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FOREWORD

The Systems Research Center is a research and graduate
study center operating in direct cooperation with all dspartments
and divisions of Case Institute of Technology. The center brings
together faculty and students in a coordinated program of research
and education in the important techniques of systems theory, develop-
ment, and application.

Research leading to this report was carried on by Mr. Jerry
L. Sanders, Graduate Assistant, under the direction of Dre. Mihajlo
D. Mesarovic, Associate Professor of Engineering at Case and
Director of the Adaptive and Self-Organizing Systems group of the
Systems Research Center.

The research activities of this group was supported in part
by the United States Office of Naval Research (Contracts NONR

1141(09), NONR 1141(12)), and the Ford Foundation,

Raymond J. Nelson, Acting Director
Systems Research Center
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ABSTRACT

An attempt is made to simultaneocusly develop certain
aspects of a theory of multi-level systems and decomposition

techniques for multi-variable optimization problems.

Two level-three goal systems are explored intensively

with particular reference to the method of "coordination® employed

by the second level unit. M"Direct" and "Indirect Interventionh
modes are explored. The vroblem of the quantity of information
required by the second level for the coordination of the first
level systems is investigated. ®"Direct" and "Indirect Models"
are investigated. The concept of the "Indirect Model™ leads to
the development of a Decomposition Principle for Non-Linear

Programming. The concluding chapter presents the analysis of a
numerical example coded for the computer which demonstrates the
utility of certain of the techniques in the context of a specific

application.
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1. INTRODUCTION

1«1 The General Approach

In this thesis we will carry out two pvarallel lines of
development, Ve will derive some specialized mathematical techniques
for the decomposition of large ovtimization problems. We will, in
turn, attemot to place a correspondence between these mathematical
results and the processes of decentralized control such as one might
find in a decentralized organizational structure. We will alsc use
the process in reverse, e.g. we will consider certain qualitative con-
cepts from the literature on human organizations to suggest avenues
of approach for the development of the mathematical aspects. De-
centralized decision making systems have been defined by A. Whinston.<22)
"By a decentralized decision making system we refer to the following:
Given m decisions or actions to he made and n decision makers (1 <n gm),
each decision maker is assigned a subset of the m decisions. For
the over-all system there is given a criterion function and a space
of possible choices involving the m decisions. Each decision maker
is assigned a space of possible choices and a criterion function in-
volving at least the decision variables he can partially or totally

control.n

We hone by adopting this dual point of view to simultaneously
develop a framework for the synthesis of Morganization-liken structures
and at the same time use the mathematical interpretation of these

horganizational structurest to develop efficient computational algorithms



for large-scale cptimization problems. Our results will have applica-
tion to engineering control problems('”t as well as certain
optimization problems which arise in the production theory of the
firm.(13 )t We mention in passing the similarity of the problems
encountered in these two areas to problems which arise in macro-
economic theory. Extensive investigation of control problems in
economic theory is currently underway at Ca.se.(19) We will not ex-

plore this latter area in any detail.

Large-scale optimization problems have been a constant
source of trouble to systems engineering and overations research since
their inception. Roughly speaking an optimization problem will be
considered nlarget when the c amputational requirements which must be
satisfied in order to find the optimal value of the manipulated
variables exceeds the capacity of current computing machinery or when
the quality of the performance of the system decays significantly

in the time required to compute a new control solution.

To our knowledge no previous investigation has been under-
taken with the same point of view as adopted here although, of cocurse,
we draw on the results of many investigators working in similar areas.
Perhaps a combination of two papers have come as close, in spirit at

least, to our area of interest as any. These are Whinston (ibid.) and

tSee‘ these references for discussion of optimization prob-
lems in these areas.
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Dantzig and Wblfe.(B) We quote from the abstract of the latier,
®...Besides holding promise for the efficient computation of large-
scale systems, the principle yields a certain rationale for the
tdecentralized decision process! in ., . theory of the firmee. "

The first paper mentioned above is essentially a detailed investi-~
gation, both descriptive and analytic, of the consequences of this

statement.

le2 Types of Problems Considered

We are interested here in Mtlarge® multivariable optimization
problems of the type which often occur in the conbrol of complex
systems. Subsequently the reader will often encounter the term
"control problemt., This term should be considered to be identical
in meaning to the phrase "...optimization problem which arises in the
optimal control of a complex system... " An exact definition of what

is meant by "control problem' will be given in Chapter 2.

e attempt an Worganizational® approach to complex control
problems, i.e. we attempt to break up the over-all control problem
into a number of smaller problems, each of which is to be solved by
a real or fictitious "first levelh control unit. In addition we
synthesize one or more 'second level®" control units whose function is
to coordinate two or more first level controllers. By proceeding in
this way we hove to achieve the following economiesg if the process
is a real one, i.e. if the imagined organizational structure can be

realized, then we will enjoy the benefits of parallel operation in



that several parts of the over-all problem will he processed simultan-
eously. TIf the process is imaginary, i.e. is simply a computational
device, then we have traded the task of solving a large problem for
that of solving a number of smaller ones. In either case this pro-

cedure can lead to significant computational savings as we will see.

It will not always be possible in the models that we examine
to achieve the same quality of performance in the "organizational®
approach as we might have obtained had we been able to solve the
original problem. In the cases where we do not achieve the true
optimum we will attempt to offer a means of computing the difference

in performance between our method and the #true optimum® performance.

The consideration of the best method for breaking uv the
original coentrol problem into its respective parts, i.e., "ootimal
reticulation®, is 233 one of the problems considered here. This
problem is intimately connected with the concept of "interactionw,
No generally accepted definition of this term as yet exists. Exten=~
sive work on this and related problems is currently underway at the
Case Systems Research Center.(ls) Qualitatively, at least, we would
like to break or ®reticulate" the system equations at those points
where the interaction or coupling is weakest. In the problems we
consider we will either assume that the reticulation is given a
22}223 or we will perform the reticulation more or less arbitrarily,

without regard to the strength of interaction.
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2« DEFINITIONS AND PRELIMINARIES

Introducti@n

In this chapter we will state a rigorous definition of what
we mean by "Control Problem", indicating what information is necessary
in order for a control problem to exist. ®*Rulti-level Control® is
defined and the synthesis procedure which will be investigated in
subsequent chapters is discussed. The level of rigor that the reader

can expect and the exploratory nature of the entire investigation

are explained.

2.1 Definition of the Control Problem

Since we are considering the applicability of our results
to three rather dissimilar fields, we will require a somewhat differ-

ent approach to control problems than has customarily been taken in

the literature.

For our purpose, in order for a control problem to exist,
we require three separate statements.

l. Specification of the utility functional. Here we
assume that there 1s specilied, a priori, a func-
tional g(es «» ¢« o) defined over the Cartesian
product, space of the variables My eee M, i.e. over
MlxM2xM3 oo l@l.

2+ Specification of Restrictions on the variables m;.
We assume_that there 1s speciiied In advance a vector
function ¢ of the variables m, .. m_ which specify
the restrictions that the nsystemn p&aces on the
problems Written out these conditions are:

¢1 (ml ‘es mn) <0

% (my esem) <0
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Example 1. For certain engineering problems and
for many economic modelsg these restricdtions take
the form'$=0 where =y ~-AmM=-€. ¥ is a
n x 1 vector of outputs, 4 is a n x n mtrix, W
is a n x 1 vector of manipulated variables and
€is an x 1 vector of disturbances,

gExample 2. In the production theory of the firm we
often encounter the following type of restrictions:
Am - B < 0 where a typical elemen’, of this vector
matrix inequality might for example express the
fact that the total operating time for any one
facility is less than or at most equal to 24 hours
in any one day.

Specification of the Environment. In general we will
assume that the varlables m, ... m, are controllable by
the system or the system maiflager and that the variables
mE 4 72 cee M are not under the direct control of
the system mapiager although in some cases these
variables may be observable., The specification of
the environment will consist of the specification
of a probability density i‘unc‘r,:lon.h(mk IRRR mn)
which exoresses the joint probability of Occurrence
of specific numerical values of the external variables.
The density h(m_ ;5 ««s mn) may take several forms.
It may be a tru€ probability density function or a sub-
Jjective probability statement or a statement of the
exact values me,oqe cre M Wil take on (in_the
deterministic case‘} or the'set {k + 1, +es n} may
be empty. We will often substitute the vector €
for the variables M 410 o0 W in the chapters
that follow.

Now given these three statements we can formulate the complete

control problem as follows:

maximize or minimize E g(ml v My ML s ees mn) (2.1)
with resvect to Myy eoe M
subject to the restriction 76 (ml “ee mn) <0

vhere E is the operation of mathematical expectation

over the variables mk AEERED mn.
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Example 1

minimize E (Am + E)T B (AT + €)
over m €

where €1s distributed with p.d.f A(€ ).
or stated in the customary way:

minimi_z_e EeyTBy sub ject to the constraint
over m

F-am-€=0

Example 2

N
min E;'i'?}ai?.
I-ﬁ ‘Qoﬁ € =1 L 1
1’ n

subject to ?l =T (a constant vector)
amd ¥y . TAYy TEy L1t €541
where €541 is distributed with p.d.f )?j + l(g-j + l).

All the subscripts in this example refer to a time index and not to

a vector component.

Example 3 N
maximize J\Z—; ‘ S ™
P
subject to 3[‘:1 Qgymy=by €0 i=1, .l

where Cﬂ ‘aij’ and ‘Di are all fixed constants.
The reader will of course recognize this as the classic linear pro-

gramming problem.

2.2 .Optimal vs. Sub-Optimal Control

The solution to the problem posed in 2.1 will be referred

to as the Optimal Control Solution. By solution here we mean the




optimizing values of My eee M, i.e. mI, ‘s m;. In the chapters that
follow we will occasionally consider ways of generating the controllable
varizbles which do not yield the same values as those generated in

the solution to problem 2.1. The solutions will be referred to as

Sub-Optimal Control Solutions.—

The work "optimal® here is unfortunately a "loaded" word.

The solution to 2.1 is the "best that one can do® in the context stated;
however, it neglects one critical economic factor--the cost of com~
putation. One might well abk, "™hat is 'opbtimal® about a solution that
will take 107 years to calculate on present computing machinery?t or,
®What is rtoptimal' about a solution for a chemical processing plant
whose expected net profit for the year is 10,000 when the computing
machinery required for the computation of the control solutionlcosts

on the order of 5106?" Contrary to being unusual, examples such as

those just mentioned are quite prevalent in practice.

Very little work has been done on over-all methods of opti~-
mization, i.e. general economic optimizstion, in control processes.
However, the cost of computation considerations indicates that we need
to examine certain of our prejudices concerning general-distaste for
so—~called "sub-~optimal* solutions, because it is easily possible that
these ftsub-optimaltt procedures are actually enonomically preferred to

the toptimal® solution.
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2.3 Single and Multi-Level Control

For the purposes of illustration we will consider some block
diagrams of some of the control processses that will appear later.

Nearly all of the control processes which occur in engineering and

. many of those which occur in operations research can be represented

as followss

Fige 2.1

1 [:)

-————fﬁ C —%

C is the "causal unith or tsystem® or "plant®, G is the "goal seeking
unith or "controller®. This unit is responsible for maintaining a
model of the process inherent in ¢ and is assumed to have a utility
functions G also has a model of the environment which yields the in-
pubss The utility function is a function of the inputs i the outputs
& and the controllable variables ﬁl' The variables ﬁé indicate
possible measurements performed by G on C« G is assumed to choose
those manipulated variables ﬁl which maximize its utility function
subject to the models it has of the environment and the process.

We will refer to systems such as Fig. 2.1 as 1}?- %?> systems. This
notation refers to the fact that the structure is ﬁsingle levelt and
nsingle goalh, By "single leveln we mean roughly that no managing

or coordinating controllers are present. By "single goal!t we mean

that only one ubility function is involved in the entire systems
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Almost the entirety of this thesis will be devoted to the
study of the analysis and synthesis of 2.4~ E;szstems. Their block

diagrams will look either like that in Fig. 2.2 or that in Fig. 2.3.

Figo 2424 “3
2
Gy
ml 2
i e
Ly o 1,
Fig- 2030 jl
27 Ga
a
Gl 2
ml |m2 n n2

c c
_ﬁl__n’l_gi) —ﬁz@

is, of course, the fcoordinating unit" or "managerial unith or

Gs

"second level controllerM. G, is entrusted with the utility function

3

of the entire system and with various models of the "behavior® of Gl’

Cl, Gg, 02 and the environment.

The arrows 12 and k2 represent the flow of information up

from the "first level® systems and 1. and ki repfeSent the flow of

1
control down from Gy The system represented by Figs 2.2 is dis-
tinguished from 2.3 by the fact that C'x3 is employing a method of

tcoordination® which we will call "indirect intervention" because
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we note that GB's‘attempts to steer the whole system are made via

control-action aimed at the goal-secking units Gl and G2' In Figs

243 we call this “coordination modeM ®direct intervention® because

the second level!s control action is directed toward the causal systems

Cl and‘Cz.

Example 1 tIndirect Interventiont

Consider a decentralized firm with two operating divisions
and a ceﬁtral planning unit where the central planning unit sets the
internal or accounting prices of certain commodities such as staff ser-
vices, etcs In this example the central planning unit plays the role
of G3 and the two operating divisions are represented by <Gl’ Cl) and
(Gz, 02). The conﬁrol actions ll’ and kl are the setbing of the price
of staff services for the respective divisions. The method of co-
ordination here is tindirecth because the central plamning unit, by
setting the prices, is essentially manipulating parameters in the

utility functions of Gl and G2.

Examonle g "Direct Interventiont

Consider an inbernational planning agency which is responsible
for the economic growth (suitably defined) of two underdeveloped
countries. The separate governments are represented by Gy and Gy
Assume that the planning agency decides to give each country a large
sum of money to be immediately injected into the respective economics
(Cl, 02) in the form of construction spending, etcs This method of
"controlh would be tdirect intervention™ because direct inouts are in-

jected into the causal systems——in this case, the respective economies,
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Obviously, these distinctions are somewhat arbitrary and
nay or may not be identifiable in any real system. However, we will
find these distinctlions useful in the qhaptcrs to follow. Roughly,
we will characterize a goal-seeking unit G as being ™second leveln
if its primary function is the Mcoordinationm® of two or more first

level units.

By tcoordination® we mean the process of the transmission
of information and control signals from the second level unit tec the
first level units for the purpose of improving the over-all performance
of the system as measured by the performance functional of the second

level unit.

One further component of the over-all problem from the point

of view of G, is the type of model that this unit has of the structure

3
tbelow" it, We will classify the model types as either ndirect® or,

tindirect®. G, is said to have a "direct™ model of the system below

3
it if it requires complete knowledge of the structure of (G;, C;) and
(G2, 02) as well as the system's environment. G3 is said to have an
Mindirect" model of the system below it if it requires only the
knowledge of the system's environment and the utility funétions of

Gy and G, or certain parameters of these utility functions.

2.4 Remarks concerning Rigor and Intent

The models which appear in the following chapters are in
no way to be construed to be final answers concerning the questions
posed in this thesis. The intent here is purely exploratory. The
amount of room left for investigation is nearly limibless in this

area.
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In keeping with the exploratory nature of this investiga-
tion we will often sacrifice mathematical rigor to the gods of
expediency. The analytically inclined reader may be somewhat appalled
by the extreme assumptions made concerning the existence of inverses,

derivatives, etc,

Summary

In this section we will summarize in outline form the syn-
thesis procedure that we will carry out several times in the succeed-
ing chapters. It shbuld be emphasized that the steps outlined below
do not occur in any particular sequence but rather must more or less

be carried out simultaneously.

Given the problem:

extremize Teg (ml e mn)
Weleto My see M

sybject to the constraints

(ml XX} mn) SO
and an environment prob. density function \\(mk METRIE mh)

1. Decide on a division of control labor between the
two first level systems. (Reticulate)

2. Assign objective functionals (utility functions)
and constraints to the first level systems.

3+ Assign an environment prob. density function to each
first level unit.

Ly Decide on the model type to be given second level
unit.

a) Direct Model
b) Indirect Model



1

5. Decide on an intervention method for the second
level unit. .
a) Direct Intervention -
b) Indirect Intervention |

6. Investigate the quality of performance of the
resultant system,
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3« DIRECT INTERVENTION -- STATIC CASE

Introduction

In this chapter a class of linear, static control problems
are investigated. The synthesis of a 24— 3 controller is investi-
gated from the point of view of "Direct Intervention®", The second
level unit is assumed to have a "Diresct® model of the subsystems

below it.

3¢l Model 1 Deterministic Case

The purpose of this chapter is to explore several possible
models of control situations where the systems are said to be Mgtatic®,
i.e. either the control action is applied only once or if the control
action 1s applied many times it is assumed that the effects of the
applications are statistically independent of each other., All of
the systems in this chapter and the rest of the thesis as well are
assumed to be multi-variable, i.e. several state variables and several
manipulated variables. The system equations are assumed to be
"linearm and constant over time. In mathematical terms this means
that the system acts as a linear operator which maps elements (vectors)
of the M"input space" into elements of the "output space®. Our
purpose in investigating the use of Z,f- %}p controllers for linear
systems control is not to solve any new problems in the area of the
analysis of linear systems with a small number of state variables,
since these problems have been attacked for many years by many

authors with great success. Our purpose is to fcut our teeth® on
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a class of problems that are analytically tractable in the hope
that we will discover methods of approach which will suggest effi-
cient ways of proceeding in very complex control problems, e.g.
large non=linear problems or even linear problems with many state

variables (e.g. more than 20).

Our general avproach in these problems will be as follows:
we will take the original multi-variable control problem and attempt
to break it into two or more smaller parts. From these smaller
parts we will construct, generally, two sub-optimkl control problems,
each of which neglects the possible interactions with the other
problem. At this point the second level of control will be intro-
duced. It is the purpose of the second level control unit to intro-
duce into the system at an apvropriate point a signal which
compensates for the neglected interaction. This chapter <ltempts
to investigate this method of control in the static case and to
compare its performance with possible alternatives. The first of
these alternatives is the case where the interaction between the
two original "First Level® controllers is completely neglected. The
second alternative, which is, in large complex problems, never

available to us, is that of the true optimal solution.

For simplicity of exposition we will confine ourselves to
operators defined on finite dimensional vector spaces. A theorem
from functional analysis tells us that we can treat the finite

dimensional operators as finitie matrices. (See Appendix A).
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Model 1 y=am+ €, |a|] #0 (341}

y is an n-component vect.or[yl, ase yn]T. T is used to denote the
transpose of a vector or matrix. A is assumed to be an n x n matrix
composed as follows A1‘1 Ayo where A4, is & k x k submatrix
Mgy Agp|
(k does not have the same meaning here as in eq. 2.1). Aip is
k x (n - k), Ay is (n -k) xk and A,, 1is {n = k) x (n -~ k)
m and € are of the same dimensionality as¥. We can view the ¥
varisbles as outputs of the process, m as the inputs and the € as
disturbances arising from the environment. TIn this model the € are
assumed to be deterministic and known. The vectors ¥, W and € may
either be considered as being composed of rumbers or as being composed
of time functions, e.g. ¥ =[y}(t) +» The important difference

g
between the models of this chapter and those of chapter S is that
in this chapter yi(t 4 a) is independent of yj(’c) for all i, j, t and
a, We assume that a criterion of over-all system performance is given.
It is also assumed that the second level unit is entrusted with the
maximization of this utility. In this model the goal of the system

(o - - -
operat.or is assumed to be to minimize in B y}. yT B ¥ can be view=

- Werete m
ed as the cost of deviation from a fixed operating point which in
this case lLs O. The operation of the system around any predescribed
operating point can be accommodated by simply changing the origin of
coordinates in the space in which ¥ is measured. In other words,

the job of the system operator in this case is to keep the system as
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close to the fixed operating point as possible, Certain disturbances
€ impinge on the system from the environment but the operator can
change the vector W in an attempt to offset these disturbances. The
cost of deviating from the preset optimum conditions is roughly

proportional to the square of the deviation since ?T BY is a

B11 0 where Bll
0 B22

is k x k and B,, is (n - k) x (n-k). (By; is assumed to be

quadratic forme B is composed as follows B =

positive definite). At this point we introduce some notation which

we will use throughout. We let g = ?T BF and g#* = min {’:T B ?}o

g then is the actual performance and g is the opti!:nl per formance.
We will now assume that the problem of determining the optimal m

is too l;rge a problem to be solved by current optimization techniques.
We will therefore subdivide the problem as previously described. We
let the subvector r_yl ace yk] T =y 1, Similarly [yk a1 e yn] T=
7 moees mk] T -w, Enk* 1 oo man =5, El cas €k]T = &,
and 6k+1000 fn]T=€2°

We now turn the responsibility for i]‘ and r'il over to a
controller called "First Level System#1n and ‘372 and T over to

"First Level System #°%. System 1 is set the following tasks
T

. -1 =1
minimpize ¥ B y subject to (3.2)
{“ﬁTi; ¥ Bu

The extra subscript introduced here is to denote, for example, that

1?1 is System 1lts ftmodel" of the vector ilo The reader will note

[R—
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that this model is actually incorrect from the point of view of the
original problem posed. System 1 is neglecting the element Al”
which is a cross-coupling term coupling il to Ez. System 1 neglects

this term on purpose in order to separate its problem from System 2's.

System 2!'s problem is to

T
. =2
minin'ﬂ.zg 2}’ 322 2?2 (3'3)

subject to 2}72 =4y 1?2 *€—2

The solution to problems (3.2) and (3.3) can easily be derived (see
Appendix A). Equating the vector derivative of the quadratic forms

in (3.2) and (3.3) to zero we have

2 .2
Azg Byp (Agp @ + €) =0 (3.18)
and A0 B, (g o+ g =o0 (3.5)

We assume (as always, for the sake of simplicity) that
. T
Bii and Agqy are non-singular and that Aii Bii Aii is positive

definite. Therefors, we have

<1 _ -1l 2% _ =1 .2
m = Ay € and W= -Ayy €.

We note that the €'s are assumed to be known to all the
systems involved in the control of the process, If these vectors
Ei* were allowed to be implemented as they are the actual outputs of

the process would be

-1 _ =19 2% =1 _ ~] =2
-2 _ 13 24 =2 - <1 =1
y -—Azlm +A22m + € -Aa All €
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At this point we will introduce the second level controller.
System #3. System 3 has the responsibility for the control of the
entire process and avs such it will be cconcerned with the complete
nodel of the system and with the system performance functional.

Specifically its task will be to insert appropriate inputs into the

system to compensate for the interaction neglected by the first level

units. To be more precise, we will assume that System 3 has two

optimization problems.

T
- =1 =1
Problem 1 minimize ¥ By ¥ (3.7)
-1 _ =1 -2 2 21
swject to ¥ = Ajpm + A, M 4+ A, T+ €
where 712 is a k-component vector manipulated by the
second level unit.
Problem 2 minimize s B 7 (3.8)
3Y 22 3Y . 3°
=2 _ =1 2, 1 . =2
subject to ¥ = Ay m- + Asp m o+ Ay N * €

}2’1 is an (n = k) component vector manipulated by the

second level unit.

We have already assumed that System 3 has the knowlédgé of
the complete structure of the system itself as well as the optimal
control vectors from the first level systems, i.e. Tﬁl* and 1'71'2 *
The first level units are required only to have knowledge of their
own subsystems and their part of the system goal in addition to the

relevant disturbance sub-vector.

)
[RETp—

[
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Now oF = =App Ao
=2 _ =l <l -]
3}' ""Azl All € + AZl h_e
The solution to System 3's two problems is now obvious. It should
2 el o % =1 =1 =1 _ =2 _
set n_ = LY Ee and w0 =Ahy; € Therefore 3 57 0 and

the value of the performance functional for the entire system, i.e,

5; B ¥ takes on the value 0.

Let us examine briefly the implications of the results of
this rather elementary example. First notice that the system per-
formance functional §E By assumes its absolute minimum. This

means that no other control algorithm will produce better result:

for this system. This is in fact then optimal control. We have

taken the original problem apart and recombined it along organizational

lines in such a way as to get the best possible performance. A
reasonable question at this point is "Why?% The reason here and for
all subsequent models is éomputational. In nearly all real multi-
variable control problems tﬁe problem of computing a sequence of
optimal control variables meets with many computational difficulties.
Assume that the matrix A is of even dimension. If we had tried to
solve the original op£imization problem directly we would have re-
quired the inverse of the n dimension A matrix. In our problem

we required only the inverse (k = ;) of matrices of size ;a The
time for the computation of the inverse of a matrix on a digital com-
puter goes up roughly as the cube of the matrix size, Here and

particularly in the dynamic case, as we will see later, this kind of
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difference can mean the difference hetween being able to solve the
problem and being forced to neglect certain potentially important

aspects of the performance.

The reader can undoﬁgtedly level several objections at this
model, The first might be that this might not be a feasible approach,
i.e. to intervene in the performance of the system in this way, and
this we would readily admit. Secondly, one might argue that we are
not considering the cost of the manipulated variables, This will
be considered in subsequent models. Thirdly, one might say that
linear models of this kind are so naive in structure and formalism
that they can nevsr represent the control of a real process. This
allegation has a certain amount of truth to it and may recur in
several of the subsequent models. We will attempt to answer it
here and offer no further apologies later. First of all, it is not
strictly correct, since models of similar type have been employed
in both engineering and economics for many years with varying degrees
of success, The majority of models encountered in operations research,
However, are extremely non-linear. Unfortunately, analytical results
are almost completely lacking for the control solutions to non-linear
systems. Therefore; whether we like linear models or not we are
forced to them in ordsr to try our approach on a fairly broad class
of system models. The digital computer offers us very little succor
here, because it yields only one solution at a time and not a class

of solutions as we require.
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The interesting feature of this model was that we were
able to achieve the true optimum with our method of control system
synthesis, As we will see subsequently, this is not always possible

with this method.

3.2 Model 2 Probabilistic Case

This model is to be formulated in exactly the same way as
Model 1, except that the disturbance vector ‘é is assumed to be a
vector of random variables. The first moments of all the compcnents
are assumed known and finite;, i.e. E€ = y = EE ., |-
_ e,
order moments of € are assumed finite. Now we can no longer use

All the second

functionals of the type iT By as an optimization criterion be-
cause these functionals themselves become random quantities; however,

we can use their expectation as an extremization criterion.

As before, then,

Y A, A m 21

- 11 712
_2 - ._2 + 32 (3°9)
Y A21 A22 m

is our original system model.
System 1's control problam, namely,

T
7 'l} subject to (3.10)

* :
gl"’“f_’l‘ By By vy
m

Q. =1 -1
W SAp M te s

has this solution mo= A e ow =
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For System 2 we have

™
* _ =2 ~2
g m.i‘g E }/2}' By, oY } subject to (3.11)
=2
AR YR L g Wi
<1 _ -1 -1 -1 .2 -1
Therefore, Y o=Ap (A ) 4 A, (A, B°) + € (3.12)
=2 _ -1 -1 12 -2
Yo=Ay (Agpp) + Ay () + €
=1 -1 ~1 -2
Vo= 8- - apAnE
2 _ =2 =2 i |
Yy =€ =p - Ay Ape
Now for System 3 we have
T T
* -1 =1 =2 2 .
= 1
gy m:Li2 £ 3 B4 BY + 3 Byo 3}'; (3.13)
S
=L _ =1 =2 =2 =1
sibject to T =AW A, B +A, 7o+ € (3.1L)
_ ~la =2 1, =2
372"“21‘“ thpm Ay A+ €
The solution to (3.13) yields
L3t ) -
A=A (3.15)
2% _ =l 2
R Thypu
=1 _ -1 -l
yy =€ " ¢ (3.16)
22 22 52
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Let us check this resuli against what we might have ob-

.

tained by solving the "true optimum® problem,
ge=mn  E (7 BY) (3.17)
n
subject to ¥ =Am + &

The sxpectation and derivative of g yields

ATB GE+T) =0 if AT B A 1is positive definite and
B and A have inverses then m = _A'l v
-1 ~1
- = - € ~
hence y =€~ M= and we can see that this result
s -2
€ - ul

is identical to (3.16).

343 Model 3 Cost of gontrol

In this model we consider a situation similar to those in -

Models 1 and 2, except that we now consider an extra term in the

performance functionals whizh represents the cost of the manipulated

variables m,

System 1
T T
» =1 ~1 =l =1 (3.18)
g = min ?15’ Bppy +m Cn’“%
m
1?1 =Aqq ﬁl + El, éi are assumed to be deterministic and known

«
.

to all subaystems in this model. Here as in all subsequent models
the necessary conditions for the existence of minima, maxima and

inverses will, a priori, be assumed to exist, For the model above

=1 _ T -1 T -l
m = - Eu By A3y *Cy) A By e
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Similarly for System 2;

T T
* _ =2 2, =2 =2
g = mir21 o 1322 oy +m Gy, M } (3.19)
m
2% _ | T -1 =2
m = ‘[Aaza?.e Ay * Ga Ay B €
System 3
T
» _ -1 -1 ,-1 . -1,T -1 -1
gy = min ¥ By + (m +'l) C;; (@ +,l) (3.20)
ol =2
RN
T
-2 2 ,2 .27 -2 . =2
+ 3 By, 7 + (W +/Z) Cop (M + 1 )}

35;2 are defined as in (3.1) with the it given

by (3.19). Differentiation of (3.20) yields

=1 .-l* ..2*
= l:2l 20 A *0] 2/21 E"al thy ™ (3.2)

where 351 and

+&8]4 oy T

2% T 2% =1
h le B Ay °2] {AH By ‘12 motAp R
]

+*
_Q
@] oy Y

The problem of comparing this mode of control with "true optimaln
control is not without its difficulties. It is logically possible
for this mode to come out better than the "true optimal" control
because of the added terms in 3§i of Ay, Ez and A,y Tll- The
submatrices A, and Ayy offer amplification of the control
vectors ﬁi in a way which is not available to the "true optimalt

formulation. If we are to charge ourselves for this amplification

e
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then perhaps the appropriate goal functional is
I
A1 |
e e tmaN 0 (T AT -

S BT ¢ (g4 m) € (7 +T) where 2 = A ﬁo

12 '
In any event it appears that in order to perform any quantitative
comparison of these two different approaches one would be required
to perform a numerical experiment on a computer to determine the

sign and magnitude of the performance difference.

We now consider the comparison of this system with an
alternative which is the same as our Direct Intervention case, ex-
cept that the second level unit is missing. Hence nothing is
compensating for the neglected interaction between the first level
system , We will call this the non-interacting case. This system
has exactly the same performance functional except that, of course,
the terms involving };i will be missing. We note that the T

are the same for each case. As a result of these observations we

can easily state and prove the following theorem.

® _ T - ,_ T
Theorem; let g A min lyA B Yy b m, o] mA:l
* _ =T _ = AT
E g min [B ByB+(mA+n) c(mA-o-;z-):]
0 Ayp
where ¥, =7, + A% where A% =
B YA R A o
21

* *
then gy <8
Proof: First of all N was chosen in such a way that & is mini-

mizede N =0 is an admissible control vector. If N=10 g* = gy
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Suppose  an p # # O which minimized gy and gy (n*) > g *

but clearly 0) < #) contrary to the assumed sxistence of
] &

h* .. either (gB# <gA*) or (AL=0 and’ gB-l'ng*).

We conclude from this theorem then that in the case where we are
required to pay for the variables that we manipulate that we can -
always do at least as well as if we neglect the interaction be-

tween the two first level systems.

Similar analysis could easily be carried for the case

where £ is a random vector.

Summary - - Conclusions and Applications

We began in this chapter by introducing a method of multi- ’
level control called Direct Intervention. In reference to the
modeling considerations introduced in Chapter 2 it should be remarked
that in this chapter the second level unit is employing what we

called a "Direct” model of the first level units.

We began by conaidering an over-all control problem of the
forms

1. _g# = min '};TBF where ¥ = pm « €
€ was assumed to be known and B to be block
diagonal. Here we saw thet the multi~level ‘
approach yielded the optimum solution.
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Next we consider

gt =min E §§T Bf} where ¥ = Am + €

where here € ‘is a stdchastic vector with known

mean. Again we found that if B were block diagonal
we could achieve the optimum solution.

Here we had

ge=min P By 4+ W &

subject to ¥ = AW + & where B and C are

block diagonal and € is a known disturbance. We
discussed certain difficulties of comparison with the
wtrue optimalh case; but we were able to show that
this mode of %intervention® always provided a better
control solution than one could achieve by neglect-
ing the cross-coupling terms.
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L4« INDIRECT INTERVENTION - STATIC CASE

Introduction

In this chapter our aim is to explore a set of‘control
models quite similar to those in the previous chapter. The principal
difference will be the method of coordination employed by the second
level unit. The previous chapter was concerned with what we might
call wdirect signal intervention® models. Tn that case, the second
level unit was supposed to be able either directly or indirectly to
insert extra inputs into the system at appropriate points. In this
chapter the second level unit influences the outputs of the system
by setting the values of certain parameters in the performance
functionals of the first level systems. As we will see, this method
has both its advantages and disadvantages. Among its advantages
are the followingy It is possible to effect large reductions in
the necessary computing time and memory required to compute the
contrcl solutions. Secondly, it virtually can be applied to all
classes of control problems—at least all thos. for which it is
possible to find a method of reticulation. For example, it is
difficult to conjure up a model used in the area of Operations Re-
search where the direct intervention approach could be applied;
however, the method we are about to describe can be applied in

several situations rather naturally (see, for example, Chapter 8).

Among the disadvantages of this approach is that a

complete closed-form solution is somewhat more difficult than the
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models of Chapter 3. Secondly, it generally reduces the con-
trollability (see Appendix D) of the system and this can hurt

the performance (this problem will be discussed in more detail in
section l4.3) of the system as measured by the performance criterion

of the second level unit.

In short, models to be discussed in this chapter are
inspired by an attempt to trade off controllability and possibly
performance quality against the cost of calculating the optimal

control vectors,

Llll l{odel 1

Again we start with two first level units.

I I, B |
System 1. 1Y _All m o+
T
o Y 1 S R,
g * m:; E{F By 7 + 2/1 1 °® } (hel)
m

where li‘l, m_1 and El are defined as in Chapter 3.
The €'s are assumed to have fixed, known means and finite second
moments. pl is a scalar parameter controlled by the second level
unit. It is also assumed that the first level units do not anti-
cipate the values of P given by the second level unit; i.e. they
wait for the values of g to be transmitted before the values of

the manivulated variables are set. 1 1is the vector Ll, 1y oo 1] e
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Similarly for System 2

-2 2 |

of T Ay m + e
.= £d 7 5 FPae2f, 1@ (4e?)
& ¥ B ¥ r

min
=2
m
The optimal control vectors for the first level units are

| 1
=1 T T ~1
moo=- [An B11 A11] {9 cT4a Bk } (4.3)

o 2
mo = [22 Boo 2<] {B Ky Bzz"}
a
n

where = ) o

Now for the second level unit we pose the task of manipu-~
lating the parameters /1 and ﬂz in such a way that the neglected

interaction (via A12’ A21) is at least partially compensated.

We let

AR AN
1’/2 y ¥y m
¥ is a vector of fixed quantities.
. 2
}—'1 =A; Tl App B * s é‘l (4e5)
=2 _ nE =2% =
Y Ay T +A, T+ €

using (4+3) with (L.4) and (4e5) we have
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gB* = m:Ln E b11 + A bio * %q * Yot gﬂ (4e6)

)
B [/1 hiit Fabp+ %t ¥yt e]
~
+2 [31 b1 % Fobp* gy + ¥pp & €1J Bia | AL 01 % £ by
+ ?l- 1+ ;1.92 + e{l
| = e [
+ [/1 Vop *+ Ao o d 21+ upp * €£| Byo A1 021 * A2 b3
*F ot %0t 52]
T ]—1 -
-A T Eu By Ap| - 1(-‘11311 b

= . L
- -
e 1-7 T N T =2
#r % Laz 22 ‘"2;] 1-%, [“‘22 Paa ho2| Ao Pap¥ }

where (:1 = [Cl cao CE" 62 = [ck 4100 Cn_,

o}
=

]

~3
o

~1 T -1

- T T _ T 1
011 = Ay | A Bn A:&ﬂ 1 Y= lfu B AIJ App Buge

-1
a1, T = _ -l
=B An c!
-1

- = _ 1-2
P12 = A1 [‘?2 Ba2 22_] 1 #Fp T Al e
0, =8 1a g Yoy = 2
22 22 22 2 " ¥

-]
1]

‘ T ‘ -1
21 = A [ A7 Byy Alﬂ

B is not necessarily block diagonal in this model but it is assumed

Fo1 T Ao Ay v

symmetric and vositive definite. After some painful but simple
manipulations, one could take the expectation and the derivative

of (L6) with respect to .91 and ¢, and equate them to zero to
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find the optimizing values of B 1 and B ne A brief inspection of

(4s6) shows that one would get two equations of the following form:

a, ,41* +ay okt (4eT)

by A+ b, gk + Dy =

1%
This can be solved for @, # if # 0.

b1 b2

|
o

1
o

We could now substitute / * and /2* back into gy*
and compare this with several possible alternstive control modes and
for several classes of disturbance vectors. However at this level
of complexity this sort of work is vrobably best left for numerical

.experimentation on a digital computer,

We can, however, compare this control mode with the case
where the system is reticulated but the interaction between the
reticulated parts is completely neglected. This case differs from

the model just considered in that no second level unit is considered

and hence /1 = ﬁz =1,

In the model just considered assume that e-i = |Ii with

probability 1 (deterministic disturbance). Let gr¥* be the optimal
value of the system performance functiomal for the indirect inter-
vention approach (Model 1). ILet gyr* be the optimal value of the

I
system performance functional for the case of neglected interaction,
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Theorem 4.1, Bry* < eyt

Proof Let gn* =’lj;?2 £ (iol’ Pz, -é) =f ()pl*s/?*’ é)

/l and /2 =1 are admissable values of the control variables.

But £ (1, 1, £) = gyp*s Therefore, since f Bxs po* €) < £(1, ,€)

gn* ngI* Q.E.D.

Next we will prove a theorem which illustrates the difficulty
of comparing two comtrol modes on an absolute basis when the input
disturbances are stochastic. We can view the processes we have
treated as being control problems which srise at regular intervals
in time but each interval!'s outputs and performance functionals are

statistically independent of those in preceding intervals.

Theorem 4.2, Let{gi} for 1 €I (I is a denumerable
index set) be a vector-valued independent random process. Let ?i

be the output variables associated with the sequence of control
vectors Ei o Let g (ﬁ’x’i, ?i, Ei) be a sequence of performance
functionals for 1 € T . Consider two different control modes yield-

ing }-'il, ﬁil and }712, ‘r'n-iz respectively, Assume there exists a

-1 -1 =
sequence {k} for k € I such that P /g (y, > m ) =
Uk Yk Tk’ Bk

OO
8y (sz, mkz‘, Gk) > (9 = Pk > 0 and further 2 Pk =02, Then
k=1
almost surely for an oo number of points i € I the performance of

control mode 1 will exceed the performance of control mode 2.
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The proof follows directly from the Borel Cantelli Iemmas. See,

for example, Doob.(g)

Essentially, then, if it is possible for one control mode
to be better than another (for its utility functional to take on
a higher value) and further if the sum of the probabilities of this
event taken over all time is unbounded then with probability 1 this
event will occur not once but an infinite number of times. However,
it is still possible for one control mode to be better than a second
on the average and still have the second better than the first for
an infinite number of points in time. We have stated this theorem
to point out the difficulties involved in comparing two control
modes on an absolute basis when the system being modeled is subject

.to probabilistic disturbances.

4e2 Model 2
We next consider a model where the ®cost of control® enters
the performance functionals as a quadratic term instead of linearly

as before.

System 1
T T '
=1 -1 =1 -
g* = min [}y B, 7 + ﬁ& Gy m ] (4<8)
El
=1 _ 7 =1 =1
subject to ly —All.m € .

In this model the terms éi are considered to be deterministic
and known. The method of attack for probabilistic disturblnces.has

been outlined in previous models.
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System 2
= min —ZT B 7 * 52 ¢ ie
gt =m2 |27 B *Ba2™ O
m
subject to 2}-'2 =4y v + §2 .

(4e9)

Again the quantities /i are ®cost" variables manivulated by the

second level unit (System 3)s From the point of view of the first

level systems the ﬂi

are fixed parameters, i.e. they do not

anticipate or predict values for these quantities but rather wait

for the second level unit to communicate this information to them.

The optimal values for % and B are given by

T =2

-1
o T
m [‘22 Bop App * Cyp /2] Ay By, €

Now for the second level unit we have:

~T - =T -
= mi +
[*4 n {By B 3y m* Cm*}

3
ﬂljﬁz\
-l*_
m Cll 0 Bll 0
™ =| 2% 9 c = ’ B
m 0 Gy 0 By
1] ] ~1 =2 =1
¥ F AT A E 4
y = ‘ ’
3 =2 =2 _ ~14 —2% =2
e ¥ Fhym 4+ Apm 4+ €

-1
=1 T T =1
mo=- [An ByyA1n * Cn "91] A7 By €

(4.10)

(Le11)

Again, the second level unit attempts to set fi in such a way as

to compensate for the irteraction terms neglected in the models of

Systems 1 and 2.
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Naively we might substitute (4.10) into (4(11) and attempt
to carry out the minimization analytically. However, it is hare

that we begin to run into difficulty; for /ﬂ and /2 are contained

1

in the inverse of a fairly complicated matrix and hence enters gB*

in a way which is quite difficult nnalytically.t We will employ

the following theorem from lelor(al) to remedy this state of affairs.

Let [X ] be the space of all bounded linear operators defined

on the Banach space X mapping X into itself.

Theorem .3 Ir 4 €[x]  ama[3]> l A“
1

where ||A|| is the norm of A——P (A~ A) " exists and is con- °

tinuous and (A - A)-l y = u An-l y for each y in the range
1 o=
of A - A. Further since X 1is complete (A - A)-l =22"“ An--l.
1

(See Appendix (A) for definitions of the terms employed in this

section).

Since we have assumed that the vectors ¥y -, m are de-
fined over Euclidean n-space, the conditions of the theorem regarding

A are satisfied.

Now we return to the problem of finding a tractable expression

for ml'l_!: and m2*.

tIn numerical treatments, though, this is not particularly
alarming. If all of the numerical values of A, B, C and are
specified we have a fairly simple search problem in two variables.
However, we would like, if possible, to offer an approximation theory
for such oroblems.
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- T 1
m, * [11 Biy Ay * Oy p] 11 B, € (he12)
1 7 1
=-Cn E‘u By Apy Cpq e ﬂ] 11 By €
__, T 6.1
Let T, = A11 B11 11 %11
- T -1
my* = [£ A11 B11 €
, I -1 P 2
Similarly T, = [ﬂ A22‘ B,, € (4e13)
where T, = = A A ~1 .
2 22 Bop Ay Cgp

Now for Vll > “Tl” we can invoke theorem L.3 to express
T g TR
— n _ n- _ =n . n=1
Izél-'rll = 1/3{ T, and [/Q-TQ = 5;_)#2 T,

We can now truncate these series at any point depending on the de-
sired degree of approximation and using the resultant apnroximations
for (Le12) and (4.13) we could solve (L.11) analytically. As can
be easily verified, the truncation of the series above at the first

-1 ] T

terms, i.e. (/41 -7y ?} and (,62, - T,) /;/- yield a set

1 2
of simultaneous linear equatiomns for the optimal values of/l and /6)2"

The approximations developed above are valid for

I/)i[ > “Ti”' On the other hand for small ’Ai we can approximate

Efi -7 ij by ~T 1_1 and hence we have a valid approximation
for both large and smllﬂi.

For a qualifative comparison of this model with the case

where the interaction between first level units is neglected we
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invoke theorem Le¢l. The proof must be slightly modified to account
for the change in the pnerformance functional from model l. Herce
we can say that no matter what the (deterministic) disturbances &
are the indirect intervention approach yields better performance

than the one obtained by neglecting the first level interaction.

Le3 Model 3

In the previous model we considered indirect intervention
in the case where the wintervention parameter® was inserted in the
term which yields the "costs® of manipulsted variables. We now wish -
to insert the "intervention parameter® in the term of the functional

which sets the Wcost® of 7 B .

System 1
T T
* =1 =1 =1 =1
gy min I:ly B11 W /l +m Cll m ] (4.13)
m

System 2
*_min | 5 8 A v o, B Lo1k)
B TR | B ¥ o 22 (be
m
subject to 25"2 =4y, 372 + €2

The derivative of g with respect to wi yields

-1 -

T
1 4 _ . _1
A Ay By (Agy B 4 €)+C, & =0 and if we let A = 3

LY
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we find

~i _ T 2T g =1
m [;‘11 Bij Ayy *Cyy 1] 11 Byy J (4+15)

If we look back we see that (L4.15) has exactly the same form as
(k+10) and hence we need go no further. Unless there have been
special restrictions placed on the fi s this form of intervention

is the same as that in Model 2,

LJdy Indirect Intervention

Iet us consider briefly what precisely is involved in '
what we have called ®Indirect Tntervention®"« For a single system
or subsystem let us consider a 2n + 1 dimensional "system space",
and let the first n axis represent the control vector components
m. We will call this the "control subspace". Along the next n axis
are measured the disturbance components €. This is the "disturbance
space", Along the last axis is measured the "qualityw of perfor-
mance as measured by the performance functional. Therefore it is
agsumed that if one picks a poimt in the "controlt subspace and a
point in the tdisturbance® subspace that a particular value of the

"quality" component is determined thereby.

We note that in the previous problems
[ml (ﬂl’ El) 9 m2 (Fl’ él1) AR m'k (ﬂl’ El)] and
2 ["‘k+ 1 (B &) oo m (B éﬂ
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Now when these vectors were substituted into g3 we had

» =/m.:m g, (4 1 ,32, €). Therefore where we began with a
1772

€y

problem in n  controllable variables we now have a prob];em in
only two manipulated variables, The questions we would like to
answer are: 'What is the geometric countervart of this process?®
and '"What did we lose in quality of performance?® The answer to
the last question depends, of course, on the specific system and
the particular disturbance vector €. The first question, however,
can be answered as follows: We have introduced a two parameter
family of curves into the "control subspace® and the resultant con-
trol vector must now lie somewhere on this surface. Fig. L.l

describes a simple case with two m control component.s and a single

A

Fig. L.l m,
mo=m (A - x
m, =m, (ﬂ) *
b |

Where originally any point in the m, m, plane was an admissible
control vector, now only those points lying on the one-parameter

curve K are admissible. Therefore we traded an optimization problem
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in two variables for one in a single variable but we rsduced the

set of admissible control vectors in the process.

Summary

In this chapter we introduced a new method of eecbndtv level
fcoordination® and we investigated its properties by employing it
in three different models.

Model 1

- T =1 . T .=l
First Level Units g.# =min 2{...1 By ¥ +2/iil°m}

- y
m
subject to ii =Aii iii + éd’ i=1,2

Second Level Unit g4* = min E{.?T By + T ﬁ'—}

1’/02
where 7 = AR- + &
Model 2
First Level Units # = min ("iT B,, 7 ¢ /f EiT C i‘i)
B* =0 W Pu¥ i 1
m
subject to ;i = Ay el éi i=1,2

Second Level Unit By* = min (? By + &7 cm
Frte

b}

where y = Am: ¢ €



Model 3
Pirst Level Units g, # =mn ( "iTB gt c,, &)
ve &y s Ay ¥ By ¥ i
m
where§i=Aiiﬁiﬁ-ei 1=1, 2

Second Level Unit (Same as Model 2)

Conclusions:

l. For Models 1, 2 and 3 with deterministic distur-
bances, indirect intervention always yields better
performance than that achieved by neglecting the
interaction between the first level systems,

2. Indirect Intervention reduces the controllability
of the original system by reducing the class of
admissible control vectors.

3o It is irrelevant whether the second level unit
fixes the tpricem of the control vectors or whether
it sets the penalty "costh associated with the
outputs. Both models of control are equivalent.

4o Tt is usually impossible to compare the perfor-
mance of alternate methods of control on an absolute
basis when the system is subject to stochastic
disturbances.

Applications

See Appendix (C).
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5. DIRECT INTERVENTION - DYNAMIC CASE

Introduction

We will leave the domain olf statics and consider now a
class of multi-variable d}_’n{mical systems. In particular, our
representation of the system dynamics will be in discrete time. The

basic dynamic model will be the following:

Ve o1 AT, +m 4 €t+l’§o=6t=0’ 1, oee  {5.1)
The quantities {yt} are n-component vectors of state variables.
A is an n x n non-singular matrix. {mt} are n-~component vectors

of manipulated variables. The {é t} is an n-dimensional vector valued

random sequence with known means, i.s. B (ét) =‘T+,° We assune
E(e‘yft)”’ if t#£) and E (€, °€,) <.

Mathematical models such as (5,1) may be taken to mean that
significant changes in the system take place only at evenly spaced
intervals in time. Alternatively, we may interpret (5.1) as
observations of a continuous systemt taken at discrete intervals
of time. The {mt} are assumed to be constant in the inter-sampling

{

intervals. - !

Similarly the presence of random disturbances {G t} can be

viewed in two different ways. We might assume that

1:"I‘he behavior of linear systems in the inter-sampling period
has been explained by control theorists. (1l)
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Vo 41 TAY vy 4 (5.2)

is an exact model of the system dynamics but that certain external
influences affect the state variable and are accounted for by the

term € in (5.1)¢ Alternatively, we may assume that (5.2)

t+1
is an inexact model of the real system and hence the term €

t+1
accounts for the difference between the predicted values of the
state variables and those that actually occur. We assume, in both
cases, that the (é's) are observable after the fact, i.e. at
time T =T + 1, et’ €y _q o0 el are all known.

While it may apvear at first glance that a model such
as (5.1) is highly restrictive and speciszlized, certain techniques

of substitution can be used to reduce any model of the form

. | -1 1 1
Toa1 "M Tt oo ATy L a1 * B 1408 4

to (5.1) by a suitable relabeling of the variables.

The over—all system optimization problem is:

N
gt = max E E : {-};t'l' B ?t “-.mtT o] mf} (5.3)
- t=1 ‘

m m
90 n

subject to:

<l
]
o}

Yo 41 A v M a1t €4
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5.1 Model 1

As in Chapter 3 and 4, we construct the two first-level

control problems as followss

System 1

N o, 7
_ 1 a = _1}
g* = 'i,ilmmn E{E Wy Byy 7y ~ By Oy Wy (5eb)
=1

1?1 refers to System 1's model of ?% = [yl (t)s v () oo ¥y (t‘)]‘i

=1 = =1 =1 %1 _%_ -1
lyti-l_Alllyt—'*mt-&l*ét...l’ 173~ ¢ (5.5)

Similarly for System 2;

N

B* = nl.m E Z Bae 2’t 1-, 2y t} (5.6)
t=1

72 = 2, =2 ~2 =2 _ =2

M a1 A Vg My 1%€ta FoTC (5:7)

Now we form a second level system whose function is to compensate
for the neglécted interaction between the two first level systems.
T

N T 5
2 a2 O a4
1 a™xy ELS T SFy By oy “Ry On "lt§(5°8)
Nsngeee g t =1

*

)

I | oL, e 1 a
P o1 AN Ty A T v M L1t Ry a1t € an

and
_ N 2 2 =2 )
g*= é?“‘x_a E4Y S Wt B ¥t “he Cop W ¢ (59)
K]., %9 N t =1 ‘

2 -1 2 2% 2 2
Wt 41 A213'1-,""‘223'40“%-&1*’'u»,+1 €y 41
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It is important to note that in this representation the second level
control -agtion is decomposed into the determinations of two functions,
'Z'%* and /7_':‘ « In order to perform this split succeesfully it is
necessary to ignore certain aspects of the system dynamics in order

to aveid having the second level unit solve a problem of the same

dimensionality as (5.3).

We assume that at time t+1 the sample value of the outputs
fr't are known or measurable by every subsystem without error. We
visualize that at time +t+1 the operation of the decentralized
system proceeds as follows:

=1 =2
1., Systems 1 and 2 measure Ve and Yy respectively.

2. Systems 1 and 2 optimally determine fil*

s a1 and

2% 4

oL respectively.
o A
3 MLy are communic_ated to the second level unit.
4. Second Level Unit (System 3) measures }i.

-1 —1 =1

5. System 3 computes A a1 using moal and Yyo

6. System 3 computes ,I:**l using Ei**l and ?’t.

7. All decisions are implemented.
Hence when system 3 determines E% 41 it measures ?'21’. and uses it
in the optimization; thus it completely neglects the déffect that

{t +1 will eventually hlye on ?i .1 A similar remark apolies

to the determination of 'fb +1°
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We now proceed to solve the four optimization problems

in Dynamic Programming formalism. For System 1 we let

T T
1,21 1 B T L S, |
8 (€)= max E{lyl Bp 1 -m O @y (5+10)

my

1.1
+S (A c ““1*51)}

where le (?:'l) is the maximum expected "return" for the N stage

=1 _ =1 =1
Y

process given the process starts with o " C e Y is given

by (5‘5)-
Similarly
i T T
‘ 2 -2, _ =2 2 2 =2
8y (&) Tmax B {2"1 Bap 271~ Cpp @ (511)
)
1

2 2 :
"SN-l (A22?2¥m1+-2)§
2&'5 is given by (5.7).

For System 3 we have

T
SNB (El) = m:;:- 2{337%
n

R L |
By 91 - n1 Cupy (5412

, +8° (Bﬁ)}
35% is given by (5.8).
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T T
@ s [ F o, BB o B G
a

L =2
* SN -1 (hyl)
h}’i is given by (5.9).
Note that in each case the actual influence of n‘i‘ Y on

izb .1 and of Vﬁ 1 o0 ?% .1 is neglected. We also note that

if in 3N3 and le‘ we let

L ._2_.1?
g‘l]-c+l*mk+1*"12yk”€k+1’ (5.14)
2 2w 2 _ 2
€k a1*Mea1th Ve TE€, 10

then all four Dynamic Programming problems have the same structure,
i.e. the variables in each pair of problems are isomorphic. Hence
all are mathematically equivalent to the problem
(3) =max E47, ® BF, -@CH (5.15)
Sy Yy 170 Cm

)

48 (T4 4 gl)}

Yy, =Ac+n ¢, or in general T a1 AT +0, 1 %€p 41
The general solution for Mg is of the following form

(See Appendix B).

(5.16)
El‘v.*-k =HN -kAE*GN -k vhere T is current state

of the system.
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H'M—k.:(c."BN-k)mlBN--k’ BN-k=B*AT1‘N_k+1A (5417)
-1 -

Oy~ = (€ =By _ ) BN_kpN_kMTsN_k+1] (5.18)

&N-k=(1”’n-k)TBN-k(I*HN_k)-HNT_k.CHN_k (5419)

- -1 -
Hy=(C-B)"B @ =(C-B) B By = B (5.21)
S\ +17° by =E (€y) (5+22)
Therefore
- 1% _ 1 -l 1
e I SR U R Y (5423)
— 2% 2 =2 2
By ek “Hy kB Yy ok-1*% -k

i . .
HN -k is identical to HN _g in (5417) except that A—hy g

B—3B;,, C—C,,, T—e, gt

1i? (——means ®is replaced by")

Sintlarly for ., and q? .

For Q—N*E i, and /'{'N*E x e have

— %l = w3 =1 3

Pp -k "l -k Tw-k-1*% -k (Se2k)
— n2 - =2 L

’ -k"Hll;-I\: N-k-1"% -k
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T
HN3- g 18 identical to H.Nl_ x except that €£L——)€l and

T ‘
;T-l——}E (e'l )¢ Similarly for HNh_ k and GNB- K and GN""‘_ K
Therefore the true outputs of the system are:

=l - =1 =2 1 NE
Yo 41 TA Yy A Yy 1,.*?% a1t 1 (5:25)

=2 _ =1 —2% ~2% =2
yt+1"A21yt+A22‘-¥i*mt+1 *Ne+1%€t +1

where the m's are given in (5.23) and the YL?s in (5.24).

Now that we know the specific form of the decision rule
we can conceptually compare the performance of g as given by
(5+3) with, for example, gy + g, a° given by (5.8) and (5.9).
These quadratic forms become random variables whose distributions
are determined by the joint distribution of the de_'s. nddloton(l7)
has shown that if the E—'a are generated by an independent gaussian
random process then any positive definite quadratic form in the
€'s is distributed by the Non-Central Chi-Squired distribution.
’ Approximation techniques(2o) have been developed which reduce the
Non-Central Chi-Squared distribution to the Normal distribution and
since the sum and difference of Normal variatées 4is again a Normal
variate we can find the P ( g - By =g, > 0 ), 1.6 that decentral-
ized approach yields a better value of the performance functional

than the "centralized" or ®integrated" approach.
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A careful examination of equations (5.4) through (5.9)
brings out an interesting conclusion; if we modify the first level
performance functionals appropriately then the second level unit
does not appear to perform a useful function; in this senae., then,
a 14- 2;) system is equivalent to a 24 - 3;/ system. This is due to
the fact that the two functions assigned to the second level with
a view to reduction of the dimensionality, can as well be located

in the first level units.

5.2 Model 2

In the models previously considered we have assumed that
the performance functional was separable, i.e., Block diagonal,
but that the "system™ matrix A was note In this section we will
demonstrate a method which transforms the original problem (5.3) into
one where the tay stem® matrix is diagonal and hence separable,
Unfortunately, the conditions for separability of the transformed
performance functional are rather restrictive. We note that if
both the performance functional and the A4 matrix are block dlag-
onal, i.e. separable, then the over-—all problem can be decomoosed
into two or more comnletely separate problems. In our language this
means that the first level units can work completely separately

and the over-all system performance will not suffer as a result,

We begin by considering (5.3):



S

£ {57, -% o5} (5.26)
gt =  max E Y . Y. BY, -m_ Cm 0c0

We will assume for this section that the eigen values {){} of A

are all distinct and that none are zero. Hence(s ) there exists a

transformation 8 such that ST A 8= A where
2; 0 0 . 1 0 e0e O
1\A= 922.... and further ST 8 =T= [ 0 1 4.0 |
: o oN e . o [EEXYX ) 1
00 .../\n .

Therefore from (5.26) we have s’ }7£ e 1 =gt ag sl ’y't + sT “—‘t +1

T
8 € a1

-8 . =3 = al =
Now let Ve a1 S Tt 4 12 Mmool 8 B o1’ and

+

é’: a1 SI é-t + 1 ° Therefore the verformance functional becomes:

N - N
o=  mx, B tg,‘lgs T BT - 3w ¢ (5.2m)

={v\ax E 2}?{?21"3"3'3?5-521‘31'03'#;}

Now it is knovm(s) that if A, B, and C are simultaneously
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permutable, i.e. if A B =B Ay AC =C A, etc. then
b

l 0 0000
T ° T
SBS=—AT= 9@?0000, .ndscs=._/\c.
00 oy
000080

In this case then we can split the over-all problem not into two
subproblems with several optimization variables in each but into

n single variable problems each of which is complestely independent
of the others. Although the aforementioned conditions are rather
restrictive they are well worth examining because of the complete

separability which results.,

Summary and Conclusions

501 MOdel 1
A class of system models which possess significant dyna-
mics were formulated and the method of Direct Intervention was dis-

cussed as a method of coordination for the second level unit in a

2l - %;y/ system. The associated analytical work involving the solution

of a Dynamic Programming problem was carried out. The Dynamic Pro-
gramming solution represents a slight extension of the work of
Adornou(l) The possibility of the comparison of this decentralized
control system with the tintegrated" approach were discussed and

the analytic difficulties noted. Approximations were discussed

that could be used for comparative purposes if the system parameters
were known. In conclusion it was noted tha£ this method of inter-

vention leaves much to be desired in that, except possibly as a



56

device for the division of computational labor, the second level
unit serves no useful purpose and that this 2¢ - ?}system is

equivalent to a 14 - )/wstem.

542 Model 2

Sufficient conditions were discussed for the existence of
a transformation which completely separates the problem of Model 1.
The resultant control ootimization equations can be solved one by
one independently. In an organizational context the system can be
sepafnted into n independent operating divisions without the need

for a coordinating unit at the second level.

Applications

See Appendix (C).

e ot
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6. INDIRECT INTERVENTION - DYNAMIC CASE

introduction

As we indicated in the introduction, there are two critical
problems in optimization. The firsﬁ is the problem of many state
variasbles, which we have attacked in the preceding chapters. As
we saw in the previous chapter, the counling within the over-all
system dynamics may be of such a nature that it is impossihle (at
least with the models we have been considering) to recouple the
system with a second level controller without considering all of
the state variables simultaneously. For these cases we demonstrated

that a 1¢ -~ %;V system was equivalent to a 24 - 2;p/system.

We are faced with essentially the same problems in attempt-
ing to apply Indirect Intervention from the second level in the
dynamic case. OQur princival effort in this chapter will be based

on an attempt to reduce the search effort required to find the

extremizing values of the variables given that it is not feasible

to reduce the number of state variables.

The number of state variables alone is not the sole cause
of unfeasibility in the computation of optimization problems. The
problem of search for the minimum or maximum, as the case may be,

is also critical in determining the cost of computation.

consider a problem in L state variables and let us assume

we want the solution (numerical) to a problem of the following form.
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I (€95 €y Coy ) = min {g(m,m,m,m) (6.1)
N 1 id » M
22 "3 Y gt T2 T3 Y

' 1 2
" fN - l (T cl’ T ca,olOTh Ch)}

i

The ci are state variables and T are trans-

=Ti
(ml’mZ’mB’mh)
formations which act on the state variables. The particular trans-

formation is determingd by m1 e mh « TWe assume fo (cl, Cor c3,

ch) Z 0, Assume that the ¢, 1 =1 .sa 4 can take on 10 values

i
each and My oeee mh can take on 10 values each. The 10 values of
each of the m, determine a grid in the Cartesian product space

I

Ml x M2 X M3 x Mh which has 10" points. If we wish to find the

minimum by searching this grid we must evaluate the right hand side

I

of (6.1) 10" times for every value of ci; ¢y cy ©) OF

th . L = lO8 times for every value of N« On the fastest digital
computer this would take on the order of lO5 seconds/N. We will
show that by using Indirect Intervention we can reduce the number

of necessary operations by a factor of 102 or€103, provided we are
willing to risk a decrease in the quality of system performance in
order to obtain a s@lution to the computntionni”broblem. While we
realize that more efficient search procedures exist than the complete
examination of the entire grid it should be realized that we are
allowing only 10 sec for the location of the miniﬁum of a function
in L space in the time comparisons above, In addition, in the
..case of 1 or 2 manipulated variables where the objective function

in concave, Fibonacci(h) search techniques can be used which are

extremely efficient.
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6.1 Model 1

We begin by considering a problem where, as before, the

over-all system dynamics are given bys
Yoo 1TAT * B L1t S 4 (641)
¥, = T where the {{i} have the same properties as outlined in

Chanter 5.

In this section we will not concern ourselves with the
utility functional of the second level system but instead we will
concentrate on examining the relationshin between the first and

second levels,
System 1 is given the following problem:

#= min B i R R L 642)
g = _mn _ > 19t By 14 z Mg [ (6o
10Ty t=1

-1-

L

L

|
°L

d & = - -
where lyt-o-l-All 7 * B * €t 41 Yo = t =0)eeeN =1

The vector sequence 'cl'i can be viewed as a sequence of “pricew
or "accounting" vectors which are set by the second lsvel and which
specify to the first level unit the "cost" of a unit of each of the

comoonents of the control vector r_n'i- An exoression similar to

(6+2) holds for System 2. The dimensionality of ai is assumed

2
to be the sime as fii 3 similarly for Hi and ﬁ; .
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The over-all operation of the system described here proceeds

as follows:

ls Information

a)
b)

c)

d)
e)

System 3 (Second Level) knows E ( §y) =y o
System 3 knows A.

System 3 knows complete structure of first level
systems, i.e. (6.,2) and its counterpart for System
2¢ 4 2

First level units know By and By respectively.

First level units know (6.2) and counteripart
respectively.

2. Operation

2)
b)

c)

First level units optimize with arbitrary Ht )
First level units communicate to System 3

i3t

mt (Ei) o
Second level unit sets Hi so as to optimize
over-all system performange.

Now we will actually solve the problem specified by 2a)

because of the rather interesting nature of the solution.

Due to the fact that the structure of the solution is

the same for both first level units we will drop the complicated

sub and superscripting used in (6.2).

We let

S, (C) be the minimum expected value of the per-

formance functional given that we have k decisions yet to make

and given that we follow an optimal policy from the current state <.

8y (2) = min E{(A C4m o+ el)TB (AT +m + €)) (6+3)
m

1

T = - -
+ 24, ml+sN_1(Ac+ml+€1)}
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Similarly

) ‘E’=”’3-.§ E{(A,E*EN‘O- g B (T i+ &) (6:b)

42 E}; rTxN}
- -1 - -
T=-B J - (AT +py) (6+5)
Extending this process recursively (See Appendix (B) ) we

obtain the following expression for the sequence of optimal control

vector:
T"il"-k:lrl(“'ran-ka-l'an-k)‘(“-‘5*‘71~1-k) (66)

k= l’co-N -1

This has some interesting features. First, since there are
as many components in {Hk} as in {Ek} , this implies that this
method of intervention does not reduce the controllability of the
original system. Therefore, if the system manager could have achieved
a given performance with the integrated approach, then the second
level unit can achieve the same performance with this mode of inter-

vention.

Second, since the values of aN-k and %-k*l are set by
the second level unit, they must be communicated to the first level
unit prior to the time it implements EN*-k' However, in order that
the second level unit be able to set a:N-kvl-l’ it customarily requires

knowledge of the state of the system after stage N-k, Therefore
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if the second level unit does not pfedict the optimal value of

'

dN — k41 and communicate it to the first level system, then the

first level system is forced to do this prediction.

If we interpret this result in an organization-like context
we see (at least for this class of dynamic problems) that the planning
function for the manager, i.es prediction, is a natural outgrowth -

of the organizational structure and the environment.

6.2 Model 2

In this section we consider a slightly different form of

performance functional for the first level systems. We will see that
the qualitative performance of the organizationmal structure changes

abruptly from that of Model 1 contrary to what we might expect.
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N T T
= ‘ -l -l R -
g* = jmin , E E (Fy Biy 7 * Ft @, Cyy W) (647)

{ﬁi‘% are scalars set by the second level.

=l
7y 4 1 18 glven by (642).

System 2
N T T
=2 2 -2 . =2
* =gmin o E E (R By o+ 6L CppBp)  (648)
l,oaomN

<2 _ 2 2 2
Tt 41 Aot tBy 41t €y

Again the optimal control vectors for the first level units
will have the same structure and hence we drop the unnecessary sub-

scripts before we begin to derive a solution.

As in Model 1:

(6+9)
sN(E)=m}_n E{leyl-ﬁ ﬁlm le"'su_l(AE+il+El)§
m
1
and 8, () = min E{i‘f,aiw¢ /Nﬁcﬁ“}
Ty
‘ -1
m‘;;=-[13+ﬂNcJ B (A T+ puy)
‘ a (6+10)
[I-(B+ﬁNc)'IB]Ac-[B+,4N€| B uy + €y

eyt &
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Hence by substitution we see that 8, (©) is of the form

5, (3)=ETAN'5+S§3”N | (6411)
where AN is a matrix, bN is a vector and dN is a scalar.

Hence

S, (¢) = min E&AE+EN_1+ e-N-l)?;B (6412)
-1

(AE"'En-l"e-N_l)*ﬁN—lE}TJ-lcFN—l
*(-‘“E*EN__l*G-N_;L)TAN“‘E*EN-I"'G-N-I)

T - - -~
"EN(“°“"'n-1*€N-1)‘”"N)2
Taking the expectation and differentiating, we have

. 1 L
o=@ B_jceny [B Aotuy _y) (6.13)
+ Ay (A.c-.-p,N-l)ﬁsn]
- 7
If we examine (649) and (6413) carefully we can detect
some interesting aspects of the structure of these solutions. We
=% -
see that ﬂN enters into W and W _, contains ﬂN -1

Howe ver Tﬂq* -1 also contains ﬂN in the terms AN and EN N

. —* s
Similarly we see that oy — 2 will contain ﬂN’ /9N -1 and ﬂN

In other words, the second level system must predict the

"price” vectors from the current point in time to the end of the

-2
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d;éision horizon. This might lock at first glance as though it would
overload the second unit to the point where it would make the model
entifely useless, Actually, however, it opens up possibilities for

a large number of interesting alternatives. One of these is an
adaptive prediction scheme where the second level system gives initial
predictions which allows the first level units to find the first few
control vectors and as the process proceeds the second level unit

would update its predictions based on further information.

Analytically this model is quite cumbersome and hence we

will not pursue the maninulation further.

We will now explore a class of models which reduce the
search problem associated with optimization. Model 1 does, however,
show us that we can achieve the true optimum in performance with
indirect intervention if we are willing to use enough components

in the Hi vectors.

6.3 Model 3
We now consider a model where the second level sets the

internal prices Hi only once during the N stage process.

System 1
. N T S . |
e =ping Ef 55 ¥y By o¥y 42T Wy - (6.h)
-1 —
lmt} t =1
a0 1A 1 21 _ -1
vhere (Vi 41 A gt Ty a1t €y aa 0o~ ©
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Similarly for System 2

* -2 ,
m, t=1
2 _ 2 2 2 _=2
2Yt+1"222"t““t+1*€§+1 Yo = ¢

For System 3:

T
72 2
85‘“‘1“ Z( = 37t 11 3Vt ¥y Bao 3”1:} (6+16)

¢

3
»*

-1 _ ] ..
Wy o4l A1 Yy rA YR L

:J’L

b

2 1 2 ,
WYt 417 13%*“223%*“‘1:»,1* €t 41

From (6.6) upon deleting the subscripts we have

-1 .
i _ T i _ ., § _
Mg =By (Ayy =D T -Ay, ¥ g -w (617)

This can now be substituted into (6.16) and the optimization carried

out.

Tt is easily =seen that the model just considered signifi-
cantly reduces the computational problems for the system. First
of all, each of the first level systems is working with a model
with app?oximately one-half of the original variables. The second
level unit is required to carry out only one cotimization in the N

periods, instead of N as in Model 1.

It may be of interest for the purposes of exposition to

interpret Models 1 and 2 in an organizational context. In Model 1
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each worker (first level unit) is paid a fluctuating salary which may
be different from day to dséy. The manager manipulstes his salary in
order to get the optimal amount of work from him. In the second
model each worker's salary is set once and for all (for the N periods),
but again the manager would like to set the salary structure in a

way which will yield the best system performance. This second model
might well form the basis for a model of "management by exception',
where the manager reviews the salary structure from time to time and
adjusts the salary structure hased on a review of the over-all system

performance.

Summary and Conclusions

In this chapter we examined three different models with

an eye to reducing the dimensionality of search in the optimization.

Model les Tn this model we found that if we were willing
to include enough components in the ®intervention vector® ai that
we could achleve the same result with decentralized control as with
the integrated approach. We also found that for this ¢liss.of
models the planning function arose naturally as a result of the or+

ganizational structure.

Model 2, Here we investigated a model which was a slightly
modified version of Model 1. Here it was found that the gqualitative
characteristics of the system operation changed abruptly. The

second level unit was required to vredici the "prices" for the first
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level systems over the entire decision horizon instead of just one

period ahead as in Model 1.

Model 3, Here the second level set one "pricen vector for
each of the first level units and then left them alone. This pro-

cedure significantly reduces the dimensionality of the search problem.

No models were formulated for the derivation of the optimal
internal f"prices® by the second level units. This is an entirely
straight-forward process and would proceed in a manner similar to
the formulation of the modeis for the first level units. It should
be pointed out again that the second level unit will have to include
:li of the original state variables in its optimization, but that the
search will be over a set of significantly reduced dimensionality

(in Models 2 and 3).
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7. INDIRECT MODEL - DIRECT INTERVENTION

Introduction
The models considered previously have had a common pro-

perty: They all required that the second level unit have comple.'te

Jnowledge of the structure of all the systems below it and in

addition that the first level units communicate their decisions teo

the second level before they were implemented. Clearly this places

a great winformation load® on the managerial unit; It is the pur-
pose of this chapter to place a correspondence between solving a
particular class of non-linear optimization problems and the operation
of a decentralized organization. The algorithm developed for the
optimization problem will make possible the synthesis of an organi-
gational structure which significantly reduces the problems of

ninformation overloadn.

7¢1 The Programming Problem

We will consider problems of the fcollowing type.

max g (ﬁl) + g (EQ) sﬁbject to (7+1)
~1 2
m,m -
A (T <ay a >0
il
Aj (m) < a
A;}-«l(ﬁl)‘*a,(-o-l(m)‘x k>0
B, @2) <bg
: by 20
3y (m™) <r§£
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where m'J"—'[ml,...mk] s r'n'2=[mk*l,...mN] and

gy —Ai, -B § are all assumed to be positive concave functions of thei'.r
respective arguments. In this section we will develop a "Decomposi-
tion% principle for the solution of (7.1) so that the problem can be
broken irijbo subproblemg and the resultant solution of these sub-

problems will then be "coordinated® to yield a solution to (7.1).

-

The subvproblems are:
=1 =1\ .
m
subject to A (il) <a
1 -1

A, (-rﬁl) <a

Ay (@) faj

R (@) + A, (8, -8, , () (7:3)
subject to By @2) <b,
By (%2) sb

A

The terms ;{1 (S1 - A;j .l (il)) and A, (52 - BZ +1 (52) )

‘r&quire some explanation. The factors R_l and 12 are Lagrange

multipliers. S8, and 8, are variables such that O <8, <K

1 2
0 <5, <X« By a ®formal solution" to problems (7+2) and (7.3)

we mean @Y (89)s I(sl) and T2 (85)s 7(,; (82) respectively,
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where - (Sl) is ths vector of optimizing values of A oasa
functicn of the value of 8, and ).; (31) is the value of the
Lagrange multiplier at the optimal point as a function of Sl .

Similar remarks hold for mo* (82) and 7(; (32) .

We now require the following lemma on Lagrange multipliers.
Lemma 7-1. (iven the problem
max g (@A) + A (S) - A (B) )+ A, (S, =B (&) ) (7.h)
1 11 2 ‘72
om,m
where, as above, O = Si < X and further g, -A and -B are
concave continuously differentiable functions defined over the posi-

tive orthant of E° (Fuclidean n space).

Define g’ (81,32) = g (Fll* (31), a* (32) )

LI N Y.L PR TN L

LI - Z 1 ——
s, T ij" 8) 3 m, asl/
*
mj‘
n *
=228 2y 4 oap-ay ¥ ¥
I=1tomd  2s) o) 28,

= ALy feE Loarer)an
j=1 bm; am; 381 (7:5)
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oe*

m -
Then whenever a_L is finite, we have .= 2{ because

38, 98,

o8 . oA
- 7(*1' _—

a m: am*

J

=0 1is a necessary condition for the existence of

an extremum (See, for example, ](arlin(n)). Similarly —— = ];

2s,

m) ]

whenever is finite. PFurther AI > 0, i.e. g*, is a monotone

352

function of s_L .
Now refarring to (7.1) we would like to replace
-1 -2 ' |
g =g (T)+g, (W) wth 6 =0, (S;) + 0, (S,) where
i
G, (8,) =g (@ (8;)) »
Hence we require

Theorem 7-1

If §,=0—>F =0
8, =0 —» & =0
thent M
0, (8y) = f:lll ) A +g (0  and (746)

S
Gy (8;) = [A2 (M a4 + &, (0) (7:7)

[o]
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Proofs From Lemma 7-1 we know that

9% =, (s and (7.8)
2s,
20 - ,, (s,) (7:9)
ba2

and further we know by inspection of (7.1l) that ¢ = Gl + (}2 .

S
Integrating (7.8) we find @ = f A, @) T 41 (8,) where
[o]

H (5‘2,) is an arbitrary function of § But (7.9) tells us that

2 L]
S

H (3‘2) = f Ay (T) 47 4 C where C is an arbitrary constant.
o

But the hypothesis of the theorem allows us to evaluate C as
Problem (7.1) can now be reformulated as
max 0y (51) + G, (32) (7+10)
81’82

subject to 0 < Slvtszfl(, Siz 0

There are several sifficulties which may have alresady come
to the reader's attention. The first question which arises is,
®In what sense is (7.10) equivalent to (7.1)?" We might know the

N and not know Ei* + This is due to the

optimal values of the 8§
fact that we eliminated quite a lot of information in arriving at

(7.10)s Secondly, there is the problem of non~uniqueness. We wrote
ﬁi* ‘(Si) as though it were a specific value, but actually it is a

set of values for there may be many vectors 'rii which optimize (7.1)
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for any specific allocation of the Si' Third, the analytic diffi-
culties in arriving at (7.10) will generally become insuperable
for most problams.v In the next. section we propose an operational
procedure interpreted in the context of the theory of the firm

which overcomes these difficulties,

7«2 Interpretation and Operation

We assume that (7.1) arises in the following context.
The performance functional is the profit function for a firm with

two operating divisions, i.e. is the profit function for

€1
division 1 and gy is the profit function for division 2. The
constraints Ai 1 < 1 < j are given by the technology of divi-
sion 1. By l < 1i<g are similarly defined for division 2. The
constraints Aj o1t 31 + 15 K is related to the operation of the
firm as a whole. For example, this constraint might be the expression
of the fact that the total quantity of overating capital available

is equal to K « One avproach to the management of this firm is

to centralize the operation and give one orpanizational unit the

task of solving (7.1) and setting the production schedules for the

operating divisions. This corresponds in mathematical formalism

to a direct solution of (7.1)s A second approach to the management
problem is to set up a planning group for each operating division
and a central planning unit to coordinate the activities of these

divisional planning groups.

O
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Hence in the delegation of responsibility we give division
1 the task specified by (7.2) and division 2 the task of solving
(7+3)¢ The central planning unitts (unit 3) job is to allocate the
total constraint K Dbetween the two onerating divisions in such a
way as to maximize the total profit for the firm, i.e. Maximize
gy + 8y « Now, if we examine (7.10) carefully we see that this is
the mathematical formulation of the central planning unit's problem.
Hence the management of the firmt's operations proceeds as follows:

Step 1. The two first level units sclve (7.2)

and (7.3) for arbitrary 0 <S8, <K and the

Lagrange multinliers are coﬁhuﬁi?ated'to the

central planning unit.

Step 2. The central planning unit then uses the

Lagrange multipliers to construct and solve

(7+10)s The optimal S's are communicated to

the first level unit.

Step 3. The solutions to (7.2) and (7.3) cor-

responding to the optimal S§'s are implemented.

This prccedure, by construction, has the property that it
yields the solution to (7.1). Hence in the spirit of the previous

chapters we would say that the performance of the dencentralized

system is as good as the integrated (centralized) system.

Perhaps at this point a brief specific example will aid

the readerts intuition. Corresponding to (7.1), consider
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max g =m m, 4 mg (’7.1)1

subject to m> ¢ my + ml; < 10

1 - I
We will'seplrate the problem between m, and m3 and hence we sees
that the problem satisfies all of the necessary*conditions for

separability (see 7.5).

max g, =m m, + ?Ll (sl - mi - m2) (7.2)1
m, > 0 T i=1,2

2 1

max g, =m, + 12 (82 - m,;) o (7.3)

subject to mg # m3 < 2 i.e. m3 < 1

m3 > 0
[s 1/
From (7.2)1 and (7.3)1 AI =/ ’ /\; = § 8'2' 2, 8, = 1-
- 3

(7.10)1 becomea
= 3/2 1/2
= 2 8, + 8,

V3

subject to 05 814-825 10

8, =< 42

*(Tho objective function g 4is not concave, however in this
case we will be able to handle the entire problem analytically and
we will not need to employ the Gradient Method.)

-
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The solution to (7.10)% 4is 8] =10, 8 = 0 which yields

m; =0, m = /.1.9 ) my = 20 and we note thet m* substituted

3 i
cqyd *
into (7:1)" is, in fact, equal to gy o

T£ia procedurs will bscome increasingly complicated as the
complexity of (7.1) increases and hence we require a numerical
procedure.. We assume that problem (7.2) and (7.3) can be solved
numerically via iho use of standird linear or non-linear programming

techniques,

We address ourselves here to the probiem of the second

level unit. This unit receives the numerical values of the respective

Lagrange multipliers and from this information alone it must decide
on a method for changing the values of the relati;e allocations of
the 8; + For the case where 0y and 02 are conc-ave functions of
their respactive arguments the ®gradient Method® furnishes us with
Juwt such a procedure. TFor a complete description of this method
and its stability and convergence ﬁroperties we refer the reader to
the 1iterlture.(2) Operationally the use of the nGradient Methodn
would proceed as follows:

Step 1. The central planning unit specifies
initial allocations of 81 and 82 ¢« We will

denote these by sgl) and‘sgl) and sgi) + sgi) =K
for 1 = l, 2 wes
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Step 2. The first level un B solve (7.2) and
(73) with 8, replaced by 83-/, 8, replaced by
N

Step 3+ The numerical values of the Lagrange
rultipliers Agl) and Zgl) are transmitted to
the central planning unit.

Step L. If /?.il) > igl) then the value of
3 = s(D) 4 AW - 2D, o) = gfD) - ()

!

+ Aél)

This process proceed's until lgi) = lgi), at which time the optimum
has been reached at an interior point or it proceeds until

po s =g s =0 ama AP > A o B s{M =0, s{*) =k
and ,{gi) > ,2](_1) s 1.e. the extremum occurs at an end points To see
more clearly where the term Zl - 22 comes from in Step 4 w‘ev notice
that 0 (81,8,) =0, (5;) + G, (S,) =0y (8)) 4G, (K-5;)

o G a S a !
hencea =al¢azaz=al-.az -—.'11- 4,
asl 38, 9s, 38, 3s, s,

Therefore the changes in the Si are made proportional to the deriva-

tive of the total profit function; hence the name "Gi'adient Method "

We note in passing that we can accommodate some relaxation

of the conditions posed in the formulation of (7.1)e First we can

et




it

19

accommodate more than one coupling restriction. Just how many more
is not an easy guestion to answer, since it depends on the computa-
tional complexity of the specific problem. Second we could with
ease extend this to more than two divisions. Third we could accom-
modate any utility function on the part of the central planning

unit of the form H (G, E%), e, (Ea) ), if the resultant computa-
tional problem of maximizing H is feasible, Note that H need
not be concave or convex. This again brings up the interesting
possibility that the central planning unit may give the separate
divisions erroneous profit equations to work with to expedite the
operation of the entire firm. The actual feasibility of this pro-
cedure has to be evaluated in the particular context of the specific
problem. Fourth we can at least open the door to and formulate the
problem of more general structures than have previously been con-
sidered in this paper, i.e. the problem of multiple-level structures,
e.ge m < 3« In our problem K was considered to be fixed by
harsh reality. In fact, however, thié‘could have been set by a
higher level than the cehtral planning unit.' Thélhigher level unit
then has the responsibility for coordinating 2 or more (3-unit)
gystems of the type we consider hers. In the next section we will

formulate this problem in detail.
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7+3 Multiple<level Structures

Consider the following problem;

max 81’(31) + 8 (Tﬁ2) + &, (1'n'3) + 8, (Eh) (7.11)
W, m,m;m
subject to

Aoy 1 (@) +B/‘1(52) *c,*l(EB) +Dy 1y (54‘)5 X
Ay (El) =K
;d(ﬁl) = K
By (B) 5 I
BE(F) < Lg
o) () =¥y
Cp (éB) _<N’

Dy (ﬁh) =P

Bl

Dg(®) = Pg

We will consider the correspondence between the solution of (7.11)
and the problems of decentralized control which might arise in an

organizational structure of the following topology.
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81
%
G21 C22
PIIN 7 o~
4// \\ 1” \\\
G %12 %3 %,
03 represents ths 3d level goal-seeking unit or system manager.

Gyq and G,, ave the second level units (middle management). Gq4

are the first level units. In the language of the General Systems

Theory, we have a 3.4 - &?/ system.

We entrust G, with the task of sclving (7.11l), but we only

3
allow it two manipulated variables. Its problem is to split up the

constraint involving the quantity ¥ and to allocate the total

quantity K to @ and @ in a way that solves (7.11)« G

21 22 21

is entrusted with the job of seeing that gy + 8 is maximjzed sub-
ject to the amount of the constraint X it is allocated and subject
to the restrictions A

G is entrusted with a similar job

17 By ¢ Gy
with respect to g3 + gh . G11 has the problem ¢f maximizing gy
subject to the quantity of the constraint ¥ allocated to it by

its manager G,, and subjmct to the restrictions Aje Gy 172,3,L

21
are similarly constructed.

We will now describe in a rough fashion the way this
structure might operate, and we will assume that the reader can,

from the treatment of 7.3, visuallze the corresponding mathematical



development. We notice that the subsystems (G

82

Step 1. (}3 allocates ]_{ to the second level

units (}21 and 022.

Step 2. G,, using the amount of X allocated

to them by G, pursue the course of action

217 G1pp Gyp) a4
(022, 013, Glh) are ldentical to the type of system treated in 7.2.

]
g

3
outlined in 7.2 until the amount of K 4nitially
allocated to 02:1 has been optimally @pportioned

to the first level systems.
Step 3. The optimal Lagrange multipliers from

the first level systems are communicated to the
second level units. The second level unit

021 then sends 7(1 + 2* to the third level unit.
Gy, sends }g + lh to the third level unit. The

third level unit in the same fashion as the » {
second level unit. in 7.2, using A§ = )l + ).

and 22 Z + Zh changes his allocation of

¥ between the two second level units.

This eniire process repeats until the over-all optimum is reached.

Summary .
In this chapter a "Decomposition Principle" for a class of
non-linear programming problems was developed and numerical methods
were proposed which converge to the optimum solution. The "Decomposi-

tion Principle" was interpreted as a control device for a class of

decentralized organizational structures.

e}
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The extension of the basic model in several directions was
mentioned and a description of its application to a multi-level

structure (m = 3) was given.

The exact requirements for the application of the numerical
techniques of this chapter are that if we wish to partition the
optimization variables Myyeeem into two sets Myseeell and
Mmeoy1ee My then the objective functional must be of the form
g =g (mi,...mk) + g (mk + 1,...mn) where gy are concave,
differentiable functions. The constraint functions F (m) must be
of the form X (my,eeem ) + 5 (m 4 12¢¢+ ) > O where K and B

are vectors of concivo, differentiable functions.
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8. INDIRECT MODEL - INDIRECT INTERVENT ION

AN EXAMPIE

Introduction

+ was decided during the courss of this rssearch to devote
one period exclusively to an exammle which would model a hypothetical
real situation. It is the purpose of this chapter to illustrate
the application of gome of the thecoretical concepts introduced pre-
viously and to provide the reader with an actual numerical example

illustrating the utility of these ideas.

The situation we will consider is the followings:s consider
the operation of three separate water storage facilities (dams) all
located on the same river. These dams are assumed to be located in
an arid country such as Spain and the function of the system is to
store and allocate water for irrigation, industrial use, etce The
hydroelectric aspects of dam operation are not considered here. The
control problem here is to allocate the water available to the system
to the system's customers over the dry period of the year (assumed
in this example to be six months) in such a way as to minimize some
measure of total cost. Rach dam is assumed to have inouts from stream
flows. ;;'isjassumed that these inputs can be described as a
Markov process (since we are working in discrete time--a Markov
chain). This assumption was substantiated by J. D. C. Little(lé)

who examined data from the inputs to Grand Coulee Dam and found

the stream flows to be autocorrelated and essentially Markovian.

oo e
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Apparently seldom, if ever, in practice does the case of (time-
wise) independent stream flows occur. Since we have 3 dams we will

be dealing with 3 Markov chains P(l) P<2‘) Pj(_B) is the probabil-

13’ Figh © Pyy
ity that if the stream flow was 1 units of water this period that
J wnits will be forthcoming next period. The reader will notice
that for the purpose of simplicity and due to the fact tfx;t we sub-
sequently will need to employ a digital computer that we will assume

the water is measured in discrete units rather than as a continuous

variable.

For the purposes of visualization it may help the reader
to compare this model with the Hungry Horse-Grand Coulee-Bonneville
Dam system on the Columbia River. Although the Northwest is hardly
an arid area and hydroelectric power is an important aspect of their
operation, these dams are located in about the same relative posi-
tions as we visualize for our problem. We will denote our dams by
number, i.e. £3 being farthest from the ocean, #2 next, stc. We
assume that if water is released from one of the ®whigher® dams on the
river this water will reach the "lower® dams in significantly less
than one monthe. This is apparently justified for the Columbia
system, The approximate transportation lag between Grand GCoulee

and Bonneville is 2 hours.

Each of the dams' customers (except possibly those of dam
1) are assumed to use all the water allocated to them, i.e. none

is ever ‘dumped back into the river.
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Since we are concerned with an arid region it is assumed
that the capacity of each of the dams is adequate, i.as, dam capacity
is not a constraint.

The cost functions for each of the systems' customers is
assumed to be convex about some desired quantity. Graphically we
may illustrate this as

Fig. 8-1 cost

m unit of water

The cost functions are assumed to be independent from

period to period and fixed for each customer.

Each dam is assumed to have three customers, i.e. 9 in all.
We denote the cost functions for these customers by
gy (ml), g, (m2) vor B (m9) where ml is the amount of water

allocated to customer 4.

Let the amounts of water in the three dams in thé current

3 respectively, Let m=" be the quantity

period be 21, 22 and 2
of water released by dam 3 to dam 2, and mll the amount released
from 2 to 1. We will indicate the scheduling period by subscripts,
L1~ mi is the amount of water allocated to customer #9 in the
first scheduling period. ILet Ii be the amount of input (from

stream flows) to dam 3 1in period K.
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8.1 The Mathematical Problem

We can now formulate our control or optimization problem

mathematically as followss

6 9 3
Minimize E gy (my) (8.1)
ml ml1 i= =
i’... i
i = 1?0006

where E denotes the operation of mathematical expectation. The

variables are subject to the following constraints.

ofmi*mi*mi*mlfzi (8.2)

OS m}l+m1{&m§+mgf z%& 10

05 m.'l’-o-mg&mif zi-&mil’

0_<m%+mg¢mg+m2]iofzi-li-mf-mi¢Ii (8.3)
etc.

Actually, of course, this is a very clumsy way to phrase this problem.

A much neater forumulation is afforded by Dynmamic Programming. 1In

functional equation form the problem isg
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‘ 9 )
123 1.2 3 _ 1
rN (z,2%,27; I,1,1I7) lmin 11 E-:_' gy (=) (8'}‘)
M yeeel i=1

[

& E D p(i) P(z) P(B)

*Lfd L Yo t, N1 1%, \ 2 | r, "o

Ny N, N3

N = 1,¢0eCo £, (eeeefeess) =0 The N, are the orders of the
respective Markov chains. The variables in (8.4) are subject to the
following restrictionss

0 < L . P - (8.5)

0 < mh+m5¢m6+mll< zz*mlo

0 7 g 11

< m +m8+m“< z3*m

The functional fN (esecjeaes) can be interpreted as fthe minimum
expected cost for the system given that the initial state is

3 2

(zl, :2, 3 Il‘, I, 1'3) and there are N decisions yet to make

and further, that an optimal policy is followed.®

It has often been said that "Dynamic Programming (as a
conceptual device) can formulate many more problems than it can solve
(numerically).® The reader has just seen such a case. Il?jflrst of all,
the fact that the problem has six state variables leads lto immense
computer storage requirements, and secondly the maximization problem

is imbedded in an 11 dimensional space which leads to staggering

3
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run times for any conceivable search algorithm. As we will see
subsequently this problem for 6 periods using a very coarse grid
approximation would entail storage requirements of on the order of
107 locations and run times on the Burroughs 220 of on the order of
10‘6 yearss Clearly this i3 not a problem where we can wait for a

bigger, faster machine. If we really want a numerical solution to

this problem we will have to be & little more ingenious.

The general approach we will use here will be the same as
is employed in the preceeding chapters. We will first decouple the
system and solve three separate control problems and then recouple
the system into a 2 level- L goal system where the second level con-
troller is responsible for recoupling in such a manner that the

interaction between the first level systems is compensated.

842 Synthesis of the 2.{- L g/gysten
v

The formulation of the problems for the three first level
systems is a simple procedure. The manager' of each dam is responsible
for the solution of a Dynamic Programming problem for his dam,
neglecting the possibility that he may receive water from the dam
above or be required to spill water to the dam below. For example,

dam #3 solves the following problem,.
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3

3 N
(3) ,,3 +3 i = p(3) ‘
) (27, I’y = min S g m)+ 5 P . (8.6
N 1111,m2,1113 i=1 ’Z3=0 Ia’ ’73 (8:6)

féﬂ (2 - é‘ m® + }L3, {3)} where 0 < Zx_ni < 2
fg3) (e,)=0 N = 1,060
A similar =xpression holds for the optimization problems to be solved
by dams 1 and 2. The f]((J) (1;‘\j s IJ) are to be tabglated for all three
dams (j = 1, 2, 3) and all six periods (K = 1l,+..6) and all feasible
values of zj and IJ within the expected range of operation. These
solutions are then transmitted to the second level unit. Only the £

values are required and not the mi*.

Now we will consider the functions of the second level
unit. Consider f:; (zl, Il) - f; (zl + 1, Il). This is, by the
definition of f;, the sxpected marginal value of water to dam 1
given that N decisions have yet to be made, zl units of water are
now in the dam, and the last periodts input was Il units. By similar-
ly examining ;:1' (zl + 2, Il)‘, f;' (zl + 3, Il), etc., we could by
polynomial fit or similar method construct a function which is
dam'1l's marginal utility function for extra water. Assume this
!.‘unctién has been constructed. We will denote it as G, (mn) since

mll is where extra water, if any, will be forthcoming.

Now dam 2 is asked to solve the following problems
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find

m,m ,m ,m

A 6
2" , 2 2 i 11
ty (2, 1) = ) smig 11{ Eﬂ.: g (m) =0y () (8s7)

N
2 : 6
(2). 2 2 1.1 ‘
C SR gy i (- Som o-m 4y )
= b=t

Note that in the right side of (8.7) we are using fs_ and not

t
f;-l’ hence this is a single optimization problem and net N preb-

1

lems, becauses f2

Nl has already been tabulated.

Now exactly the same process is repeated for dam 2 that

was carried for dam 1, i.e, I; (22, 12), f: (z2 * 1, I2) soe are

used to construct 02 (mlo) « Dam 3 is now asked to solve ths
problemg* find

3
34,3 3y = 1 10
7 (27, I7) = min g, (m) =@, (m 8.8)
3 (22, I DS RN Cae B
m,m ,m” ,m i=1
N3 3
3 3 3 i 10
+ 2p§)3,,(3 faa (= 37w -w0e )
'Z3=0 i=]

The results of this optimization are then implemented, i.e. dam 3

gives ”mlg units of water to customer 1, ma*

10

units to customer 2,

etce, and m units are spilled from dam 3 to dam 2.

Dam 2 now finds the optimal values of mh, ms, m6 and m11

t :
corresponding te f2 (z2 + mt0

N ’ 12) and implements‘them;
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Dam 1 then finds the optimal values of m7, ma, m9

11, Il). These are then implemented.

corresponding to f% (zl «m
Thé inputs from the streams are assumed to occur at this point,

and the process repeats.

The function of the second level unit here is the administra-
tion of the recoupling nrocess and specifically the construction of
the functions Gl and 02 from the separate Dynamic Programming

solutions.

! 7 Although the recoupling process is lengthy to describe it

is quite efficient computationally, as we will see.

843 Computational Results

The entire process described atove was programmed for the
Burroughs 220 Computer. The following simplifications were intro-
‘duced to cut "run® times to a minimum.

1 1 2 2, 2 "2
l. gy (m7) =(m" - 1) gy, (m7) = (m” ~2)7,
3y = 73 4
gy () = (2 - 3)
24 8, and 37 have the same form as g9 gs and
gg have the same form as €ps and &g and g9
have the same form as gqe

3+ All three dams were assumed to have
identical input Markov chains.
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Le A simple 2 point guadratic fit is used to
obtain the G, using f; (z, I) and
x N
r; (2 +1, I) and £ (2 + 2, T)e

The input process f;)r each of the three dams was simulated
for each of six periods and these inputs were used to simulate the
decision-making process. The Dynamic Programming solution took
roughly 10 minutes on the 220 and thereafter the complete simulation
of the six decision periods, including the random input generation,
averaged about two minutes. A total of 11 complete six-period

simulations were run, i.e. 66 decision periods.

The following modifications could have been accommodated
and still keep the D. P. calculations and one simulation to on the
order of one hour run time,

1s 3 separate D. P. programs instead of one.

2. larger Markov chains, up to possibly 8 x 8.

3+ Non-stationary cost functions and/or
Non-gtationary Markov chains.

Ls More gophisticated fitting procedures to
obtain the Gi‘

5. More periods than sixs

For example, the Pll element tells us that if we received

0 units of water last month we will receive 0 units this month with
probability 3 .
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The method of search employed in the program was simple enumerative
search point by point. A more sophisticated technique such as
nSteepest Descent® would meke the comoutation of much finer grid

sises possible.

We will now compare the storage requirefients and #run" times
-of this simulation to an estimate of the requirements for the solu-
tion of (8.&). We will assume that the average grid size per state
variahle\:.was 10, i.e. the solution was calculated for 10 values of
each of the state variasblss. We assume that the number of scheduling
periods is six. A little arithmetic will convince the reader that
the storage requirements for the solution of (8.4) is on the order
of 107 memory locations, while for our routine the requirements
can be kept to well under 1 h. Therefore if the cost of computation
goes up linearly with the number of required storage locations the
ratio of the computation cost of (8.4) versus the procedure outlined
in 8.2 is on the order of 105, i.e. the solution of (8.4) would be
at least a thousand times were costly than the approach outlined
in this chapter. Actually, there are no existing computing facilities
with the size required by (8.4), and hence its solution is unfeasible,

regardless of cost.

We now turn to a consideration of the performance of our
methode The following procedure was used to find an upper bound
for the possible performance. If one knew at the beginning of period

1 exactly how much water would collectively be available to the dams,
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and if all that water were available in dam 3 at the beginning of
period 1, then it could be allocated over the six periods in such a
way that no better allocation would be possibles This condition is,
of course, unachievable, but it does yield a lower bound on achievable
costs. This cost is called the "Perfact® cost and is compared with
the costs obtained by our algorithm. A complete tabulation of

results of the 11 simulations focllows,

Run # 1
Period Amount of Tnputy
Dam 1 Pam 2 ~ Dam 3 gost

1 1 1 1 27

2 0 1 2 27

3 0 1 2 27

4 0 2 2 27

5 2 2 0 29

6 3 _2 _2 4
Total 6 9 9 148
wperfect® 1l
¢ dev. from "Perfect® 2.9¢
Run A#2

Period Amount of Input:
Dam 1 Danm 2 Dam 3 Cost

1 1 1 1 27

2 2 1l 2 27

3 2 2 3 27

L 3 2 3 9

S 0 3 2 21

¢ 1 o 2
Total 9 9 13 125
wperfectw 123
¢ dev. from wperfectw ‘ 1.60%



Run /3
Pariod
1
2
3
I
-1
6
Total
wperfect®

% dev. from "Perfectw

Run A&
Period

o\ E W N

Total
*Perfecth
% deve. from wperfectw

Run # 5
Period

1

2

3

L

5

6
Total
*Parfacth

4 dev. from "Perfect®
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Amount of Inputy
Dam 1 Dam 2

1 1l
2 1
3 o}
2 2
2 3
2 2
12 9

Amount of Inpute
Dam 1 Dam 2

+
1

MRONN O b
=] |c> [~ I SRR W

o |

Amount of Inputs
Dam 1 Dam 2

-
— lk‘ M HH N

Dan 3

S|\»HMH

I =]
F’OHOONHE

0 |<D VO A ) E,

Cost
27
27
2l
21
18

& |

123
1468

Cost
27
27
32
23
2L
31

164
156
5.1¢

Ccost
27
27
27
15
24

138
138
040%
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Run # 6
Period

1
2
3
L
s
6

Total

NPérfect"

fdev. from "Perfectw
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Amount of Input:
Dam 1 Dam 2

umlu: M O O O O
cnlho MY RO

Run # 7 ]
Period Amount of Input:
Dam 1 Dam 2

1 0 0
2 2 0
3 2 2
s 1 0
S 0 1
6 o 1

Total 5 L

‘Wperfecth o

gdevs from ®Parfectw

Run # 8
Period

1
2
3
L
5
6

Total

fPerfectn

fdev. from ®perfect®

Amount of Inputs
Dam 1 Dam 2

) Ih? MO DO
O\IF‘ I T

roomwmmg

10/2

Huuor\)v\)g

11/20

Ol—‘\.ﬂl\)l\)l\)g

.-1_5/25

Cost
37
27
27
27
24

e
w7
154558

Cost
37
27
29
2l
2L
21
162
156
3.70%

Cost

37

27

27

12

2L
18
U5
N

2. 78%
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Run A 9
Period Amount of Input:
Dam 1 Dam 2
1 0 0
2 2 1
3 2 2
L 3 2
s 0 3
6 1 0
Total 8 8
nPerfectn
gdev. from nperfect®
Run # 10
Period Amount of Inputy
Dam 1 Dam
1 0] 0
2 2 1
3 3 0
L 2 2
5 2 3
: 2 2
Total 1 8
"pPerfect®
%$dev. from "Perfect®
Run £ 11
Period Amount of Inputy
Dam 1 Dam
1 0 0
i 2 0 0
) 3 2 2
’ L 2 2
5 2 0
6 2 0
Total _8 —-E
"Perfect®

¥dev. from "Perfect®

Dam

H NN

_11/30

Immuwmwg

A )

/30

3

Pam 3

wm

|OHOO|\3N

/17

Cost

L.55%

Cost
37
27
21
21
18

132
126
558

Cost

37

27

37

26

2L

31
182
167

8.25¢

. )
t',..““-’i.. - e ] ¥ 2

e I ot

]
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For the first five rung the average percent deviation from
wPerfect™ is 2.2¢. For the last six runs the average percent de-
viation from WPerfect® is U.73%. The performance of the solution
to (8.4) must lie somewhere between the performance of our algorithm
and "Perfect,* and hence our algorithm performs very well indeed.
Our algorithm's performance is 1_e_sE than 2.,2% from the optimum
achievable performance for the first five runs and less than L.73%

from the optimum in the last six runs.

Summary

In this chapter we have presented a complete numerical
analysis of an example of a 2£- 4 ;/ gystem where the second level

unit employs an indirect model of the first level systems below it

and intervenes in the affairs of the first level systefn’s via

indirect intervention. The model employed by the second level is

indirect because it requires only a knowledge of f(%;t 1) instead
B j b4

o.tA‘va complete knowledge of the dynamics of system i. The inter-
vention i3 indirect because the operation of the second level unit
consists of inserting the factors G, and 02 in the performance

functionals of dam 2 and dam 3 respectively.

-

The optimization problem was solved and the total opera-
tion was simulated over 66 decision periods. A lower bound on the
costs is generated and it is shown that the algorithm's simulated

performance usually falls within 3 to 5% of this lower bound.
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Tt is also shown that the (computation) cost advantage of this
algorithm over a complete Dynamic Programming solution is on the

order of a thousand to one.

pomd  gunsd  pae]  pmed ]
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—
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9. CONCLUSIONS

In this thesis we have investigated a number of worganiza-~
tionalh systems or né - ng’ systems where in each case the oyer-all
system task is the solution of a large multi-variable optimization
problem. Our principle effort was directed toward the development
of efficient ®coordination® and *modeling® techniques for the higher

level or "managerial® units.

In Chapter 3 we introduced the concept of direct interven-
tion, and we found that for certain classes of prcblems the nerfor-
mance of the synthesized 2.2 ~ 2;»7 system was the best achievable and
that for all the deterministic models of Chapter 3 the direct inter-
vention approach was better than simply neglecting the interaction
between the first level units. The limitations of this method in
the static case are that it requires special physical conditions
for its implementation, it places heavy information processing loads
on the managerial unit, and it does not readily extend to more than

two levels.

In Chapter 4 we introduced indirect intervention. Again
this approach ylelds bvetter performance than one obtains by reticu-
lating the system and then neglecting the interaction between
reticulated parts. This method requires no special conditions for
its implementation, and further it significantly reduces the computa-
tional 18ad on the managerial unit. However, this method does reduce

the controllability of the over-all system as viewed from the point
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of view of the highest level unit. This in itself is nc handicap
because it is possible for the pecond level unit to have very few
controllable variables and still be able to steer the performance

of the over-all system to the optimum.

In Chapter 5 we found that the direct intervention approach
applied to a broad class of linear dynamic systems leads us to the

conclusion that in this case the 2.4 - 3;/ system 18 equivalent to a

1.~ 3)) _system.

In Chapter 6 we employed indirect intervention in the
dynamic case and showed that it can be used to significantly reduce
the dimensionality of the search problem. We also were able to de-
monstrate that prediction can arise in an ®organization® purely as
a function of the structure of the system. The planning function
in a multi-level system need not be linked to environmental uncer-

tainty at all, but may be built into the system as a control device.

In Chapter 7 we introduced the concept of the indirect
model, In Chapters3, k4, 5 and 6 the second level unit is assumed
to have complete knowledge of the entire system and its environment,
i.e. it has a direct model of the system below it. In Chapter 7
only one number is required by the second level system from each
lower level unit in any one decision period in order that the second
level unit be able to steer the complete ‘system to the optimal over-

all performance. The feasibility of extending this tyve of model

[ anare o'l

gy g ]

Py
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to more than two levels was investigated, and one class of three

level, seven goal systems was discussed in some detail.

In Chapter 8 we applied the concepts of indirect interven-
tion and indirect modeling to synthesize a 2L - %);/ system for the
control of a 3-dam water storage system. Numerical results were
obtained and the quality of performance as well as computational

costs were discussed,
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APPENDIX A

In this Appendix we will prove several results relating
t o matrix analysis and the theory of operators. It is assumed that

the reader is familiar with matrix algebra and real analysis.

We will define the following notation
m 1ls an n-component constant vector.
€ is an n-component random vector with
expected value E&=p .

A iz an n xn constant vector.

Theorem A-l, B (ET AE)= A n

Progs 1ot F=F A= [ K e By
=T : = = =
m A a = ml eld-mz.ez‘d- XX %en

.{ - =@ ’ :: = - . - .
) A (m Ag) = n'll p,l + m2 p,2 4+ see mr*),n = :r B Q'E.DI
Theorem A-2. AA B = E‘I‘ AT
A s above, let o= E A a=AT®
Pherefore we can write the theorem as mr W= LTT .

B1]

I:ru- =[;1’ ;2'9 ;3 XX ;:51} . ‘;
n

=B op) + Oy g, eee Mgy
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Similarly d (W AR =24, * & d (B A &)
dmi am

= 2 A M

™
but —Tli: ‘e e ;
- = = . = _ S
_ulml*u2n12+'" p,nmn—m Q.E.D.
Theorem A-3. d_ (ﬁT Am)=2AR it AT =4
dm
A - 9 o .
Proof: By _d_ we mean the vector of derivatives d . Am
d m dn
1t
.
d
dm
n
T L
Wy @y) Wy # 0y 8, By +eeem a m . 4 (@ aAm=2a;,m+
dm
1 -
312 m2 + 321 T, + a13 m3 * a31 m3 4+ aae aln mn + a.m1 mn but
= =T my =
84 =8y hence d (m® A m) =2 a), m 4 2 815 My + evs 2 a)
d ml
=2A, %M where A, = |a a sve a T
1 1l 11’ “12? In

By

=2

‘> eco >
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Example. minimize B (?B}-') where Y =Am+ € and B =gt
T
FBF=(AT+E) BMAT+& =a ATBA®
e m AT B?*E’TBAm-O- &l s by using Theorem A-2 we

reduce i'* B ? =@ AII BA®m+?2 nt AT BE+ !:r therefore by A-l,

EF B = AT Bam+2n AT B+ EETB &)

d E(F BT =2ATBAR+2A BT sinceE @ BE) isa
E

constant. If we equate the vector derivative to 0 we have

2ATB(AE4E) =0 If AH0 and BEO E*= -AT§

where m* is the optimizing value of the vector m.

Now we will take the relevant portion of a theorem from
Hnlmos(lo) which establishes the fact that we can represent any linear
operator mapping a finite dimensional linear vector space X into

itself as a finite matrix.

Theorem A-4« The correspondence (established by means of an
arbitrary coordinate syetemx = (xl,...xn) of the n-dimensional
vector space X ) between all linear transformations A on X and

all matrices °<ij described by A x 29{13 N is an isomerphism.

(ibid;) We state without

Proofy The proof can be found in Halmos
proof that it also preserves the operation of multiplication (operator-

matrix) and inversione.

M s
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,
i




- ——_— ——— —— [R——

el s DEEN W W B UM Ve

. B

- p—— D

109

In this section we give the definitions and preliminaries
which are the necessary background for Theorem 1.3 of Chapter lis
The definitions and theorems stated here are taken from selected

‘portions of Taylor. (21)

Definitions.

la The space of all continuous linear operators
mapping the linear space Ex_] into itself will
be denoted by X .

2. If X and Y are normed linear spaces, we
define the ®wnorm" of the operator A mapping

X into Y as
Hall = sup  ||ax[] x € X  where
x| < 1
|Ix]| dis the™norm of the vector x, ||a x||

is the norm of the vector A X € Y.

3« If A is such that the range of . I =T 1is
dense in X where T has both its domain
and range in X and T is the identity
operator, and if I -~ T has a continuocus
inverse, we say Ais in the resolvant set
of T ; this set of values of A is denoted
by p (T) « All scalar values of A not in

€ (T) comprise the set called the spectrum
of T ; it is denoted by G (T).

Le A space X is a Banach space if it is a
complete, normed, linear space.
. (ibid.)
The Theorem .3 of Chapterely is proved in Taylor. Tt is,
howaver, somewhat more powerful than we require, and hence we will

state and prove that portion of the theorem that we require.
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Let [x] be the space of all hounded linsar operators

mapping the Banach space X into itself,
Theorem A-5. It T¢ [I] and |Af > ||| and if (2 1 -'T)\-l
exists and is continuous, then
o
(AT - '1')-1 y= Zh-n -l y for all y in the range
1
of AI-T.
Proofy If y=(AI-T)x then

x=l-ly4... l.nrn-ly" l_n'l'nx

we have the results because AT 1" x—30 when [A] > |[T]]

hence the series converges geometrically in the norm of the space X.
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APPENDIX B

In this Appendix we present the proofs of the Dynamic
Programming theorems used in Chapters 5 and 6.

Consider the functional equation

T
sk‘l (E) = {‘x E (A E + T.N_k + -‘_N-k) B (A E + i;N"‘k + ;N"k) (B°l)
-k

1 - - = -
= Py © Py * S A S+ By, 4 eN-k)}
where E (EN_k) = ‘TN—k and 8 (c) =m0 for all?©.

. T
8, () = max E{(A '6475"4- EN) B(LE-&T\-L EN) (Be2)

my
i, S
-F o5
From (B.2) by taking the expectation and derivative we find
T4 =H kK T4 0 vwhere H, = (C -B)'ls

and G, = (c'- B)'IBE“ .

We therefore state and prove the following theorem.
Theorem B~l. The structure af the optimal policy is

"g;-k = HN-k ACTH GN-k and the solution to (B.l) is

=¢ = T T - ‘ L=
8y (cy =c Kk 74)“_1“1 Ac4+2 § N—kel KT+ ON‘-k-tl whereg
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= (¢ - B, )t B, . =B + Ay A
Hy—k N-k) Py Nk Y Nekeal

Hy = (C -8yl s Gy = (¢ ‘B)-I‘B‘TN
Yoo = (T4 B By (T4 8o ) =g CHyy

s T - T T
Syoie = (T % By)” By (o * Oy = By © G * A Sy
fye1 =0 a1 =0 fray = ©
| LT -
Pk = Bnoiea1 * 2 Sy A (O * i) *

E {‘(GN-k O T By €y Gu-k)f

Proofy We proceed by induction. We have previously demonstrated
the hypothesis to be true for k = 0 by showing

ﬁ =Hg A c+ G, and the hypothesis on § (c) is satisfied as can

be verified by inspection.
Let the induction variable be £ . If we assume that hypothesis

is true for all £ < k-1 we have
-y »T ,T - . -
8 ) T A Y1 AT+ 2 § 1 AT+

Sa1 (B) = T E { ATaT + &) BATHR, + &)
-k

- T"NT-k C Ry * AT 4B+ G MYy LA T T+ €N-.k)

* 2‘3-}«1 AATHE + E)+ 0w--ml}

e——*—*! r-'—-#;
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Taking the expectation and derivative we find
2 - - ~l o a T
Ty = © = Byad By A T4Tyo) %A Syoen

and now an examination of KN-k and QN_k verifies the hypothesis
on m;;mk « Substitution of this result into Sieel (3) verifies the

structure of 8 (©) «

Theerem B-2. The solution of the functional equation

Sy (8) = min E {(A TaB 4 Gu) BUTHE L+ &)

"Nk
 J— - = -
b Ty Dy F S ATy, 4 eN-k)}
where d is a sequence of constant vectors is

i

Sy-k (¢) = SN-k -2 %-k#l AT and the optimal policy is
R =B (F =) - AT )
TN-k Tyieal = Jyei BNk

where Sk = F

k-l *E (<

- - T
N-kel * €Ncisl ~Hyoel) B (Hyopa

- - 4T -
* €Enakel "“N-kﬂ) + 2 %-k*l X yoies P‘N-xcoel)

-2 3)!‘—1:42 Aoty el

-1
ndoty e =BT 7 Ty =T

Proofy The proof proceeds 7by induction in exactly the same form

as Theorem B—l. and hence we will omit it.
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APPENDIX C

This Appendix formulates a possible area of application for
the models of Chapters 3, 4, 5 and é. Tt is our intent to indicate
the general areas of application and to interpret the features of
the models of Chapters 3 through § in the language of the application
areaj however, we will not concern ourselves with the specific de-

tails of applying the results.

In this Appendix we will interpret the vectors ¥ and it
as output vectors of a system which express the deviation in the
system outputs from a fixed operating point, i.ee ¥ =% - 'z'o where
;o is the vector of fixed operating points and % is the actual
system output. The § and Et are to be interpreted as vectors of
disturbances which appear in the outputs and arise from causes exter-

nal to the system. The m and E;, as befors, are vectors of manipulated

variables.

An example of a system whers the disturbances appear directly
across the outputs of the system as they do in'the models of these
chapters is in any electrical generating system. A class of px‘agti-
cal situations where these models might find applicatio; are in hydro-
electric genezlating stations where there are several turbines operating
off a single penstock and where increases in load on one generator

affect the speed of the other generators,
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The System Equations

Tn Chapters 3 and L we deal with system mcdels of the type
Y =AM+ §, Here we assume that ¥ dis a function of time but that
it depends solely on m and € and not on its own past as do the
-it of Chapters 5 and 6. We interpret W in this context as being
the magnitude of the penstock value openings to the rzespective
turbines, ﬁ is assumed to be a function of time and it is assumed
that the variations of m are sufficiently small that the inherent

non-linearities of the system do not influence the model.

A 1s the wsystem matrix® which symbolically transforms
penstock value openings into generator outputs. A is assumed to be
constant. We will assume that the disturbances € are functions of
time buth known, i.e. the fluctuations in load have been previously
observed and are periodic. We make this assumption here to avoid

having to deal with random functions.

The dynamic models of Chapters S and 6 can arise in two
different contexts. First we might assume that the system had
significant internal dynamics, i.e. that the internal inertia of
the system, for examnle, makes the outputs at time +t+1 dependent
on the outputs at time t . Alternatively we might assume that we
are dealing with two different dams located on the same river so tﬁat
the water available to the lower dam is dependent on the discharge

of the higher dam.
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The Performance Functionals

Two of the most important goals of a power generating
facility(lg) are to maintain constant ovtput levels independent of
the load and to minimize the transmission losses which are a func~-
tion of the output levels. We will assume that the generating
facility appraises the cost of deviating from the fixed operating
point io as being proportional to the square of the deviation.
We can state the first goal mathematically as minimize ?T By
where B 1is a positive definite matrix. Tt has been shown in the
literature(ls) that the transmission losses go up also proportional
to the square of the outputs. Hence we can define the control
problem for the system as

mintmize FRF+(F+I) 0 (F+7) .

(C is positive definite)

Direct Intervention

J
13

which occur in the output equations of Chapters 3 and 5. One way

There are at least two ways to interpret the terms A

18 to assume that A3 is a control signal and that the direct inter-
vention procedure requires the capability of taoping into the generator
speed controls at an appronriate point in such a way as to introduce
}11 into A21 and ;',:2 inte A12' A second way is to assume that

the total term, e.ge A12 77_2 s 1is inserted directly into the output.
In this method then one takes the vector signal '—Lz s amplifies it

by the matrix A12 and inserts the resultant directly into the

outputs.
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¢urrent hydroelectric facilitles generally possess the
ability teo implement this procedure directly due to the presence
of lines which allow them to tap power from a neighboring power

system. These lines are known as ®tie 1ines'.(lh)‘

Indirect Intervention

This mode of intervention is concerned solely with the
computational aspects of control and hence has no counterpart in

the physical system.
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APPENDIX D

In this Appendix we will define %controllabilityw in a
manner which is suitable for our requiremsnts and indicate the other. L

uses of the term which are prevalent in the literature.

The concef)t of controllability, broadly stated, is based
on the followingr(lz) Given a sy"stem, a set of required outputs, and
a set of available manipulated variables; is it nossible for each
of the required outputs to select a value for the manipulated

varisbles which will deliver the required output?

Brockett and l(esarovic(é) also define the concepts of

Functional Controllability, Asymptotic Controllability, and
Pointwise Controllability.

For our purposes we will require only a slight variant of
Pointwise Controllability. ¥or Chapters 3 and L we require the

following Definition D-1.

The system modeled by the state equation ¥y =A m + € is
®pointwise controllable® €—> for every point Sf'o - Eo in the
output space ¥ it is possible to select at least cne point ﬁo

in the space M of manipulated variables such that A Eo = 'fo ~€5°

Several things become appare’nt. First, if the number of
components of m 1is less than that of ¥ - E the system cannot be

pointwise controllable. If the number of components m is greater
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than or equal to the number of components of ¥ - € , we must examine
the matrix A. If A 1is square and non-singular then, of course,

the system is pointwise controllable.

What occurs geometrically if the system is not pointwise

controllable? For the answer to this question oonsider the system

equation

where in this instance A = El oee aa and m here is a scalar
quantity. We can regard (D.1l) as expressing the ¥y - Gi para-
metrically in terms of the variable m. Hence (D.l) constitutes the
equation of a straight line in the output space ! « VWhereas if

the system were pointwise controllable we could reach any point of
Y with some =@ here' we can reach only those points on the straight

line (D.l) by manipulating m.

For Chapters 5 and & we will employ the following concept.

Definition 1D-2. ‘ We will define the system modeled by the

equations it#l =A it * Et-&l +* el Yo =¢ t =0, 1, «os

to be ®functionally controllable® &—pevery possible sequence of
values definable in the outout space ! can be realized by the
selection of at least one sequence in the space of manipulated

variables M. T



