies may be identical because of the data of the problem.

XV. Multiple Chain and Transient-State Problems

It is postible to extend the analyses of the previous sections to

problems where the underlying Markov chain has several recurrent classes

or where some of the states are transient or absorbing.

The problem of multiple chains has been discussed extensively by

Howard. 9 1 The primary change in the algorithms of Figures 2 and 3 are the

determination of a separate gain (or gain rate) for each class of recurrent
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states. The policy determination routine selects alternatives in order to

maximize the average gain "reached" from state i ; if there are ties, a

test quantity including the relative values is used. It should be emphasized

that the procedure does not break ties between the optimal policies which

maximize gain within each chain, but merely break ties within the algorithm

which leads to one of these policies. For more details, the reader is referred

to Reference [ 9 ]; the necessary changes for Markov-renewal programs can

easily be deduced.

If there are transient states in the underlying Markov chain, then it

is a simple matter to determine the expected number of steps until a given

state in one of the recurrent chains is enteres. 113] The average return

accumulated en route to absorption in the recurrent chain is then added to the

return of the recurrent state (s) entered, in the obvious manner; further

details are left to the reader. Absorbing states, for our purposes, may be

treated like a one-state recurrent chain.

Once again it is emphasized that these special considerations relative

to the underlying Markov chain are necessary only in limiting programs;

when discounting is present, or when the process has a finite horizon, there

is no difficulty.

XVI. Limiting Results

The analyses presented here may be easily specialized to the

results of Markov-decision processes. As an example, we specialize the

results of the section on discounted programs to the continuous-parameter

Markov process analyzed by Howard in Chapter 8, Reference [9 ]

For a continuous-parameter Markov process, Pi1 = 0 , and
-W. t

Fij(t) = 1 - e , for all i,j , and appropriate finite wi > 0
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Thus, If.j(&) = wi/(c, + Wi) , and from (6):

N

)= Pij f + W. R i +- ri j (50)

j oj

for all i , when the rewards Rij are earned at the end of the transition

interval. Making the running rewards only dependent upon i,

r ij = r. , the expected return (16) must satisfy:

N N
(a + wi)V.i r i + Wi ý PijRij + .. Pij.Vj (51)

j=l j=l
j~i joi

for all i . Setting:

a.ij . i Pij i j

a.. -W.
1 1 1

we finally obtain, for i = 1,2,... ,N:

N N

&VYi = r.i + a a1 R13  " 1 V. (52)

j=l j=l

which is essentially Equation (8. 47) of Reference (7 7.
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XVI. The Two-State Processes

As a specific case of interest, we present explicit results for Markov-

renewal programs with only two states. First, express the transition

probabilities in terms of the off-diagonal elements:

I - P1 2  P 1 2
7'=1 (53)

P2 1  I - P21

which represents an ergodic chain for P1 2 and p2 1 greater than sero. The

stationary transition probabilities for the Markov chain are:

w = (P12 + P21)' P21 P PIZ) (54)

which, when used to calculate the fundamental matrix, gives:

P1 ~2 l2"12

Z -H = (P1 2 + P2 1 )F2 I (55)

_. P21 P?.1

Similarly, the stationary probabilities over time for the Markov-renewal

process are:

P = (viP 2 1 + V2p1 2 )" 1 IP21 - . (56)

The mean first-passage times are:

VlP21 + V 2Pl 12

P21Pi

S V2 VIP21 + VZP12 (57)

P2 1  Piz
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while the diagonal terms of the second moment of first-passage times are:

IA(Z) =,(2) + 2 12 12+2Piz (,4(Z) + 2
p2 1  P22

(58)
42 ( = l �2  P+ l (I2) +2

The limiting value of the per-transition gain is then

G = P21Pl + PI2 (59)p 2 1 + P 1 2

while the infinite-step relative values from (31) are just

=P 1 - P2
VI = ; V2 = o (60)P21 +P12

The limiting value of the gain rate is:

PzPIl + Pl2P2  (61)

g = l iP21 + (2P62

with the infinite-time or vanishing-discount relative values from (44):

vzPl 1 hip 2vI = ; v2 = 0 (62)
V IP 2 1 + Vl/2p1

From these explicit formulae, the optimal policy can be found by

direct evaluation, if the number of alternatives is not too large. The exact

constant terms in each case can be then found from the relative values and

(32), or (45), or (46)(47).
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XVIII. An Example

As an illustration, consider the two-state problem of a machine that

is running (state 1) or has broken down (state 2). If the machine is running

there are two maintenance alternatives:

Alternative A: R 1 2 = 0 ; rl, = $100/day ;vz = 4 days

Alternative B: R 12 = 0 ; r 12 = S 84/day; 12 = 5 days;

PI12 1 1

If the machine has broken down, there are two repair alternatives:

Alternative A: R 2 1 = 0 ; r 2 1 = -$65/day ; v21 = 4 days

Alternative B: R 2 1 = -$100 ; r 2 1 = -$200/day " 21 = I day

P12 = 1

Alternative B may be thought of as an outside repairman whose expensive

fixed and running charges are compensated for by his quick service time.

The finite- and infinite-step processes without discounting are in-

dependent of the complete transition time distributions, and depend only on

the means, vij . By direct evaluation:

GAA = $70 ; GAB = $50 ; GBA = $80 ; GBB = $6o

so that (B, A) (expensive maintenance, cheap repair) is the optimal stationary

policy for a large number of transitions. It is also the optimal policy for

all values of n . Figure 4 shows total expected return as a function of n ,

starting in either state 1 or 2. The exact expressions are:
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Remaining for Finite -Stop Machine Maintenance andRepair Example.
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VI(n) = SOn + 170 + (.)n+l 170

V2 (n) = 80n - 170 -()n+l 170

When these fluctuations are averaged out, the last term vanishes in each

equation, so that the limiting form has G = $80 , and W1 = $170 ,

W2 = -$170 . These values may be checked from (32); (31) will, of course,

only produce V 1 = $340 , V2 = 0 .

In the finite- and infinite-time processes without discounting, one

must specify the form of the transition-time distributions; let us suppose

that they are all degenerate, with the given means. Figure 5 shows, in

heavy lines, the return obtained when following the optimal (nonstationary)

policy for all t . The optimal policy itself is indicated by means of solid

bars above and below the return curves; notice that by t = 19 44/149 , the

optimal policy in state 2 has stabilized to policy B, but that the return curves

and the policy in state 1 do not stabilize until t = 30 . At this point, the

optimal policy in state 1 is to use either A or B , and the return curves

have the form:

Vl(t) = 20t + 301 + ul(t)

Vz(t) -- 20t - 18 3 + u2 (t)

for t > 30 . ul(t) and u2 (t) are sawtooth curves of period one, whose

time-average value is zero.

By direct evaluation,

gAA = 17.50 ; gAB = 20.0 ; gBA = 17.77 ; gBB = 20.0

in dollars per day,
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so that either (A, B) or (3, B) are the maximal gain rate stationary policies,

indicating that expensive repair should always be used I For comparison,

Figure S also shown the total returns obtained when the stationary policies

are followed for all time. For policy (A, B) (dotted line):

VI(t) 2 Zot + 150 + u3 (t)

V2 (t) a 20t - 170 + u4 (t)

and for policy (B, B) (dashed line):

Vl(t) = 20t + 15Is + u5 (t)

V2 (t) = Z0t - 1684 + u6(t)

for all t > 0 , where u 3 (t) , u4(t) - u,(t) , and u6 (t) are all sawtooth curves

of period five (A, B) , or six (B, B) , whose time-average values are zero.

The results can be obtained graphically, or from (40) and (41). A surprising

result is that while both (A, B) and (B. B) are the limiting stationary

policies of the optimal nonstationary policy, only (B, B) is the optimal,

completely stationary policy, in the sense of maximizing the wi . when there

is a tie in the gain rates, g • This resolution of the tie cannot be found

from (44), which gives relative values v, a 320 ; v 2 = 0 , for both policies.

To illustrate the effect of the distribution shape upon the optimal

policy, consider the infinite-horizon problem with discounting for the

following distributions:

I. All distributions degenerate

11.FA and FA Fxoenil FBad 8
12 21 exoeta, 12 and 21

degenerate.

Ill.F , F. A F" exponential, F- degenerate
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In each case, the means are maintained at the values previously given. The

resulting normalized optimal discounted returns, &V1 and aV2 are shown

in Figure 6 versus a ; changes in policy for different regions of a are

indLcated by a vertical bar. Notice that any of the four possible policies may

be optimal, depending upon the discount factor and the distribution assumed.

As a - 0 , either AB or BB is selected as the optimal policy, but there

are no near-optimal policies in the cases shown, even though they all tie in

gain rate at the limit.

XIX. Summary

Besides the extensions of the model to different classes of underlying

Markov chains which have already been mentioned, there are other modifica-

tions which can be made:

1. A general reward structure, R ij(t, T'j) 0 < t < 1'j

2. Termination rewards which depend upon the time until
the next transition.

3. "Mixed" horizons, in which the process is terminated

at the next transition after time T , or at min (n, T), etc.

These modifications do not change the solution algorithms in any substantial

way.

A more difficult problem is the resolution of ties in infinite-horizon

problems. Since both the gains and the relative values must be used in the

algorithm to find a new policy which improves the gain, it would appear that

resolution of ties would require knowledge about the transient part of the

expected total reward. Another approach would be to use a secondary

criterion, such as minimum variance, to resolve the ties.

In summary, we have considered an extension of previous work in

Markov-decision processes into models which have Markov-renewal
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structures. It is felt that these models embrace a wider class of important

operational problems, since in a Markov-renewal process the times between

transitions can follow a random clock which depends on both the previous

and the next state of the system. The policy-space algorithm remains much

the same as in the Markov models; but now a fundamental distinction appears

in infinite programs: are they infinite in time, or in number of transitions?

Clarification of this distinition appear to be a fundamental part of Markov-

renewal programs, and it Will be of interest to see how this distinction will

be reflected in application.1
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APPENDIX A

Here are presented some results on Markov-renewal processes due

to Pyke 15] 16]7 ( 18] and Barlow[I which are used in the text.

The basic function is the joint conditional probability distribution:

Qij(t) = pj.Fij(t) Pr {lk+l = j , r(i,j) < tlk = l} (A. 1k

which is defined for all i and j , t > 0 , and k = 0, 1,2....

Let u represent the first passage time to state j , starting at state

i ; from the definition of the transition times:

u. = (i, j)

or r(i,k) + -r(k,j) (k A j)

or7,(i,k) + r(k,l) + -r(lj) (k, I A j)

where each sequence is determined by the underlying pij With this definition

the first passage time from i back to itself does not require the system to

enter another state first. If the distribution function of first-passage times

is denoted by:

G. .(t = Pr (uj < t} (t > 0) (A. 2)-j (i, J"r = 1, .... N)

then a simple renewal argument will give the following relationship between

the l and the 0ij:

N

G(t) = QiM(t) + Gkj (t - x)dQ i(x) (t > 0) (A. 3)
k=l (i,-1,2.... ,N)

kAJ
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G01(0) = 0 because of the corresponding restriction on the Fij(0) . The first

and second moments of the first-passage times will be denoted by p~j and
(2)
(2) , respectively; these need not be finite, in general.

A variable of interest in Markov-renewal processes in N.(t) , the

number of times the system enters state j in the interval (0, t ]. In particular,

the mean number of entries into state j in the interval is defined as:

Ms.(t) = E {N.(t) i 0 = i) (t > 0) (A. 4)ij i(i,y -j z,... )

From the definition of first-pamsage times:

M.i(t) G=i(t) + G Gi.(t - x) dMW(x) • (t >0) (A. 5)
0O (j 12,.,N)

Finally, there is an interesting relationship between the M and the ij

N

M ijt) = Qij (t) + '5 C Qik(t - x)dMkj.X) (t > 0) (A. 6)
k=l 3 (ij = ,2,... ,N)

In particular, note that for a one-state process, G(t) = Q(t) = F(t) , and

(A. 5) and (A. 6) reduce to the well-known equation from renewal theory[ 10] 19]

M(t) = F(t) + , F(t - x) dM(x) (t > 0) (A.7)

It is this intimate relation with both Markov processes and renewal processes

which led Pyke to define these processes as Markov-renewal. Asymptotic

properties of the M ij(t) used in Equation (39) may be found in References

16] and [ ].
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Methods for the solution of the first-passage moments are needed in

Equations (40) and (45) of the main text. From (A. 3), or from Reference (1]:

N N

•ij= I Pikllkj + i " 'i= I Pik "ik (A.8)
k=l k=l
k#j

for all i,j . Also,

N N
P(2) 4( + ZV + Y! (2) (2) v! 2)(2)ij Pk + Vkkj } + k i I Pi= ik ik(A)

k=l k=l
k#j

for all i,j

Both means are finite if the first and second means of the F ij(t)

are finite, and the underlying chain is ergodic. In this case, the equations

above are always well-defined.

If Equations (A. 8) are multiplied by the stationary probabilities, w.,

and summed, there results the interesting relationship for all j

N

I-jji I wkVk (A. 10)
3k=l

•There are several typographic errors in (I] onpp. 53, 54. The equation
before their (A. 3) should have the indices of je) reversed; the condition on
the second summation in (A. 4) should read k~i; and the equation after (A. 4)
should have wi as denominator of both terms on the right-hand side.
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In a similar manner, from (A. 9), for all j

N N N. Z) f ý , () + 2" Trt(k. k11k
"(jj k + 2 / , ...iPik ik kj

3 k~l k ~

When v. = v2) = 1 , these formulae reduce to well-known relationships for
f1

Markov chains.

APPENDIX B

In an unpublished report by P. Schweitzer of M. I. T. (private communi-

cation; March 13, 1963), an alternative test criterion has been proposed for a

quantized version of the infinite time, undiscounted case. His criterion is to

select, for each state i , the alternative z(i) which maximizes

N
zz z

Pi + 2 v. - gz (B. 1)_/ Pij g i
j=l

which may be contrasted with out test criterion of Figure 3:

N
IrPz + PzV. - v (B.2)

i j=l

Suppose one had a policy (vector) A which led to an improved policy

B , and let Ir > 0 be the improvement in Schweitzer's test criterion for state i
B A

and let •yi> 0 be the improvement in our test criterion. Then if ^.g = g - g

is the improvement in gain rate between policies A and B , it can be shown that:

N N

Ag and Pg _ . (B.3)

j=l Vj j=l

In both cases the relative values v. and the gain rate g of the present policy
are used. 1
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Since the underlying Markov chain is ergodic, and all of the v. are assumedJ

finite, both criteria lead to an improved policy. It is not known if one of

them is computationaly more efficient than the other.
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