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ABSTRACT

The flow of two phases, gas and liquid, has been studied in

horizontal tubes of capillary diameter. The flow has been primarily

studied in the regime where th6 gas flows as long bubbles separated

from the wall of the tube by a liquid film and from each other by slugs

of liquid. In this regime the pressure drop, density and, to a certain

extent, the thickness of the liquid film around a bubble have been corre-

lated. The conditions under which the long bubble flow can exist and

under which the correlations are valid have been determined. Of special

interest is that the correlations should be valid in a zero gravity field.
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1. INTRODUCTION

The study of two phase flow is assuming a greater and greater importance

in the technologies of heat transfer and fluid mechanics. Unfortunately, there

is no simple way to analyze or correlate all types of two phase flow problems.

A large amount of effort must be expended on categorizing each type of flow

problem and analyzing and correlating the significant parameters of each type.

This work categorizes one type of flow problem and analyzes and correlates

the significant parameters of it.

As the title would indicate, the problem to be studied here concerns two

phase flow in tubes of capillary diameter. More specifically, the problem is con-

cerned with flows which have long, somewhat symmetrical gas bubbles separated

from the wall of the tube with a liquid film and separated from each other with

liquid slugs. The flow geometryor flow regime described occurs quite often in

capillary tubes. Because of its similarity to the slug flow regime in large tubes

and'because o• the small tube diameters, the flow regime is called capillary slug

flow'. To give' an idea of the order of magnitude of the size of the systems dealt

with here, it can be said that the work concerns tubes in the order of one milli-

meter in diameter and velocities up to around ten feet per second.

The problem first came up in the study of boiling in small tubes for high

intensity magnets. It was thought that the two phase flow in these tubes could be

analyzed in a!simpler manner than the common two phase flow problem in larger

tubes. Capillary slug flow was not necessarily the only flow regime observed in

these tubes, but study of this flow regime was thought to be a good place to start

the problem. Other places where capillary slug flow may occur is in refrigerators

and possibly in spacecraft boilers and condensers. The latter use stems from the

idea that in capillary tubes the effects of gravity should be negligible on earth and

correlations for them should be valid at zero gravity.

Some work has been done on the problem of capillary slug flow. In general,

the previous work falls into two groups. One group has measured pressure drop

or film thickness at very low Reynolds Numbers where the inertia forces are very

small. Their observations were made using glass tubes where the bubbles were

observed toexist. The other group has measured pressure drop and over-all

mixture density at higher Reynolds Numbers. They did not observe or at least

- 1-



did not report whether the bubbles actually existed. Of the former group, there
6+ 4 19

are Fairbrother and Stubbs , F. Bretherton , G. I. Taylor , Marchessault and
14 7

Mason and Goldsmith and Mason . Of the latter group, there are Lockhart and
13 15 Z0

Martinelli , G. P. Marcy , and H. A. Whitesel0. These groups have obtained

satisfactory answers to the problem of film thickness at very low Reynolds Numbers.

They have not obtained satisfactory answers to film thickness or over-all density

at higher Reynolds Numbers (inertia not negligible compared to viscosity). Nor

have they obtained satisfactory answers to pressure drop at any Reynolds Numbers.

In most of the previous work the flow was studied with horizontal tubes. In

this work the flows are horizontal also. The flow regime should properly be called

capillary slug flow in horizontal tubes. Where there is no chance of confusion, the

flow may simply be called slug flow.

The pressure drop, density and film thickness are studied for a certain

type of horizontal capillary slug flow. The existence of this type of flow (flow

regime study) is studied also. The type of flow is one where the surface tension

forces are large compared to the gravity forces and the liquid viscosity and density

are large compared to the gas viscosity and density. The flow is studied with gas

and liquid rather than vapor and liquid. Compressible effects are ignored to a

large extent as is heat addition.

+Superscript numbers are referred to in the Bibliography.



2. ANALYSIS OF FLOW

2. 1. Flow Model

Several questions come to mind for a flow model. The prime question is

whether the slug flow regime is stable. That is, do the bubbles tend to stay dis-

crete or do they tend to agglomerate. If the bubbles tend to agglomerate, an

analytical flow model becomes quite difficult.

To determine whether bubbles and slugs of various lengths tend to agglo-

merate a preliminary test apparatus was constructed. This apparatus showed

that long bubbles do not tend to agglomerate. The bubbles appeared to stay at

constant length and travel at the same velocity as others in the tube. There

were some variations in bubble velocities but they were small compared to the

total velocities. If a small bubble (1-2 diameters) occurred, there would be

agglomeration of the long bubbles behind the small bubble until the small bubble

agglomerated also; then no further agglomeration would take place.
i

These experiments indicate that a model without agglomeration would be a

reasonable one for slug flow. The problem is still quite difficult because of the

infinite number of possible combinations of bubble and slug lengths. The problem

is considerably simplified if a model is taken for analysis and experiment which

has all the bubbles of one length and all the slugs of another. All the bubbles

travel at the same velocity and remain constant in length as they flow through

the tdbe. The model can be viewed from two viewpoints. If one looks at the

whole tube, one sees a group of bubbles and slugs all of the same length with

all the bubbles traveling at the same velocity. This picture is steady in time.

On the other hand, one may stand on a point in the tube and watch bubbles and

slugs go by. Each bubble and slug pa~sing the point has the same length as the

others before and after it and each bubble has the same velocity. The bubble

and slug lengths and bubble velocity do not change as they go down the tube.

This model would appear to be a reasonable one if the end effects can be neg-

lected. In long tubes this seems a reasonable assumption. Initial experiments

indicated that this type of flow is also possible and therefore the flow is analyzed

in this manner. It; is explained where required how to extend the results of this

type 'of analysis tO the case where bubbles and slugs are not uniform.
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The uniform bubble and slug length model is as shown in Fig. Z. In

addition to uniform bubble and slug lengths, several more requirements are

made on the model. 0

The first requirement is that the gas and liquid are both incompressible.

The second requirement is that the liquid to gas density and viscosity ratios are

much greater than one. That is:

Pg

Y_ --, > (2)
F~g

The first requirement restricts us to relatively small pressure drops. The

second requirement restricts us very little as this is most often the case with

liquid-gas systems. It does simplify the problem considerably because it causes

the bubbles to be constant pressure volumes imbedded in the liquid.

2. 2. Dimensional Analysis

A complete analysis of the flow might appear possible from the geometry

of the model. However, it turns dut to be very difficult, if indeed not impossible.

An analysis has been made for film thickness by Bretherton4 in the case of non-

inertial flow. To go beyond this to the case where inertial forces are important,

then to the point where the flow is turbulent, would require an inordinate amount

of work. For this reason, a dimensional analysis is performed to determine what

parameters are required to determine the flow.

The Navier-Stokes equations will yield the proper dimensionless groups for

the liquid. They can be several different combinations, but two which are common

are the Froude Number and the Reynolds Number:

NFr V- (3)S gL
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pVL
N Re (4)

where V is some characteristic velocity and L is some characteristic length.

The boundary conditions at the gas-liquid interface will yield one addi-

tional dimensionless group which must be given in terms of the surface tension

and other forces. This can be derived either using the Pi theorem or by ex-

amining the differential equations of the liquid at the interface. One combination

which turns out to be particularly useful is:

2

(5)
Pt0 ro0

The utility of X is that it is not dependent on any velocity. It is a property of

a given system. Thus controlling this parameter is quite simple.

The dimensionless groups above contain an arbitrary velocity and an

arbitrary length. The arbitrary length is chosen to be r0 , the tube radius,

because of simplicity. The choice of velocity is not quite so easy to make.

As W''ill be seen later, the average velocity US of the liquid in a slug is very

simple and clharacteristic, but on the other hand, the bubble velocity UB is

characteristic also. The bubble velocity in fact turns out to correlate the

data in the simplest manner so it is used.

In addition to the parameters (3), (4), and (5) something must be said

of the geometry to completely specify the flow. The only geometric variables

we have are the bubble and slug lengths. These two in the dimensionless forms

(LB/fro) and (Ls/ro) together with parameters (3), (4), and (5) specify the geo-

metry exactly. In doing so, they also specify the flow completely.

Since the shapes of the bubbles are now specified, the volume flow rates of

liquid and gas are specified also. It can be seen that the process could have been

reversed. The gas and liquid flow rate ratio could have been specified plus inlet

conditions to give certain size bubbles. This latter technique is more difficult

in this case and is not used; however, it proves a useful way of specifying a flow

later on.
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This method of dimensional analysis using the differential equations

and some physical insight has been used because it gives an appreciation of

where each parameter comes from. it could have been done equally well by

simply taking all the parameters involved and ,sing the Pi theorem.

2. 3. Reduction of Parameters

Parameters (3), (4), and (5) plus (LB/ro) and (L s/r ) specify a system
as shown in Fig. 2 under a great number of possible conditions. If some of the

possible conditions can be eliminated, some of the five parameters can be elim-

inated.

One condition which can be eliminated is the effect of the gravitational

forces. It would seem reasonable that one of the conditions for the capillary

slug flow regime to exist is that the gravitational forces are small compared

to the surface tension forces. We have no direct measure of this ratio of forces

in parameters (3), (4), and (5). They can be combined to obtain this ratio of

forces, however. The parameter IR, the ratio of gravitational forces to surface

tension forces, is obtained from (3), (4), and (5) as:

2
P- gr° (6)

If this parameter is sufficiently small, the effect of gravity on the curvature

of the bubble should be small.

SGravity may affect the flow in another way. It may cause the bubble to
rise to the top of the tube. This depends on the viscous and inertial forces also.

The complete solution of the shape of the bubble depends on the interactions

of all these forces. To make the problem tractable let us assume that if A is

sufficiently small, then the bubble will be symmetrical about the centerline of

the tube and the effect of gravity can be completely neglected. This is a major

requirement and a priori we have no real reason to assume that it is valid.

The ways in which this assumption may be checked are discussed in Sec. 2. 9.

Since the gravity forces are neglected, the Froude Number need no longer

be specified. We can go one step further than this in the elimination of para-

meters. To do this we make use of some experimental observations.

-6-



Under the ccndition of smallft , bubbles have been found to exist as long

cylindrical bubbles with little axial curvature except at the nose and tail. This

observation allows us to eliminate the bubble length as a parameter to a large

extent.

The lack of curvature in the bubbles means that the bubbles have a constant

radius rB. The pressure in the liquid film can then be written as:

Pf " PB 0" (7)

rB

PB is a constant so pf must be a constant also. Therefore, there is no pressure

drop in the liquid film. This leads to the conclusion that there is no flow in the

liquid film. If there is no flow in the liquid film, it must be laid down at the

nose of the bubble and then stay at that thickness until the tail of the bubble comes

past. The observation of a constant bubble radius appears consistent with a

bubble nose continually laying down a film of some given thickness.

Since there is no pressure drop along the cylindrical portion of the bubble,

the length of the bubble must have no effect on the pressure drop associated with

one bubble and slug. It would of course affect the pressure gradient. The film

thickness is also not affected by the bubble length. It should make no difference

to the nose of the bubble how long the cylindrical section is since the nose effec-

tively sees only the film immediately adjacent to it and that portion is always

standing still.

These arguments show that only three parameters are required to correlate

pressure drop and film thickness. They are:

_pl UBro

NRe 0 (8)
ILI

X z (9)
p rr0

L S (10)

r
0
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A fourth parameter (L B/ro) must still be considered necessary for complete
specification of the flow.

2. 4. Continuity Relationships

Several relationships exist which simplify the method of attack. Two of

these are derived here for later use.

The first relationship is one to determine the average velocity of the

liquid in a slug. To do this we take a flow model as shown on Fig. 3. The

flow is a slug flow with no restrictions except that the two phases must be

incompressible. This flow is not necessarily capillary slug flow but may be.

The gas and liquid may come together in some arbitrary manner. A control

volume is drawn around the pipe as shown by the dotted line. It intersects the

gas and liquid inlet lines prior to the point where the two phases mix.

The mass continuity relationships maybe written for the two phases as

follows:

dt

0 gl~g - gZpg =-t(lVgc.v, pg) (ll)

QI - Q ~(V'• c.v. PA)(2

From the fact that the control volume remains constant, we may say:

d c.v. gc. V. (13)

dt dt

Equations (11), (1Z) and (13) can be combined to get:

Q1Z + Qg2 = Qg1 + Qi1 (14)

The location of the exit from the control volume is arbitrary. Therefore,

equation (14) states that the total volume flow at any point in the tube is equal

to the sum of the inlet volume flow rates. This is not surprising, but the next

step yields an interesting result. If the exit from the control volume is located

across a slug, then QgZ is equal to zero. Then Q is equal to the sum of the

inlet gas and liquid flow rates Qgl and QW1 " This should be so for all slugs.
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Therefore, at any given time the volume flow rate of liquid in all slugs is

the same and is given by the relation:

Qs = Q11 + Qgl (15)

The average liquid velocity in a slug is defined as the volume flow rate of

liquid divided by the tube cross-sectional area. Thus we can say that:

U Qgl + Q1u (16)
2Trr

0

It is sh own in Sec. Z. 6 that if UB is constant in time under the conditions

of Secs. 2. 1, 2. 2, and 2. 3, then US is constant in time also. This means that

(Qgl + Q•I) must remain constant in time. The inlet flow rates may vary but

their sum must remain constant. It can be shown that no matter what the

bubble-slug spacing may be, if the sum (Qgl + Q1 1 ) is constant in time, it is

equal to the sum of the average gas and liquid flow rates Q + Q . Thus we
g

can say:
QI + Qg

US - g (17)

irr
0

This will in general be the velocity called slug velocity. Notice that this is

not the velocity at which a slug is seen moving. The slug will move along at

the velocity of the bubbles UB. US is the average velocity of the liquid in a

slug as seen by an observer standing on the tube.

The second relationship involves the liquid in the slug also. It is a re-
lationship for the amount of liquid which will pass a fixed point in the tube during

the time that one bubble and one slug go by. To derive this relationship use will

be made of the flow model of Fig. 2. The restrictions of Secs. 2. 1, 2. 2, and 2. 3

must hold in this particular case. If we stand at a point where at time zero the

tail of a bubble passes by, we see fluid flowing past at the rate (US 7rr 0 ). This

-9-



flow lasts for a period of time approximately equal to (Ls/UB'. The flow

of liquid stops when the bubble comes by. Thuo we can write an equation

for the volume of liquid going past our fixed point during the time it takes

for one bubble and one slug to go past as:

z LS
,rS S (18)UB

This can be rearranged to give:

"V" US LS
- L S (19)

3 UB 0

This relation proves to be useful later on. It is a measure of slug length and

is consideraily easier to measure than slug length.

Z. 5. Pressure Drop

The total pressure drop in a system can be given in terms of the pressure

drop associated with each bubble and slug. This pressure drop per bubble and

slug is more convenient than pressure gradient. The pressure drop per bubble

and slug should be independent of bubble length for a constant pressure bubble,

whereas the pressure gradient should not.

According to the preceding sections of this chapter the pressure drop per

bubble and slug may be correlated as a function of NRe' X and (%rs/rro 3). An

exact analytical solution is not available or very possible but some fairly simple

analysis beyond the dimensional analysis is helpful to see how to plot the data.

. It is reasonable that when the flow is slow enough to give a low value of

NlRe' there is a portion of the flow in a slug which is fully developed laminar

flow. The ends of the bubbles may cause some effects on the slugs. At low

N Re the end effects should not extend into the slugs very far. As long as the

end effects do not go far enough into the slugs to disrupt the fully developed

laminar flow, the end effects should be completely independent of slug length.

Thus we could write the pressure drop in a bubble and slug as a linear com-

bination of two terms:

- 10-



AP = 8 ",-s L +K(Z0)

where the first term on the right is the laminar flow pressure drop and K is

the end effect. Equation (19) can be used to rearrange equation (ZO) to;

- -- + K (21)

I 'UB rrr 3

0

r
0

K is not the same in both equation (O) and (Zl), of course. It simply represents

end effects of some kind. The K may be a function of N Re and X, but by defini-

tion not of (Ls/ro) or (VS/1,,-rr 3 ).

The range of validity of equation (21) and the function K must both be deter-

mined by experiment. Outside the range of equation (21) no simple analysis is

available. There we can only use the dimensional analysis to guide the experi-

ments. This is still not too bad. The three variables N Re' X, and (s/Tror 3)

should not be difficult to vary independently.

Correlations based on (V 5/,rro3 ) and derived from uniform bubble and slug

lengths should apply to the case of nonuniform bubble and slug lengths provided

that the film thicknesses of all bubbles in a tube are approximately constant.

Z. 6. Density of Mixture

The ratio of the volume of gas to the volume of liquid in a tube is not

necessarily the ratio of the gas flow rate to the liquid flow rate. Therefore

density, which is determined from th~e ratio of gas to liquid in a tube, is

difficult to calculate in general. In a slug flow, however, we have a simple

means of determining density.

To show how density may be determined,, we once again take the flow

model of Fig. 2. The average density of one bubble and one slug can be defined

as:

[wher (LS+ i) +th)- Vb] +vPoguVB (Zr)

7r r 2 (LS + L B)

whr B is the bubble volume. This can be reduced to:



"v.B (Pg- p)
P = P + B ( 1) (23)

irrZ(LS + LB)

The volume of gas in each bubble can be stated as:

Qg (LS LB)(2

UB

Equations (23) and (24) can be combined with Equation (17) to give:

P ~ = , P P9) -Qg (Z25)

This equation is exact and depends only on continuity relationships and the

definition of average density. If we make the restriction that (p /p )>> 1,

then equation (Z5) reduces to:

P =P. 9 (26)

This equation gives the average density over any integral number of bubbles.

A quite similar equation for density was derived by Griffith and Wallis.

They developed density in terms of velocity differences instead of velocity ratio.

Equation (26) can be extended to the case where the bubbles and slugs are

not of uniform length. The only requirements are that all the bubbles have the

same velocity and that the flow rates of gas and liquid do not fluctuate sharply.

By the latter it is meant that in the time it takes for a bubble to pass through the

tube, the flow coming out the end of the tube should average out to the average

gas and liquid flow rates. The analysis for density is performed using the model

of Fig. 4. Ignoring gas density, the average density in Lt should be:

- 12 -



p wrZLt L j%(7p 0: (Z7)

irr Lt

Equation (27) can be reduced to:

P = Pl I1 i=, i (28)

0Wo L t

From the restriction that the flow rates do not vary sharply from the average

it can be said that:

9 VlABi LZ9

Equations (28), (29) and (17) can be combined to give:

P Qg U S(30)

It is seen that equation (30) is exactly the same as (26)

The density over a whole tube should not be significantly different from

the density over an integral number of bubbles. This is especially true when

the number of bubbles in a tube is large.

From equations (26) and (30) it is seen that to correlate density we need

only correlate (US/UB). In the flow model of uniform bubble and slug lengths this

can only be a parameter of NRe' %, (Vs/irro3 ) -and (LB/ro). It is shown in the

next section that the independence of film thickness on bubble length also implies

independence of (Us/UB) on bubble length. Thus (LB/ro) can be disregarded as

a parameter. The model of uniform bubbles and slugs was chosen because bubble

velocity and thus (Us/UB) were thought to be independent of slug length or

-/T 0o3 ). We cannot entirely disregard (V S /7ro3) in correlating (Us/UB) but

its effects should be small.

- 13 -



2. 7. Film Thickness

The film thickness is related to the bubble and slug velocities by the

relationship:

US 1 m (31)

UB

where m is the fraction of the cross-sectional area of the tube covered with

liquid. For a concentric bubble m is given by:

m =1-rB (32)

where r B is the bubble radius. Thisý relationship results from continuity and

the lack of flow in the liquid film. The volume flow at a cross-section inter-

secting a bubble is equated to the volume flow at a cross-section intersecting

a slug as follows:

U B(I - m) ir°0 = US Tro (33)

From (33) equation (31) follows.

Equation (31) implies that if film thickness is not affected by bubble

length, neither is the ratio of slug to bubble velocity.

If the bubble length stays constant, then the film thickness as measured

by (I - m) must remain constant. Thus the model of constant bubble length

and constant bubble velocity implies constant Us.

2. 8. Effect of Gas Viscosity

The analysis for the most part has had one restriction on the viscosity

of the gas which is that the viscosity ratio (PL/ ,gAl.) must be much greater than

one. It has not yet been established, however, how a finite gas viscosity will

effect the analysis.

- 14-



We now have sufficient information on what to correlate to obtain
pressure drop, density and film thickness in the absence of gas viscosity.

A way of determining the effects of gas viscosity is to assume a reasonable
flow pattern for the gas and see how it affects the various parameters. In
essence, this is a perturbation from the zero gas viscosity model.

A model which we can choose for the gas flow is that it flows as a fully
developed laminar flow. This causes a problem at the bubble ends but that is
ignored. If we further assume that the gas liquid interface has no slip, that is
gas and liquid travel at one velocity at the interface, and the liquid in the film
is traveling in fully developed laminar flow also, we have a tractable flow model.
That is, we have a fully developed,viscous, annular flow. An analysis under
these assumptions is performed in detail in Appendix B. The result of this
analysis is a relationship between film thickness, viscosity ratio and the local
gas and liquia flow rates. This relationship is combined with continuity re-

lationships in Appendix C to obtain:

.(1 m) L (1I (( - m+ (34)
U B (I - m) m) -

This should be a first order approximation to the film thickness around a bubble,

Notice that when (FL!/VLg) gets very large, equation (34) becomes identical with

equation (31). Equation (34) is plotted on Fig. CZ with (1 - m) plotted versus

(US/UB) using ( 9 /Ig) as a parameter. It can be seen that for values of

(F±/Pg)< 25 the difference between. (Us/UB) and (I - m) as determined by

equation (31) hmay become significant when (Us/UB)k 0.80.

This flow model also allows us to make an approximation for the pressure

drop within a bubble. The pressure drop with this flow model is the laminar flow

pressure drop in the gas or liquid. They are the same as is shown in Appendix B.

This pressure drop can be calculated roughly from the equation:

8UB B L g (35)AB=

rB

- 15-



The small velocity of the liquid is ignored in this approximation although the

film thickness is accounted for. This pressure drop is not intended to be an

accurate one but it should give the correct order of magnitude of any bubble

pressure drop.

The effects of gas viscosity as given in equations (34) and (35) are small

but can be troublesome. They are sufficiently large to cause some doubt whether

to correlate (I - m) or (Us/UB) while ignoring (ji,/I9g). This must be done both

ways to determine which is better, if indeed either will work. The bubble pres-

sure drop is to be subtracted from the total pressure drop before correlation.

This should be permissible provided that it is a small fraction of the pressure

drop.

2. 9. Gravita-tional Effects

In Sects. Z. 3 through Z. 8 of this chapter it was assumed that the flow is

free of gravitational effects provided that the parameter f. is small. Obviously,

this must be an oversimplified way to neglect gravity. In this section the effects

of gravity are studied with no gas viscosity. To begin with, we specify a system

with the parameters:

N Re = B (36)

2

S= gr° 37

4- (38)

BL (39)

r

10

LS (40)

r
(40

The system is the same as the system described in Sec. Z. 1 of this chapter.

The five parameters are equivalent to the parameters derived in Sec. 2. 2. The

only difference is that A is substituted for NFr- Also, it is assumed that S.

- 16 -



is small. We now use the same technique as that used to study the effects

of gas viscosity. We assume that A is truly zero and the flow is free of

gravity. The flow is symmetric about the axis of the tube. This allows us

to use all the concepts derived in Secs. Z. 3, 2. 4, Z. 5, Z. 6, and 2. 7.

Let us now increase the force of gravity to the point where it no longer

allows a perfectly symmetrical flow. There are two things which are likely to

happen. One is that the shape of the bubble loses its symmetry. The second

is that the bubble rises to the top in some way.

'When these things happen the film thickness no longer is governed by

the thickness at the nose. However, there should still be very little axial

flow in the film. Thus equation (31) should still be valid, since m is the

fraction of the cross-sectional area of the tube covered with liquid.

The vaLue of (Us/UB) or (1 - m) should become a function of -A as well

as k, NRe' and possibly (VS /r 3)0 The parameters, Us/UB or (1 - m), should

still be determined at the nose of the bubbles, Thus one check of gravitational

effects is to see if (Us/UB) or (1 - m) changes with AI- , all other parameters

being constant. This gives an indication whether the bubble shape at the nose

is being affected by gravity.

Behind the nose of the bubble the liquid film may drain or the bubble rise,

whichever viewpoint is convenient. If we ignore the axial surface tension forces

we can look at the drainage as a two-dimensional, unsteady flow problem. Since

the liquid film is very thin in general and should flow slowly, we assume that it

flows non-inertially. That is, viscosity is the primary force preventing drainage.

The Navier-Stokes equations with no inertial terms should then govern the flow

in the film. 'ihe boundary condition at the wall is zero velocity and the boundary

condition at the gas interface is zero shear stress. Under these conditions, the

magnitude of the forces tending to distort the shape of the bubble from a circular

shape is gqveined by the gravitational forces. Thus if A is small, though

not zero, the bubble in two dimensions should tend to stay a circle. The rise

time of a two-dimensional bubble from the center of the tube to the top can then

be calculated. This calculation is carried out in detail in Appendix A. The

calculation of the true rise time is tedious because it must be done numerically.

A good approximation is achieved for the rise time by assuming that the bubble

rises at the velocity it has when it is concentric with the tube. The time avail-

- 17 -



able for a bubble to rise is the time it takes for a bubble to pass a point in

the tube. The analysis combines the parameters governing the rise velocity

with the time available for bubble rise. to give a parameter r which can be

used to determine the extent of bubble rise.

LB P I gro

U B R,

This parameter plus the concentricity Of the bubble at the nose and (1 - m) com-

pletely determine the amount of bubble rise.

Assuming a bubble which is concentric at the nose, the value of T at

which the bu1bble tail will touch the top of the tube is plotted as a function of

(1 • m) on Fig. A3. This value Of T is calculated from the assumption that

the'rise veloqity is the velocity at which the bubble initially begins to rise

as indicated above.

The manner in which this drainage effects the flow in the slugs is un-

certain, but general statements may be made. It should make the flow there

non-symmetric also. Once again this may show up in a change in (US/UB).

Another way this may affect the flow is that it may affect the pressure drop

in the slugs.
1,

2. 10. Flow Regime

Any flow in a horizontal tube which fits the description given in the intro-

duction should properly be called a horizontal capillary slug flow. This would

be of little value to us, however, because the only flow which is studied here is

a horizontal capillary slug flow with certain restrictions. These restrictions

are therefore included as part of the specifications for the horizontal capillary

slug flow. Initially these restrictions are made as:

p I/pg >> 1

Z. fL1 /Ig 1

3. A 'is very small.

The results of the experiments combined with the analyses should yield a better

limit for (IL,//g). The limit for (p,/pg) has not been discussed, but because of
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1the very, very large ratio for most liquids and gases, it is felt that any

lower limit is exceeded in most cases. The third requirement has only been

postulated. The effects of variation inSL must be studied experimentally and

its results included in the flow regime specifications.

The discussion above has been concerned with the problem of whether a

given long bubble flow is one which has been studied here. There is another

possibility and that is that the above specifications may be met but the flow

may still not be a long bubble flow. The existence or non-existence of a long

bubble flow in this case must be determined by the four parameters of Sec. 2.3,

N Re' X, (LB/ro) and (Ls/ro), or an equivalent set. The exact determination

of flow regime changes is closely linked to the results of the experiments, so

further discussion of flow regime boundaries is halted until the results of the

experiment ire discussed.

2. 11. Results of Analysis

The analytical results of this chapter show that if gravity and gas viscosity

may be ignored, the pressure drop, density and film thfickness may be corre-

lated as a function of NRe, X and (o/srro 0 ). They can be correlated using measure-

ments of pressure drop per bubble and slug, slug velocity, bubble velocity and

(f 8s/ rro3 ).

The effects of viscosity and gravity can be approximated with simple

analyses. The results of these analyses can be used to check the reasonability

of the assumption of no gravitational forces or gas viscosity. The effect of gas

viscosity on firm thickness is checked by equation (34). The effect of gas viscosity

on pressure drop is calculated from equation (35.). The gas viscosity does not

affect density except that it may affect (US/UB). The gravitational forces are

checked by observing the effect of A1 on (Us/UB) or (1 - m) and pressure drop.

Also the bubble rise analysis checks film thickness changes due to gravity.

Unfortunately, the two effects, gas viscosity and gravity, cannot be

separated well in a practical experiment. It was hoped that the experimental

results would show some means of separation.
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3. EXPERIMENTAL TECHNIQUES AND MEASUREMENTS

3. 1. Required Measurements and Methods of Measurement

The analyses of Chapter 2 show what measurements are required to corre-

late pressure drop, density and film thickness in the absence of a gravity field

and gas viscosity. They are the pres'sure drop per bubble and slug, bubble

velocity, slug velocity and (V ,/irr Z). In addition to these measurements the
S o

bubble length is also required to check the effect of gas viscosity on pressure

drop and the effect of gravity on bubble rise.

The measurements are made on a system similar to the model for

analysis. This is, of course, the only way where a single value of ('s/wrro30

and (LB/ro) has any meaning.

The pressure drop is measured over a large number of bubbles over a

given length of tube. The bubble length and the bubble and slug length are

measured. Thus the number of bubbles and slugs in a test section are known,

and the pressure drop per bubble and slug can be found directly.

The bubble velocity is found from this same measurement of bubble and slug

length and a rmeasurement of bubble frequency. The slug velocity is found from

measurement of the gas and liquid flow rates and the use of equation (17).

The equipment to make these measurements and the whole experimental

test system are explained in the next section.

3. 2. Experimental Apparatus

An apparatus was constructed to create a uniform bubble and slug flow

and to measure the various parameters. A schematic outline of the apparatus

is shown in Fig. 5. It is a once through system designed to make all measure-

merts simultaneously.

The liquid reservoir is a pressurized container (a pressure cooker) which

holds a polyethylene container of liquid. The reservoir is pressurized by the

same gas supply which is used to supply gas to the test section. The connections

are i sufficiently interchangeable so that the liquid can be saturated with gas before

a test run. The liquid goes from the reservoir to the bubbler.

The bubbler is a device to bring the gas and liquid together in such a way

that uniform bubbles and slugs are formed. It consists of a conical section of
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plexiglas, through which the liquid is introduced, and a piece of stainless

steel hypodermic tubing, through which the gas is introduced. The conical

section tapers gradually from around a half inch diameter to the diameter

of the test section or slightly larger. The hypodermic tubing is placed along

the axis of the conical section and can be moved along the axis. The tubing

is approximately one sixteenth of an inch in diameter. The bubble and slug

lengths may be varied by varying the position of the hypodermic tubing and its

size. The gas and liquid flow rates are regulated with needle valves located

as close as possible to the bubbler, This is essential to obtaining a well re-

gulated flow. The bubbler was tried in both a vertical and horizontal position.

It worked both ways but it was found that at higher velocities there was great

difficulty in turning the bubbles back to the horizontal direction. Therefore,

the horizontal. position was judged to be the best all around position, although

some data was taken with a vertical orientation at low velocities.
I From tl~e bubbler the two phases flow through a calming section of at

leaA 500 diarhieters in length. This serves to both saturate the liquid and gas

with gas and fiquid respectively and to eliminate entrance effects on the test

section. The flow goes from the calming section directly into the test section.

The test section may be the same tube as the calming section or it may be

anotfher piece of tubing of about the same diameter which is connected to the

calming section with a special fitting. The division of the test section from

the calming section is a pressure tap. ' The pressure tap may go right into

"the tubing or may go into the special fitting. This special fitting is a piece

of pVexiglas with a hole in it of the test section diameter. The fitting allows

both the calmihg section and the test section to be lined up with it so that the

flo,'sees littl6 change in diameter.

The tubing for the test section and the calming section is precision bore
borosilicate glass tubing with a diameter tolerance of + 0.0003 inches. The

tubing in the test section was calibrated by measuring liquid flow rate through

it and measuring pressure drop. This gives an over-all average radius of the

tubing. In all but two of the cases, the test section diameters fell within the

tolerances when calibrated this way. The two cases where they did not were

not sufficiently far off to cause any problems. The calibrated radii were used

in calculations.
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From the test section the flow goes to a gas liquid separator. From

the separator the gas and liquid go to separate metering systems. Both

metering systems are capillary tubing laminar flow meters.

Four gas metering tubes are connected through a manifold to the gas

liquid separator. They are ordinary capillary tubing of the order of one half

to one millimeter in diameter and one meter in length. The different tube

sizes and possible combinations of tubes allow a considerable range of flows.

The pressure drop for the tubes is measured with a manometer also connected

to the manifold. The connecting tubes and the manifold are of sufficient dia-

meter so that very little pressure drop occurs in them. The tubes are suffic-

iently long and the velocities sufficiently low so that entrance effects in the

tubes are negligible. The maximum pressure drop allowed through the tubes

is about 20 centimeters of water. This keeps the compressible effects small.

For isothermal flow in the tubes the compressibility is less than two per cent

with a pressure drop of 20 centimeters of water. This small amount of com-

pressibility, however, is accounted for by taking the measured flow rate to be

the volume flow rate at the average pressure of the tube entrance and exit

(atmospheric). The temperature of the gas is taken to be the temperature of

the liquid. This is usually within one degree, Centrigrade of ambient tem-

perature in the experiments, so it should be valid.

The tubes were calibrated with air saturated with water vapor. The

viscosity of the saturated air was calculated from the formula of Wilke18

for a binary mixture. This formula gives a viscosity for saturated air of

aboutt two per cent less than the viscosity of dry air. Then, since the formula

should give only an approximate answer, the calibration was checked with

water in two tubes. This showed that the viscosity as determined by the

formula of Wilke gives about the same calibration for the tubes as does water.

The calibrations with air saturated with water were then accepted as true.

Then each possible combination of liquid vapor and gas was checked in the

tube'. The viscosity of each mixture was determined at saturation conditions.

It w is found that mixtures of nitrogen and heavy hydrocarbon vapors (heptane,

octane) have a much greater decrease in viscosity than air does with water.

The order of magnitude is properly predicted by the formula of Wilke, but

for flow measurement purposesi it was considered necessary to measure

the viscosity of the mixtures at each temperature where it was used.
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This technique of measuring viscosity by measuring the flow rate and

pressure drop should give a value of viscosity which when used in the reverse

procedure (from pressure drop and viscosity calculate flow rate), should give

a result as accurate as the initial flow rate measuring method. The original

flow measuring method, or the calibration technique, should be accurate to

about two per cent.

This measured gas flow rate is unfortunately not necessarily the value of

Q in the test section. A small but finite amount of compressibility must be

taken into account in the test section. This is done by assuming that the average

gas flow rate in the test section is the flow rate if the gas were at a pressure

which is the average of the inlet and outlet pressure. Assuming that this is

isothermal flow, we can say:

-2 - (42)

Vl P

where 1 represents conditions at the average pressure (as determined above)

in the test seetion and 2 represents conditions at the average pressure in the

meter tube.. Now the ratio (v,/vl) should also be equal to the ratio of gas

volume flow rates, (Qgz/Qgl). Therefore, we can write:

Qgz P 1 (43)
Qg 1 P2

Qg2 is measured and so are p1 and p.. Therefore, we can calculate Qg"1

In this case ohly Qgl and Qgz are not the instantaneous flow rates as given

elsewhere, but are the average flow rates at 1 and Z.

Some oljection might be raised at this point because all analyses were

made for incompressible flow. The only defense for the actions here is that

some compressible effects are inevitable. In this case, they never go over

twen'ty per cent. The corrections, therefore, are never more than ten per

cent. In a case where the effects are this large, too large to ignore but still

not excessive, an averaging procedure for the flow rate appears to be a reason-

able way to handle it. It is known that somewhere in the tube, the results ob-

tamined are true.
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The liquid flow goes from the separator, past a thermometer then to

a manifold. From the manifold the liquid can be made to flow in one, two,

or three tubes. Each of these tubes is of a different size in diameter and

length. These tubes each have a manometer system to measure pressure

drop across them. Entrance effects are made negligible in these tubes by

having long calming sections or low flow velocities. Care is always taken

to assure laminar flow in these tubes.

As in the case of gas tubes, these tubes were calibrated for each liquid.

These calibrations showed that the viscosities and densities of the liquids tested

were not quite those reported in the literature. The differences were con-

sidered big enough to take into account for flow measuring purposes but not

enough for other uses.

The ac ciuracy of the liquid metering system is not as great as that for

the gas metering system. The reason for this is that the liquid viscosities

in general are much more sensitive to temperature than are gas viscosities.

The worst offender is water. At 25 C its viscosity changes Z. 5 per cent per

degree C. The liquid temperature is measured just ahead of the manifold to

+ 0. 10 C with a thermometer. The ambient temperature is measured to this

accuracy also. As long as there is a difference between liquid and ambient

temperature not much greater than 1 0 C, there should be an error due to

temperature of less than Z.-5 per cent. This is true in most cases in the

experiments and the worst case is where the difference is about 1. 5 C. In

addition to this error, there is still the possible error in calibration flow

measurement'of about one per cent. Thus the total error can be in the

order of three or four per cent.

These iwo flow meters were used in most of the experiments. In

sortie of the e.rly experiments, the flow was collected and timed. The gas

was collected by displacement of liquid in a volumetric burette and the liquid

was collected in a graduated cylinder. Also in some of the low liquid flow

rate experiments the liquid was collected and timed while the gas was metered

through the gas tubes. These techniques of measuring the flow give as good

or V~etter answers than the flow meter tubes, for they are the same techniques

used to calibrate the meter tubes.
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The pressure at the entrance to the test section is measured by a

manometer leading from the tube at that point. For low pressure drop only

one leg of the manometer is used. For high pressure drops three legs are

used. The second two legs are separated from the first leg with a column

of air. The first leg is, of course, always filled with the test fluid. The

second and third legs are filled with that or some other suitable fluid. The

pressure at the end of the test section is obtained from the manometer on the

separator. It is the same manometer used to measure pressure drop for gas

flow.

The bubble and slug lengths are measured with a Polaroid camera and

a strobe light. The flow is photographed and the bubble and slug lengths are

measured from a meter stick which is located next to the test section. Sample

photographs of slug flow are shown in Fig. 6. By measuring the over-all length

of a number of bubbles and slugs, one can obtain a fairly accurate (about + Z per

cent) value of the average bubble plus slug length. The bubble frequency is mea-

sured with a strobotac.

The camera also allows a good visual study and record of the flow regime.

It shows the type of flow quite well.

3. 3. Experimental Procedure

A standard procedure was adopted for taking experimental data. Small

deviations were occasionally made from this procedure but no great deviations

were found in the results.

The liquid reservoir is saturated with the gas by bubbling gas into the

reservoir through the liquid outlet line. This is done at atmospheric pressure.

After the liquid is saturated with gas, the connections are switched to that

shown on Fig. 5. Care is taken to assure that the gas pressurizing the reser-

voir remains essentially pure while switching connections.

The reservoir is then pressurized to some pressure between two and ten

psig. The liquid valve on the bubbler is then opened and all the liquid meter

tubes and manometers are filled. The liquid meter tubes are then closed off.

All valves on the gas metering system are closed also at this time and the test

section manometer is filled with liquid to a level above the expected pressure

drop. The test section manometer is then closed off. A preselected bubble

and slug length and bubble frequency are set to flow through the bubbler,and the
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proper meter tubes are opened. When equilibrium is reached in flow rates,

bubble and slug length, and bubble frequency, the test section manometer is

opened. The overcharging of the manometer assures that no gas flows into

the manometer. When this manometer comes to equilibrium,all the data is

taken.
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4. EXPERIMENTAL, RESULTS

4. 1. Discussion of Experiments

The experiments described in Chapter 3 were run with various sized tubes

and various liquids and gases. The experiments were run at ambient temperature

which ranged from 200C to 300C. The bulk of the experiments were run at close

to 250C. A brief summary of the various combinations of liquids and gases used

is given below in Table A. Normal heptane and normal octane were used in the

experiments. References to heptane and octane in the text refer to these fluids.

TABLE A

Number Liquid Gas Tube Radius (nominal)

1 Water Air 0. 0514 cm

2 Water Nitrogen 0. 0514 cm

3 Water Air 0. 0795 cm

4 Water Nitrogen 0. 0795 cm

5 N-Heptane Nitrogen 0. 0514 cm

6 N-Heptane Nitrogen 0. 0795 cm

7 T-Heptane Helium 0. 0514 cm

8 N-Octane Nitrogen 0. 0514 cm

The bulk of the data was taken with the first six of the possible com-

binations. The reason for this is that heptane and water have the same value

of X. for a given radius tube. This is in spite of the fact that p,, [pL and a- are

each different in the two liquids. This made the data plotting much simpler.

For a given sized tube the data for the two liquids could be plotted versus NRe

with only one parameter, (fS/7rro3).

By using two different sized tubes, X was varied to a certain extent.

After the correlations were well established the last two systems were tested.

Helium was tested with heptane to test the effect of gas density on one flow

regime boundary. The octane-nitrogen system was tested to show the effect

of varying X further.
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These systems had different values of (ýL, /ý )and fl . The value of

(4L/bg) was varied between approximately Z5 and 50. The value of P. was

kept small enough so that with zero velocity the bubbles were distorted very

little. For this to occur, al must be small compared to one. At was kept

smaller than 0. 22.

The results of the experiments are first discussed under the assumption
that ([k,/ýLg9) and A' do not affect the flow. After that the effects of (ýL/IAL)

and S1 are discussed.

4.2. Pressure Drop
The analysis of Chapter 2 states that at low N re we should be able to state

the pressure drop per bubble and slug as:

AP 8 US +K (44)

SUB r r 3

0
r

0

where K represents some end effects. These end effects may be functions of

X and Nle, but not of (V/1Tro 3). Initially, the data for different values of X

were plotted on separate graphs with the coordinates (AP UB/ro) and BS

N Re was indicated as a parameter on these plots. It was found that at 0<NRe < 270

the plots for the different values of X fell on the same straight line. Thus the

data were allplotted on one graph. This is shown on Fig. 7. The values of X

and the other experimental conditions for Fig. 7 as well as the rest of the data

are shown in Appendix D. A line with a slope equal to 8 and intersecting the

( AP/ILIUB/ro) axis at 45 fits the data quite well. This means that the equation

(44) is reasonably valid and the end effect is a constant. Equation (44) can then

be written:

- + 45 (45)

U 3
~IB WTh
r

This equation is valid in the range of NRe' O<NRe< 270. This range of NIRe

is called Region I.

It appeared that for a certain range of N Re> 270 the form of equation (44)

should still be valid. The end effect term would have to be changed, of course.
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The end effect was experimentally de-termined us-ing the different values of '

as, before and varying NIRe* This value, of. K was plotted on separate graphs

for each value of X as a function- of NRe:. Once again, these plots showed no

dependence on X., The data showe,&-th-at K. coul•-be approximated as;:

K = 0. 163 f (4ý6)

for a. range of Ne, 27 0 <NR < 6-31.- This range. of NIe is called Region II.

In Re~gion II the equation (44) take-s: the. form:

AP _ 8VspI UB r
AP _ 8"VS + 0. 163 o (47)

r
0

By multiplying both sides of equation, (47) by (p1-,UBf/ro), one would see that

the end effect term is an inertial p~res~sure drop. The data showing the validity

of equation (47) is shown on Figs.. 8., 9', and 10. As can be seen on these

figures-, equation (47) is reasonably valid.

At a value of NIRe of 63.0 the value of K as- a function of NIRe suddenly dt-ops

and then rises again gradually. The data begins to spread as a function of

(1fJ/orr 3 ). Thus the value of K bec:omes a function of (If, /rr 3), and its basic

meaning is destroyed-or at least as, a to-ol it bec-omes of little worth. Therefore,

the range of NRe• 630. must be aorrelalted by more complex means. This rarrge

of N Re is- called Region III. It was exp7ected that. since X did not affect the pres-

sure drop- correlations in the lower NRe, regions-, it would not affect pressure

drop in Region III. Thus (API±/. UB/!r0o was. p-lo.tted as a function of N with

(If o) as a parameter.. The. data-.and. a-l the experimental conditions for

Region III are shown plotted on Fig... 11. It cam be seen by inspection that the

data does appear- independent ofAk in.Region.IIIa.lso. As before, a simple

equation can b.e written for the pres-sure- drop in this region. It is:

AP = 80 + o. 02 + 0%•,•I S B o (48)
ýLlB 7ro3

r 0
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However, this equation cannot be as well explained physically as equations (45)

and (47) were explained in Chapter 2. For this reason, it appears that it should

not be used outside the range of variables tested. The correlations may change

in character completely outside the tested range whereas it is reasonable that

in Regions I and II the correlations should be valid outside the range of test

variable s.

Region III does not necessarily extend to infinite NRe' There is a very

definite boundary on N Re* As velocities go up, the tails of the bubbles begin

to break up into small bubbles. This is a flow regime transition. Generally,

in the experiments here all the transitions occurred at a value of N Re of

around 2000.

This is not the criterion of transition.,but it explains why all the data cuts

off at around that NIRe' The data shown is all in slug flow.

The correlations for pressure drop are all obtained from data for pure

liquid systems. That is, the liquids in the systems are pure compounds. It

was found that systems which are not pure have entirely different results for

pressure drop.

The question of importance is what is a pure compound. A pure compound

is defined here as one which has the viscosity, density and surface tension of a

pure compound as reported in the literature. Of these the greatest importance

is the surface tension. It is the property most easily disturbed by impurities,

and of common liquids water is the liquid most easily disturbed.

It was found that when new Tygon tubing (cleaned with detergent and rinsed)

was used in the liquid inlet lines, the surface tension of the water decreased by

about nine per cent. This decrease affected the pressure drop quite strongly

as can be seen in Fig. 12 for data taken in Region I.

This result is surprising since everywhere else the pressure drop is

independent of surface tension (as shown by independence from X). It is attri-

buted to the nature of surface tension when it is decreased by a small amount

of contaminant. When water is contaminated with small amounts of alcohol, it

is known that the surface tension is a function of the time which a surface has

existed. It is likely that this contaminant, though its exact nature was not in-

vestigated, is of the same nature. If this is so, the surface near the nose of
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a bubble essentially sees a higher surf.ace tension than the surface at the

tail. This would cause shear stre-sses in the liquid film and some pressure

drop.

Because of the infinite number of possible contaminants and degrees ,of

contamination this problem was investigated no further. Care was taken after

this phenomenon became known to measure a sufficient number of surface tensions

to insure pure liquids.

The effect of gas viscosity on the pressure drop was corrected for by

using equation (35). This equation accounts for gas viscosity and bubble length

in one step. The corrections were made only on Figs. 7 through 11. The

corrections were of such a small nature that it was not felt to be worthwhile

to make them on Fig. 12. The results of that figure would not be changed by

such a correction. Further discussions and justification of this correction

are given in Sec. 4. 4 of this chapter.

Bubble lengths varied quite strongly in the data for Regions I and II.

Little systematic work was performed in varying bubble length but a random

distribution did occur. As the .data shows, no differences were found due to

bubble length once the minor effects of gas viscosity had been accounted for.

4. 3. Velocity Ratio

The velocity ratio (US/UB) should be a function of NlRe' X, and possibly,

(V'/wro 3)_ according to the analysis of Chapter 2. It turns out, however, that

a different parameter is more suitable for plotting velocity ratio. This para-

meter is obtained by combining NIRe and X. It is:

I- B (49)

There is no loss of generality in plotting data as a function of 9and X as

opposed to NRe and X.

The systems with X equal to approximately 2. 1 x 10- 5, which include

water-air, water-nitrogen, heptane-nitrogen, and heptane-helium in a tube

of 0. 0514 centimeters nominal radius, have their velocity ratio data plotted

on Fig. 13. The plot is of (Us/UB) versus TI. The value of (If,/rrr3) should

be a parameter on this plot, but the data all appear to fall on one line without
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inclusion of this parameter. The scatter which is present can be explained

as experimental scatter for the most part. In one region, however, the

scatter does appear to be systematic with (%'//rr 0 ). That is the area where

the data breaks away from a straight line at I= 19 x 10-3 to the point where it

reaches a constant value at T = 51 x 10-3. In this region the data have a sys-

tematic increase in (Us/UB) with decreasing (V½/71rr 3 ). The differences are

not so large that the exact nature of the variation can be determined. In fact,

the data appear to have little greater spread than the random scatter at higher

and lower T. Since the spread is so small, it is not considered of great

importance, and the data in the region of systematic variation is approximated

with one line as it is elsewhere.

The data with X equal to approximately 1. 5 x 10- 5, which again include

water-air, water-nitrogen and heptane-nitrogen systems, but in a larger dia-

meter tube, are shown in Fig. 14, The same arguments apply to Fig. 14 as

applied to Fig. 13 except that the region where (U S/UB) is systematically

dependent on (Vs/ur3 ) is shifted to the left.

The data for an octane-nitrogen system with X equal to approximately

3.4 x 10-5 in a tube of 0. 0514 centimeter radius is shown on Fig. 15. As

can be seen, this data takes the same general shape as the data on Figs. 13

and 14. The region where there is a systematic variation with (VS/7r 0
3 ) is

also present.

The best fit lines of the data of Figs. 13, 14, and 15 are shown together

on Fig. 16. In addition, the empirical relation for (US/UTB) obtained by Fair-

brother and Stubbs 6 is shown. Their relation, though not stated in these terms,

corresponds to a very high value of X. Thus we have a limiting value of all the

curves. Another plot, taken from Fig. 16, is shown on Fig. 17. It is a some-

what more useful relation at times. It is a plot of (US/U B) versus (IUs/a-).

At low Tall the curves except the high X curve appear linear with T.

This region corresponds roughly to Regions I and II of the pressure drop

correlations. There is then a general breaking away from the linear relations,

and eventually the curves achieve a minimum and return to approximately 0. 84.

It should be of interest to point out that though some of the data shown on Figs.

13, 14, and 15 are in the bubbly slug flow regime as described in the pressure

drop section, the value of (US/UB) remains at the constant value.
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The most pertinent questions. about- the behavior of these curves are:

why do they go through a. minimum.,, and why do they approach a constant

value. The latte.r question is discuassed. first, and from that a possible

explanation of the former is given,

Nicklin et all~ound similar, resulxts when working with slug, flow in

larger vertical tubes. They found that they could write the equation for

bubble velocity as:

U rus + G.-35.fgr- (50)

where r is a constant equal to 1. 2 when the Reynolds Number based on liquid

properties, US and pipe diameter is greater than 8,000. The second term on

the right is the Taylor bubble rise ve1?ocity. That is the velocity which a bubble

draining a tube of liquid covered at the top would attain if the liquid were in

potential flow.

Nicklin and his associates explained the value of r equal to 1. 2 very

simply. Their explanation is that the bbbleý travels at the Taylor bubble

rise velocity plus the velocity that the bubble sees at the nose of the bubble.

US is the average veocity in a slug,. but the velocity at the centerline in a

turbulent profile is approximately i. 21 US4 There the bubble nose would see

a velocity of 1. 2 Us.

Iri the absence of a gravity fie]d. this explanation would say that the

bubble would travel at slug centerline' velocity or.:

U S, 1
- - - 0.83 (51)
11 1.2

In the case of a horizontal capillary tube,, there should be no, gravity

effects on the bubble ve~o.city., If the explanation that the. bubbles then try to

flow at, slug centerline velocity- is true,: then the velocity ratio should be as

in equation (51), provided that the, sLugs are in turbulent flow.,
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The values of NpRe at which (TS/UB) becomes a constant is not the same

for all the curves. They are, however, always greater than 1700. This

corresponds to a Reynolds Number as defined by Nicklin of about 2900. This

Reynolds Number is rather borderline to say that the slug is in turbulent flow,

but it is quite possible that it is. The constant value of (US/UB) of 0. 84 com-

pares favorably with Nicklin. These facts indicate that it is quite likely that

the bubbles are traveling at centerline velocity and the slug is in turbulent

flow. This is especially so since at greatly increased T! where the Reynolds

Number is large enough to insure turbulent flow, the value of (US/UB) is

still around 0. 84 in all the data.

The tendency of the bubble to travel at slug centerline velocity might

be expected to explain the total behavior of the (US/UB) curves. At low velo-

cities the slug is in laminar flow so the slug centerline velocity is twice the

average slug velocity. If the argument in turbulent flow were valid in laminar

flow, the value of (US/IDB) would then be 0. 5 for low velocities. This is not so

by experiment; therefore, there must be more to the explanation. Bretherton4

found that he could predict the value of (tJs/UB) at very low values of T by con-

sidering only the flow in the region where the film tapers to a constant thickness.

Only viscous and surface tension forces were considered in his argument. His

solution is not too dissimilar from the empirical Fairbrother-Stubbs relation.

From his results one might argue that the viscous and surface tension forces

tend to decrease (UJS/UB) with increasing velocity and that they tend to act

near the film. One can hypothesize that (Us/UB) is controlled by these forces

near the film at low velocities and is controlled by the inertial forces near the

centerline at high velocities. This would explain the shape of the curves. .As

velocity is increased inertial forces tend to cause (Us/UB) to break away from

a curve where it is controlled by viscbus forces. Eventually the inertial forces

get large enough to cause (Us/UB) to be controlled entirely by the centerline

velocity. This is where (UTs/UB) achieves a value of 0.84.

The shapes of the curves indicate that one can interpolate for intermediate

values of X. The limiting case for X very large can be considered as the Fair-

brother-Stubbs curve. As X increases beyond 3.4 x 10 5, the curves will get

more and more like the very large X curve but should still break away and re-

turn to 0. 84. As X increases the minimum point for (U S/UB) should occur at

higher values of , . This interpretation is gained from the general shape of
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the experimental curves and from the explanation for the shape of the curves.

On the other extreme, as ) approaches -zero, it would appear that the (U S/UB)

curve does not necessarily go to a minimum but simply comes down to a value

of 0. 84. A limit might be that (ULS/UB) is everywhere equal to 0. 84.

4. 4. Effects of Gas Viscosity and Gravity

One effect of gas viscosity has already been mentioned in the pressure

drop discussion. The data for pressure drop have incorporated in them a

correction for gas viscosity. This correction subtracts out the pressure drop

within a bubble. The correction is based on equation (35) for a cylindrical

bubble with a laminar flow velocity profile. This correction should be rea-

sonably valid when the viscosity ratio is large and the film thin so that the

film velocity is low and the bubble is somewhat symmetrical. Further, it

should only be used as a small correction term for the pressure drop over

one bubble and slug. The minimum -value of (L/Pg) of about 25 and the min-

imum value of (Us/UB) of about 0.77 would appear to meet the requirements

for viscosity ratio and film thickness. Equation (35) gives corrections of the

order of less than five per cent of the total pressure drop, which should satisfy

the requirement for a small correction. It is concluded that this correction

should correctly take care of the pressure drop in a bubble and eliminate any

consideration of it in correlating pressure drop.

The other effects of gravity and gas viscosity on the data for pressure

drop and velocity ratio can be studied with the use of three parameters, (ý/AL),

, and - . Only the first two should be required to study velocity ratio,

but all three are required for pressure drop. These effects are best studied

from the data of Figs. 13 and 14.

On each of these figures, X is a constant, but the values of £t and

(ý1j/ýlg) are not, however. The data on each figure fall on one line regardless

of whether (fL /+g) and It are different. It appears that (Us/U ) is free of

gas viscosity and gravitational effects for this data. It is possible, of course,

that the effects of ( 9 /Pg) just cancel the effects of FA , but this appears unlikely

for two curves over large values of T .

The freedom from gravitational effects indicates that the bubbles are

centered, at least at 'the nose of a bubble. Behind the nose of a bub'ble the

liquid drains as a function of r.. The values of r for the data of Figs. 1.3 and
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14 ranged from a value where it would be expected that a bubble is still

symmetric at the tail to a value where more than twice enough time for a

bubble to rise to the top had been allowed. This effect would not be ex-

pected to be noticed in the velocity ratio because that should be determined

near the nose~even with the possible side effects of gravity and gas viscosity.

It may show up in the pressure drop, however. As was seen in the pressure

drop discussion, all of the pressure drop data, some of which was taken

simultaneously with the data corresponding to that on Figs. 13 and 14, is well

correlated without consideration of T . The values of f., (. /AL ), and even
1e g

X are not required for that either. It is concluded that other than the minor

correction for bubble pressure drop, all the pressure drop data is independent

of gravity and gas viscosity.

The symmetry of the bubble near the nose should also mean that the
film thickness near the nose can be calculated from equations (C5) and (32).

The independence of (Us/UB) from gas viscosity means that film thickness

calculated from equations (C5) and (32) is not free of gas viscosity. The differ-

ence between (U S/UB) and (I - m) is as high as about 10 per cent for the data

of Figs. 13 and 14. The lack of symmetry which may exist near the tail of the
bubble prohibits the calculation of film thickness there. Nevertheless, the

value of (I - m) should not have been much different near the tail because the
gas viscosity should not have caused much flow in the liquid film.

Until now it has been shown that all the pressure drop data and the

velocity ratio data for Figs. 13 and 14 are free of gravitational and gas vis-

cosity effects. In addition, the noses of the bubbles in the data for Figs. 13

and 14 are probably symmetrical whereas the tails may not be. The next set

of data to be discussed is the data for Fig. 15.

The data for Fig. 15 can also be argued to be free of gravitational and
gas viscosity effects. First of all, the pressure drop data for it correlates

with the other pressure drops where gravitational and gas viscosity effects
were ignored. Secondly, A is equal to 0.085, which is less than the value of

,P. for some of the data of Figs. 13 and 14. Lastly, the curve of (US/UB) ap-

pears to be a reasonable interpolation between the curves for X = 2. 1 x 10-5

from Fig. 14 and X very large. The X very large curve has been shown to be

symmetrical by others, and is concluded to 7.e free of gravitational effects.

It should be free of gas viscosity effects Also.
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The conclusions are that the data 'plotted on Figs. 7 through 15 are free
of gravitational and gas viscosity effects although some of the parameters of

the flow, such as film thickness,, may not be.

The above description is taken to be a description of the type of hori-
zontal two phase slug flow studied here. Rather than the flow model analyzed

in Secs. 2. 1 through 2. 7 of Chapter 2 which is entirely free of gravity and gas
viscosity, a flow is taken for which only the pressure drop and velocity ratio
are necessarily free of gravitational effects. The density, because it comes

from continuity and velocity ratios, is also free of gravity and gas viscosity.

The film thickness unfortunately is not. The film just behind the nose is

assumed to be symmetrical because of the independence of (Us/UB) from
gravity. Therefore, just behind the nose of the bubble the film thickness should
be calculatable from equations (C5) or (31) and (32). If the value of T is small

compared to complete bubble rise time, the drainage should not be great and

the film thickness near the tail should be much the same as near the nose.

Otherwise the film thickness cannot be calculated because the analysis of

Appendix A for the bubble rise is only valid for zero gas viscosity and gives

only a criterion for the order of magnitude of the rise time. The only thing which

may be calculated to some extent is (I - m). It should notbe too different from
the value at the nose because of the low velocities in the film in most cases..

It should be pointed out that the flow regime description includes a zero
gravity field. That is, the flow need not be entirely free of gravity, but it may

be.

For the data to be of value, the conditions under which the data can be
applied must be specified. This is, of course, a part of the flow regime speci-

fication. Clearly, it must be possible to make At somewhat larger than the

maximum value tested and (LAL/' g) somewhat smaller than the minimum values
tested and still have the same results. The maximum and minimum values of

A and (iL, /A ) will of course depend on the other parameters also. Since a
complete parametric study would be impossible, it is assumed that the maxi-

mum value of A and the minimum value of (ý{, /p. ) tested here can be used as
limits. Therefore, as one boundary we take ft < 0. Z2 and as another,

(111bLg) > 25. The data was, of course, all taken for(p• /p ) >> 1, and this

criterion must apply also.
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4. 5. Flow Regime

The previous section described the geometry of a horizontal capillary

slug flow in detail. The flow is assumed to be possible where:

i >> 1 (52)
Pg

2> 5 (53)
JJg

0- <0.22 (54)

Any horizontal slug flow which meets these requirements is considered to be

of the type of horizontal capillary slug flow discussed here. The characteristics

of this flow are that the effects of gas viscosity and density and of gravity can be

ignored for velocity ratio and pressure drop. The film thickness anywhere ex-

cept near the nose of the bubble is not determined for this regime except in

certain circumstances. This is because the nose of the bubble is concentric,

but the rest of the bubble need not be.

When the conditions (52), (53), and (54) are met, there are still several

types of flow which may exist in a tube. These are discussed next.

The experiments showed the existence of two slug flow boundaries. One

is predicted by analysis with some experimentally determined parameters, and

the other is determined completely empirically. The first is a transition to an

annular flow. The second is a transition to a flow where the tails of the bubbles

begin to break up into many small bubbles. This is called a bubbly slug flow.

They are discussed in this order.

The slug flow regime should be bounded in the region of very low liquid

to gas flow ratios by a transition to annular flow. This transition is the point

where bubbles get so long and the slugs so short or few that the slugs carry

very little liquid. To demonstrate how this transition comes about, one can

look at it from two viewpoints. One can look at an annular flow and see what

is required to make it into a slug flow or one can look at a slug flow and see

what is required to make it into an annular flow. Since we are interested here
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in the transition to an annular flow, we will take the latter viewpoint.

Consider a steady, incompressible, slug flow in a tube at some arbitrary

QI and Q with uniform bubble and slug lengths and no gravitational effects. By

steady it is meant that US and UJB are constant in time. Now let the gas flow be

increased and the liquid flow be decreased so that the sum of the two remain

constant. That is, US remains constant. This causes the bubble to slug length

ratio to increase. If the sum of the bubble and slug length are kept at some

reasonably small value, the bubbles eventually begin to touch each other, then

coalesce into longer bubbles. At the point where the slugs disappear, there

should be no liquid flow other than that which occurs in the liquid film due to

shear forces. This can be called the transition to annular flow.

At the transition point the film thickness is still related to a bubble vel-

ocity and a slug velocity. This relation is given by equation (C5). The gas-

liquid flow ratio should be given by the equation for annular flow, equation (B 14).

If (Qg/9,) becomes greater than the value which it has at the transition

point, the film thickness will decrease as could be seen by inspection of equation

(B 14). It can be shown that if for any reason a slug should occur in a flow where

the film is thinner than at transition, the slug would disappear after moving

some distance down the tube.

Annular flow may not occur when (Q /QI) is less than the value at trans-

ition. If it did, the film would have to be thicker than it is at the transition des-

cribed above. If such a flow should somehow occur and a slug should somehow

be formed in it, the slug would leave a film at the thickness of transition and

the slug would grow in length. It has been shown by theory and experimentIZ

that in an annular film such slug formation does occur. Thus an annular flow

with (Qg/Q less than at transition would degenerate to a slug flow.

The arguments for a boundary between slug and annular flow have been

made without consideration of gravity. As might be expected from the analysis

for gravitational effects, the long bubbles which become annular flow should

drain considerably to form a stratified flow. This drainage is ignored in the

analysis and is shown not to change (Qg/QI) at the boundary to a great degree

in the experimental results.
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The boundary is sufficiently well specified to calculate its location.

As is indicated from the arguments for a transition, specification of (Qg/Q 1 )
and the inlet conditions to the tube might be a better way to describe the

geometry of the flow than bubble and slug length. In addition to these speci-

fications, three other parameters are required in the absence of gravity to

completely specify a flow. These are taken here to be (fL US/0/), (iýL /Lg), and

X. These five parameters should describe any flow within the limitations made

on gravity. One of these appears to be unimportant for this flow boundary. That

is the inlet condition. Therefore, we need specify only four parameters to spec-

ify the boundary. It is understood, of course, that from previous arguments

(0'/11g) should be much greater than one.

As indicated above, equations (C5) and (B14) can be used to calculate the

location of the transition. They are repeated here as:

-( 1 16
+ (-=) (z + M))

m P'g

U (7
One further relationship which is needed is the experimental relationship for
(Us/U B). It can be stated in functional form as:

-u us, , (57)( ~. /
UB

Equations (55), (56), and (57) are three equations in six unknowns. If we specify

two of the parameters, solutions of the equations can be plotted on two dimensions.

It is convenient to specify the parameters X and (tI /A g). Then we can plot

(jL. Us/cr) versus (1/1 + Qg/Q,) or e quivalently(q /Qg + Qj) for the solution to
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(55), (56), and (57). This has been done for X equal to 1.5 x 10-5 and

(ILj/lg) equal to 25 and 50. The solution is plotted on Figs. 18 and 19.

Experiments were performed to test the validity of this flow boundary.

The conditions were those which are shown inFigs. 18 and 19. Water and

nitrogen and heptane and nitrogen were tested in tubes of 0. 0795 centimeters

nominal radius. The flow was observed visually and with a camera. Slug

flow was said to exist if a slug would occasionally pass through. If not, the

flow was considered annular. The plhotographs showed that when slugs became

very far apart and when annular flow existed the effects of gravity were quite

strong. The annular flow became somewhat of-a stratified flow. Also small

waves occurred on the surface of the film. Even with these disturbances the

data for annular flow and slug flow fell approximately as would be expected from

the analysis. The data for these experiments are shown on Figs. 18 and 19.

The scatter of the data is not bad when one considers all the side effects which

occurred. These experimental results lead to the conclusion that an annular

or stratified annular flow boundary does exist to slug flow and it can be reasonably

well predicted.

The other boundary to slug flow appears to be a break up of the tails of

the bubbles. Experiments show that the tails of the bubbles in slug flow begin

to break up at some critical bubble velocity. This flow with small bubbles at

the tails of the larger bubbles is called bubbly slug flow. When the velocity is

increased much further than the ciitical velocity, the tiny bubbles fill the slug

and begin to deform the large bubbles behind them. This eventually degenerates

into a bubbly or frothy flow when the velocity is increased to a sufficient degree.

The order of magnitude where frothy or bubbly flow occurs is around twice the

critical velocity. The primary concern here is the transition to a bubbly slug

flow. The others are important but they constitute another problem.

The break up of a slug flow to bubbly slug flow appears to be a phenomenon

where the surface tension forces at the tail of a bubble are overcome by a com-

bination of inertia forces and viscous 'forces. For this reason it was thought

possible to correlate the data for transition with only three parameters at the

maximum. These parameters should include the three forces involved and the

geometry of a slug. The bubble length, gas viscosity and gravity were thought

to be unimportant. The parameters chosen were a Weber Number, NRe , and

(rs/Wro30). The Weber Number is defined as:
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NWeb - (58)

0-

A set of experiments was carried out to determine the boundary. The

experimental procedure was just as for slug flow except that the photographs

of the bubbles were taken from a closer position. The break up to bubbly

slug flow was determined from the photographs. A photograph of a bubbly

slug flow is shown on Fig. 6. The experimental data are indicated on Fig.

20.

The plot of Fig. 20 does not have ( 's/1Tr 0
3 ) as a parameter as would

be indicated from the previous discussions. In one system, Test 71, the

effect of (tr/irro3 ) on the boundary was tested. It was found that there is
S o 3

very little effect. Therefore the plot was made without taking (Us/Trro ) intoS i0

account.

The data indicates that the plot takes the proper parameters into account.

The data for water and nitrogen and heptane and nitrogen in a 0. 0795 centimeter

nominal radius tube, which have quite different values of At and (, /L g), show

little dependence on them for transition. The bubble length was randomly

varied in these experiments and again appeared to have little significance.

According to at least one theory, the density of the gas should be a

factor in the break up to bubbly or frothy flow. Since the bubbly slug flow

appears to be a transition between slug and bubbly or frothy flow, it might

be suspected that gas density is important. For this reason, a test, Test 72,

was run to determine the effects of a much lighter gas (helium). The transi-

tion occurred in much the same place as for the data with a heavier gas (nitrogen).

This verified that it is correct to ignore gas density in determining the bubbly

slug flow boundary.

The boundary of Fig. 20 is not a sharp one. This is not too surprising

since the transition might be expected to go according to a stability criterion.

It definitely does not appear to be a pure Weber Number effect. A line that

passes through the middle of the transition region is one which is given by:

(NlRe) x (NWeb) = 2. 8 x 10+5 (59)

- 42 -



Equation (59) should be used only in the range of X shown on Fig. 20.

There is no reason to believe that it applies outside of that range.

Equation (56) represents a flow regime boundary. However, it is not

in a very convenient form. It would be preferable if it were given in terms

of the parameters for the annular flow boundary; then they could all be placed

on one flow map. This is easily done,. for we can say for the boundary:

•3

(NRe) x (N Web) 3 = 2. 8 x 10+5 (60)

Thus given a value of X, we can, find af for transition and therefore (US/UB)

and (}igUS/o-). There is no dependence on(Q%/Qg + Q )for this transition. A

plot of this boundary for X = 1. 5 x 10- is given on Fig. Z1 along with the

annular flow boundary where (LA/Lg) 50.

On Fig. Z1 the different regimes of flow are indicated. The boundary

between annular and bubbly slug flow should be about as shown but its upper

limit is unknown. This figure indicates only the possibility of slug flow. The

actual existence of slug flow can only be determined from the inlet conditions.

A flow regime map such as Fig. 21 completely specifies the boundaries for a

type of horizontal capillary slug flow when used in conjunction with (5Z), (53)

and (54).

4. 6. Application of Results

In a typical two phase flow problem the following information is available:

1. Magnitude of gravity fieldi g.

2. Orientation of tube from vertical, 0.

3. Tube size, r0 , L.
4. Flow rate of liquid and gas, QIand Qg.

5. Liquid and gas properties, p P• g g F, Ig and (r.

In this section it is shown what answers are available from this work to a

problem specified as above, and how those answers are obtained.

The first question to be answered is 'ývhether horizontal capillary slug

flow exists or not. If this question is not answered affirmatively, little else

can be gained from this work. The parameters to be calculated and the re-

quirements on some of them for horizontal capillary slug flow to be possible

are as follows:
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1. = 90°0

2. •½/I~g> 25

3. p I/p 1

4.S = p Igr.o2/(- < 0. 224. .fl.= 1 r 0 /-oz

5. X= [LZ/Po-r°

6. 111Us/'o

7. Q,/Q + Qg9

If the first four requirements are met, a flow regime map may be drawn from

the values of (2) and (5). The flow regime map is drawn as shown in Sec. 4, 5

of this chapter on a plot of parameters (6) and (7). Then if the values of (6)

and LLft.1 ... L the region ofslug flow on the flow map, horizontal capillary

slug flow may exist. Actual slug flow depends on inlet conditions, but for the

sake of discussion it is assumed that under these conditions slug flow does

exist. The validity of the flow map depends to a large extent on the value of

X. If it is greatly different from the values tested here, the boundary is not

likely to be valid. The more sensitive boundary in this respect is the boundary

to bubbly slug flow.

If slug flow does exist, there are several properties of the flow which

can be calculated. The most accurate calculation which can be made is density.

The density may be calculated from (UTs/UB) and the flow rates Q, and Qg.

The value of (US/UB) is found from the value of (• US/o-) and Fig. 17. These

calculations for density are valid if Q, and Q are uniformly distributed in

time.

The pressure drop can be calculated if the distribution of bubble and slug

lengths is known. If this is not known, only an approximation can be made. To

see what the pressure drop can vary over, we examine the possible variations

in slug length. It can be shown that the ratio of the sum of all the bubble lengths

in a tube to the sum of all the slug lengths is approximately equal to the ratio of

gas to liquid flow rates, if the flow is somewhat uniform in time. This is the

same restriction as for the density. Now this means that for given flow rates

the sum of the slug lengths remains constant. The pressure drop correlations
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all have a term which is linear with (%V,/-ro3 ) r or equivalently (Ls/ro): This

part of the pressure drop is fixed for a given flow. The end effects of the

bubbles and other terms which are not, dependent on slug length all a-ct per slug.

Thus the fewer the bubbles and slug:s, the lower the total pressure drop. An

arbitrary minimum number of bubbles and slugs may be set at one bubble and

slug per tube length. This gives a minimum pressure drop. This is not as

useful as a maximum pressure drop but it can be considered as one limit.

An alternate procedure would be to experimentally correlate bubble and slug

lengths for a given process such as boiling or condensing.

The film thickness near the nosce of the bubble may be calculated near

the noses of the bubbles from equations. (31) or (C5) and (32). If the value of

another parameter -r is not too large as judged from Fig. A3, this should also

be the film thickness near the tail.

Even if T is large enough to cause a large amount of drainage, the value

of (1-m) as determined at the nose should still be about the same at the tail.
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4. 7. Comparison with Other Correlations

The work here allows one to predict the horizontal capillary slug flow

regime and to calculate pressure drop, density and film thickness under cer-

tain restrictions. Of these, pressure drop, density, and to some extent film

thickness can be compared with other correlations.

13
The pressure drop is compared to the work of Lockhart and Martinelli

The difference in approaches to the problem makes it difficult to compare, in

general, but Regions I and II of the pressure drop correlations can be compared

with some ease. The flow is assumed to be of uniform bubble and slug length

for the comparison.

Regions I and II fall within the Lockhart-Martinelli regime of viscous-

viscous flow. If the gas and the liquid were flowing in the tube independently,

the flow would be laminar. One method of using the Lockhart-Martinelli corre-

lations is to use the definition:

AP (,v )A (61)

where the (AP/A X/r ) is the pressure gradient for the liquid flowing alone.

The functioncivv is characteristic of viscous-viscous flow and in turn is corre-

lated as a function of another parameter X. For viscous-viscous flow, X is

defined as:

x -i(62)
Q p.Qg .,*g

The pressure drop in Region II is given by:

AP 8US + 0 B r°- =8- +0.1630 (63)

.2 B 7r3

r
0

where the pressure drop is over a length (LS + LB). The average pressure

gradient should be:
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-- + 0. 163 1B r 0
AP•:3 p.

AP TT 0 (64)

(LS+ LB) FL' UB LS+ LB

r 0 r 0r0

Let us compare the Lockhart-Martinelli pressure gradient with that of equation

(64) by using the ratio of the two. Gall this ratio Z.

I~ Avv A:
x

ro

zL (65)( 1 + 0.163 PIUB r 1° UB\

ir3 brl

LS + LB

r
0

Equation (65) can be simplified by use of the following relationships:

(AP 8 P QA (66)
Z_.x Wr3

1"or

for laminar flow.

vSB (67)
LS + LB

Equations (66) and (67) can be combined to get:

A,_ 8111 (JSUB (68)

Equation (68) can be substituted into equation (65) to get:

- 47-



zc%.vv
z :ýv (69)1 + 0.163 P1 UB (9

f.LI

3
irr

0

Equation (70) could have been written for Region I as:

2

Z=v (70)
+ 451+•

3
Trr

0

The results of equation (69) are shown on Fig. 22. The value of (p.I/ý±) is
set at 50 and (p UB ro/ ) is set at 450. Z is plotted versus --lfS/Iro) with

(Q1/Q ) as a parameter. The ratio of the two is never very much greater than

one. The ratio is one at fairly low values of -(V/Trro). Notice that the lower

value of (Q /Qg) crosses the value of one at a lower value of (IfJ,/orr 3 ). It is

reasonable that (U 3/irr0 ) is smaller for lower (Q /Qg).

The data and correlations for the Lockhart-Martinelli work are supposed

to apply to flows other than Slug flows. Yet if a reasonable approximation is

made for the surface tension of their liquids, their data fall in the region of

possible slug flow. It is quite likely that their flows were not true slug flows,

but were of many small bubbles. This would imply short slugs. Therefore,

the matching of the two correlations at low (ts/7r3 ) is reasonable.

The density can also be compared to the work of Lockhart and Martinelli.

Their parameter to measure density is the fraction of the total volume which is

gas. This is called Rg. It can be shown that Rg can be stated in terms of the

parameters used in the present work to be:
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USC
Rg = - (71)

UB (QL+ )
Qg9

This is quite different from the correlation of Lockhart and Martinelli. Their

correlation showed Rg to be a function of X only. X is a function of (QI/Q g)

and (LI/Ik9g) as shown before. If we assume a value of ([ /i g), say 50, we can

plot Rg from equation (72) versus X., (US/UB) must be a parameter on this

plot. This plot is shown on Fig. 23 with a value of (Us/UB) of 1. 0 and 0. 5.

The Lockhart-Martinelli correlation for Rg is also shown on this figure. The

comparison is reasonably good for values of X less than 6. 5, but it is not good

at all beyond this. The high value of Rg from Lockhart-Martinelli at X greater

than 6. 5 would imply that the density is less than that which would occur if the

gas-liquid ratio in the tube were equal. to the gas liquid flow ratio. This type

of flow is difficult to conceive.

The film thickness of Fairbrother and Stubbs6 is assumed to cause a limit-

ing value on (Us/UBD). The shape of the curve of (Us/UB) based on the Fairbrother-

Stubbs film thickness is not too dissimilar to the curves measured here. Their

curve appears to make a reasonable limiting value. This is no real comparison,

of course, but it does show that there is no conflict of results.
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5. SUMMARY AND CONCLUSIONS

When two phases flow in tubes of small diameter, quite often the gas

flows as long bubbles separated from the wall by a film of liquid and separated

from each other by slugs of liquid. Because of the small diameter of the tubes

and the similarity to other flows called slug flows, this type of flow is called

capillary slug flow. Capillary slug flow has been studied when it flows in a

horizontal tube.

Pressure drop, density and, to a certain extent, film thickness have

been correlated for a type of horizontal capillary slug flow. The conditions

under which the flow exists and the correlations are valid have been defined.

A horizontal slug flow satisfies the conditions of the definition if:

1. p /p >> 1
1t g

z. [ /11 > 25

3. pI gr 0  < 0 .2 Z

Under these conditions the flow regime is still not necessarily a capillary

slug flow. Depending on the gas and liquid flow rate, the flow may flow in

other regimes. The regimes bounding capillary slug flow are annular flow

for low liquid to gas flow ratios and bubbly slug flow for high throughput

velocities.

Zero gravity flow can be included in the flow regime. In fact, this is

the only case in which the film thickness may be calculated to any degree.

The effect of impurities in the liquid was studied to a small extent.

It was found that the pressure drop is greatly changed by impurities.

The correlations developed here have been compared to other works.

No significant differences were found which would indicate that this work is

in great error. If anything, the comparison shows the reasons why other

correlations work and why they do not.

The conclusions reached are as follows:

1. Given a horizontal two phase flow system, the existence of a capillary

slug flow where the correlations and analyses here are valid can be determined.

-5 0-



2. If the flow does exist, the pressure drop, density, and, to a certain

extent, film thickness can be accurately determined when the slug and bubble

lengths are known. If these are not known, good approximations may be made

for density and possibly film thickness, but only a lower limit can be placed on

pressure drop.
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NOMENC LA T URE

g acceleration of gravity

K arbitrary function or constant

L arbitrary length

LS length of slug

L B length of bubble

total length

n- fraction of tube cross-section covered with liquid film

N Fr Froude Number

N Re Reynolds Number

NWeb Weber Number

p pressure

PB pressure in a bubble

Pd pressure defined by equation (A4)

Pf pressure in a liquid film

pg pressure in gas core of annular flow

Pi pressure in liquid at surface of bubble

AP pressure drop across one bubble and slug

APB pressure drop within a bubble

(P/A x/rj Lockhart-Martinelli two phase pressure gradient

(LP/A x/r 0 ) pressure gradient for liquid flowing alone

Q 9 average volume flow rate of gas

Q average volume flow rate of liquid

Qgl instantaneous gas flow rate at 1

Q1 1 instantaneous liquid flow rate at 1

QS instantaneous flow rate in a slug

r radial polar coordinate from center of tube

ra radius to gas liquid interface in annular flow

*rB radius of bubble

rf radius to liquid element in liquid film

r radius to gas element in gas coreg
ri polar coordinate to inner surface of bubble
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r radius of tube
0

r' polar coordinate centered on bubble

r i polar coordinate to surface of bubble from center

of bubble (equals rB)

R fraction of total volume which is gas

t time

"UB bubble velocity

"US velocity of liquid in slug

vi specific volume at 1

V arbitrary velocity

Va velocity of liquid-gas interface

Vf velocity in liquid film
Vg velocity in gas core of annular flow
Vr velocity in radial -direction

V• velocity in tangential direction

V mean velocity in tangential direction

4m

"Vgc. v. volume of gas in control volume

"V, c. v. volume of liquid in control volume

VB volume of gas in a bubble

"tfB i volume of gas in bubble i

"VS volume of liquid flowing per bubble and slug

x distance along axis of tube

X Lockhart-Martinelli parameter

y distance of bubble rise

Z ratio of Lockhart-Martinelli pressure gradient to gradient

of correlation developed here

V7 operator del

r arbitrary function in equation (50)

vv Lockhart-Martinelli parameter for viscous-viscous flow

angle in polar coordinates measured at center of tube

*' angle in polar coordinates measured at center of bubble

dimensionless parameter (Ii jUB/r)

X dimensionless parameter (j /pZ °To
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J'L dimensionless parameter (p~gro 2 /&)

PI density of liquid

Pg density of gas

viscosity of liquid

I•g viscosity of gas

surface tension

O angle of tube from vertical

dimensionless parameter (LBPI gro/UB}•)
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APPENDIX A

Drainage Around a Bubble

As a bubble passes through a horizontal tube, it leaves a thin film of

liquid on the wall. This film of liquid should drain to the bottom of the tube

given sufficient time. The object of this appendix is to determine to what

extent the film drains. An equivalent point of view is to determine how

fast the bubble rises.

To get a measure of the drainage some assumptions must be made about

the flow. These assumptions are listed below:

1. The viscosity ratio ( 9I/ g) is very large so that the gas viscosity

can be ignored in every respect.

2. The bubble is long and cylindrical enough that the arguments in

Chapter 2 for zero axial flow are valid.

3. The bubble can be treated in only two dimensions. The surface

tension effects in the axial direction are small as are any other

coupling forces in the axial direction.

4. The liquid film is thin with respect to tube radius.

5. The bubble retains its cylindrical shape as it rises. This

is reasonable when the ratio of gravity to surface tension

forces is large.

6. The flow in the film is entirely tangential and all derivatives

of velocity with respect to space and time are small compared

to the derivative of tangential velocity with respect to the radial

direction. Also the flow is non-inertial.

These assumptions allow us to look at a bubble at one point in the tube

from the time a bubble nose goes by to the time the tail comes by. The liquid

at that point drains or the bubble rises as a two-dimensional, time-dependent,

non-inertial, viscous flow. A model for such a flow is given in Fig.(Ad).

In Fig. (AI) the primed quantities are taken with respect to a coordinate

system moving with the bubble center and the unprimed quantities are with

respect to a fixed coordinate system. The subscript i represents conditions

at the interface.
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The continuity equation can be written for the model as:

m ro Vdr ri sin4y (Al)
r. (r. - ri) (r° - ri) dt

where V is the average velocity in the tangential direction at the angle

p at some arbitrary time.

The Navier-Stokes equations for the liquid in the film are:

aVr avr Var V 2

- + v - + . _r

at r r r 84 r

+ _ .Vr _ -' (AZ)
Pi ar PI rZ rZ

V Va5 aV VrV
_ +r + + r

at ar r 84 r

I ad fi 2 +2 a r vý
+ DV+r (A3)

plr a PI r p r 2

where
2 - + -- -- + a

8r2 r 8r 2 2
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The term Pd is defined by the relation:

p = K - p, gr cost 4. pd (A4)

where K is some constant and p is. the actual pressure in the liquid. It is

the difference between the actual. pressure at a point and the pressure which

would be there if there had been no motion.

The boundary conditions on (AZ) and (A3) are:

at r = r0 , V@ =Vr = 0

at r = ri, shear stresses equal zero

(A5)
at )= 0, r, V•,V = r

7r Piri Icos P 'gdr r 1

0 r

Assumption (6) allows equations (AZ) and (A3) to be modified as.:.

dv (A6)

Br
r

8Pd rI 82 v$ 1i 8V V
+ ----= - (A7)

D8rz r a8 rz

Assumption (4) allows any curvature effect to be eliminated. This gives us:

vPd V(A8)-- IJ. AS

- 2r
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aPd (A9)

8r

Equation (A9) implies that Pd is independent of r and thus aPd/SgP is also.

Therefore, we can integrate equation (A8) with respect to r. The boundary

condition of zero shear stress at the bubble interface can be stated as:

-V o _ 0 at r = r. (A10)

ar

With this boundary condition the integrated result of (A8) is:

n rIn ai (All)
\ D4, r. a Dr

Equation(All) can again be integrated with the boundary condition:

V =0 at r= r (AI2)

The result is:

apd (r rr r In_= VII (A13)r\ r, ri ri r

Equation (A13) can be substituted into (AI) to get:

r. F r r ~/ '7 'Pd 0 0- 1 1-2rriin r°

•II (ro0 - rj) i r• ri 2 ri

r 0 r° 3 r. siný dy (A14)

r. 4 r. 4 (rO - ri) dt
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Equation (A 14) can be rearranged to give:

•l siný dy

rdt (A15)

(n ri) 2 ri) ri 4 r,

Equation (A15) can now be integrated with respect to 4):

$ l sin4 dy d$

S1 (A16)

The pressure pi of the boundary conditions can be written in terms of the

primed parameters and K. To do this, use is made of the geometric re-

lationship:,

y + ri' cos' = ri cos p (A17)

Equation (A17) is substituted into. equation (A4) to get:

Pi = K -pIg (y + ri Icosr') + Pd (A18)

Then the boundary conditions (A5) on pi can be written:

IT [K -p g (y + ri cos4') + pd] r cos' d•' - gi (A19)

0

Equation (A19) can be reduced to:

S Pd ri' cos@' d@' = 7 (PI Pg) g (AZO)

0 2
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Equation (A16) and (AZO) can be combined to obtain a relation for dy/dt.

wriIz (Pi-p9 g

L Y = 7 T % s i n @ d ý c s l o

' ~~~r TirJrJ 2

ZAI

C r [ i ) (r i 2 J r 2 ) +4 ( A 21 )

dy/dt is the rise velocity of a bubble. It can be non-dimensionalized as

follows:

t) ri o 2 rT7 o ro

r il 2 r i 4r 4r0

(AZZ)

Equation (ZZ) has no apparent closed form solution. The integrals of (AZZ)

may be evaluated numerically from the geometric relationships:

r.22
--I .1 cos0 + - sinz (A23)ro ro rl o

0~ 00y)
_ r° + cosý,

cot-I j (AZ4)

The integrals are dependent on (y/ro) and (ri'/ro) and give a dimensionless

rise velocity as a function of these two parameters. The rise path of a bubble

can be calculated in a stepwise manner from the dimensionless velocities.

The rise path of a bubble has been calculated for the case of (ri'/ro) = 0.80

assuming that the bubble is initially centered. Notice that ri fis equivalent

to rB in the text. Thus the plot can be said to be for (I - m) = 0. 64. This
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solution is shown on Fig. A2. The path was calculated on a (y/ro) increment

of 0. 05. The path was also calculated using only the initial rise velocity. It

can be seen that not too bad an estimate is gained for the rise time using

only this one step. The form of equation (AZZ) is much simplified for the

case where the bubble is centered, for then • = 4' and ri = ri'. Equation

(AZZ) becomes:

-p ) rr

d I ot __g [_ stin' dý' cosý' dý'

The integrals in (AZ5) are easily integrated and (AZ5) becomes:

d +)

0 (AZ6)

r.g rri 0

Using equation (A26) for the rise velocity of a bubble, the paths of bubbles

at various values of (r i'/ro) were calculated assuming they started at the

center. They too are shown on Fig. AZ.

The time available for a bubble to rise is equal to (LB/UB). Define

a dimensionless time T as:

LB (P1 - Pg) gr 0
T (AZ7)

U B Pi

This should be a measure of the bubble drainage. The value which it

has when the tail of a bubble just reaches the top is calculated from

equation (A26). This is plotted as a function of (I - m) on Fig. A3.

Note that pg is ignored in the coordinates of AZ and A3, This is in

keeping with the assumptions (p/p g) >> 1 in the text.
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Notice that this method of calculation should indicate shorter rise

times than a more thorough solution. It is not proposed as a good solution

to bubble drainage rate but only as a means of determining if the effects of

drainage may be significant. Also in the actual case the system would be

complicated with the gas viscosity effects.
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APPENDIX B

Flow in an Annular Liquid Film

Take an annular liquid film as in Fig. BI. Make the assumptions that:

1. The gas and liquid are in laminar incompressible flow.

Z. There is no slip at the liquid-gas boundary.

3. The flow is entirely axial.

4. The flow is axlsyrnmetric, or free of gravitational effects.

5. The annulus radius ra is constant with x.

6. The interface is stable (no waves).

If the gas were inviscid, there would be no shear on the interface.

The finite viscosity of the gas does create a finite shear stress, however.

This shear stress can be considered to cause the liquid to flow. The amount

of this flow is to be calculated here under the assumptions given above.

The pressure gradient in the liquid is the same as the pressure grad-

ient in the gas at a given x. There are two reasons for this. The first is

that assumption 3 allows pressure gradients only in the axial direction. The

second is that the pressure in the gas and liquid at the interface at a given x

is given by:

Pfpg - -- (B1)
r

a

The subscript f refers to the film and the subscript g refers to the gas core.

Since r a is a constant, we can say:

dpf d~p dp
- g -(BZ)

dx dx dx

The laminar flow equation for flow in tubes gives us:

Vg9 a= LP) (g ra) (B 3)
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I f. rz (B4)
4pL1  (r . 0

The volume flow rates of liquid and gas can be expressed as:

r

Qg = 2rrg Vg dr (B5)

Q, = 2Zrrf Vf drf (B 6)

r a

Equation (B3) and (B4) can be substituted into (B5) and (B6) respectively

to get:

Qg= Ir ra r 4] (B7)

L 8Ik g \dX/

ZI 7T 2 d 2 2
Q r 0 - ra (B 8)

A special case of equation (B4) is when rf= ra. In this case, we can

write equation (B4) as:

Va = (2r a d r' (B9)

The term (dp/dx) can be eliminated in (B7) and (B8) by use of (B9).

Equations (B7) and(B8) can then be written:

Qg = i Va ra 2  1 + I a (B10)
-g r8 -
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Q = 8 TrVa (r° 0 ragi (BI1)

Equations (B10) and Bil) can be combined to get

2 4
Q r a. r
A 1 a - a(B12)

8 r 2  2r 16 2g (Zra)

We can use a definition of m of:

r

m= a (B13)
2

r
0

It is seen that this m is exactly the same as used in the text when r B was

used. In this case ra and r B are equivalent. Using the definition (B13),

equation (B 12) can be simplified to:

Qg = i i-m + _(B 14)Q I (1 -n) 
in)](14

Q 16 m L Pg
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APPENDIX C

Relationship of Film. Thickness to Velocity Ratio

In this Appendix the cross-sectional area of liquid around a bubble

is calculated. The flow is as in Fig. Cl. The analysis is based on the

assumptions that the analysis of Appendix B is valid away from the bubble

nose and, tail. In this analysis the terms Q 1 Qgl, and rB are substituted

for Qf Qg, and ra respectively in the analysis of Appendix B. m then has

the same meaning as it does in the text with the restriction that this value of

m is valid only for a symmetric film.

The continuity equation tells us that for a steady bubble velocity and

steady slug velocity:

Q = Q + Q = Q + Qg (C1)

Q
US _ s (C2)

7r r

U Qgi (C3)
(I - m) r rr0

Equations (C1), (CZ), (C3) can be combined to give:

- (I - m) 1 + (C4)
mB Qgl)

Equation (B 14) can be substituted into (C4) to get:

Us - + 16M) 1 +(C 5)
- (-n)L (1 M)( 1 'M)j(5

B- 

) + L-71 -



It can be seen that equation (C5) reduces to the value as given by equation

(31) in the text if (I.L /}ig) is very large. This is some confirmation of the

validity of the results. The relationship (C5) has been calculated for

(}L AiLy equal to 25 and 50. The resultant plot is shown on Fig. C2.
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APPENDIX D

Data Conditions for Figures 7 through 15

Tube
radius 5

Test Liquid Gas cm x x 10 (/g) Al .

28 Water Air 0.0513 2.0-2.1 48-49 0.036

30 Water Air 0. 0513 2.0 47-48 0. 036

31 Water Air 0. 0520 2.0-2. 1 48 0. 037

33 Water Air 0. 0520 2.0-2. 1 48-49 0. 037

34 Water Air 0. 0513 2.0-2.4 47-53 0. 036

37 N-Heptane Nz 0. 0513 2.2-2. 3 24-25 0.090

38 N-Heptane Nz 0. 0513 2. 2 24 0. 090

39 N-Heptane Nz 0. 0513 2, 3 25 0. 090

42 Water Air 0.0513 2. 1-2.2 48-50 0. 036

43 Water Air 0.0513 2.0-2.2 48-49 0. 036

44 Water Air 0.0513 2. 1-2.3 49-50 0. 036

45 Water Air 0.0513 Z. 0-2. 1 48-49 0. 036

46 N-Heptane N 2  0.0513 2.1 24 0.091

47 N-Heptane N 2  0. 0513 2. 1 24 0. 091

48 Water Air 0. 0793 1. 5 51 0. 085

49 Water Air 0.0793 1.4 49 0.085

50 Water Air 0.0793 1.3-1.5 47-50 0. 085

51 Water Air 0.0793 1.5-1.6 51-52 0.085

52 Water Air 0.0793 1.4-1.6 49-52 0. 085

53 Water Air 0.0793 1.3-1.4 48 0.085

54 Water Air 0.0793 1.4 49 0.085

55 Water N2 0.0793 1.4-1.6 52-55 0. 085

56 Water N 0.0793 1.5 52-53 0.085

57 Water N2 0. 0802 1.4 52-53 0. 088

58 Water N 2  0.0802 1.3-1.4 51-52 0.088

59 Water N 0.0516 2. Z-2.5 51-56 0.036

60 Water N 0.0516 2.3 53 0.036
62 N-Heptane Nz 0.0516 2.3 25 0.090
64 N-Hepane N z 0.0802 1.25 25 0.22

65 N-Heptane Nz 0. 0802 1. 5 25 0. 22
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66 N-Heptane N2  0.,;08:02 1.5 26 0.22

67 N-Heptane N2  0.,0802 1.5 25-26 0.22
69 Water N 2 '0.08 0.2 1.7 58 0.087

70 Water Nz 0.,0802 1.3 49-50 0.088
71 N-Heptane N2  0. 0516 2.1 23-24 0.0931

72 N-Heptane He 0.,0516 2.1-2.2. 23-24 0.091-0.092

73 N-Heptane Nz 0.0516 2.1 23 0,092

74 N-Octane N 2  0.0516 3.4 29-30 0.085
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APPENDIX E

Figures

Fig.

1. Capillary Slug Flow

2. Uniform Bubble and Slug Length Model of Capillary Slug

Flow

3. Model for Continuity Equation

4. Model for Density with Non-Uniform L and LB

5. Schematic Diagram of Experimental Apparatus

6. Photographs of Flow

7. Pressure Drop Correlation for 0<NRe < 270, Region I
8. Pressure Drop Correlation for 270 <NRe 7- 630, Region II

9. Pressure Drop Correlation for 270<NRe < 630, Region II

90. Pressure Drop Correlation for 270< NRe < 630, Region II

11. Pressure Drop Correlation for 630<NRe <Transition to

Bubbly Slug Flow, Region III

12. Pressure Drop Data with Water Contaminated with Tygon in

Region I

15
13. Velocity Ratio Data for Xk 2. 1 x 10
14. Velocity Ratio Data for 1• . 5 x 10- 5

15. Velocity Ratio Data for X = 3.4 x 10-5

16. Velocity Ratio Correlation

17. Velocity Ratio as a Function of (4t US/a-)

18. Flow Boundary, Slug to Annular Flow

19. Flow Boundary, Slug to Annular Flow
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Figures

Fig.

1. Capillary Slug Flow

2. Uniform Bubble and Slug Length Model of Capillary Slug

Flow

3. Model for Continuity Equation
4. Model for Density with Non-Uniform LS and LB

5. Schematic Diagram of Experimental Apparatus

6. Photographs of Flow

7. Pressure Drop Correlation for O<NRe < 270, Region I

8. Pressure Drop Correlation for 270<NRe < 630, Region II
9. Pressure Drop Correlation for 270<NIRe < 630, Region II

10. Pressure Drop Correlation for 270<N <R 630, Region II

11. Pressure Drop Correlation for 630<NRe <Transition to

Bubbly Slug Flow, Region III

12. Pressure Drop Data with Water Contaminated with Tygon in

Region I

-513. Velocity Ratio Data for X z 2. 1 x 10-

14. Velocity Ratio Data for X 1.5 x 105

15. Velocity Ratio Data for X = 3.4 x 10-5

16. Velocity Ratio Correlation

17. Velocity Ratio as a Function of (4 US/o-)

18. Flow Boundary, Slug to Annular Flow

19. Flow Boundary, Slug to Annular Flow
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20. Flow Boundary, Slug to Bubbly Slug Flow

z1. Flow Regime Map

22. Comparison of Lockhart-Martinelli Pressure Drop to This

Correlation

Z3. Comparison of Void Volume to Lockhart and Martinelli

- 77-



CC

CO -i

Z) L LL.
m -

UU
Co

mL -J

I2 <n 0~ .
m Mi

0 i0

I~Icr -J
o0 LadC

U-

cLh

Uz

m
Z)
m



I z
I 0

jOj

ILL -i- ~
w w

o LL LL
2

0
I IL Ldi

I Ii 00

0 0V

OiKL. 7



r~n~ cr CI)

LUj Ow <

UI)

<2 z
LU <i: - 4i: <

LU z 0 w w

< H w c cLo iQ4
w U)~

H (9

Lco (D9

0D coL<

_j 0 LL

m U

LUU

t C
U) U

(D



SLUG FLOW

SLUG FLOW

BUBBLY SLUG FLOW

PHOTOGRAPHS OF FLOW

FIGURE 6



1000 I I I

900

800

o0

700

600- F uBA p 8 Vs +45

600 [ eB. r-roý .
o. 500-

PRESSURE DROP CORRELATION400]- "

SFOR O<NRe <270, REGION I

300- N-Re pUB ro

200 A, TESTS 37, 39, 4 6.,47

o TESTS 42, 43

100 0* TESTS 48, 50, 5Z, 54

0 10 20 30, 40 50 60 70 80 90 100

VIUsE

FIGURE 7



1000

900-

800

700

600

0

500

S_ /TESTS 43, 44,45, 59, 60

400
0o FO 27 <N Re < 630 REGIO Il

10090 00

0 I00 200 :300 400 500 600 700 800 900 1000

['+s, + .163 P 1 ]UB]ro

FIGURE 8



1000 I

900-

800

700

600

5000

4Q0 0

300- PRESSURE DROP CORRELATION

FOR 2 70<NRe< 6 3 0, REGION H

200- NR. - Pe UB r0

[Li

100-- TESTS 37, 38,39, 46, 47

00 I I I I I
0 100 200 300 400 500 600 700 800 900 1000L 8t/s p, UB ro

-r-- +.16 3  I

FIGURE 9



1000 I

900

800

700

600

500

400

PRESSURE DROP CORRELATION
300 - FOR 270 < NRO< 6 3 0, REGION H"

N pUBrO
200 NRe = -Lt

o TESTS 48,49,50,52,53,54

100 * TESTS 64

0 1 I I I 1 1

0 100 200 300 400 500 600 700 800 900 1000

7r rsP.163 /U4 ro
F GU+

FIGURE 10



0
0

1 0 1 1 1 I D
ODN C\j

242

0 O C 0
0 0

MLU LL c
> >0 C\j

rK) tO0

C~j2 0

LO 0<to 0

> CMj

2 U0 0
5 L 0 0

toN-~z- ZLU 0

OD c'J
0cccc~ 0

(12D
< 

0 0 < 4 002 Lu

- 'I

z LO- 0, e
0 0 N- 0 z L

N- 0 z

(0 N- OD \0~ 0

toJ 0 Go
LL( FO CQ - 0 ) i

0O: $0 0 02 OD 0

LU 00 ' 0U)0 0

0 0 0 0)0 N
n 0co 0,L 0

0Lo) \r 0 +

m 0 - N-)'
2

L-L -- 000

0 00 0 0 \0 0O 0 00)0 t) 0 C 0 It C);0 0 I
If) ~ '~ r"~) N) C'U 'J -( O~j/8~0

w 0V



0

0zc\
0 0

0
LuI

0 0
-0

0 0

C-,0

0 0 0o

_ _ 00

0

< I-
z z

00

x 0

L 0 ZL ~00

F-v 0 6
C)\

LcJ-D(/) Gu0

0Qý<> Ld

0 cb
I I I I I I 1 00 C, 1

0 0 0 0 0 0 0
0 0 0 0 0 0
CJ0 co w.(Ae dV )



0 0oco

0N-0
I ccJ
0(

z I

*I.1 QQ0 0

00

*~ 0 (0(

(D -

;d to

00
0 \ro d

H4 r,:c C\J
10 K)(0-

'< F I- H- -C
UWU at

> ~< 0 0

-D (. d 0



I I I I I 00

00

0 N0

H0

+
z m 0

bWU

.0 --

0 USo
t~- o ~~ N

0 LOLo (
0 o coO -r CD

It LO (D )

It LO D

00

-L 0 F-ci c
>fLL>

S~0



0 0

00

Qc'

0 (

(D 0

b LUi

z D

F-oJLL IL.- 10

LO

0 F-j

x ~C/) O

> LL F-I
1 0/ 1 00



<i (D 0
< ZD <

I ILL
0- >

Z_ w

0ý rd0 Nc r

00- 0

-J 0

LO , 0 0 I

ZL :D
0 0 C0

0X X ( N
-~U +

(D C)



0L

C~j c')

LUj
10 (

0

+

OD 0WC

OD b0

LiLL

00

U) <

0 N~

le') - DC)
U) m (0

o LUI
l< >

0 OD ( N 0

- 6 6 0n



I I J i T I , i i i i i I t /

FLOW BOUNDARY SLUG TO
0.030- ANNULAR FLOW 0

0 ANNULAR

0.025- 0 SLUG 0
0//,, 25 l

0.220' (.)=
I X =.5.10,- 0

0,015- TEST 67

0.010- 0

0 5 0THEORETICAL

10-4 10-3 Qt 10-2 I0-1

FIGURE 18 tQ, )

FLOW BOUNDARY SLUG TO

0,030- ANNULAR FLOW THEORETICAL _

0 ANNULAR
0.025 - * SLUG 0 -

__0.220 - Vog
b X = 1.5x I0"5

0,015 TEST 70 0 0

0
0.01 0 -

0 0

0.005 0 0

0 1 1 1 1I 11 1 1 1 1 . . . . .
10-4 i0- 3  Q1 ) 0-2 lO-1

(Qf+Q9)

FIGURE 19



-0
-, 0

Q .0

z

-00

LLmLL

D:

(D 0 m

o (0
< -i 0 Z 0

<D -j o 1 C) -3 J C 0
Co ý LL LL iU- ILi- IL 0

0 D -i Do 0
_jm c oc nmU

LL 00 I -0 . a e-

j ~ C~ mc~mJ~clC f)

LL~7 @00 o*e

I I I I N
10 0 1~~0 0 f 0 I)
N ) ~ ) C \ c ' J -

nl7 )~M



0 0.
3: E 0

0 C7) LO

0 EQ 0

ý3: LO
U)

_0

00
cc

0.

0) 0 0 L O 0 t

S not



6 .0 1 1 P I I I I

_ A_ (LOCKHART MARTINELLI)
5.0- \1o ( oTPZ=

4.0- L+LB (THIS CORRELATION) Qt

3.\ ro 
Q

Nf 
2.0-

Q9

2.0 -_ _

11(LtUBro) 450
0 , I /L I / I
0 10 20 30 40 50 60 70 80

v's
7rr 3

0

COMPARISON OF LOCKHART MARTINELLI
PRESSURE-DROP TO THIS CORRELATION

FIGURE 22

1. - 11 1 1 1- -1-1.0, 5

FROM LOCKHART -

AND MARTINELLI -

_ N --.5, )=-5 o

0.1 10 
100

Qg /.g

COMPARISON OF VOID VOLUME TO LOCKHART AND MARTINELLI

FIGURE 23


