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I ment, and application.
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L. Sanders, Graduate Assistant, under the direction of Dr. Mihajlo
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I Systems Research Center.
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ABSTRACT

I An attempt is made to simultaneously develop certain

I aspects of a theory of multi-level systems and decomposition

techniques for multi-variable optimization problems.

Two level-three goal systems are explored intensively

I ,with particular reference to the method of "coordination" employed

by the second level unit. "Direct" and "Indirect Intervention"

modes are explored. The problem of the quantity of information

required by the second level for the coordination of the first

level systems is investigated. "Direct" and "Indirect Models"

I are investigated. The concept of the "Indirect Model" leads to

the development of a Decomposition principle for Non-Linear

Programming. The concluding chapter presents the analysis of a

numerical example coded for the comouter which demonstrates the

utility of certain of the techniques in the context of a specific

I application.
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I, INTRODUCTIONi
1.1 The General Approach

In this thesis we will carry out two parallel lines of

I development. We will derive some specialized mathematical techniques

for the decomposition of large optimization oroblems. We will, in

turn, attempt to place a correspondence between these mathematical

results and the processes of decentralized control such as one might

I find in a decentralized organizational structure. We will also use

the process in reverse, e.g. we wrill consider ce~rtain qualitative con-

cepts from the literature on human organizations to suggest avenues

I of approach for the development of the mathematical aspects. De-
centralized decision making systems have been defined by A. 1hinston.(22)

I t"By a decentralized decision making system we refer to the following:

Given m decisions or actions to he made and n decision makers (1 <n <m),

each decision maker is assigned a subset of the m decisions. For

the over-all system there is given a criterion function and a space

of possible choices involving the m decisions- Each decision maker

is assigned a space of possible choices and a criterion function in-

volving at least the decision variables he can partially or totally

I control.",

I !We hone by adopting this dual point of view to simultaneously

develop a framework for the synthesis of forganization-likell structures

and at the same time use the mathematical interpretation of these

I ?*organizational structures', to develop efficient computational algorithms

I
I
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for large-scale optimization problems. Our results will have applica-
(7t

tion to engineering control problems(7 as well as certain

optimization problems which arise in the production theory of the

firm.( 13)t We mention in passing the similarity of the problems

encountered in these two areas to problems which arise in macro-

economic theory. Extensive investigation of control oroblems in

economic theory is currently underway at Case.(19) We will not ex-

plore this latter area in any detail.

Large-scale optimization problems have been a constant

source of trouble to systems engineering and operations research since

their inception. Roughly speaking an optimization problem will be

considered "large" when the computational requirements which must be

satisfierl in order to find the optimal value of the manipulated

variables exceeds the capacity of current computing machinery or when

the quality of the performance of the system decays significantly

in the time required to compute a new control solution.

To our knowledge no previous investigation has been under-

taken with the same point of view as adopted here although, of course,

we draw on the results of many investigators working in similar areas.

Perhaps a combination of two papers have come as close, in spirit at

least, to our area of interest as any. These are Whinston (ibid.) and

tSee these references for discussion of optimization prob-

lems in these areas.
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Dantzig and Wolfe. (8) We quote from the abstract of the latter,

"...Besides holding promise for the efficient computation of large-

I scale systems, the principle yields a certain rationale for the

i ,decentralized decision process, in ,. theory of the firm ..... "

The first paper mentioned above is essentially a detailed investi-

gation, both descriptive and analytic, of the consequences of this

statement.

1.2 Types of Problems Considered

We are interested here in "large" multivariable optimization

problems of the type which often occur in the control of complex

I systems. Subsequently the reader will often encounter the term

I "control problem". This term should be considered to be identical

in meaning to the phrase "...optimization problem which arises in the

I optimal control of a complex system .... It An exact definition of what

is meant by "control problem" will be given in Chapter 2.I
We attempt an ",organizational,, approach to complex control

problems, i.e. we attempt to break up the over-all control problem

into a number of smaller problems, each of which is to be solved by

I a real or fictitious Itfirst level!, control unit. In addition we

I synthesize one or more 1,second level', control units whose function is

to coordinate two or more first level controllers. By proceeding in

I this way we hope to achieve the following economiest if the process

is a real one, i.e. if the imagined organizational structure can be

I realized, then we will enjoy the benefits of parallel operation in

I
I
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that several parts of the over-all problem will be processed simultan-

eously. If the process is imaginary, i.e. is simply a computational

device, then we have traded the task of solving a large problem for

that of solving a number of smaller ones. In either case this pro-

cedure can lead to significant computational savings as we will see.

It will not always be possible in the models that we examine

to achieve the same quality of perfornmnce in the ,,organizational"

approach as we might have obtained had we been able to solve the

original problem. In the cases where we do not achieve the true

optimum we will attempt to offer a means of computing the difference

in performance between our method and the "true optimum" performance.

The consideration of the best method for breaking un the

original control problem into its respective parts, i.e. "optimal

reticulation", is not one of the problems considered here. This

problem is intimately connected with the concept of "interaction".

No generally accepted definition of this term as yet exists. Exten-

sive work on this and related problems is currently underway at the

Case Systems Research Center.(18) Qualitatively, at least, we would

like to break or "reticulate,, the system equations at those points

where the interaction or coupling is weakest. In the problems we

consider we will either assume that the reticulation is given a

priori or we will perform the reticulation more or less arbitrarily,

without regard to the strength of interaction.



j 5

2. DEFINITIONS AND PRELIMINARIES

Introductica

In this chapter we will state a rigorous definition of what

we mean by "Control Problem", indicating what information is necessary

in order for a control problem to exist. "Multi-level Control" is

defined and the synthesis procedure which will be investigated in

subsequent chapters is discussed. The level of rigor that the reader

can expect and the exploratory nature of the entire investigation

are explained.

2.1 Definition of the Control Problem

Since we are considering the applicability of our results

to three rather dissimilar fields, we will require a somewhat differ-

ent approach to control problems than has customarily been taken in

the literature.

For our purpose, in order for a control problem to exist,

we require three separate statements.

1. Specification of the utility functional. Here we
assume that there is specified, a priori, a func-
tional g(., .. *. .) defined over the Cartesian
product space of the variables mI Q.. Mn, i.e. over
"l x. "~2 xM 3 ... Mn.

2. Specification of Restrictions on the Variables min.
Te assumethat there is specified in advance a vector
function 0 of the variables m1 ... m which specify
the restrictions that the "system" places on the
problem. Written out these conditions aret

I0 (ml "• S O

m .n
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Example 1. For certain engineering problems and
for many conomic model these restrictions take
the form = 0 where' AF - ir- . 3 is a

n x 1 vector of outputs, A is a n x n matrix, m
is a n x 1 vector of manipulated variables and
C is a n x 1 vector of disturbances.

Example 2. in the production theory of the firm we
often encounter the following type of restrictions:
Am - F c0 where a typical element of this vector
matrix inequality might for example express the
fact that the total operating time for any one
facility is less than or at most equal to 24 hours
in any one day.

3. Specification of the Environment. In general we will
assume that the variables m1 ... mk are controllable by
the system or the system manager and that the variables
ML -, . m are not under the direct control of
the system. manlager although in some cases these
variables may be observable. The specification of
the environment will consist of the specification
of a probability density function h(mk ' ... Mrn)
which exoresses the joint probability oA occurrence
of specific numerical values of the external variables.
The density h(mk _]1 ... m ) may take several forms.
It may be a true probability density function or a sub-
jective probability statement or a statement of the
exact values m k + , ... m wil take on (in the
deterministic case• or thenset tk + 1, ... nj may
be empty. We will often substitute the vector 9
for the variables mk + l"" m in the chapters
that follow.

Now given these three statements we can formulate the complete

control problem as follows:

maximize or minimize E g(mI ... mk, mk + 1' .. man) (2.1)

with resnect to ml, ... mk

subject to the restriction T (mI ... mn_) <_0

where E is the operation of mathematical expectation

over the variables mk + 1 "1 mn•nm
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I Example 1

minimize EC (A T B (AT +
over B

whereaEis distributed with p.d.f 4(-).
or stated in the customary way:

minimize E,.yTBy subject to the constraint
over r

y - AR - I=0

I Example 2 N

min E.
zinp 0.. 7 n

subject to = 7 (a constant vector)

and 7j + i =Aj = +i + 1 j + 1

Iwhere j + i is distributed with p.d.f ýj + I(? j + 1).

All the subscripts in this example refer to a time index and not to

i a vector component.

Example 3 N

maximize 2 CA m

subject to L aii mj - bi 0 i 1l, ..
J ±1

-where 0 q Pi C and bi are all fixed constants.

The reader will of course recognize this as the classic linear pro-

I gramming problem.

I 2.2 Optima~l vs. Sub-Optimal Control

The solution to the problem posed in 2.1 will be referred

to as the Optimal Control Solution. By solution here we mean the

I



optimizing values of mI consider In the chapters that

follow we will occasionally consider ways of generating the controllable

variables which do not yield the same values as those generated in.

the solution to problem 2.1. The solutions will be referred to as

Sub-Optimal Control Solutions.-

The work "optimal" here is unfortunately a "loaded" word.

The solution to 2.1 is the "best that one can do" in the context stated;

however, it neglects one critical economic factor--the cost of com-

putation. One might well aSk; "What is 'optimal', about a solution that

will take 107 years to calculate on present computing machinery?" or,

"KWhat is ,optimal, about a solution for a chemical processing plant

whose expected net profit for the year is $10,000 when the computing

machinery required for the commutation of the control solution costs

on the order of 0106?" Contrary to being unusual, examples such as

those just mentioned are quite prevalent in practice.

Very little work has been done on over-all methods of opti-

mization, i.e. general economic optimization, in control processes.

However, the cost of commutation considerations indicates that we need

to examine certain of our prejudices concerning generaldistaste for

so-called "sub-optimalt" solutions, because it is easily possible that

these "sub-optimal, procedures are actually er-onomically preferred to

the "optimal" solution.
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2.3 Single and Multi-Level Control

For the purposes of illustration we will consider some block

j diagrams of some of the control processes that will appear later.

Nearly all of the control processes which occur in engineering and

I many of those which occur in operations research can be represented

as follows:

Fig. 2.1

11 C

I

C is the "causal unit" or "system" or "plant". G is the "1goal seeking

3 unib" or "controller,,. This unit is responsible for maintaining a

model of the process inherent in C and is assumed to have a utility

function. G also has a model of the environment which yields the in-

puts. The utility function is a function of the inputs i the outputs

&and the controllable variables 71" The variables 12 indicate

possible measurements performed by G on C. G is assumed to choose

those manipulated variables 7i which maximize its utility function

I subject to the models it has of the environment and the process.

We will refer to systems such as Fig. 2.1 as 11- 1 systems, This

notation refers to the fact that the structure is "single level"l and

I tisingle goalt,. By "single leveln we mean roughly that no managing

or coordinating controllers are present. By nsingle goal" we mean

1 that only one utility function is involved in the entire system.

I
!
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Almost the entirety of this thesis will be devoted to the

study of the analysis and synthesis of 20- 3 systems. Their block

diagrams will look either like that in Fig. 2.2 or that in Fig. 2.3.

Fig. 2.2. 2

G 1
2

m 1 2

C1 10 2
1i __ 1 1 2'

G Cl

Fig 2--k

m 1 m 2 n._] 2

G3 is, of course, the "coordinating unitI" or 1,managerial unitt or

",second level controller,,. G3 is entrusted with the utility function

of the entire system and with various models of the nbehavior" of Gl,

CI, G2, C2 and the environment.

The arrows 12 and k2 represent the flow of information up

from the "first level" systems and 1 and kI represent the flow of

control down from G 3* The system represented by Fig. 2.2 is dis-

tinguished from 2.3 by the fact that G is employing a method of
3

"Hcoordination"f which we will call twindirect intervention", because
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we note that G3 is attempts to steer the whole system are made via

control-action aimed at the goal-socking units G1 and G2. In Fig.

12.3 we call this "coordination model' "direct interventiont because

the second levelts control action is directed toward the causal systems

I C1 and C2 .

Example 1 mIndirect interventiont'

Consider & decentralized firm with two operating divisions

and a central planning unit where the central planning unit sets the

internal or accounting prices of certain commodities such as staff ser-

vices, etc. In this example the central planning unit plays the role

I of G3 and the two operating divisions are represented by (G1 , C1 ) and

(G 2 02). The control actions ll, and kI are the setting of the price

of staff services for the respective divisions. The method of co-

ordination here is "indirect" because the central planning unit, by

setting the prices, is essentially manipulating parameters in the

I utility functions of G and G2 .

I Example 2 "Direct Intervention"

Consider an international planning agency which is responsible

for the economic growth (suitably defined) of two underdeveloped

countries. The separate governments are represented by G1 and G2 .

Assume that the planning agency decides to give each country a large

sum of money to be immediately injected into the respective economics

(C 1 , C2) in the form of construction spending, etc. This method of

"f"control" would be ',direct intervention" because direct inouts are in-

jected into the causal systems--in this case, the respective economies.I

I



12

Obviously, these distinctions are somewhat arbitrary and

may or may not be identifiable in any real system. However, we will

find these distinctions useful in the chapters to follow. Roughly,

"we will characterize a goal-seeking unit G as being msecond level"

if its primary function is the "coordination" of two or more first

level units.

By ,coordination, we mean the process of the transmission

of information and control signals from the second level unit to the

first level units for the purpose of improving the over-all performance

of the system as measured by the performance functional of the second

level unit.

One further component of the over-all problem from the point

of view of G3 is the type of model that this unit has of the structure

",below" it. We will classify the model types as either "direct" or

",,indirect,,. G3 is said to have a ,tdirectt model of the system below

it if it requires complete knowledge of the structure of (G1 , C1) and

(G2 , C2 ) as well as the system's environment. G3 is said to have an

"indirect" model of the system below it if it requires on],y the

knowledge of the system's environment and the utility functions of

G1 and G2 or certain parameters of these utility functions.

2.o4 Remarks concerning Rigor and Intent

The models which appear in the following chapters are in

no way to be construed to be final answers concerning the questions

posed in this thesis. The intent here is purely exploratory. The

amount of room left for investigation is nearly limitless in this

area.
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In keeping with the exploratory nature of this investiga-

tion we will often sacrifice mathematical rigor to the gods of

j expediency. The analytically inclined reader may be somewhat appalled

by the extreme assumptions made concerning the existence of inverses,

I derivatives, etc.

I Summary

In this section we will summarize in outline form the syn-

thesis procedure that we will carry out several times in the succeed-

ing chapters. It should be emphasized that the steps outlined below

do not occur in any particular sequence but rather must more or less

be carried out simultaneously.

Given the problem:

extremize E g (mI ... min)
I w.r.t* i, "' mk

s~bject to the constraints
(I ... rn) So

and an environment prob. density function (mk + 1 nmn)

1. Decide on a division of control labor between the
two first level systems. (Reticulate)

2. Assign objective functionals (utility functions)
and constraints to the first level systems.

3. Assign an environment prob. density function to each
first level unit.

h, Decide on the model type to be given second levelI ~unit.•
ani Direct Model
b Indirect ModelI

I
I
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5. Decide on an intervention method for the second
level unit.

a) Direct Intervention
b) Indirect Intervention

6. Investigate the quality of performance of the
resultant system.
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3. DIRECT INTERVENTION -- STATIC CASE

Introduction

In this chapter a class of linear, static control problems

are investigated. The synthesis of a 2O- Y__1 controller is investi-

Sgated from the noint of view of "tDirect Intervention". The second

level unit is assumed to have a "Direct" model of the subsystems

I below it.

j3.1 Model 1 Deterministic Case

The purpose of this chapter is to explore several possible

I models of control situations where the systems are said to be "static",

i.e. either the control action is applied only once or if the control

action is applied many times it is assumed that the effects of the

j applications are statistically independent of each other. All of

the systems in this chapter and the rest of the thesis as well are

j assumed to be multi-variable, i.e. several state variables and several

manipulated variables. The system equations are assumed to be

Rlinear. and constant over time. In mathematical terms this means

I that the system acts as a linear operator which maps elements (vectors)

of the "input space" into elements of the "output space". Our

purpose in investigating the use of 21- 39. controllers for linear

systems control is not to solve any new problems in the area of the

I analysis of linear systems with a small number of state variables,

I since these problems have been attacked for many years by many

authors with great success. Our purpose is to "cut our teeth" on

I
I
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a class of problems that are analytically tractable in the hope

that we will discover methods of approach which will suggest effi-

cient ways of proceeding in very complex control problems, e.g.

large non-linear problems or even linear problems with many state

variables (e.g. more than 20).

Our general anproach in these problems will be as follows2

we will take the original multi-variable control problem and attempt

to break it into two or more smaller parts. From these smaller

parts we will construct, generally, two sub-optimal control problems,

each of which neglects the possible interactions with the other

problem. At this point the second level of control will be intro-

duced. It is the puroose of the second level control unit to intro-

duce into the system at an appropriate point a signal which

compensates for the neglected interaction. This chapter ttempts

to investigate this method of control in the static case and to

compare its performance with possible alternatives. The first of

these alternatives is the case where the interaction between the

two original "First Level" controllers is completely neglected. The

second alternative, which is, in large complex problems, never

available to us, is that of the true optimal solution.

For simplicity of exposition we will confine ourselves to

operators defined on finite dimensional vector spaces. A theorem

from functional analysis tells us that we can treat the finite

dimensional operators as finitie matrices. (See Appendix A).
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Model 1 y'= A•m + , IAI #0 (3o1)

y is an n-component vector[yl, 0°o y'1T, T is used to denote the

j transpose of a vector or matrix. A is assumed to be an n x n matrix

composed as follows ll A1 21 . where All is a k x k submatrix

I (k does not have the same meaning here as in eq. 21)o A1 2 is

k x (n - k), A2 1 is (n - k) x k and A2 2 is (n - k) x (n - k).

I and if are of the sane dimensionality as-. We can view the"Y

variables as outputs of the process, im as the inputs and the E- as

disturbances arising from the environment. In this model the Z are

iassumed to be deterministic and known. The vectors y mi and E may

either be considered as being composed of numbers or as being composed

Sof time functions, e.g. f =[YI(t)1 . The important difference

between the models of this chapter and those of chapter 5 is that

Sin this chapter yi(t + a) is independent of yj(t) for all i, J, t and

a. We assume that a criterion of over-all system performance is given.

It is also assumed that the second level unit is entrusted with the

maximization of this utility. In this model the goal of the systemI operator is assumed to be to minimize f#T B o T B - can be view-
w.r.t. B yb

I ed as the cost of deviation from a fixed operating point which in

this case is 0. The operation of' the system around any predescribed

operating point can be accommodated by simply changing the origin of

I coordinates in the space in which 7 is measured. in other words,

the job of the system operator in this case is to keep the system as!
I
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close to the fixed operating point as Possible. Certain disturbances

E impinge on the system from the environment but the operator can

change the vector - in an attempt to offset these disturbances. The

cost of deviating from the preset optimum conditions is roughly

proportional to the square of the deviation since TB T is a

quadratic form. B is composed as follows B 1

0~ B22] hr 1

is k x k and B22 is (n - k) x (n - k). (Bii is assumed to be

positive definite). At this point we introduce some notation which

we will use throughout0  We let g = 7 T B y and g* = min tT B YJ-

g then is the actual performance and g* is the optimal performance.

We will now assume that the problem of determining the optimal i

is too large a problem to be solved by current optimization techniques.

We will therefore subdivide the problem as previously described. We

let the subvector yT 1 Similary k I T

T -l .. k [ ~1 il.ry [k + 00... 2 T = T -2 -
and +~ 1 MnT=

and ni 
ove -a2L_

We now turn the responsibility for l and over to a
controller called "First Level System#1ln and 2 and 2 over to

"First Level System #2. System 1 is set the following task:
-iT -i

mifiie ly BII ly subject to (3.2)

-l -).

iy = All E

The extra subscript introduced here is to denote, for example, that

-1 -Ily is System l1s ',model,, of the vector y • The reader will note
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that this model is actually incorrect from the point of view of the

original problem posed. System 1 is neglecting the element A 12
1 -2

which is a cross-coupling term coupling 7 to m , System 1 neglects

this term on purpose in order to separate its problem from System 2's.

System 2's problem is to

minimize 2T B -2 (3-3)ýY_ 22 2y

-2 -2 -2
subject to 2y A22 M +4E

The solution to problems (3.2) and (3-3) can easily be derived (see

Appendix A). Equating the vector derivative of the quadratic forms

in (3.2) and (3-3) to zero we have

T -2 __2
A 22 B22 (A 22 m 0 (3.4)

and A T Bll (All Ri 0 (3-5)

We assume (as always, for the sake of simolicity) that

B and A are non-singular and that A T B A is positive
ii ii ii ii ii

definite. Therefore, we have

1 -1 _2* 1 -2
-A 11 and M -A 22 4E -

We note that the C_ I a are assumed to be known to all the

systems involved in the control of the process. if these vectors

Fi* were allowed to be implemented as they are the actual outputs of

the process would be

-1 _1* _2* 1
y A 11 m A 12 M + -A 12, A 22 Z 2 (3.6)

-2 _1* 2* -2 _a -a
y A 21 M A 22 m + -A a A 11 C-
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At this point we will introduce the second level controller.

System #3. System 3 has the responsibility for the control of the

entire process and as such it will be concerned with the complete -

nodel of the system and with the system performance functional.

Specifically its task will be to insert appropriate inputs into the

system to compensate for the interaction neglected by the first level

units. To be more precise, we will assume that System 3 has two

optimization problems.

-iT 1-
problem 1 minimize 3y B11 37 (3-7)

-1 -1 -• 2 2 -lsubjectto 3y Allm + A1 2 m + A1 2  + C

where . is a k-component vector manipulated by the

second level unit.

_2T -Problem 2 minimize 3y B22 3r (3°8)

-2 = -1 2 -1 -
subject to 3 = A21 m A22 I A21 m +

-.1/- is an (n - k) component vector manipulated by the

second level unit.

We have already assumed that System 3 has the knowledge of

the complete structure of the system itself as well as the optimal

-i* --2*control vectors from the first level systems, ioeo m and m

The first level units are required only to have knowledge of their

own subsystems and their part of the system goal in addition to the

relevant disturbance sub-vector.
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-1 -1-22
o 3y -A12 A2 2  12

-2! -1 -1 -1Iy = 21 A + A1 2 1

The solution to System 3's two problems is now obvious. It should

I set A2* = A-1 Z2 and a* = A-1 *• Therefore 3 = 3=-2 = 0 and

the value of the performance functional for the entire system, i.e.

I y B F takes on the value O.

I Let us examine briefly the implications of the results of

this rather elementary example. First notice that the system per-

formance functional y T B y assumes its absolute minimum. This

Imeans that no other control algorithm will produce better result.

for this system, This is in fact then optimal control. We have

taken the original problem apart and recombined it along organizational

lines in such a way as to get the best possible performance. A

reasonable question at this point is "Why?" The reason here and for

I all subsequent models is computational. In nearly all real multi-

variable control problems the problem of computing a sequence of

I optimal control variables meets with many computational difficulties.

Assume that the matrix A is of even dimension. If we had tried to

solve the original optimization problem directly we would have re-

quired the inverse of the n dimension A matrix. In our problem

we required only the inverse (k = ) of matrices of size n" The

time for the computation of the inverse of a matrix on a digital com-

puter goes up roughly as the cube of the matrix size. Here and

particularly in the dynamic case, as we will see later, this kind of
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difference can mean the difference between being able to solve the

problem and being forced to neglect certain potentially important

aspects of the performance.

The reader can undoubtedly level several objections at this

model* The first might be that this might not be a feasible approach,

i.e. to intervene in the performance of the system in this way, and

this we would readily admit. Secondly, one might argue that we are

not considering the cost of the manipulated variables. This will

be considered in subsequent models- Thirdly, one might say that

linear models of this kind are so naive in structure and formalism

that they can never represent the control of * real process. This

allegation has a certain amount of truth to it and may recur in

several of the subsequent models. We will attempt to answer it

here and offer no further apologies later. First of all, it is not

strictly correct, since models of similar type have been employed

in both engineering and economics for many years with varying degrees

of success. The majority of models encountered in operations research,

however, are extremely non-linear. Unfortunately, analytical results

are almost completely lacking for the control solutions to non-linear

systems. Therefore, whether we like linear models or not we are

forced to them in order to try our approach on a fairly broad class

of system models, The digital computer offrrs us very little succor

here, because it yields only one solution at a tims and not a class

of solutions as we require.
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The interesting feature of this model was that we were

able to achieve the true optimum with our method of control system

j synthesis. As we will see subsequently, this is not always possible

with this method.!
3.2 Model 2 Probabilistic Case

1 This model is to be formulated in exactly the same way as

Model 1, except that the disturbance vector O is assumed to be a

I vector of random variables. The first moments of all the component-s

are assumed known and finite, ioe. E'9 = = [ECE] All the second

order moments of ? are assumed finite. Now we can no longer use

functionals of the type yT B y as an optimization criterion be-

cause these functionals themselves become random quantities; however,

we can use their expectation as an extremization criterion°!
As before then,

-+ (3°9)
S LA21 A22

I is our original system model.

I System l's control problem, namely,

= min E - BI 1  subject to (3.10)

m

-1 = I -I
iy =All +

h i t* -i- -- 1Ihas this solution -Al I =

ýLk
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For System 2 we have

92 -- in, 2 2 B 2 2 2 subject to (3.11)

m

-2 -2 - 2*2
A A2 2 m = -A 2m

Therefore -2 - (3)1
Therefore, A1 1 (-A11 •I) + A1 2 (-A 2 2  ) + (312)

-2 -i-1 -1-2 -2
y 21 (-Alli )+ 2 2 (-22~ ) + 'C

y 1 1jL -1 - -1 -2
l A1 2 A2 2-

-2 -2 -2 -1-I
y =6 • - A2 1 All

Now for System 3 we have

g m in E 1T -1 + 2 T (3.13)
3 , 2I'l l÷ 3y B22 3(.3

-1 -1* -2* -
subject to A 1 l + A12 m A12 + (3-)

3 = Am21 m + A2 2 m A2 1  +

The solution to (3.13) yields

- = A -1 -1 (3.15)

-2* -1 -2
= A22

-1 -1 -,' (3J )

2 -=2 -2
3y
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Let us check this result against what we might have ob-

tained by solving the "true optimum" problem,

g* = min E (T BT ) (3.17)

subject to F =AF 4

The expectation and derivative of g yields

I AT B (Ai F i) = 0 if AT B A is positive definite and

B and A have inverses then a= -A-1

hence • = = and we can see that this result,

is i~entical to (3.16).

3.3 Model 3 Cost of Control

I In this model we consider a situation similar to those in

I Models 1 and 2, except that we now consider an extra term in the

performance functionals whi7h represents the cost of the manipulated

I variables F.

I System 1

1= m-IT 1  -1 T c -1  (3.18)
gl min my Bll z m ell

- a -1 - -

1Y = All m - + , C are assumed to be deterministic and known

to all subsystems in this model. Here as in all subsequent models

I the necessary conditions for the existence of minima, maxima and

inverses will, a priori, be assumed to exist. For the model above

m =- A BI Al C. -1 A TBI "

I

I
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Similarly for System 2:

g 2min 1 2 T B2 2 2 y + 022 (3.19)

m

m - A22 B2 2 A22 + 2 A22 B22

System 3

1 -1 -l iT -1 1
93 min B 11 3  + (m + C ( + ) (3.2o)

-,T -2 -2 -2T -2n
S 3 y B2 2 3 y *( C22

-1 -2 -1*
where 3y and 3y are defined as in (3.14) with the m given

by (3.19). Differentiation of (3.20) yields

ATB A +C -1I[ T B A i* + A m 2 (3.21)

F - B2 2  21  21  22  2 1  A2 2

+ 1g] -1n
2* LA TB A +c i0 AT B 11 [A m2 * +A m *

The problem of comparing this mode of control with ?Itrue optimal"

control is not without its difficulties* It is logically possible

for this mode to come out better than the "true optimal" control

because of the added terms in 3 of AI 2  and A2 1 • The

submatrices AI2  and A2 1  offer amplification of the control
4

vectors in a way which is not available to the *true optimal"

formulation. If we are to charge ourselves for this amplification
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then perhaps the appropriate goal functional is

-T B ( -,;)T CA
2 1-J

whr A 12

In any event it appears that in order to perform any quantitative

comparison of these two different approaches one would be required

to perform a numerical experiment on a computer to determine the

I sign and magnitude of the performance difference.

I We now consider the comparison of this system with an

alternative which is the same as our Direct Intervention case, ex-

cept that the second level unit is missing. Hence nothing is

f compensating for the neglected interaction between the first level

systens. We will call this the non-interacting case. This system

has exactly the same performance functional except that, of course,

the terms involving i will be missing. We note that the m

are the same for each case. As a result of these observations we

can easily state and prove the following theorem.

I Theorems Let g A m [YATB A 7A C7A

Ig BY mi(A +,)T C (mA= +T

where YB = 7A + A* k where A* ={ A1 2

21 0

then

I Prooft First of all i•was chosen in such a way that % is mini-

I mized. = 0 is an admissible control vector. If Vp= 0 • * = g*.

I
I
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SUppose an v* 0 which mninimized and (. ) gA*

but clearly g (0) g (k*) contrary to the assumed existence of

h* ". either (%*-9, gA*) br (=o 0 and - %.*ý gA*).

We conclude from this theorem then that in the case where we are

required to pay for the variables that we manipulate that we can

always do at least as well as if we neglect the interaction be-

tween the two first level systems.

Similar analysis could easily be carried for the case

where E is a random vector.

Summary - - Conclusions and Applications

We began in this chapter by introducing a method of multi-

level control called Direct intervention. In reference to the

modeling considerations introduced in Chapter 2 it should be remarked

that in this chapter the second level unit is employing what we

called a "Direct" model of the first level units.

We began by considering an over-all control problem of the

form

l._g*=min yBY where =A7 +
E was assumed to be known and B to be block
diagonal. Here we saw that the multi-level
approach yielded the optimum solution.
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2. Next we consider

g =gminE .yB wherBy Am +
where here C is a stUchastic vector with known
mean. Again we found that if B were block diagonal
we could achieve the optimum solution.

I 3. Here we had

g*=min yT By +T CmF
subject to 7 =A +;r where B and C are
block diagonal and gis a known disturbance. We
discussed certain difficulties of comparison with the
*'true optimal" case, but we were able to show that
this mode of "intervention" always provided a better
control solution than one could achieve by neglect-
ing the cross-coupling terms.

I
I
I
I
I

I
I
1
1
I
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4. INDIRECT INTEVENTION -STATIC CASE

Introduction

In this chapter our aim is to explore a set of control

models quite similar to those in the previous chapter. The principal

difference will be the method of coordination employed by the second

level unit. The previous chapter was concerned with what we might

call *direct signal intervention" models. In that case, the second

level unit was supposed to be able either directly or indirectly to

insert extra inputs into the system at appropriate points. In this

chapter the second level unit influences the outputs of the system

by setting the values of certain parameters in the performance

functionals of the first level systems. As we will see, this method

has both its advantages and disadvantages. Among its advantages

are the followingr It is possible to effect large reductions in

*the necessary computing time and memory required to compute the

control solutions. Secondly, it virtually can be applied to all

classes of control problems-at least all thosL for which it is

possible to find a method of reticulation0 For example, it is

difficult to conjure up a model used in the area of Operations Re-

search where the direct intervention approach could be applied;

however, the method we are about to describe can be applied in
several situations rather naturally (see, for example, Chapter 8).

Among the disadvantages of this approach is that a

complete v!losed-form solution is somewhat more difficult than the
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models of Chapter 3. Secondly, it generally reduces the con-

trollability (see Appendix D) of the system and this can hurt

I the performance (this problem will be discussed in more detail in

section )43) of the system as measured by the performance criterion

of the second level unit.

In short, models to be discussed in this chapter are

inspired by an attempt to trade off controllability and possibly

I performance quality against the cost of calculating the optimal

control vectors.

h.l Model 1

I Again we start with two first level units.

System i. ly = A1 1 m

gl in E B ly + 2R ll (4el)

-1 -1 -1
where 1y .9 m and e are defined as in Chapter 3-

I The ýts are assumed to have fixed, known means and finite second

moments. P, is a scalar parameter controlled by the second level

unit. It is also assumed that the first level units do not anti-

I cipate the values of P given by the second level unit, i.e. they

wait for the values of P to be transmitted before the values of

I the maninulated variables are set. 1 is the vector L1, l ... 1]

I
I
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Similarly for System 2t

-2 -2 -2.

g rmin E B -2 p + • m (4.2)g2 --2 2y 22'2

The optimal control vectors for the first level units are

wheI* = E ATB _ (4.3)
B1 = 1 IAII -I T Y. Al Bl 2=-A 22 B22 A221 2' 22 B2 i T

~22 B 2 2A22 ] {2
where t-i =LP•)

Now for the second level unit we pose the task of manipu-

lating the parameters ?I and 12 in such a way that the neglected

interaction (via A, 2 , A2 1 ) is at least partially compensated.

* r=ain E ý )T •(4•we let 
ý 

4 4

Sis a vector of fixed quantities.

--i -1* --2* (h.
y Al A12 m + (4m5)

y-2 =A 2 1 m-1 +÷A 2 2 m2* + C

using (4°3) with (4.4) and (4°5) we have
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9g3* min E{ il 2 12 * + (4.6

| • 2 1 •l 2l ••2. h ÷1l ÷ •12 " 3 B 2 Vl21~ ÷ 2422

B 
41 +22 "

12 1 1 [A I il + i] 01 2l + B lA l

"i2 012' +,- ý'l +0 412 *• '7]-1 [ol 2 + ,.ý 022°n

- 21 -221 A

1 A TBI I Al l 2 1 = 2 2 e 2] -1

11=- ti A i 11A l Bl -1

B2 A2 11 U22 .-1 T -

i •12 = "AI2 [AB22 A2 2 - 0 I 212 = "2 A 22
1•where2 F -1 012k2 =r n

A- -T 
--2

022 = " 1221 A22 ° 1 1/'22 A1 1

1 B is not necessarily block diagonal in this model but it is assumed

symmetric and positive definite. After some painful but simple

I manipulations, one could take the expectation and the derivative

of (4.6) with respect to #1 and 62 and equate them to zero to
o!(.~)wthrsett

I
i
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find the optimizing values of 1 1 and P 2o A brief inspection of

(4.6) shows that one would get two equations of the following form:

a1 /4* + a2 ?2* + a = 0 (4-7)

bloPl* + b2 /A2* +b3  0

This can be solved for p i* if a1 a2  O
bI b2

We could now substitute 161* and /2* back into g3*

and compare this with several possible alternative control modes and

for several classes of disturbance vectors. However at this level

of complexity this sort of work is probably best left for numerical

experimentation on a digital computer°

We can, however, compare this control mode with the case

where the system is reticulated but the interaction between the

reticulated parts is completely neglected. This case differs from

the model just considered in that no second level unit is considered

and hence = 1o
-i -i

In the model just considered assume that i = • with

probability 1 (deterministic disturbance). Let glf* be the optimal

value of the system performance functional for the indirect inter-

vention approach (Model 1). Let g I* be the optimal value of the

system performance functional for the case of neglected interaction.
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I
Theorem 4.&l. g1T * < XI

Proof's Let gf pi9 £ /'ý'~)=~ &' 2*31~

I /1 and =2 1 are admissable values of the control variables.

But f (1, 1, =) = E*" Therefore, since f i* d2*' -) f (1, Ie)

gI* ..c gNI* Q.E.D.

1 Next we will prove a theorem which illustrates the difficulty

1 of comparing two control modes on an absolute basis when the input

disturbances are stochastic. We can view the processes we have

j treated as being control problems rhich arise at regular intervals

in time but each interval's outputs and performance functionals are

1 statistically independent of those in preceding intervals.

jTheorem 4.2. Let {6Jj for i Ez I (I is a denumerable

index set) be a vector-valued independent random process. Let Yi

I be the output variables associated with the sequence of control

vectors Ei . Let g, (-Ii, 7 i) be a sequence of performance

functionals for i F I . Consider two different control modes yield-

1n y- 2 -2'
ing , mi and Yi p m respectively. Assume there exists a

sequence for k E I such that P' (gk (Fk1 - k)

gk ( 2 ) O Pk > 0 and further Pk Then

almost surely for an oc number of points i C I the performance of

control mode 1 will exceed the performance of control mode 2.

I
I
I
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The proof follows directly from the Borel Cantelli Lemmas. See,

for example, Doob.( 9 )

Essentially, then, if it is possible for one control mode

to be better than another (for its utility functional to take on

a higher value) and further if the sum of the probabilities of this

event taken over all time is unbounded then with probability 1 this

event will occur not once but an infinite number of times. However,

it is still possible for one control mode to be better than a second

on the average and still have the second better than the first for

an infinite number of points in time. We have stated this theorem

to point out the difficulties involved in comnaring two control

modes on an absolute basis when the system being modeled is subject

to probabilistic disturbances.

4e2 Model 2

We next consider a model where the *cost of control" enters

the performance functionals as a quadratic term instead of linearly

as before.

System 1

gl* = main B 1• ÷7 + m-I m (4-8)

m

subject to 1 y A,1 m + i

In this model the terms i are considered to be deterministic

and known. The method of attack for probabilistic disturbances has

been outlined in previous models.
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System 2

= ~ -2 ri m-2 (-29
9g2* -i 2y B22 2 22)-m

sujc to 
-2bject to 2y A22 m e

L Again the quantities ,i are *cost" variables manioulated by the

second level unit (System 3). From the point of view of the first

level systems the ýi are fixed parameters, i.e. they do not

anticipate or predict values for these quantities but rather wait

for the second level unit to communicate this information to them.

The optimal values for m and m are given by

I -1* [AT 1111, 1l T B11  -
[AB11,All +C 11, 14 l £ ( 0

-2* T T -2
m [A 22 B22 A22 + C2 2  A 22 B22

i Now for the second level unit we have-

, =,in F B = + B22

3 y] = All m AI2 ]

--1* -2* 1
ýy =A 11m + A1 +

y [ýy :=:A21 m + A22 i
2* + 6

Again, the second level unit attempts to set ii in such a way as

to compensate for the interaction terms neglected in the models of

Systems 1 and 2.
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Naively we might substitute (4.10) into (4.11) and attempt

to carry out the minimization analytically. However, it is here

that we begin to run into difficulty; for A, and /2 are contained

in the inverse of a fairly complicated matrix and hence enters g3 *

in a way which is quite difficult analytically.t We will employ

the following theorem from Taylor( 2 1 ) to remedy this state of affairs.

Let be the space of all bounded linear operators defined

on the Banach space X mapping X into itself.

Theorem 4.3. if A E [j and I?4I> 1j All
where I AtI is the norm of A-- ( X- A)-I exists and is con-

tinuous and (;- A)- 1 y -n An- y for each y in the range
1 =

of k - A. Further since X is complete (• - A)- = • -n An
1

(See Appendix (A) for definitions of the terms employed in this

section).

Since we have assumed that the vectors Y - , T are de-

fined over Euclidean n-space, the conditions of the theorem regarding

A are satisfied.

Now we return to the problem of finding a tractable expression

for m!* and 2"*.

tin numerical treatments, though, this is not particularly

alarming. If all of the numerical values of A, B, C and are
specified we have a fairly simple search problem in two variables.
However, we would like, if possible, to offer an approximation theory
for such Droblems.
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Ali Bl All + 1. P]. All B1
. .

C -1 FAT -1 A -B 1

ie , A TB A B

11 .L .. L1

T -1

I ~We can now truncate th•ese series at any point depending on the de-

isir ed degree of approximation and using the resultant apnroximations

for (4.12) and (4.13) we could solve (4. 1 1 ) analytically. As can

I ~be easily verified, the truncation of the series above at the first-1 -2
terms, i.e. ( =4 - TA B 2  and (2 2' - T2) yield a set

NoIor >I1T1I we ca noethoe2 t xrs

~'1Ti ~F~n ad 1/-~ li2f~nTn

of simultaneous linear equations for the optimal values ofp x and t 2o

be The approximations developed above are valid for

> IlTill. On the other hand for smll I we can approImte

temsi - Tie. by - Ti-1  and hence we have a valid approximation

for both large and smallfi.

For a qualitative comparison of this model with the case

where the interaction between first level units is neglected we

I.
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invoke theorem 4.1. The proof must be slightly modified to account

for the change in the Derformance functional from model 1. Hence

we can say that no matter what the (deterministic) disturbances 1

are the indirect intervention approach yields better performance

than the one obtained by neglecting the first level interaction.

4.3 Model 3

In the previous model we considered indirect intervention

in the case where the *intervention parameter" was inserted in the

term which yields the "costs" of manipulated variables, We now wish

to insert the "intervention parameter,, in the term of the functional

which sets the ,,cost" of yT B Y.

System 1

9 1 -i n B +i C m 4 - 3

m
-E -

subject to y A 1 M + -I

System 2

" [2-2 T 22+-2T m- 4.)

2= min [y B2 2  4 + mTC 22 (4-14)

m -2 -2 -2
subject to 2y A2 2 m + E

-i
The derivative of gi with respect to m yields

Ti

Ak T -i *-i .i_ aniw le1
i Aii Bii (Aii m )•• +•Cii m 0 and if we let

i
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we find
[ -iT -i

j If we look back we see that (415) has exactly the same form as

(4.10) and hence we need go no further. Unless there have been

I special restrictions placed on the i this form of intervention

is the same as that in Model 2.

4.4 Indirect Intervention

I Let us consider briefly what precisely is involved in

iwhat we have called "Indirect Intervention". For a single system

or subsystem let us consider a 2n + 1 dimensional ,,system space",

and let the first n axis represent the control vector components

B. We will call this the "control subspace". Along the next n axis

I are measured the disturbance components E. This is the .disturbance

space". Along the last axis is measured the "quality" of perfor-

mance as measured by the performance functional° Therefore it is

assumed that if one picks a pqi-nt in the "control" subspace and a

point in the "disturbance" subspace that a particular value of the

"quality" component is determined thereby.

I We note that in the previous problems

I[inml (a#1' ji) m2 (1 l' •'l)" mk (•i' 92 )] and

I2 m + 1 (121e2 m n 2"j

I
I
I
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Now when these vectors were substituted into g3 we had

= rin g3 (4 ' #2' •)" Therefore where we began with a

problem in n controllable variables we now have a problem in

only two manipulated variables. The questions we would like to

answer are: 'YMhat is the geometric counterpart of this process?"

and r"What did we lose in quality of performance?" The answer to

the last question depends, of course, on the specific system and

the particular disturbance vector E. The first question, however,

can be answered as follows: We have introduced a two parameter

family of curves into the "control subspace" and the resultant con-

trol vector must now lie somewhere on this surface. Fig. 4.1

describes a sinmple case with two m control components and a single

Fig. 4.1

m2  m2 (1 ) 2

'Where originally any point in the inl, m2 plane was an admiasible

control vector, now only those points lying on the one-parameter

curve K are admissible. Therefore we traded an optimization problem
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in two variables for one in a single variable but we reduced the

I set of admissible control vectors in the process.

j Summary

In this chapter we introduced a new method of seoondt level

I "coordination" ard we investigated its properties by employing it

in three different models.

Model 1

First Level Units gi* = min iTBii Yi 4 2 1iT }

subject to =i -i + , i--,2= ii

ISecond Level Unit g3* mini n It3T Bi F +

i where =A•• i

1 Model 2

IFirst Level Units ge*= min (y BuY 1,i C i. m)

subject to - = Aii m i11, 2

Second Level Unit g3* miB42

I where =A." 4

I
I
I
I



Model 3

First Level Units gi* -ini m-i)

-ii
m

-i jwhere y =A m 1 , 2

Second Level Unit (Same as Model 2)

Conclusionst

1. For Models 1, 2 and 3 with deterministic distur-
bances, indirect intervention always yields better
performance than that achieved by neglecting the
interaction between the first level systems.

2. Indirect Intervention reduces the controllability
of the original system by reducing the class of
admissible control vectors.

3* It is irrelevant whether the second level unit
fixes the "price" of the control vectors or whether
it sets the penalty ,Icost" associated with the
outputs. Both models of control are equivalent.

4h It is usually imossible to compare the perfor-
mance of alternate methods of control on an absolute
basis when the system is subject to stochastic
disturbances.

Applications

See Appendix (C).
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5. DMhECT INTERVENTION - DYNAMIC CASE

Introdlwtion

SWe will leave the domain of statics and consider now a

class of multi-variable dynamical systems. In particular, our

representation of the system dynamics will be in discrete time. The

basic dynamic model will be the following:

I +t 1 =A yt + it + 1 + t 4. ylp -0 -C t =O•,•1,o (5-1)

The quantities fyt] ire n-component vectors of state variables.

1 A is an n x n non-singular matrix. f mtý are n-component vectors

of manipulated variables. The Etiis an n-dimensional vector valued

random sequence with known means, ioea E (6t) W we assume

IE(Yt) =0 if t ,4 and E(EtT t) < o

I Mathematical models such as (5ol) may be taken to mean that

significant changes in the system take place only at evenly spaced

intervals in time. Alternatively, we may interpret (5ol) as

observations of a continuous system taken at discrete intervals

of time. The Lmt3 are assumed to be constant in the inter-sampling

j intervals.

I Similarly the presence of random disturbances {Et} can be

viewed in two different ways. We might assume that

tThe behavior of linear systems in the inter-sampling period
I has been explained by control theorists. (11)

1
I



Yt4 F t 1(5.2)

is an exact model of the system dynamics but that certain external

influences affect the state variable and are accounted for by the

term 9t + 1 in (5-1). Alternatively, we may assume that (5.2)

is an inexact model of the real system and hence the term 6 t * 1

accounts for the difference between the predicted values of the

state variables and those that actually occur. We assume, in both

cases, that the (9-s) are observable after the fact, ie. at

time T=T+lI, Ft, 4t *- E1 1 are all kn~ o n

While it may apmear at first glance that a model such

as (5-1) is highly restrictive and specialized, certain techniques

of substitution can be used to reduce any model of the form

Yt+ 1 -l A 1 ... Ak -k + 1* B 1t +1 C 6t + 1

to (5.1) by a suitable relabeling of the variables.

The over-all system optimization problem ist

g* ma:: T [- t TB mT Cm) (5.3)

1 1ntJ

subject tot

Ft + 1 = A F +t ÷ m + 1 + t + 1 Fo --
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5 51 Model 1

As in Chapter 3 and 4, we construct the two first-level

control problems as follows,

1 
System i

gýl-= -1 -a E- ' lEt -1T - mT C mF (5.4)
m1)mi 200 m. ON i ; 11 Jft t 11 tJ1-

ly't refers to System l's model of • = (t), Y2 (t) °. k (t)I[
l~t@ 1: ll ~t ÷ t + 1, ÷ l 7% (5.5)

I Similarly for System 2g

max -2 _ -2 -2
=-2 -2 9t + t + 19 2 t C (5.6)g 2 _,e.. 2tBe•t t 2 at

Now we form a second level system whose function is to compensate

for the neglected interaction between the two first level systems.

Ig 3* = 1 2ax-1 3t"1 3tYtClý

1I'ý2'0° N

-l y1 -l -1* -1 --
S 3 Yt + 1 =All YtA2 Y mt + 1 + t + i + t I

and

-2 Bm-2 -2 _-2 (5-9)V ==.l'24y Z4t P~ 'V
-,2 yl- ..2 -.2. -2 ,-2

4 +Yt =A 2 1 Yt A2 2 Yt + mt . 1 + kt + 1 + Et + 1

!
I
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It is important to note that in this representation the second level

control aotion is decomposed into the determinations of two functions,

tt and kt a In order to perform this split succersfully it is

necessary to ignore certain aspects of the system dynamics in order

to avoid having the second level unit solve a problem of the same

dimensionality as (5.3).

We assume that at time t+l the sample value of the outputs

are known or measurable by every subsystem without error. We
Yt

visualize that at time t+l the operation of the decentralized

system proceeds as followst

1. Systems l and 2 measure Yt

2. Systems 1 and 2 optimally determine mt- 1  and

mt + 1 respectively.

-i*
3. mt÷1  are communicated to the second level unit.

-4

4. Second Level Unit (System 3) measures yt.

5. System 3 computes i* i -1* -i
At+ 1 gmt +. 1 adyt,

-2* -t
6. System 3 computes •t 4 1 using mt . 1 and t

7. All decisions are implemented.

Hence when system 3 determines -1 -m
,It + 1 tmaue y n ssi

in the optimization; thus it completely neglects the 6ffect that

-i -2
kt + 1 will eventually have on Yt +-l A similar remark applies

to the determination of qt + i"
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We now proceed to solve the four optimization problems

in Dynamic programming formalism. For System 1 we let

1 l1lT -iT -i

SW (C max B1 l =- TC 1 m (5.10)
-miM

I - 1 (All c-+ m 1 + J

where 1 (c) is the maximum expected "return" for the N stage

process given the process starts with y o = c 1. y1 is given

I by (5.5).

Similarly
-2 Y- 47 -2-2 -2

SN2 (C) -- ax E [23 B 22 2Z - ml C 22 M, (5.11)

-2

22t is given by (5C7).

For System 3 we haveI
5N (C max E B1 1 B y - (5.12)

! ' • -. .1
-1 is given by (5.).

[
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4 -2-2ý 2 -2-.2
kt C22  4i (5-13)

-2-2

2is given by (5.9).

Note that in each case the actual influence of t on

y-2 -2 I'-1

41 and of t+ on 1 + is neglected. We also note that

if in N3 and S we let

lk + I k + 1 A12 Yk Ek + i' (5,14).

-2 -2* -1 --2
Ck 4 I "mk + 1 + A2 1 Yk  4Ek + I'

then all four Dynamic Programming problems have the same structure,

i.e. the variables in each pair of problems are isomorphic. Hence

all are mathematically equivalent to the problem

S(4 ) max E{ f T B 1 C 1(5.15)

S.1(A5+

Y'I=A 6 4÷ý 91 or in general Ft i =A Ft4*t •ti+4t÷.i

The general solution for i is of the following form

(See Appendix B).

(5.16)
t - k sk A mk where is current state

of the system.
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HN _ k -- (C - BI; - k0-1 B - k' B N - k = B + A T 'ýN - k @1 A (5-17)

G -- k C- % -0 [BN_ -N + AT SN+ k (5.18)

- k =(1 +HN-k)TB Nk(+ - -k) HT kCHN-k (5.19)

T - (5.201

I 'AT 3 -k k+ 1

I N (C - B)-l B (C - B)-l B ý' B= B (5.21)

= IN1 0 oIN E•(EN) (5.22)

Therefore

RN - k N kAll YN ,k - 1 +GN k

-- 2* H 2_ -2 2 2 _

- k N k 22 YN- k - 1 +N-kI
-i_ k is identical to HN - k in (5.17) except that A----ýAii,

SB---ii' . -- W-i (---)Means *is replaced by")

SSimilarly for 1i_ and 2
'Z k 4 N- k

For *N and -* we have

~*. 3 _1 3
LN - k = -k YN -k - 1 0  - k (5.24)

-*2 YN2 4cN~-•I2k-- k YN- k - 1 ( - k

I
I



52

'N3_ k is identical to }Ni k except that -- iT and

_E (e T ). Similarly for H_ and N3_k and 'L-k*

Therefore the true outputs of the system are:

-1 -A -2 -i. + + + (5.25)Yt + I 11l Yt ÷ 12 Yt 'rt + 1 I + It

-2 -1 -2 + 2* -2* -2
Yt I A21 Yt 2 2 t mt + 1 qt + i Et + i

where the m's are given in (5.23) and the YLs in (5.24).

Now that we know the specific form of the decision rule

we can conceptually comoare the performance of g as given by

(5.3) with, for example, g3 + g, as given by (5.8) and (5.9).

These quadratic forms become random variables whose distributions

are determined by the joint distribution of the Z'1s. Middleton(17)

has shown that if the Zs are generated by an independent gaussian

random process then any positive definite quadratic form in the

Eve is distributed by the Non-Central Chi-Squared distribution.

Approximation techniques(20) have been developed which reduce the

Non-Central Chi-6quared distribution to the Normal distribution and

since the sum and difference of Normal variates is again a Normal

variate we can find the P ( g - g3 - g4 > 0 ), i.e. that decentral-

ized approach yields a better value of the performance functional

than the "centralized"' or "integrated,, approach.
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A careful examination of equations (5.4) through (5.9)

I brings out an interesting conclusion: if we modify the first level

I performance fumctionals appropriately then the second level unit

does not appear to perform a useful function; in this sense, then,

I a li- 2 system is equivalent to a 21- 3 system. This is due to

the fact that the two functions assigned to the second level with

I a view to reduction of the dimensionality, can as well be located

in the first level units.

5.2 Model 2

In the models previously considered we have assumed that

the performance functional was separable, i.e-, Block diagonal,

but that the "system" matrix A was not. In this section we will

I demonstrate a method which transforms the original problem (5.3) into

one where the t$1 stem" matrix is diagonal and hence separable,

Unfortunately, the conditions for separability of the transformed

I performance functional are rather restrictive. We note that if

both the performance functional and the A matrix are block diag-

onal, i.e. separable, then the over-all problem can be decomposed

into two or more comnletely separate problems. In our language this

I means that the first level units can work completely separately

and the over-all system performance will not suffer as a result.

We begin by considering (5.3)t

I
I



g*u a MA EtBYt m t (5.26) -

where Ft 1=A7t'it, ' I t. + 1

We will assume for this section that the eigen values ~of A -

are all distinct and that none are zero. Hence(5) there exists a

transformation S such that ST A 6 A A where

0 a0 T. 1 0 ..0

A 2 ... and further ST 5= = 11 .1. 0
/.0 0. $see*.1

Therefore from (5.26) we have ST t i ST A S ST Ft + +T

+ ST ST

Now let S STt.+ i -t m+ 1  mt + 1, and

Et$ = # Jt + I" Therefore the uerformmnce functional becomes,

N

ge- max E 5 3 i) B (s )- C (5.27)

t~l
(S kw ))

NTT ~TT

Now it is known(5 ) that if A., B, and C are simultaneously



permutable, i.e. if A B = B Ap A C C A, etc. then

b 0 0

ST B S 0. = 0 and ST C S -
' 0 Lb ,

I In this case then we can split the over-all problem not into two

subproblems with several optimization variables in each but into

n single variable problems each of which is completely independent

of the others. Altohough the aforementioned conditions are rather

restrictive they are well worth examining because of the complete

I separability which results.

I Summary and Conclusions

5-1 model 1

5lMA class of system models which possess significant dyna-

I amics were formulated and the method of Direct Intervention was dis-

cussed as a method of coordination for the second level unit in a

I 2 -+ 3/ system. The associated analytical work involving the solution

of a Dynamic Programming problem was carried out. The Dynamic Pro-

I gramming solution represents a slight extension of the work of

Adorno.(I) The possibility of the comoarison of this decentralized

control system with the ,integratedl approach were discussed and

the analytic difficulties noted. Approximations were discussed

that could be used for comparative purposes if the system parameters

were known. In conclusion it was noted that this method of inter-

vention leaves much to be desired in that, except possibly as a
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device for the division of computational labor, the second level

unit serves no useful purpose and that this q- 2system is

equivalent to a 14 - P7stem.

5.2 Model 2

Sufficient conditions were discussed for the existence of

a transformation which completely separates the problem of Model l.

The resultant control ootimizati.on equations can be solved one by

one independently. In an organizational context the system can be

separated into n independent operating divisions without the need

for a coordinating unit at the second level.

Applications

See Arpendix (C).
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1 6. INDIRECT INTRVETION - DYNAMIC CASE

Introduction

I As we indicated in the introduction, there are two critical

problems in optimization. The first is the problem of many state

variables, which we have attacked in the preceding chapters. As

we saw in the previous chapter, the coxoling within the over-all

system dynamics may be of such a nature that it is impossible (at

least with the models we have been considering) to recouple the

system with a second level controller without considering all of

the state variables simultaneously. For these cases we demonstrated

I that a 1I- I/ system was equivalent to a 2 - 3Y system.

i We are faced with essentially the same problems in attempt-

ing to apply Indirect Intervention from the second level in the

1 dynamic case. Our princinal effort in this chapter will be based

on an attempt to reduce the search effort required to find the

I extremizing values of the variables given that it is not feasible

to reduce the number of state variables.

The number of state variables alone is not the sole cause

of unfeasibility in the computation of optimization problems. The

problem of search for the minimum or maximum, as the case may be,

is also critical in determining the cost of computation.

Consider a problem in h state variables and let us assume

we want the solution (numerical) to a problem of the following form.
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fN (cl, C2 , C3 , c4 ) = mlm2 3 'min {g (min, in2 , mi3 , m4 ) (6.1)

fNcsT2 4
- 1 (T1 Cl' T 2 ' T 4

The c are state variables and Ti T are trans-

(ml,m 2 ,m3,m)

formations which act on the state variables. The particular trans-

formation is determined by m1 ... m4 We assume f0 (cl' c2, C3'

c4) 0. Assume that the ci i = 1 ... 4 can take on 10 values

each and mI ... m4 can take on 10 values each. The 10 values of

each of the mi determine a grid in the Cartesian product space

M1 xM 2 x M3 x M4 which has 104 points. If we wish to find the

minimum by searching this grid we must evaluate the right hand side

of (6.1) 104 times for every value of cl1 c 2 , c3' c4  or

104 . 104 = 108 times for every value of N. On the fastest digital

computer this would take on the order of 105 seconds/N. We will

show that by using Indirect Intervention we can reduce the number

of necessary operations by a factor of 102 or-103, provided we are

willing to risk a decrease in the quality of system performance in

order to obtain a sqlution to the computational problem. While we

realize that more efficient search procedures exist than the complete

examihation of the entire grid it should be realized that we are

allowing only 10 sec for the location of the minimum of a function

in 4 space in the time comparisons above. In addition, in the

.case of 1 Qr 2 manipulated variables where the objective function

(4)in concave, Fibonacci search techniques can be used which are

extremely efficient.
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6.1 Model 1

We begin by considering a problem where, as before, the

over-all system dynamics are given by:

Yt + I=:-A Yt + t + 1÷ + t + 1 (6.1)

Y c where the f-i3 have the same properties as outlined in

I Chanter 5.

I In this section we will not concern ourselves with the

utility functional of the second level system but instead we will

I concentrate on examining the relationshio between the first and

second levels.I
System 1 is given the following problem:

gl*uin E - + 2 1T (6.2)

(t-=l

whr YtI + 1 =All lyt + it~ + Ct 4- 1 Yo = C t =O,0".N -II

The vector sequence 3I can be viewed as a sequence of "price*

or ,,accounting", vectors which are -et by the second level and which

snecify to the first level unit the t"cost"l of a unit of each of the

comoonents of the control vector mi An exoression similar to

(6.2) holds for System 2. The dimensionality of is assumed

I
I

I
I
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The over-all operation of the system described here proceeds

as followst

1. Information
a) System 3 (Second Level) knows E ( i
b) System 3 knows A.
c) System 3 knows complete structure of first level

systems, i.e. (6.2) and its counterpart for System
2 0 -i -2

d) First level units know gi and Li re ectively.

e) First level units know (6.2) and countexrpart
respectively.

2. Operation
a) First level units optimize with arbitrary Nt

b) First level units communicate to System 3
--i* --imt (dt) i

c) Second level unit sets '6 so as to optimize
over-all system performance.

Now we will actually solve the problem specified by 2a)

because of the rather interesting nature of the solution.

Due to the fact that the structure of the solution is

the same for both first level units we will drop the complicated

sub and superscrioting used in (6.2).

We let Sk (T) be the minimum expected value of the per-

formance functional given that we have k decisions yet to make

and given that we follow an optimal policy from the current state E.

S(S ) min E •A + 11 +l Zi) T B (A T + Fl + i)(6.3)

+2 l

1I 2++
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Similarly
81S (-6) = min F, fA,+%+•) B (A1 * 6 + iý N) (6.4)

i - B-1 - c ÷ (6.5)

Extending this process recursively (See Appendix (B) ) we

obtain the following expression for the sequence of optimal control

I ve ctor:
- = B-1 (AT 2ý - k + 1 3N - k) -- (A F + N - k) (6.6)

k = I,...N - 1

mayThis has some interesting features. First, since there are

as many components in(fkj as in this implies that this

method of intervention does not reduce the controllability of the

original system. Therefore, if the system manager could have achieved

a given performance with the integrated approach, then the second

I level unit can achieve the same performance with this mode of inter-

I vention.

Second, since the values of •-k and '-k~ l are set by

I the second level unit, they must be communicated to the first level

j unit prior to the time it implements •-k* However, in order that

the second level unit be able to set N-k~l' it customarily requires

I knowledge of the state of the system after stage N-k. Therefore

I
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if the second level unit does not predict the optimal value of

S- k * 1 and communicate it to the first level system, then the

first level system is forced to do this prediction.

If we interpret this result in an organization-like context

we see (at least for this class of drnamic problems) that the planning

function for the manager, i.e. prediction, is a natural outgrowth

of the organizational structure and the environment.

6.2 Model 2

In this section we consider a slightly different form of

performance functional for the first level systems. We will see that

the qualitative performance of the organizational structure changes

abruptly from that of Model 1 contrary to what we mitt expect.
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System 1

El i N B -1 1 _TC -1 7
_ L. _Clt 11ilt -t1t 11 St) (6.7)

Nl'" t = I

are scalars set by the second level.

lAt + is given by (6.2).

I System 2

2* =, .m ~N B2t ..2  2 -T C -2) (6.8)

I-.2 E A 22 2t t mt C22 +

I Again the optimal control vectors for the first level units

will have the same structure and hence we drop the unnecessary sub-

I scripts before we begin to derive a solution.

I As in Model i:
(6.9)

I,,I ~ ( ICand) S JAin EL•B+N..• ,V B' C

[B += - B (A '• + ý 'N )

(610I -(B C+ o- A - + 1Nc-]-• ++C+O
lm " 6•+ F' + d"+
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Hence by substitution we see that SI (-) is of the form

S, () L -6+ UT -6+ d(6.11)

where AN is a matrix, bN is a vector and d is a scalar*

Hence

s2 ( m)-in E ((A• - 1+ + jN- (6.12)

'mN-1

( c mN-N- 1) AN (A MN 1 + 5N - )

+ (A + - + - _ + dNJ

Taking the expectation and differentiating, we have

1  (B+ . , lC + A*)- [B(A -C + (6.13)

AN (A F +N - +• N N

If we examine (6.9) and (6.13) carefully we can detect

some interesting aspects of the structure of these solutions. We

see that ON enters into I and _ contains N i

However _ - also contains 9N in the terms AN and 17N

Similarly We see that contain ' N-i' andN- 2 will coNi AN-2

In other words, the second level system must predict the

"price" vectors from the current point in time to the end of the
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decision horizon. This might look at first glance as though it would

Ioverl6ad the second unit to the point where it would make the model

entirely useless. Actually, however, it opens up possibilities for

a large number of interesting alternatives. One of these is an

adaptive prediction scheme where the second level system gives initial

predictions which allows the first level units to find the first few

control vectors and as the process proceeds the second level unit

would update its predictions based on further information.I
Analytically this model is quite cumbersome and hence we

j will not pursue the maninulation further.

j We will now explore a class of models which reduce the

search problem associated with optimization. Model 1 does, however,

I show us that we can achieve the true optimum in performance with

indirect intervention if we are willing to use enough components

in the Ui vectors.

1 6.3 Model 3

I We now consider a model where the second level sets the

internal prices only once during the N stage process.

I System 1

E - -1 -l -1 -i

where 1 Y- 1  A 1  y+m 1 4 ey 1
h 7t + 1 11 lYt mt + 1 t + 1 0
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Similarly for System 2

= min 2t B22  2 2* (6.15)

01 -2 -2' - -2 .2t + i =A 2 2 9 tt + 1i et 1  Yo

For System 3t

mi. -7 1 -2T 3tJ (6.16)

--i -1 -2 -i* -137t + 1 11l 37t 1 A2 .3Yt ÷mt + 1 E t-+ i

-2 -1 --2+ -2* -2
3 Yt + 1 A 2 1 3Yt A 22  yt +mt + 1 + Ct + 1

From (6.6) upon deleting the subscripts we have

-Bi-i. -1( T _-)A -i -1 (6•.1,7)St = ii (ii - )• ii Yt - 1 - •ti

This can now be substituted into (6.16) and the optimization carried

out.

It is easily seen that the model just considered signifi-

cantly reduces the computational problems for the system. First

of all, each of the first level systems is working with a model

with approximately one-half of the original variables. The second

level unit is required to carry out only one ootimization in the N

periods, instead of N as in Model 1.

It may be of interest for the purposes of exposition to

interpret Models 1 and 2 in an organizational context. In Model 1
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each worker (first level unit) is paid a fluctuating salary which may

be different from day to day. The manager manipulates his salary in

order to get the optimal amount of work from him. In the second

model each worker's salary is set once and for all (for the N periods),

I but again the manager would like to set the salary structure in a

way which will yield the best system performance. This second model

might well form the basis for a model of "management by exception",

I where the manager reviews the salary structure from time to time and

adjusts the salary structure based on a review of the over-all system

1 performance.

I Summary and Conclusions

In this chapter we examined three different models with

I an eye to reducing the dimensionality of search in the optimization.

1
Model 1. In this model we found that if we were willing

Sto include enough components in the %intervention vector" Ui that

1 we could achieve the same result with decentralized control as with

the integrated approach. We also found that for this class.of

models the planning function arose naturally as a result of the or-.

ganizational structure.

Model 2. Here we investigated a model which was a slightly

modified version of Model 1. Here it was found that the qualitative

characteristics of the system operation changed abruptly. The

second level unit was required to oredipt the "prices", for the first
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level systems over the entire decision horizon instead of just one

period ahad as in Model 1.

Model 3. Here the second level set one "price,, vector for

each of the first level units and then left them alone. This pro-

cedure significantly reduces the dimensionality of the search problem.

No models were formulated for the derivation of the optimal

internal "prices" by the second level units. This is an entirely

straight-forward process and would proceed in a manner similar to

the formulation of the models for the first level units. It should

be pointed out again that the second level unit will have to include

all of the original state variables in its optimization, but that the

search will be over a set of significantly reduced dimensionality

(in Models 2 and 3).
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7. INDIRECT MODEL - DIRECT INTERVU TION

Introduction

no oThe models considered previously have had a common pro-

pertyi They all required that the second level unit have complete

knowledge of the structure of all the systems below it and in

addition that the first level units communicate their decisions to

the second level before they were implemented. Clearly this places

a great winformation load" on the managerial unit. It is the pur-

pose of this chapter to place a correspondence between solving a

particular class of non-linear optimization problems and the operation

/ of a decentralized organization. The algorithm developed for the

optimization problem will make possible the synthesis of an organi-

I zational structure which significantly reduces the problems of

i "information overload".

7.1 The Programing problem

We will consider problems of the following type.

I max gl (mi) g2 (m) subject to (7.1)
-1 -2m
m ,m

A, () 5al a, _ 0

Aj +1(m-1 +_ +1 F) ajK

|B1 (T) 2 bl

ai > 0

M bi_

(in
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where M- =[Mips.. Q MJ ) m = mk 4 1..mNJ and

gi, -Ai, -Bi are all assumed to bepositive concave functions- of their

respective arguments. In this section we will develop a ,,Decomposi-

tion" principle for the solution of (7.1) so that the problem can be

broken into subproblems and the resultant solution of these sub-

problems will then be "coordinated" to yield a solution to (7.1).

The subnroblems are:

'_1 -1max g1 km) + X1 (51 -AJ + 1 (Ta)) (7.2)

subject to A1 (m.) < a1

A () C a2

-2 -2
max, 92 (m ) + ;L (82,-B 1 (m ) (7.3)

subject to B1 (-) _bi

-l -
The terms A1 (SI -Aj A (m-l)) and 2(2 B - $ 1 (2))

require some explanation. The factors 41 and •2 are Lagrange

multipliers. S1  and S2 are variables such that 0 < SI f K,

0 <S 2 <K • By a *formal solution" to problems (7.2) and (7.3)

w a * * (82*we mean m (S1)' ý,1 (S1) and M (S2'"2(2 epciey

2) * S)repciey
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where m (8I) is the vector of optimizing values of m as a

I function of the value of S1 and k* (SI) is the value of the

I Lagrange multiplier at the optimal point as a function of 81

Similar remarks hold for j-2 * (82) and A (S2) .

We now require the following lemma on Lagrange multipliers.

Lemma 7--.l Given the problem

Imax g (,m2) -A -A 2l (S2 ( -B (m)) (7.4)
-1 -2

where, as above, 0_e Si K and further g, -A and -B are

I concave continuously differentiable functions defined over the posi-

tive orthant of En (Euclidean n space).
11*

Define g (s (s ~ in m (S

I *~ g -K C1 g a m* A*

*Am S1 1 a ml as/

I "rn

I ~n*
ý9 + A am

1~

I1j 1j

as (7-5)
jm(I i
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Then whenever 7- is finite, we have - = because
as1 as 1

0 - - is a necessary condition for the existence of

a *
Se Mj

an extremum (See, f or example, Karlin(13 )). similarly 4) =

whenever is finite. Further > o O, i.e. s a monotone

function of S.

Now referring to (7.1) we would like to replace

-1 -2S= gl 1 (m) g 2 (m-) with G = G1 (Sl) . G2 (S 2 ) where

Gi (S i) = gi (m* (Si))

Hence we require

Theorem 7-1

If SI = 0 0 i 0

s2 =o --- = m _o

thent
S1

G1 (81) = I ý'71 dI' g1 (11) and (7.6)

0

G2 (S2) = J2A 2 (T d- + g2 (U) (7.7)
0
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proofg From Lemma 7-. we know that

aS G ?aJ (Si) and (7.8)

2 = A2  ) (7.9)

I and further we know by inspection of (7.1) that G GI a G2

Integrating (7.8) we find G = )AJi (q-) dl- + H ($2) where
01 H (S2) is an arbitrary function of 82 * But (7.9) tells us that

S2

H(2) = J ý2 , (T') dr + C where C is an arbitrary constant.

0
But the hypothesis of the theorem allows us to evaluate C as

91 +1 92 0)'

3 problem (7.1) can now be reformulated as

- max 01 (Sl) + C2 (S2) (7.10)S•. .... Sl, S2

I subject to 0 - SI S2 fK, Si _> 0

There are several sifficulties which may have already come

to the readerts attention. The first question which arises is,

I "In what sense is (7.10) equivalent to (7.1)?" We might know the

optimal values of the Si and not know Ei . This is due to the

1 fact that we eliminated quite a lot of information in arriving at

1 (7.10). Secondly, there is the problem of non-uniqueness. We wrote

i (Si) as though it were a specific value, but actually it is a
-i

set of values for there may be many vectors m which optimize (7.1)

I



for any specific allocation of the Si. Third, the analytic diffi- I
culties in arriving at (7.10) will generally become insuperable

for most problems. In the next section we propose an operational

procedure interpreted in the context of the theory of the firm

which overcomes these difficulties* I

7.2 Interpretation and Operation

We assume that (7.1) arises in the following context.

The performance functional is the profit function for a firm with

two operating divisions, i.e. g, is the profit function for

division 1 and g2 is the profit function for division 2. The

constraints Ai 1 -C i _c j are given by the technology of divi- I
sion 1. Bi 1 c i c_ are similarly defined for division 2. The -r

constraints A + B - K is related to the operation of the

firm as a whole. For example, this constraint might be the expression

of the fact that the total quantity of onerating capital available

is equal to K . One aDoroach to the management of this firm is

to centralize the operation and Pive one organizational unit the

task of solving (7.1) and setting the production schedules for the

operating divisions. This corresponds in mathematical formalism

to a direct solution of (7.1). A second approach to the management

problem is to set up a planning group for each operating division

and a central planning unit to coordinate the activities of these

divisional planning groups.



Hence in the delegation of responsibility we give division

11 the task specified by (7.2) and division 2 the task of solving

(7.3). The central planning unit's (unit 3) job is to allocate the

total constraint K between the two onerating divisions in such a

I way as to maximize the total Drofit for the firm, i.e. Maximize

91+ 92 Now, if~ we examine: (7.10) carefully we see that this is

the mathematical formulation of the central planning unit's problem.

Hence the manageme~nt of the firm's operations proceeds as fo-llows:

Step 1. Tha two first level units solve (7.2)
and (7. 3) for arbitrary 0 crS <-K and the
Lagrange nultinliers are commu7Ii~ated 'to the

central planning unit.

Step 2. The central planning unit then uses the
Lagrange multipliers to construct and solve
(7.10). The optimal S's are communicated to
the first level unit.

I Step 3. The solutions to (7.2) and (7.3) cor-
responding to the optimal S's are implemented.

This procedure, by construction, has the Droperty that it

yields the solution to (7.1). Hence in the spirit of the previous

chapters we would say that the performance of the dencentralized

I system is as good as the integrated (centralized) system.

1 Perhaps at this point a brief specific example will aid

the reader's intuition. Corresponding to (7.1), consider
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max g = m m 2  m• (27.1)1

3
subject to m 1 *m 2 .4m 3 10

m 2'+m 2
3 3 _2

mi >0

We will separate the problem between m2  and m3  and hence we see

that the problem satisfies all of the necessary conditions for

separability (see 7.5).

max 2Inlm2  A1  (S i-m-) (7.2)1

mi> 0 i1, 2

max g2 = m3  2  (S2 - 3 ) (7.3)

subject to m32 4 m3  2 i.e. m3  1

3- 0
1 1 1 s*1/2

From (7.2) and (7.3) -1 1
_F 1 2 2 9821

(7.10)1 becomes

C3/2 1/
max g3 -2 s1 / 82 1/2

subject to 0 -c 8 1 S+ 2• 10

-2 2 >

2- i

*(The objective function g is not concave, however in this

case we will be able to handle the entire problem analytically and
we will not need to emrploy the Gradient Method.)
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The solution to (7.10)1 is SI 1=I, S* = 0 which yields

m3 = 0 , * m;- LO and we note that mj * Ubstituted

1 3 3
into (7ýI)1 is, in fact, equal to g 3

I This procedure will become increasingly complicated as the

complexity of (7.1) increases and hence we require a numerical

procedure.. We assume that problem (7.2) and (7.3) can be solved

I numerically via the use of standard linear or non-linear programming

techniques.

We address ourselves here to the problem of the second

I level unit. This unit receives the numerical values of the respective

Lagrange multipliers and from this information alone it must decide

on a method for changing the values of the relative allocations of

I the i . For the case where G1 and G2 are concave functions of

their respective arguments the *Gradient Method" furnishes us with

I jimt such a procedure. For a complete description of this method

and its stability and convergence properties we refer the reader to

I the literature.( 2 ) Oper*ationalJy the use of the "Gradient Method"

1 would proceed as follows:

Step 1. The central planning unit specifies
initial allocations of 81 and S2 . We will

denote these 1v S?) and S(l) and S(i) * (i) =+
i for i = 1, 2.o

I

I
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Step 2. The first level ur4 solve (7.2) and
(7.3) with 81 replaced by S8 , 82 replaced by

s(l)

"T

Step 3. The numerical values of the Lagrange

multipliers A(l) and •() are transmitted to

the central planning unit.

Step 4. If 4() > I) then the value of

S()_ l (J (1) -() Sr)_ 4l
1 1 1 - ' 2' 22 1

This process proceeds until i)L(') i) at ~which time the optimum

has been reached at an interior point or it proceeds until

As S() x (') =0 and )(i) :. A(i) or B2 S(i -= 0$(i) =K1
1 2 1~ _ 1 '2

and ?() > ý('), i.e. the extremum occurs at an end point. To see I
more clearly where the term 2i - •2 comes from in Step 4 we notice

that a (S l,2) = G1  (Sl) * G2 (82) = G, (SI) + 02 (K-SI)

G aG I +Gl _G2, Bs7_ - 60 - aG 2 _
hence - -- *-•- -• - t$2

a S aS1 )8 as2. OS 01 a S2

Therefore the changes in the Si are made proportional to the deriva-

tive of the total profit fumction, hence the name "Gradient Method."

We note in passing that we can accommodate some relaxation

of the conditions posed in the formulation of (7.1). First we can
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accommodate more than one coupling restriction. Just how many more

I is not an easy question to answer, since it depends on the computa-

tional complexity of the specific problem. Second we could with

ease extend this to more than two divisions. Third we could accom-

modate any utility function on the Dart of the central planning

unit of the form H (G1 (m2)j 02 (m2 ) ), if the resultant computa-

1 tional problem of maximizing H is feasible. Note that H need

not be concave or convex. This again brings up the interesting

possibility that the central planning unit may give the separate

divisions erroneous profit equations to work with to expedite the

operation of the entire firm. The actual feasibility of this pro-

cedure has to be evaluated in the particular context of the specific

problem. Fourth we can at least open the door to and formulate the

problem of more general structures than have previously been con-

sidered in this paper, i.e. the problem of multiple-level structures,

e.g. m - 3. In our problem K was considered to be fixed by

harsh reality. In fact, however, this could have been set by a

higher level than the central planning unit. The higher level unit

I then has the responsibility for coordinating 2 or more (3-unit)

systems of the type we consider here. In the next section we will

formulate this problem in detail.

!
I

I

I
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7.3 Vultiple-Level Structures

Consider the following problem:

max pi) (m)(7.11)
'• gz'(Z) + 92 (m2)* +3 g4) •() (.•

-- ,,2-3m, m,m,m

subject to

Z2)) C -m) CK

B1 (i2) c L1

BD 1m )-4 p

D~ (m ) -4 Lp

We will consider the correspondence between the solution of (7-11)

and the problems of decentralized control which might arise in an

organizational structure of the following topology.
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I 03 represents the 3d level goal-seeking unit or system manager.

G21 arid G22 are the second level units (middle management). Gli

are the first level units. In the language of the General Systems

I Theory, we have a 31 - 7 system.

1 We entrust G3 with the task of solving (7.11), but we only

allow it two manipulated variables. Its problem is to split up the

I constraint involving the quantity 'K and to allocate the total

quantity I to G21 and G22 in a way that solves (7.11). G21

is entrusted with the job of seeing that g1 + g2 is maximized sub-

I ject to the amount of the constraint X it is allocated and subject

to the restrictions Ai, Bi * G22 is entrusted with a similar job

Swith respect to g3 +4 has the problem of maximizing g,

subject to the qlantity of the constraint ! allocated to it by

its manager G2 1 and -esubct to the restrictions Ai 0 li i--2,3,4

are similarly constructed.

We will now describe in a rough fashion the way this

structure might operate, and we will assume that the reader can,

from the treatment of 7.3, visualize the corresponding mathematical
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development. We notice that the subsystems (a21, G10 G12) arnd

(022' 0l3, G14) are identical to the type of system treated in 7.2.

Step 1. G3 allocates 1 to the second level
3L

units a21 and G22.

Step 2. G2i using the amount of ! allocated

to them by G3 pursue the course of action

outlined in 7.2 until the amount of R initially
allocated to G21 has been optimally ipportioned

to the first level systems.

Step 3. The optimal Lagrange multipliers from
the first level systems are communicated to the
second level units. The second level unit -1

2 then sends to the third level unit.G21 the send i 2

2 sends * 4, to the third level unit. TheG22_ 3 4

third level unit, in the same fashion as the
second level unit in 7.2, using A = A* + A*

and = + * changes his allocation of

Sbetween the two second level units.

This entire process repeats until the over-all optimum is reached.

Summary

In this chapter a "Decomposition Principle', for a class of

non-linear programming problems was developed and numerical methods

were proposed which converge to the optimum solution. The "Decomposi-

tion Principle, was interpreted as a control device for a class of

decentralized organizational structures.
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The extension of the basic model in several directions was

I ntmentioned and a description of its application to a multi-level

structure (m 3) was given.

The exact requirements for the application of the numerical

l techniques of this chapter are that if we wish to partition the

optimization variables ml,...m into two sets ml,...m. andn

mk l.'mn then the objective functional must be of the form

I g : g1 (ml'''mk) + g2 (mk + 1'...mn) where gi are concave,

differentiable functions. The constraint functions ( (•)must be

I of the form A (ml,...mk) ( B ( + 1,.'' ) > 0 where A and

are vectors of concave, differentiable functions.

I
I
I
I
I
I
I

I



84

8. INDIRECT MODEL - INDIRECT INTERVENTION

AN EXAMPLE

Introduction

It was decided during the course of this research to devote

one period exclusively to an example which would model a hypothetical

real situation. It is the purpose of this chapter to illustrate

the application of some of the theoretical concepts introduced pre-

viously and to provide the reader with an actual numerical example

illustrating the utility of these ideas.

The situation we will consider is the followingt consider

the operation of three separate water storage facilities (dams) all

located on the same river. These dams are assumed to be located in

an arid country such as Spain and the function of the system is to

store and allocate water for irrigation, industrial use, etc. The

hydroelectric aspects of dam oneration are not considered here. The

control problem here is to allocate the water available to the system

to the system's customers over the dry period of the year (assumed

in this example to be six months) in such a way as to minimize some

measure of total cost. Each dam is assumed to have inputs from stream

flows. It islassumed that these inouts can be described as a

Markov process (since we are working in discrete time- -a Markov

chain). This assumotion was substantiated by J. D. C. Little(16)

who examined data from the inputs to Grand Coulee Dam and found

the stream flows to be autocorrelated and essentially Markovian.
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Apparently seldom, if ever, in practice does the case of (time-

wise) independent stream flows occur. Since we have 3 dams we will

I be dealing with 3 Markov chains (2) i•, pi ij is the probabil-

ity that if the stream flow was i units of water this period that

I j units will be forthcoming next period. The reader will notice

that for the purpose of simplicity and due to the fact that we sub-

sequently will need to employ a digital computer that we will assume

j the water is measured in discrete units rather than as a continuous

variable.

For the purposes of visualization it may help the reader

I to compare this model with the Hungry Horse-Grand Coulee-Bonneville

Dam system on the Columbia River. Although the Northwest is hardly

an arid area and hydroelectric power is an important aspect of their

operation, these dams are located in about the same relative posi-

tions as we visualize for our problem. We will denote our dams by

I number, i.e. #3 being farthest from the ocean, #2 next, etc. We

assume that if water is released from one of the "higher" dams on the

I river this water will reach the "lower" dams in significantly less

than one month. This is apparently justified for the Columbia

Ii system. The approximate transportation lag between Grand Coulee

I and Bonneville is 24 hours.

Each of the dams, customers (except possibly those of dam

#1) are assumed to use all the water allocated to them, i.e. none

is ever dumped back into the river.

I.
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Since we are concerned with an arid region it is assumed

that the capacity of each of the dams is adequate, i.e. dam capacity

is not a constraint.

The cost functions for each of the systems' customers is

assumed to be convex about some desired quantity. Graphically we

may illustrate this as

Fig. 8-1 cost,

m* unit of water

The cost functions are assumed to be independent fiom.

period to period and fixed for each customer.

Each dam is assumed to have three customers, i.e. 9 in all.

We denote the cost functions for these customers by

1 92 (m2) ... g9 (M9) where i2 is the amount of water

allocated to customer i.

Let the amounts of water in the three dams in the current

period be Z1 , 212 and Z3 respectively. Let mIO be the quantity

of water released by dam 3 to dam 2, and m the amount released

from 2 to 1. We will indicate the scheduling period by subscripts,

e.g. m9 is the amount of water allocated to customer A9 in the

first scheduling period. Let TJ be the amount of input (from

stream flows) to dam j in period K.
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8.1 The Mathematical Problem

j We can now formulate our control or optimization problem

mathematically as followsr

Minimize Zj (8.1)

mip POO

i i = 1,...6

where E denotes the operation of mathematical expectation. The

variables are subject to the following constraints.

1_< 1 1 0 m f 21 0-(8.2)
0 11 + 6 2 2 10
1 '1 m+ m 1 +*m1 f J i 1

0 -Cm 7 + *8 + 9 3 11ml
1 1 m 1+m f 2 1 +m 1

0I- 2+m241 2 f 21 41 -m 3, ' 41 (8.3)

i etc.

Actually, of course, this is a very clumsy way to phrase this problem.

i A much neater forumulation is afforded by Dynamic Programming. In

functional equation form the problem ist

I

I
l
I
!
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2 1 P 12,3; Ii12,13) = min gi (mi) (8-4)

N1  N2  N3

f l-i 2  3 1

S (- l _ 1 _ rn' M3 _ -10 +,

2• 2_ m4'- m5 -ml -roll ., kZ 4 mlO,

8 _ 7 - m8 _m9 ll ,z -m 3r rn+n ~ ; 'L3 .~)

N = l,...C, f (....;....) -- 0- The Ni are the orders of the

respective Markov chains. The variables in (8.4) are subject to the

following restrictionst

0 cc maI +, m2'4. M3 + mI0 le zI (8-5)

0 C m46 ,1 mI 2 m10

7 80 '- a7 m 4, M8+a9 '- Z3 4 Mill

The functional fN (....;....) can be interpreted as "the minimum

expected cost for the system given that the initial state is

(2 01 g 2 z T yl 12 1 ) and there are N decisions yet to make

and further, that an optimal policy is followed.'

It has often been said that wDynamic programming (as a

conceptual device) can formulate many more problems than it can solve

(numerically)." The reader has just seen such a case. First of all,

the fact that the problem has six state variables leads to immense

computer storage requirements, and secondly the maximization problet

is imbedded in an 11 dimensional space which leads to staggering
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run times for any conceivable search algorithm, As we will see

subsequently this problem for 6 periods using a very coarse grid

j approximation would entail storage requirements of on the order of

107 locations and run times on the Burroughs 220 of on the order of

I106 years. Clearly this is not a problem where we can wait for a

bigger, faster machine. If we really want a numerical solution to

I this problem we will have to be a little more ingenious.

I The general approach we will use here will be the same as

is employed in the preceeding chapters. We will first decouple the

system and solve three separate control problems and then recouple

I the system into a 2 level- 4 goal system where the second level con-

troller is responsible for recoupling in such a manner that the

interaction between the first level systems is compensated.

8.2 Synthesis of the 2,1- 44f'System

The formulation of the problems for the three first level

I stEms is a simple procedure. The manager of each dam is responsible

for the solution of a Dynamic Programming problem for his dam,

neglecting the possibility that he may receive water from the dam

I above or be required to spill water to the dam below. For example,

dam #3 solves the following problems,1
I

I
I
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)3) 13 -3 min gi (mi ) + N p(3 )
3 3o 1 23 • (8.6)

r(3 ) (,3 -3 i. A3  -30) where 0 e mi_ .3

r( 3 ) m. .),0 N = l,...6.

A similar expression holds for the optimization problems to be solved

by dams 1 and 2. The f(J) (zs, Ij) are to be tabulated for all three

dams (j = 1, 2, 3) and all six periods (K = 1,...6) and all feasible

values of z3  and Ij within the expected range of operation. These

solutions are then transmitted to the second level unit. Only the f
i*

values are required and not the m

Now we will consider the functions of the second level

1 11 1 1 1unit. Consider fN (z , rI)' f; (z + 1, I ). This is, by the

definition of f1, the expected marginal value of water to dam 1
1

given that N decisions have yet to be made, z units of water are

now in the dam, and the last periodfs input was Tl units. By similar-

*1 1 1 1 1 1ly examining fN (z l 2, yl), f; (z + 3, I ), etc., we could by

polynomial fit or similar method construct a function which is

dam*lls marginal utility function for extra water. Assume this

function has been constructed. We will denote it as GI (M 1) since

m1 is where extra water, if any, will be forthcoming.

Now dam 2 is asked to solve the following problemt
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find

fN (mini) gm g(m) G, (m") (8.7)

I,0 m 5,m6,m

N2  2( 2 6I fN• -1 ('i - ml , + 2

2t2
I Note that in the right side of (8.7) we are using 2- and not

f1-l' hence this is a single optimization problem and not N prob-

lems, because -2 has already been tabulated.
f;-)

Now exactly the same process is repeated for dam 2 thatIt 2 2 ýt 2 2
was carried for dam 1, i.e. fN (z , 2 ), fi (Z -4 1, ) T oo are

I used to construct G2 (mI) . Dam 3 is now asked to solve the

problem? find

f 3 (z3 1 3) min (3i 10
N m1m2,m3,m10,)[ gin (mi 2 (8.8)

3 p (3) f3  3- 3 , i 1

i •30 i10

The results of this optimization are then implemented, i.e. dam 3
1* 2*gives mi units of water to customer 1, m2 units to customer 2,

1D*etc., and mi units are spilled from dam 3 to dam 2.

Dam 2 now finds the optimal values of m4, m5, m6 and mIl

corresponding to ft (z2'+ m0 I2) and implements them.
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Dam 1 then finds the optimal values of m7 , m8, mg

corresponding to fN (21 4 m11, y1 ). These are then implemented.

The inputs from the streams are assumed to occur at this pointI

and the process repeats.

The function of the second level unit here is the administra-

tion of the recoupling nrocess and specifically the construction of

the functions GI and 02 from the separate Dynamic Programming

solutions.

Although the recoupling process is lengthy to describe it

is quite efficient computationally, as we will see.

803 Computational Results

The entire process described above was programmed for the

Burroughs 220 Computer. The following simplifications were intro-

duced to cut Orun" times to a minimum.

1. gl (m I) = (M 1 - 1)2' g2 ') = (M2 _ 2:)2'

g3 (m3 ) = (M - 3) 2

2. g4 and g7 have the same form as gl, g5 and

g8 have the same form as g2, and g6 and g9

have the same form as g3.

3. All three dams were assumed to have
identical input Markov chains.
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*3 '3 *3
.2 .4 .2 .2

iPij 
.2 .e .4 .2e

.2 o3 .4 o I

4. A simple 2 point quadratic fit is used to

obtain the Gi using ft (z, I) and

1ft (z + 1, 1) and fý (z + 2, 1),

The input process for each of the three dams was simulated

for each of six neriods and these inputs were used to simulate the

I decision-making process. The Dynamic Programming solution took

roughly 10 minutes on the 220 and thereafter the complete simulation

of the six decision periods, including the random input generation,

J averaged about two minutes. A total of 11 complete six-period

simulations were run, i.e. 66 decision periods.1
The following modifications could have been accommodated

I and still keep the D. P. calculations and one simulation to on the

order of one hour run time.

I 1 3 separate D. P. programs instead of one.
2. Larger Markov chains, up to possibly 8 x 8.
3. Non-stationary cost functions and/or

Non-stationary Markov chains,
4h More agahisticated fitting procedures to

obtain the Gi.

5. More periods than six.

For example, the P1 1 element tells us that if we received
0 units of water last month we will receive 0 units this month with

1probability .3
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The method of search employed in the program was simple enumerative

search point by point. A more sophisticated technique such as

"?'Steepest Descent* would nmke the comnutation of much finer grid

slues possible.

*e will now compare the storage requireftnts and "run" times

-of this simulation to an estimat-e of the requirements for the solu-

tion of (8.4). We will assume that the average grid size per state

variable! was 10, i.e. the solution was calculated for 10 values of

each of the state variables. We assume that the number of scheduling

periods is six. A little arithmetic will convince the reader that

the storage requirements for the solution of (8.4) is on the order

of 107 memory locations, while for our routine the requirements

can be kept to well under 104. Therefore if the cost of computation

goes up linearly with the number of required storage locations the

ratio of the computation cost of (8.4) versus the procedure outlined

in 8.2 is on the order of 103, i.e. the solution of (8.4) would be

at least a thousand times were costly than the approach outlined

in this chapter. Actually, there are no existing computing facilities

with the size required by (8.4), and hence its solution is unfeasible,

regardless of cost.

We now turn to a consideration of the performance of our

method. The following procedure was used to find an upper bound

for the possible performance. If one knew at the beginning of period

1 exactly how much water would collectively be available to the dams,



and if all that water were available in dam 3 at the beginning of

Speriod 1, then it could be allocated over the six periods in such a

way that no better allocation would be possible. This condition is,

of course, unachievable, but it does yield a lower bound on achievable

I costs. This cost is called the "Perfect* cost and is compared with

the costs obtained by our algorithm.1 A complete tabulation of

I results of the II simulations follows.

R Period Amount of Inputt
Dam 1 Dam 2 Dam 3 Cost

I1 1 1 1 27

2 0 1 2 27

S3 0 1 2 27

4 0 2 2 27

5 2 2 0 29

6 3 2 2 11

Total 6 9 9 148

*Perfect* 144

% dev. from "Perfect' 2.9%

Run #2
Period Amount of Inputt

Dam 1 Dam 2 Dam 3 Cost

1 1 1 1 27

1 2 2 1 2 27

3 2 2 3 27

1 4 3 2 3 9

5 0 3 2 211 6 1 0 2 114

Total 9 9 13 125

"Perfect" 123

% dev. from "Perfect' 1.60%

I
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,Ru #3
Period Amount of Input,

Dam 1 Da2 Dam 3 Cost

1 1' 1 1 27

2 2ý 1 2 27

3 3 0 1 24

4 2 2 2 21
5 2 3 1 18
6 2 2 3 8

Total 12 9 10 125
MPerfectw 123

% dev. from "Perfect" 1.6%

Run
Period Amount of Inputr

Dma1 Dam 2 Dam3 Cost

1 ,, i 1 1 27

2 0 1 2 27

3 2 3 0 32

4 2 2 0 23

5 2 0 1 24
6 2 0 0 31

Total 9 7' 4 164
*Perfect" 156

% dev. from "Perfect* 5.1%

Run# 5
Period Amount of Input:

Dam 1 Dam 2 Dam 3 Cost
1 1 1 1 27
2 1 2 2 27

3 2 1 2 27

4 2 1 3 15
5 2 1 JL 2h
6 2 1 0 18

Total 10 7 9 138
*Perfect" 138
% dev. from "Perfect* 0.0%
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Run# 6 Period Amount of Inputj

Dam Dam2 Dam 3 Cost

1 0 0 2 37

I 2 0 1 2 27

3 0 1 2 27

I 4 0 2 2 27
5 2 2 0 24
6 3 2 2 12

ITotal 5 810/23 154
"Perfect" 147

I %dev. from "Perfect" 4.55%

Run# Period Amount of Input:

Dam 1 Dan2 Dam 3 Cost

1 0 0 2 37

2 2 0 2 27
3 2 2 0 29

4 1 0 3 24
5 0 1 3 241 6 0 1 1 21

Total 5 4 11/20 162

. .Pdr-c-t." 156

%dev. from "Perfect* 3.70%
I Run# 8

Period Amount of Inputr
8am 1 Dam2 Dam 3 Cost

j 1 0 0 2 37
2 1 2 2 27

S3 2 1 2 27

S2 1 3 12

5 2 1 1 24
__6 2 1 0 18

Total 9 6 10/25 )45
"Perfect" 141
%dev. from "Perfect* 2.78%
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Run# 9
period Amount of Input:

"fDam i Dam2 Dam 3 Cost

1 0 0 2 37
2 2 1 2 271
3 2 2 3 24•

4 3 2 3 9

5 0 3 2 21

6 1 0 2 14
Total 8 8 14/30 132

"Perfect" 126

%dev. from "Perfect" 4-55%

Run # 10 Period Amount of Input r
Dam 1 Dam2 Dam 3 Cost

1 0 0 2 37

2 2 I 2 27

3 3 0 1 21

4 2 2 2 21

5 2 3 1 18

6 2 2 3 8

Total 11 8 11/30 132

*Perfect" 126

%dev. from "Perfect* 4"55%

Run 11
Period Amount of Inputr

Dam I Dam2 Dam 3 Cost

1 0 0 2 37
2 0 0 2 27

3 2 2 0 37

4 2 2 0 26
5 2 0 1 24

6 2 0 0 31

Total 8 4 5/17 182

"Perfect* 167

%dev. from "Perfect* 8.25%
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For the first five runs the average percent deviation from

I *Perfect" is 2.2%. For the last six runs the average percent de-

viation from wPerfect" is 4.73%. The performance of the solution

to (8.4) must lie somewhere between the performance of our algorithm

I and ,Perfect,* and hence our algorithm performs very well indeed.

Our algorithm's performance is less than 2.2% from the optimum

1I achievable performance for the first five runs and less than 4.73%

from the optimum in the last six runs.

Summary

I In this chapter we have presented a complete numerical

I analysis of an example of a 21- 4, system where the second level

unit employs an indirect model of the first level systems below it

I and intervenes in the affairs of the first level system's via

indirect intervention. The model employed by the second level is

indirect because it requires only a knowledge of f(i)t insteadj(z, I)

I of a complete knowledge of the dynamics of system i. The inter-

vention is indirect because the operation of the second level unit

I consists of inserting the factors GI and 02 in the performance

functionals of dam 2 and dam 3 respectively.

The optimization problem was solved and the total opera-

tion was simulated over 66 decision periods. A lower bound on the

J costs is generated and it is shown that the algorithm, s simulated

performance usually' falls within 3 to 5% of this lower bound.

I
I
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It is also shown that the (computation) cost advantage of this

algorithm over a complete Dynamic Programming solution is on the I
order of a thousand to one. I

I

4.

l1

-1
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9• CONCLUSIONS

In this thesis we have investigated a number of "organiza-

tional" systems or - systems where in each case the over-all

1 system task is the solution of a large multi-variable optimization

problem. Our principle effort was directed toward the development

of efficient *coordination," and *modeling" techniques for the higher

level or "managerial" units.I
In Chapter 3 we introduced the concept of direct interven-

1 tion, and we found that for certain classes of problems the Derfor-

mance of the synthesized 2,Z - 3e system was the best achievable and

that for all the deterministic models of Chapter 3 the direct inter-

j vention approach was better than simply neglecting the interaction

between the first level units. The limitations of this method in

j the static case are that it requires special physical conditions

for its implementation, it places heavy information processing loads

I on the managerial unit, and it does not readily extend to more than

1 two levels.

In Chapter 4 we introduced indirect intervention. Again

this approach yields better performance than one obtains by reticu-

1 lating the system and then neglecting the interaction between
L

reticulated parts. This method requires no special conditions for

I its implementation, and further it silmnificantly reduces the computa-

tionall]ad on the managerial unit. Hoever, this method does reduce

1 the controllability of the over-all system as viewed from the point
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of view of the highest level unit. This in itself is no handicap

because it is possible for the second level unit to have very few

controllable variables and still be able to steer the performance -Z

of the over-all system to the optimum.

In Chapter 5 we found that the direct intervention approach

applied to a broad class of linear dynamic systems leads us to the

conclusion that in this case the 2/- system is equivalent to a

In Chapter 6 we employed indirect intervention in the

dynamic case and showed that it can be used to significantly reduce

the dimensionality of the search problem. We also were able to de-

monstrate that prediction can arise in an Oorganizationw purely as

a function of the structure of the system. The planning function

in a multi-level system need not be linked to environmental uncer-

tainty at all, but may be built into the system as a control device.

In Chapter 7 we introduced the concept of the indirect

model. in Chapters3,'4, 5 and 6 the second level unit is assumed

to have complete knowledge of the entire system and its environment,

i.e. it has a direct model of the system below it. In Chapter 7

only one number is required by the second level system from each

lower level unit in any one decision period in order that the second

level unit be able to steer the complete system to the optimal over-

all performance. The feasibility of extending this type of model
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to more than two levels was investigated, and one class of three

level, seven goal systems was discussed in some detail.

In Chapter 8 we applied the concepts of indirect interven-

i tion and indirect modeling to synthesize a 2X- 4 system for the

control of a 3-dam water storage system. Numerical results were

obtained and the quality of performance as well as computational

costs were discussed.I
I
I
I
I
I
I
I
I
I
I
I
I
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APPENDIX A

In this Appendix we will prove several results relating

to matrix analysis and the theory of operators. It is assumed that

the reader is familiar with matrix algebra and real analysis.

We will define the following notation

F is an n-component constant vector.

Sis an n-component random vector with

expected value E= •

A is an n x n constant vector.

Tbeorem A-19 E (ST A F) T Aji?

Prwoof, Let m= T • A 1: 'rl42..

-'T C- r 1e+ m2 E 2'+..mnen

A 1 l + 2 + "'" n =m " .. D.

71heorem A-2. A T = AT

As above, let mm =AT

Tberefore we can write the theorem as m = M-

= Si mIl m2 72 " m n]



bu~-T 1.f1K 10

ITheorem A-3• d (T A )=2Am i T

di

|L U

Prooft By d we mean the vector of derivatives d N T A F =

di dmI

d
d1m

I Ml all ml + ml a1 m2 + ' mn annm d (FT A E) = 2 al mI

dmI

I a 1 2 m2 + a 2 1 M2 4 a 1 3 m3 +a 3 1 m3 + .°. alnin n+ an1 mn but

a iij =- aj' hence d (T A )2 a11 m 1 + 2 a 1 2 m2 +.... 2 aln mn

d mI

I2 A, . i where A1 = [al, a 1 2 , ... aln T,A
Similarly d ( A SA• 2Ai'E di A)=2

d mi di [A

=nA

2

I
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Example. minimize E (Y B y-) where Y =A Rm+ and B BT

yT B3=(A R+) BTB (A +g) -A BArB

+ AT B1'4g B A + f B by using Theorem A-2 we 1

reduce B Y=mT A BA7.2 m AT B + therefore byA-1,

E (f B Y-) =ET AT B A i+ 2 mT AT B +E(T BC) I
d E (f B y) 2ATB Ai+ 2 AT B R sinceR (G-TB I) is a

d• L

constant. If we equate the vector derivative to 0 we have

2 AT B (A re i) 0 If A f0 and B# 0 -A-lV

where m* is the optimizing value of the vector i.

Now we will take the relevant portion of a theorem from

Halmos(I0) which establishes the fact that we can represent any linear

operator mapping a finite dimensional linear vector space J into

itself as a finite matrix.

Theorem A-4. The correspondence (established by means of an

arbitrary coordinate systemX (xl,...xn) of the n-dimensional

vector space J ) between all linear transformations A on Y and

all matrices 0<ij described by A xj = r ij xi is an isomerphism.

Prooft The proof can be found in Halmos ýibid.) We state without

proof that it also preserves the operation of multiplication (operator-

matrix) and inversion.
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Tnh this section we give the definitions and preliminaries

whicrh are the necessary background for Theorem 4.3 of Chapter 4.

The definitions and theorems stated here are taken from selected

I portions of Taylor. ( 2 1 )

I Definitions.

1. The space of all continuous linear operators
mapping the linear space [XJ into itself will
be denoted by X .

1 2. If X and y are normed linear spaces, we
define the "normt of the operator A mapping
X into Y as

i1AIn sup I JA xlI x C X where

I iXIl I ý 1
jixil is the norm of the vector x, 11A xil

is the norm of the vector A x £ Y.

S3. If is such that the range of.Z I - T is
dense in X where T has both its domain
and range in X and I is the identity
operator, and if 2 I - T has a continuous
inverse, we say Xis in the resolvant set
of T ; this set of values of 4 is denoted

I by f (T) * All scalar values ofA not in

f (T) comprise the set called the spectrum

i of T ; it is denoted by ((T)o

4. A space X is a Banach space if it is a
i complete, normed, linear space.

The Theorem 4°3 of Chapter.4 is proved in Taylor.(ibid.) It is,

i however, somewhat more powerful than we require, and hence we will

I state and prove that portion of the theorem that we require.

I
I
I
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Let X] 'be the space of all bounded linear operators

mpping the Banach space X into itself.

Theorem A-5. If T IE [i and IlaI IITII land if (( T -'T

exists and is continuous, then

XI - T) y Z _ - Tn y for all y in the range

of • - T.

Proofr If y = (AI - T) x then

x X-y ... Y -n Tn-lY , nTn x

we have the results because ;-n Tn x----O0 when I 1 > IlTI

hence the series converges geometrically in the norm of the space X.



Iil

APPEDOIX B

In this Appendix we present the proofs of the Dynamic

j Programming theorems used in Chapters 5 and 6.

Consider the functional equation

T
-kl21a &A ~ "E N-k + ZN-k) B (A FC+ ik+ WN-k) (B.)

I T heere Km BI h t u an the optimal forli ll T

4.

SI-rom (B.2) by taking the expectation and derivative we find

Sk A• YT ATNk• A c* 4 N-k•IA, -k~kl wheret

l-

anItwcC~weeR=CB

I
I
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" =C-k - BN_) -1 ..-k, ENk B ATý, Nkl A

Hx = (C - By"1 B % (a -B)- BR.

N-k = (I + ,-k)T BN-k (I + HW-) - 4-k C,_k

SNk = (i* .k) (-k %-k) - 4-k c' ..k + AT SN-k1

$N+1 0 o0 k.•l 0 . %.

2 T -*

- -k1 SN-k A N-k * N-k'

" ('•-k + '..k7 BN-k ' (N--k + 4 -k

Proofr We proceed by induction. We have previously demonstrated

the hypothesis to be true for k 0 0 by showing

N= A c + GN and the hypothesis on Sa (1) is satisfied as can

be verified by inspection.

Let the induction variable be A . If we assume that hypothesis

is true for all • k-I we have

5 T AT V-_01A 7C~~5k (:*) = max! -. c U -

Sk4-l '64 NNk + N-kT B (A5',-k

N-klA (AN4im- EN- A PN-k'i-k

4 k+ A (A 'a + 5 N-k + N-.k) +kk,
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i Taking the expectation and derivative we find

I MNk = (r' - %- 1 k 'N-k (A - _k) *AT SN"..k41

and now an examination of HMk and %-k verifies the hypothesis

on k Substitution of this result into Sk1 CE) verifies the

I structure of Sk (co

I Theorem B-2. The solution of the functional equation

S~k,1(T) mi m E E(A %-~k * C'N-k) B (K F+ N-k + CN-k)

';-k N-k * Sk (A + N-k+ Nk

where 3i is a sequence of constant vectors is

1 SN-k IN-k - 2 I-k+l A 6 and the optimal policy is

J-k = B-1 (A2 •N-k1~- '-k) - (A 3 4 -LNk)

where 5k = Vk-1 * E' •N-k+l + NN-k+1 - N-k+l)T B ('N-k÷l

*Ew* N-k 4-1 2 ;Tk+l (-fN-k+l - ýq-k+1)

- 2 'N-k+2 A - N-kM1

and N-k = B-1 (AT ý;-k+l " '-k)

Prooff. The proof proceeds by induction in exactly the same form

I as Theorem B-I. and hence we will omit it.

I
II



APPENDIX C

This Appendix formulates a possible area of application for

the models of Chapters 3, 4, 5 and 6. it is our intent to indicate

the general areas of application and to interpret the features of

the models of Chapters 3 through 6 in the lang-uage of the application

area; however, we will not concern ourselves with the specific do-

tails of applying the results.

In this Appendix we will interpret the vectors 7 and Yt

as output vectors of a system which express the deviation in the

system outputs from a fixed operating points i*ee where

i 0 is the vector of fixed operating points and T is the actual

system output. The j and Ft are to be interpreted as vectors of

disturbances which appear in. the outputs and arise from causes exter-

'nal to the system- The R and Mt , as befores, are vectors of manipulated

variables.

An example of a system where the disturbances appear directly

across the outputs of the system as they do in the models of these

chapters is in any electrical generating system. A class of practi-

cal situations where these models might find application are in hydro-

electric generating stations where there are several turbines operating

off a single penstock and where increases in load on one generator

affect the speed of the other generators*



The System Equations

In Chapters 3 and 4 we deal with system models of the type

= A + 1. Here we assume that • is a function of tire but that

it depends solely on m and j and not on its own past as do the

I7t of Chapters 5 and 6. We interpret F in this context as being

the magnitude of the penstock value openings to the raapective

i turbines. • is assumed to be a function of time and it is assumed

that the variations of F are sufficiently small that the inherent

non-linearities of the system do not influence the model.

I - A is the *system matrix* which symbolically transforms

penstock value openings into generator outputs. A is assumed to be

constant. We will assume that the disturbances i are functions of

time but known, i.e. the fluctuations in load have been previously

observed and are periodic. We make this assumption here to avoid

having to deal with random functions.

The dynamic models of Chapters 5 and 6 can arise in two

different contexts. First we might assume that the system had

significant internal dynamics, i.e. that the internal inertia of

the system, for example, makes the outputs at time t+l dependent

on the outputs at time t . Alternatively we might assume that we

are dealing with two different dams located on the same river so that

the water available to the lower dam is dependent on the discharge

I of the higher dam.

I
I
I
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The Performance Functionals

Two of the most important goals of a power generating

facility/15) are to maintain constant ottput levels independent of
I,

the load and to minimize the transmission losses which are a func-

tion of the output levels. We will assume that the generating

facility appraises the cost of deviating from the fixed operating

point o as being proportional to the square of the deviation.
0

We can state the first goal mathematically as minimize TB P 4
where B is a positive definite matrix. It has been shown in the

literature(l15) that the transmission losses go up also proportional

to the square of the outputs. Hence we can define the control

problem for the system as

minimize Y T BP 9 (F+-Yo)T 0 (F+ ) +

(C is positive definite)

Direct Intervention

There are at least two ways to interpret the terms Aij-ýL

which occur in the output equations of Chapters 3 and 5. One way

is to assume that AJ is a control signal and that the direct inter-

vention procedure requires the capability of taoping into the generator

speed controls at an appronriate point in such a way as to introduce

into a21 nd into A1 2 . A second way is to assume that
-2

the total term, e.g. A1 2 , , is inserted directly into the output.

In this method then one takes the vector signal -, amplifies it

by the matrix A1 2 and inserts the resultant directly into the

outputs.
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Current hydroelectric facilities genrally possess the
I ability to implement this procedure directly due to the presence

of lines which allow them to tap power from a neighboring power

system. These lines are known as *tie linesK.(14)

i Indirect Intervention

i This mode of intervention is concerned solely with the

computational aspects of control and hence has no counterpart in

I the physical system.

I

I
I
I
i
I
I
i
i
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APPENDIX D

In this Appendix we will define ,controllability. in a

manner which is suitable for our requirements and indicate the other,

uses of the term which are prevalent in• the literature.

The concept of controllability, broadly stated, is based

on the followingr( 1 2 ) Given a system, a set of required outputs, and

a set of available manipulated variables, is it nossible for each

of the required outputs to select a value for the manipulated

variables which will deliver the required output?

Brockett and Mesarovic(6) also define the concepts of

Functional Controllability, Asymptotic Controllability, and

Pointwise Controllability.

For our purposes we will require only a slight variant of

Pointwise Controllability. For Chapters 3 and 4 we require the

following Definition D-1.

The system modeled by the state equation • A R + i is

Opointwise controllable" ( for every point To - o in the

output space Y it is possible to select at least one point Z

in the space 9 of manipulated variables such that A = YO -too

Several things become apparent. First, if the number of

components of F is less than that of 3 - • the system cannot be

pointwise controllable. If the number of components F is gi'eater
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than or equal to the number of components of • - , we must examine

j the matrix A. If A is square and non-singular then, of course,

the system is pointwise controllable,I
What occurs geometrically if the system is not pointwise

I controllable? For the answer to this question censider the system

i equation

S(D.1)

I wheut in this instance A [ a] and m here is a scalar

I quantity. We can regard (D.y) as expressing the Yi - Ci para-

metrically in terms of the variable m. Hence (D.1) constitutes the

equation of a straight line in the output space T ' Whereas if

the system were pointwise controllable we could reach any point of

I T with some S here we can reach only those points on the straight

line (D.1) by manipulating m.

For Chapters 5 and 6 we will employ the following concept.

I Definition D-2. We will define the system modeled by the

j equations Yt., = A 7t 4 mt+l * t4l O@ = C t = 0, 1,

to be *functionally controllable"(--•every possible sequence of

I values definable in the outout space T' can be realized by the

selection of at least one sequence in the space of manipulated

variables V.


