UNCLASSIFIED

AD NUMBER

AD402055

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; DEC 1962. Other requests shall be referred to US Library of Congress, Attn: Aerospace Technology, Washington, DC.

AUTHORITY

ATD ltr 2 Dec 1965

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED AD 402055

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

[@]402055 71 s/064/62/000/011/001/001 SUSI B101/B186 Burovoy, I. A., D'yachko, A. G. TITLE: (6) Mathematical simulators for fluidized bed apparatus to study thermochemical processes PERIODICAL (5Khimicheskaya promyshlennost, no. 11, 1962, 8-13 TEXT: Equations for the rates of adsorption, desorption, and reaction are derived for the heterogeneous chemical reaction in a fluidized bed: $a_1A_1 + a_2A_2 = a_3A_3 + a_4A_4$, where A_1 is the solid, and A_2 is the gaseous initial substance, A_3 is the solid and A_4 the gaseous reaction product, and a_1 , a_2 , a_3 , and a_4 are the stoichiometric coefficients. $\mathbf{v}_{\mathbf{a}} = C_{\mathbf{A}_{2}}^{\mathbf{F}} \sum_{i=1}^{\mathbf{a}} K_{\mathbf{a}i}^{\mathbf{o}} \cdot \boldsymbol{\Theta}_{\mathbf{o}j} \cdot \exp\left[-(E_{\mathbf{a}i}^{\mathbf{o}} + \sum_{(j)} \boldsymbol{\eta}_{\mathbf{A}_{j}} \boldsymbol{\Theta}_{\mathbf{A}_{j}i})/RT\right] (11)$ holds for the adsorption rate of A_2 with respect to unit surface, $C_{A_2}^{F}$ is the Card 1/4S/064/62/000/011/001/001 B101/B186 Mathematical simulators for ... concentration of A_2 on the active surface (m^{-3}) ; K_{ai}^{o} is a factor having the dimension m^3/sec ; E_{aj}^0 is the activation energy of the free surface; $\eta_{A_j} = \alpha_j b_{A_j} c_{\alpha}$, where α is the change of energy due to adsorption, b is

a coefficient, and C_{s} is the concentration of the adsorption centers per unit of surface; $\Theta A_{j}i = C_{A_{j}i}^{s} / C_{s} is$ the degree of surface occupation by the substance $A_{j}i$, with $C_{A_{j}i}^{s}$ being the surface concentration of $A_{j}i$.

 $\mathbf{v}_{di} = \sum_{i=1}^{n} K_{di}^{\circ} \cdot \Theta_{A_{2}i} \cdot \exp\left[-(\mathbf{E}_{di}^{\circ} - \sum_{(j)} \eta'_{A_{j}} \Theta_{A_{j}i})/RT\right] (17) \text{ holds for the}$ desorption rate of A_{2} per unit surface. $\mathbf{v}_{\mathbf{r}} = \sum_{i=1}^{n} K_{ri}^{\circ} \cdot \Theta_{A_{2}i} \cdot \exp(-\mathbf{E}_{ri}/RT)$ (22) holds for the total rate of the chemical reaction. $d\Theta_{A_{2}}/dt = \mathbf{v}_{a} - \mathbf{v}_{r}$, wherein the values from equations (11), (17), and (22) are to be substituted, holds for the material balance. For the substance A_{4} , the Card 2/4

S/064/62/000/011/001/001 B101/B186

Mathematical simulators for ...

equations for adsorption, desorption, and material balance are set up in the same way. The functional diagram of the simulator (Fig. 1) correctly reproduces the course of the heterogeneous thermochemical processes, when the adsorption of A_2 , the desorption of the reaction product, or the chemical reaction on the active surface are the limiting stages. There are 2 figures.

Fig. 1: Functional diagram of the mathematical simulator for adsorption, desorption, and surface reaction of a heterogeneous process. Legend: A = a = adsorption; $\partial = d$ = desorption; P = r = reaction.

Card 3/4

Mathematical simulators for ...

S/064/62/000/011/001/001 B101/B186

Fig. 1