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Abstract

This report contains the proofs of the uniqueness

and existence theorems for an electromagnetic field %.ien

the normal component of both the electric and magnetic fields

are given on a smooth surface. The truth of the above

theorems was suggested by V. Rumsey. The results are ob-

tained for an exterior domain. However, the same method can

be used for the interior problems. Whereas one synthesizes

an electromagnetic field by a surface current when either

the tangential electric or magnetic field is given, we

synthesize our electromagnetic field by means of the electric

and magnetic surface charges.

We also show that solutions to Maxwell's equations can

be expressed in terms of solutions to a second order partial

differential equation in certain coordinate systems when the

parameters E and I are allowed to have a certain

anisotropic property. This result represents an extension

of those obtained by C. Mdller and by B. Friedman.
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Introduction

This report will be concerned with some boundary-

value problems for Maxwell's equations; in particular,

those concerning the normal component of the elec'vric

and magnetic fields. The space is the Euclidean 3-

dimensional space and the boundary will be a simply

connected surface. In electromagnetic theory explicit

solutions of boundary-value problems are kr-3vm only in

cases where some components of the electric or magnetic

field satisfy a second order partial differential

equation. Excluding some specially symmetric boundary-

value problems, only in the caseL. when the surface is

a sphere, a cylinder (circular, elliptic, or parabolic)

or a plane can the solutions be expressed in explicit

forms. In all these cases the electromagnetic field

can be decomposed into "T.E." (transverse electric) and

"T.M." (transverse magnetic) fields and the solutions

are synthesized through solutions of a second order

partial differential equation, i.e., the Helmholtz's

equation (A + k2 )9 - 0. General separability problems

in orthogonal coordinates have been investigated by

Bromwich [1919], Muller [1949] and Friedman [1955] and

in general coordinates by Itch[ 1959]. In general, it

is possible to use the Stratton-Chu formula (Stratton,

p.4 6 6] to represent the solution of the Maxwell's
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equations in terms of surface integrals if the tangential

components of the electric field and magnetic field are

given on a surface. Existence and uniqueness of the solution

of Maxwell's equations when the tangential components of

either the electric field or the magnetic field are given on

a smooth surface is known. Proofs of these results have
I'

been given by Saunders [1951], Muller (1957] and recently

by Werner (1962]. In a recent paper, Rumsey (19593 suggested

that the electromagnetic field would be determined uniquely

when the normal components of the electric and magnetic fields

are given on a smooth surface. This proposition is obviously

true in the cases when the boundary surfaces are infinite

planes, cylinders, or spheres, because in these cases the

problem reduces to that of uniqueness and existence of a

scalar boundary-value problem.

In Chapter I we shall collect some known formulas of

electromagnetic theory. In particular, the Stratton-Chu

representations of an electromagnetic field are recorded.

Using the Stratton-Chu formulas we can prove a rather

trivial uniqueness theorem of an electromagnetic field.

However, in order to use the Stratton-Chu representations

to calculate an electromagnetic field, one would have to

know the tangential components of both the electric and

magnetic fields on the surface. It is known that only the

tangential electric field or magnetic field is sufficient to
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determine an electromagnetic field uniquely. We therefore

cannot prescribe the values of the electric and magnetic

fields arbitrarily on a boundary and expect the surface

representations to satisfy Maxwell's equations. By the

existence theorem, we know that given a tangential electric

or magnetic field on a surface, there exists an electro-

magnetic field which satisfies the Maxwell's equations and

takes on the appropriate boundary values. Saunders [1951]

had actually shown the existence of the "Green's Matrix" by

means of which one can calculate the electric or magnetic

field by knowing its tangential values on a smooth surface.

The Green's matrix cannot be explicit, however. But, in

special cases (and important cases) when the boundary con-

ditions call for the vanishing of the tangential electric

field or magnetic field, the Stratton-Chu representations

can be used directly to calculate the electric or magnetic

field. In other cases, one usually tries to synthesize

solutions to Maxwell's equations by means of scalar functions

satisfying a partial differential equation.

Chapter II is devoted to the synthesis of the explicit

solutions to Maxwell's equations in terms of a function

satisfying a second order partial differential equation.

The possibility of expressing solutions to Maxwell's

equations in terms of scalar functions satisfying a second

order linear partial differential equation had been
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Investlgated by Bromwich (1919], Muller (1949], Friedman

[1955) etc., in the case of orthogonal coordinates. Itoh

[1959] has investigated the possibility by means of tensor

calculus in the general coordinates. In all cases, except

Friedman, the 6 and 4 are assumed to be constants.

Bromwich imposed conditions on the metric elements and

showed that the conditions were met by spherical coordinates.
'I

Muller showed that the only coordinate systems satisfying

the conditions imposed by Bromwich were rectangular, cylin-

drical, and spherical. Itoh treated the general non-

orthogonal coordinate system and arrived at the same con-
I,

clusion as Muller's. Friedman has investigated the case

when the dielectric constant takes on different constant

values in different orthogonal coordinate directions. He

also imposed the Bromwich conditions. In this chapter,

we follow the work of Friedman and extend the results of
It to

Muller and show that the conclusions of Muller are still

true when two of the coordinate directions are not mutually

orthogonal but the third is perpendicular to the other two.

We shall express the solutions to Maxwell's equations in

terms of solutions of a second order differential equation.

The present results can be used in the case of electro-

magnetic wave propagation over the particular anisotropic

media.

Chapter III is devoted to the proofs of two uniqueness
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theorems. One of the theorems states that if the normal

component of the electric and magnetic fields vanish on a

regular surface, and if the electromagnetic field satisfies

the radiation condition, then the electromagnetic field

vanishes identically in the exterior of S. This uniqueness

theorem furnishes a proof of Rumsey's assertion that the

normal component of the electric and the magnetic fields

determine a field, if there exists one, uniquely It seems

"unnatural" to prescribe normal components of the electric

and the magnetic fields, since the known representation

theorems, such as the Stratton-Chu formulas, call for known

tangential components. However, it is well kown that in

the electromagnetic boundary-value problems involving a

spherical surface, the most fruitful treatments are to

"1separate" the Maxwell's equations into "T E." and "T.M."

modes, as was done in Chapter II. The boundary values for

the two scalar functions are closely related to the normal

component of electric and magnetic fields.

Chapter IV will contain the proof of the existence

theorem for the case when the normal component of the

electric and magnetic fields are given on a smooth surface.

We shall construct an existence proof by means of a

system of integral equations. The proof is carried out for

the exterior domain; however, the method can be used for

interior problems. Whereas one synthesizes an electro-

magnetic field by a surface current when either the
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tangential electric or magnetic field is given on a surface,

we synthesize our electromagnetic field by means of the

electric and magr.ntic surface charges. The starting

formulas are the Stratton-Chu formulas. Using the given

boundary values on the normal component of the electric

and magnetic fields, we form a system of two Fredholm

integral equations, the solutions of which give us the

desired surface charges. Using the known charges, we

can derive the surface currents. We then use these

charges and currents in the Stratton-Chu representations

for our electric and magnetic fields.
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I.

A. Maxwell's Equations

The mathematical theory of electromagentics consists

of the study of the four vectors •, •, i, and 9 satis-

fying the Maxwell's equations;

S + - o, (la) V-9 -o (lc)

VxA -6ý (lb) V.• -• (Xd)

together with

ý - F_ and 9 - p•l

where ý is the electric intensity, A the magnetic

intensity, ý the electric displacement and 9 the

magnetic induction. I is the volume current density and

is the volume charge density. • is called the electric

inductive capacity and g the magnetic inductive capacity.

E and g are in general tensor functions of position.

However, in many important applications, V and Ž. are

constants. The ratio of F in a medium to that of free

space is sometimes referred to as dielectric constant and

denoted also by .

The most important and understood case of the Maxwell's

equation is that when the variation with respect to time

t enters as e-ift where a; is a constant called
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circular frequency. In this case the Maxwell's equations

become

VA - U oM, (2a) v.1 - o, (2c)

vxit + ica[I. - 3. (2b) V-D - P, (2d)

if we let ý, q etc. to represent the time independent

parts of the quantities in the Maxwell's equations (la) -

(ld). Except in Chapter II we shall take jp. and co

to be constants.

The interesting and difficult problems of electro-

magnetic theory are the boundary-value problems in which

"scattering" objects are present in the otherwise homo-

geneous, isotropic medium. In such cases one synthesizes

the solutions to (2) by adding to a particular solution

of (2) the solutions with 3 - o. This requires finding

a solution of:

vxi + IE - o. (3b)

with prescribed boundary values. When the region con-

sidered extends to infinity, it is necessary, for both

physical as well as mathematical reasons, to introduce a

condition regarding the behavior of the solution at in-

finity. Assuming differentiability and that e , U,

and w are constants, we can derive from (3a) and (3b)
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the equations

V x Vx -k 2  =o (4~a)

V x v x -k 2 - o, (4b)

where

k2 co2e4

From (4a) and (4b), we get V'1 " V'-9 o.

Using the vector identity

V x V x - v(v.•) -

we get

(A + k 2 )ýmo. (6a)

(A + k2 )i) - o. (6b)

One can see that each of the rectangular components of the

electric field ý and the magnetic field I satisfies

the scalar "wave" equation

(A + k2)P - o. (7)

Therefore, many properties of the solutions to the

Maxwell's equations can be derived from those of the

solutions to the scalar wave equation. In the next

section, we shall collect some formulas which will be of

use for the later chapters. Proofs for many of them can

be found in the standard text by Stratton [1 9 41] and in

* A is the Laplacian differential operator
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'I

a recent book by Muller [1957]. Therefore we omit many

and just sketch some of them.

B.

Radiation Conditions and Representations

In this section, we shall use the terms regular

cur, s, regular surfaces, and regular regions. Their

definitions can be found in Kellogg (1929; Chap IV
,!

sections 8 and 9] or in Muller (1957,p.20]. We shallneed

Definlt oqi. A complex function 9 in E3 (3-

dimensional euclidean space) is said to satisfy the

Sommerfeld radiation condition if

lim rJi ikq'I - o lim 191 - Oft)
X_1 r-0

uniformly with respect to directions.

A similar radiation condition for the electro-
It

magnetic field in unbounded medium is the Silver-Muller

radiation condition.

Definition 2. An electromagnetic field in E3 is said
I,

to satisfy the vector radiation condition (Silver-Muller)

if

lim rlP x TV x + ikil - o and lim I1 "(

or
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lmr rI xVxi +ikAi -o and lrm JIt -"O(.!),

where r is the distance from a fixed point chosen as the

origin and r is the unit radial vector. l•l -f',

where * denotes complex conjugate.

Remark: The conditions lrm q" 0o(') and
r~r

lir o(n) or nm 1I1-o(1) can be dropped.

Proofs of these can be found in Wilcox (1956,1957].

The following representation theorems are well

known.

Theorem la. Let G be a finite, regular region and S

2
its boundary; let qe C2(G) be a solution to

A• + k2r_ o

and I E C(*

then for x e G, we have

p(x) e iklx-yI eiklx-yI ] **

where n is the exteriot unit surface normal, and

is the differentiation along the exterior normal.

* 0 is the clopure of G; it is the region 0 plus its
boundary. C (G) is the space of functions whose
derivatives up to and including kth order are con-
tinuous.

** W deote~ -1 23*We denote x- x - (x ,.x3) 2 as the point having
rectangular coordinates x ,x , and x respectively.
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PFo point x + G we have

Theorem I.. Let

i) G be n regular region, S its boundary

and 9 a solution to (&+k )2 - o.

1i) 9 is of class C1 in the closure of the

exterior of G.

iii) 9 satisfy the Sonm.erfeld radiation condition.

Then for x

Seklkx-YI eikIx-YI •n•P1 dS
(P (x) S~ 9(y(~) Tn 1xIf_ - Mxy y y

where n is the surface normal pointing into G.

The vector analog of the above two representation theorems

are

Theore 2a [Muller P.134). Let and A be of C2(G)

in a finJte regular region G enclosed by a regular sur-

face S. M, e CI and satisfy the Maxwell's

equations

V x -it4LHi -

V x + i4- o.

then for x e G

•(x) - -m1 (iu•• x + x• x + ]
~Ff Eu( xA + xit ( ) x O+ I) V)dSyIS

9t(x) 1 - f Eia4(' x t -(+n x i) x - ('ii)V0fdsy,
S3
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where 1 "Ix-Yj and A is the exterior surface normal

to the surface S.

Theorem 2b. Let G be a finite, regular region. Let

and A satisfy the Maxwell's equation in Theorem 2a in the

exterior of 0. If I and A satisfy the vector radiation

condition, then for x in the exterior of S, the formulas

in Theorem 2a hold if we replace the exterior normal by an

interior unit normal (pointing into G).

Theorems 1 and 2 give representations of the solutions to

the scalar wave equation and the Maxwell's equations in

terms of their boundary data. These representations furnish

a means of constructing solutions to the appropriate

equation when the boundary data are given.

Theorem ý. [Muller p.156]. Let S be a regular surface

element which is bounded by a regular curve c. Suppose

v is a continuously differentiable surface field, then

fVO' ds- v.n0 dl,

where Vo. is the surface divergence operator, no is a

unit surface tangential vector which Is normal to c and

points away from S. Using Theorem 3 and the Maxwell's
0I

equations, Mller showed that

V1 - ico0 - 0

Vo'• - imp - 0
01
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where -i f, n - n x ,

-m - (n.) o (j')t)"

We can therefore write the representations for and

as

S

where Vol - -

conversely, it can be shown (Muller pp. 2 10- 2 12 ] that if

,•o',' and e are given by the above relations the

surface integrals represent an electromagnetic field; that

is, satisfy the Maxwell's equations for points not on S.

These representations of ý and A in terms of the bound-

ary values are known as the Stratton-Chu representations.

In Chapter IV, we shall use the Stratton-Chu formula to

construct an electromagnetic field when the normal component

of the electric and the magnetic field are given on a

smooth surface.

The above representations give the following two

trivial uniqueness theorems.

Theorem !L. Let 9 satisfy the equation

(A + k2 )9 o

p* We use ud and an i conformity with Stratton;
mdller used I and3'
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in the whole space, and let V satisfy the radiation con-

dition

lir r 169 - ikqp - o, I rqi< c

Then q) a O.

Proof: We can use the representation in Theorem la for

T, where we can take x - o and S being a spherical

surface. The radiation condition will insure the vanishing

of the surface integral when the radius of the sphere goes

to infinity. Hence we get 9(x) - 9(o) - 0. Since x is

an arbitrary point, we conclude that V(x) ý o over the

whole space.

Remark: This Theorem is the analog to the statement that

the only regular potential function over the whole space

is a constant.

Theorem 5. If I and A satisfy the Maxwell's equations

V x - i -o 0,

V x + iul 0,

over the whole space and the radiation condition

limr rI9 x V x I - ik11 - o, Ir~I< c, and rJII< c,

then - uo.

Proof: We take the representations for the ý and A as

in Theorem 2a. Take x - o and S a spherical surface of

radius R.
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then
nim [IW/(rx 910 + •x •)x VO + (-n.•t) Vol

- (/ir x H' + i kI o-

where e ek""

Hence the surface integral for the electric field is zero
as R-O . Similarly i is zero.



2.1

II

Representation of Solutions to Maxwell's Equations in

Terms of Scalar Potentials in a Nonhomogeneous Medium

This chapter is devoted to the synthesis of solutions

to Maxwell's equations in certain coordinate systems and

for an anisotropic dielectric constant 6 . We Ehall assume

I(- constant and E to be a function of position and aniso-

tropic as prescribed in Theorem la.

We shall employ the differential geometrical quan-

tities as used in Stratton [1941 Chapter I]. Specifically,

we let uI, u, and u3 be parameters. We shall denote

a space point by

- •(ulu 2 ,u 3 ) (1)

r. " i " I, i - 1,2,3 (2)

and assume that a., a2 and a3 are linearly independent.

We also define

giJ - a.0a and g det glJ (3)

Vg - (4 x *3), -Vl(3 1 al)a, ý a x 2), (4)

g can also be expressed in

Sa- 13 a(a2 a t 3).

Since ai , i - 1,2,3 are assumed to be linearly
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independent, g is not zero. From the definition of

a , we have:

t a- = *ft if (5)Sif ±-J

Any space vector can be expressed as

-fp - fia1(6)

where f .m .et, f

Introducing giJ such that

gijgjk k 6

we can express f in terms of fJ as follows

f- M 3jfi i gi jfi . (7)

The fi and f in (6) are the contravariant and the

covariant components of the vector P respectively. In

terms of the above notations, we shall name:

Theorem la, Let Ali = ejJ and • •i a

denote the electric and magnetic fields. Let /A- constant

and _ be such that

6- &lel 1 + ýe 2 a + ýe 3,

• We follow the summation convention and write

eb #1 b 1- a 2 + 3)
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Let g3 3 " g33 (u 3 ), g13  g2 3 " 0,

g 1 2  912  3
- and g-1 be independent of u

Let 51 " I2 " (u 3 );then a possible T.E. electromgnetic

field is given by

1 a 29

"1 a2)

11u2 Sg 22  •
e' -4o

where 9 is a solution to the following equation

2 P + k 21 + fg g 22 6q +r g 12  ý(ug33 2)u-"au5 +f u fTu2 * ••
+ g g12 a(P+ gl 116q

;-T u 2u .; '

where k 2  2

In curvilinear coordinates the curl of a vector

can be expressed as (Stratton p.47]



2.4

6 6 6f ý6ff (7a)

(7 a, + a2 + -a-u a.

Using (7a) we can express Maxwell's equations in the

medium satisfying the conditions in Theorem la as

1 ae ae2  a
u au

;ýe 1 I e iPk(8)

6e2 6eI
=72  7u 1  1/ :5 (8c)
6u_ - -i(ft

1 - 2 -i tlwe1 (9a)

,4 -- ý2Oh (9b)

S[ýh 2  6hi3

Let us assume e3 - o (10)

from (je) we get

6h2 ah1

If we assume that all components have continuous first

derivatives, (1i) implies that there exists a function 9

having second continuous derivatives such that
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h h (12)

Using (6) we can write

u = [ej]J "2 92 . (13)

By the assumptions of the Theorem and e3 -O~we have [fron

(8a) and (8"b)]

1 a 1 2 11 1
-- u3 (921e + g22 e ) - icoalg hI + ia/ýg 1 2h2  (14a)

1 1 2 ?(021h+i~q 22 h 1b6u3 (gliel + 9.2e) = #• 1h+ /g2 , (l)

Using (12) and the assumptions on the metric coefficients

gl,,* we can integrate (14a) and (14b) to get

e Jr; 2 (15a)

e - { (15b)au"L

"*We note that glI -gl l i1 [ga2g33 -.g,] a

1 12 19-22g33  - 9 a

1 22 1
-9 g2 1g33- -. g11lg33
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From (15a) and (15b) we get

egmg1 ,e P ,- (16a)

L1 6u, 6u1

Substituting (16a) and (16b) into (8c) and using

11 1"9 9 22g33
12 1.9 g21g33,

22 1
"S -gllg3 3

we get

22 69 g12 )gp6u u ]j (17)

From (9a) we get

1 h _ 1. 2 'eIi. k2 mw 2 (" i2
# ! 4"- - I -- i,ý a - kg W2'

On the assumption that g33 depends only on u3 , (18) can

be integrated with respect to u2  to yield

h3 I a2 + k2 - (. (19)

One can see from (19), (12) and (15b) that (9b) is satisfied.

From (17), (19) and the relation h3 - g3,h3, we obtain the

differential equation satisfied by (P,
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2 19 + 2  +1 V,Ž g 22~ + q) 12 6 +
"533 a.--sz + + (+

a12~q aT ~q 2 2
Z Erg gl 7 + go, k M /C ( (20)

The assertion of Theorem la is expressed in (12), (19), (16a),

(16b), (10) and (20).

Entirely similar to the proof of Theorem la, we have

Theorem lb. If the conditions of Theorem la are satisfied,

if in addition, E 1 E2 " E " const., E3 " (ul'u 2 u 3 ),

a possible T.M. wave is given by:

e1 2
1 =""33 u_!=6

e2 =v~ 1 2

e3 M 1 3[ (2- + k2 9 3 3 #] ,

h2 .2lOE- - 922

~u
h 3 -2 o,

where * is a solution of

1 a 2 (P 2 1 (g 22 6 12 6V

+p + VT Vg= g-o533 c~u"-u Yt uu

6 g2 69 + f-gill 1 m 0. (21)

Remark: If E - 2 - E (u 3 ), we can still reduce the

finding of a T.M. wave to the equivalent problem as specified
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in Theorem la.

If we try to express the results of Theorems la and

lb in orthogonal coordinates, we introduce* [Assume g, 3 m 1]

hI
1 rg11  h2  V 922, h, 3 Vg

- h h3h fi . 1F, f hi~i, gi i ii (no sum)

Sh h h
11 f .. 4 , g2 2  . 1 h 3 ik

and we obtain

Theorem _. If the conditions of Theorem la are satisfied,
i.e.,

E2 - E3 3u(u3 , ,- uo 1 2, . conat.

ii) h-3 1, j independent of u,

iii) E 3 o,

we have a possible solution to the Maxwell's equations given

by

H1  ~ 2 1 *12 P H ~2q) + 2p

1 i ý i uý 1ýu

where 9 satisfies the following equation

S-77 0.

Theorem 2b. If the conditions of Theorem lb are satisfied,

*The h 's here are metric coefficients and not components
-of the magnetic field.
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a possible electranagnetic field is given as follows:

2 2
- U)u "2 au;u E 7.-wk

H1 -'i(Of i- H2  JOj 1 ao*1 = H

where * satisfies
2_+ 2, h2 a ,h i a*

- +3 k7 73 1=2 •T-,q au + 7,a 2 -'F,

where k 2

In both Theorems 2a and 2b, the electric and magnetic fields

are expressed as
A A

E-Ee + E2 e2 + E e3

H1 e + H2e2 +H- "

w h r e e i = T u ; U

We would like to discuss the geometric significance

of the assumptions in Theorem la on the metric coefficients

giJ" The assumption gis " o, I t3, implies that the
"u3 -axis" is perpendicular to the ul-u 2 "plane".

To analyze the significance of the assumptions that

g33 " g33(u3),
g12 gll3

- and 9- are independent of u3
911 922

we follow exactly the same treatment by Muller [ /7 3
in the case when 912 - 0; we arrive at the following two
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possible cases.

i) The "u3-axis" (i.e. the direction of 6r) is

perpendicular to a family of concentric spherica? surface.

This gives rise to a spherical coordinate system.

ii) The u3-axis is perpendicular to a family of parallel

planes. This gives rise to the rectangular coordinate

system or the cylindrical system with the z-axis being the

u3-axis.

Remark: We also note that spherical coordinate system can

be used to solve boundary-value problems in which the

boundary is a circular cone; the base of which is a part

of the spherical surface with center at the vertex.

Theorems la, 1b, 2a and 2b state the sufficient con-

ditions that a T.E. (no e 3 ) or a T.M. (no h 3 ) electro-

magnetic field exists. If the conditions are satisfied,

the T.M. and T.E. electromagnetic fields will exist inde-

pendent of each other. Therefore we must prove that an

electromagnetic field has unique T.E. and T.M. decomposition.

The unique decomposition theorem is not known except in the

special case when E and /1 are constants [see Wilcox

(1957)]. However, if /(:L 1/W2 "/3 = r 62=

then equation (20) takes the following form in spherical

coordinates

20 + k2 0 + 1  r 1 (sine---) + -10 .
-2 L ilne -39 - in --- 2 -
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Given Er - z + k20 at r - a, we can solve for 0

[see Chapter IV] over tb- whole spherical surface if

fErdS - o. If we now let 0 - rl, we see that

(A + k2)t - o.

Hence if we restrict ourselves co a certain class of

k2 m 4 , we can solve I in the exterior of a spherical

surface when I is prescribed on the surface. Results of

this nature can be obtained by means of the C..:en's function

shown to exist by F. Odeh (1960) for a certain class of k2

We have shown in Theorems 1 and 2 the sufficient con-

ditions that one can construct a solution to the Maxwell's

equation by means of solutions to the scalar wave equation

with variable k2 depending on u alone (this can be done

by rescaling of the u 3 coordinate). In this section we

give a necessity argument. This argument can only be re-

garded as heuristic instead of a rigorous proof. We shall

"prove" that when E. and /i satisfy conditions assumed

in Theorems 1 and 2,we can have T.E. or T.M. wave only if

the metric coefficients satisfy the conditions there.

Specifically,we shall show

4E 3 " S (u3) , /(3 " (u_3)

and if g 1 3 g 2 3 0,

we can have T.E. or T.M. wave only if

i) g3 3 depends only on u3.
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ii) rIjg 1 g12 ,and Q g 22 depend on u3 in such

a way that the dependence enters as a product with a function

of u3 .

(These are equivalent to the conditions in Theorem la]

Let us assume e3 a. From V'= o (source free) 1

we get

o- 1-(lel() + 6 '.(2e 2) + e ? e (22)

But 1 2 " - (u3), hence

S+ 6 (e2 ) - o. (23)

(23) implies that there exists a q such that

e 1~ P M6q (24~)

e2 fg- = (25)

From (8a) and (8b),

,.2 1 •e1  1 7(g 1 e1 + il~e2 ) , (26)

1wh 6-U3 aU-(g2 1 e1 + g2 2 e 2 ). (27)

From (9c),

[•Z2hr + 922 h T1 -.- [e 1 1 h1 + g1 2 h2]. (28)

We substitute (24) and (25) into (26) and (27) and then

(26) and (27) into (28). Since q is quite arbitrarywe
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equate the coefficients of various derivatives of T in

(28)* ; then we get the following results;

i) Equating the coefficients of P3 2 ,we get

(1-i) 0o. (29a)
'33)1

ii) Equating the coefficients of T 31,we get

(01 - 0. (29b)T33)

iii) Equating the coefficients of 922 we get
_ 9,21,91 911 g2(921)(9c

-g 11 (ý--j1) 3 g+12(ý) 3 --r(g - o. (29c)

iv) Equating coefficients of I V we get

(12) - o. (29d)
g22 3

v) Equating the coefficients of (21%' we get

W(922(gll)3 - g11 (g2 2 ) 3 ) - o or

(! f) since 2  o (29e)922 3 - o9 22 ?'

vi) Equating the coefficients of V2 we get

, -n1 ) - o . (29f)

vii) Equating the coefficients qI we get

922 12yf 2 (g e) (29g)

i 3 k
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(29a) and (29b) imply g33 depends only on u 3 .

(29c) implies that - 1 is independent of u0;

(29d) implies that !-_2 . 1_ 2 is independent of u3
922 ai

3

(29e) implies that 911 - is independent of u3 •

922 g-T

(29a) - (29e) are consistent and imply that

l- f 11 (u',u 2 ) 0(u 3 ), (30a)
= f ,uI , 2) ,(3

g12 " 1 2 ,u, 2 ,(u 3 ) (30b)

922 - f 2 2 (ul,u2 ) 0(u 3 ) , (30c)

933 - g33 (u3 )' (30d)

Hence

•g (g3 G(f"1 f22 - 1/2 (31)

consequentlyswe see that (29f) and (29g) are satisfied.

Equations (30a)(30d). are the equivalent statements of

the theorem.
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III

Uniqueness Theorems for Maxwell's Equations

if Normal Component of the Electric and

Magnetic Fields are Prescribed.

We shall devote this chapter to the proofs of two

uniqueness theorems concerning the solutions of Maxwell's

equations if the normal component of the electric and

magnetic fields are prescribed on a surface. Specifically,

we shall establish

Theorem 1. Let S be a closed regular surface; let ý and

isatisfy
V x - io* -o

Vy x it+ iC)EI 0

in the exterior and on S. Here, p and o are taken

to be positively real and E can be positively real

or 6- 4 0 + iF i with E0' ,E > 0. Let I and

I be piecewise continuously differentiable on the

regular points of S and in the exterior of S. If

n-.i9 - .i - o

on the regular points of S and if the vector radiation

condition
lim rr? x V x + ikE+1 - 0 , lim rI•I _< c

is satisfied, then

S. A 0 in the exterior of S.
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Let S be a smooth closed surface which encloses

a simply connected region. Near the surface, we can intro-

duce a set of local coordinates such that u 3  is a parameter

characterizing the distance along the exterior surface

normal. Let uI and u2 be parameters characterizing

points on the surface S. Let us write a point in space as
4 3 11
r u ,u ,u) x ,u) + n, where x is a point of the

surface. The curves u1  and u 2 can be chosen so that the
i

curves for constant u form an orthogonal coordinate

system. Let hl, h 2 , and h3 be the metric elements as

introduced in Theorem 2a of Chapter II. We can prove
2

Theorem 2. Let S be a closed surface of class C which

encloses a simply connected region. Let t and I

be solutions to Maxwell's equations in the exterior

and on S. Let H -Hn = 9n. =0o and

--(h1h 2E3)-o on S. Let the vector radiation

condition be satisfied. Then -= -o: on and in

the exterior of S.

Remark: The conditions for ý and i can be interchanged.

Theorem 1 asserts that in the exterior problem there is only

one electromagnetic field with the prescribed normal com-

ponent of the electric and magnetic fields on a surface. In

the interior problem, the 4usertion is not true because of

the possibility that "mode" solutions may exist. However,

if we assume that I-. , > 0, Lemma 2 below will assure that
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there is no non-trivial interior field. The proof of

theorem 1 is based on a new vector Identity, while the

proof of theorem 2 is based on the maximum principle

theorem for solutions of an elliptic partial differential

equation, a result due to E. Hopf (see Hellwig p. 86 ]. We

shall first state a few lemmas.

Lemma 1 [Rellich (1943)]. Let 9 be a solution of

(a + k2)u - 0 k > O

for r > Ro with Ro fixed,

then there exists a positive number P such that

for all large enough R, the following inequality

holds:

f lul2 dv > P R
Ro < R1 < r < R

Corollary: Let i and i be solutions to the Maxwell's

equations

V x iq - 0,.t - o

V x + ia)E -o

for r > Ro with Ro fixed.

Then there exists a positive number P such that

for all large enough R, the following inequality

holds:

f Ii1 2 dv >, P R
Ro < R1 ( r < R

The truth of this corollary follows from the fact that each
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rectangular component of the electric and magnetic field

satisfies the scalar wave equation.

Lemma 2. Let the surface S, the electric field •, and

the magnetic field 9 satisfy the conditions in

Theorem 1. Then if

n . x it) ds - o,
S

we must have

S- ý - o in the exterior of S.
I,

Proof: [Muller p. 2 84]

i) Suppose (,V > o, 0"o + il with 0o .9 > o.

Using the divergence theorem, Maxwell's equations,

the radiation conditions and the condition of the

lemma, we get

- k*f iwE I•I 2 - i±ItI12i dv I--C f tItI ds + o(1)
DR r -R

where * denotes complex conjugate and DR is the

region in the exterior of S but inside a large sphere

of radius R. Because 1 > o. the real part of the

left-hand side of the above equation is negative and

the real part of the right-hand side is positive, hence

f MI2 dv- o
DR

This implies that • o in the exterior of S.

ii) (Wilcox 1956] Suppose k > o
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The radiation condition implies that

o - lim Ir x(Vx )+iII ds.

R- r-R

Expand the integrand and use some vector identities

to get

rnm f 1I12 ds - o(l)
R-b- r-R

By Rellich's lemma (corollary of lemma 1)

E A o for r > R.

This implies £ A o in the exterior of S by

continuation.

Lemma 3. Let S be a regular closed surface; f and g
2 -be piecewise C functions on S. If r is the

unit surface normal on S at its reýular points and

Vtf denotes the surface gradient,

then

fi (vtfxvtg) ds-o
S

Proof: The assumption on the surface S permits one to

decompose the surface into finitely many regular

surface elements, in each of which a coordinate system

can be introduced.

If we write a space point in the neighborhood of S as*
-* M - 1 2 3~ 1'(lu) 2r x(u,u) + (uu),u > o

* 4



3.6

then

Vt f = a* LT + f

cýu-4l +

We find Vtg.-,o (f 3u f 3 -*" 42 -1-(Vtf x nt). 7 (29 -Tu ) a xa -a3

But ds- *- du1du2;

1a - g " a3,

Hence
•10 .2 -* 112 1. _22_ 12 12
ax a*a 3 " g a.ix a J'a3 (g g

al• x &2.a3. g- • Iu3 . 0

Therefo re 6f ý- C)1
f 4.(vtf x vtg) ds -f (.-' " ' *) duldu2

s s u

N ___ ~f a

E~ f (=, ~ ) du du,-u -"6 I
aul Sa )u au

where Sa are the surface elements into which S is

decomposed. The integration is over the corresponding

plane areas in the u -u2 plane. We observe that

-6 - u- - O( -u 1)

using the two dimensional Green's Theorem, namely

/(P(x,y)dx + Q(x,y)dy ) - f ( -Tx d
0 A
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we can therefore write

f.(Vtf x Vtg) ds - Z f (f u du + f ýu d) dl
S Ca 3U6

where C is the bounding curve of S. and 1 is

the arc length. Since the sense of the line integral

on the common edge (or common division curve) of two

neighboring surface elements is opposite, the sum of

the surface integrals will be zero. Hence the result

is proved.

Lemma 4: [Hopf, see Hellwig (1960, p.86) ]

Let the differential operator A be defined as
n n 12

Au -X aiku i+ X a U x-(x xI...x
i,k- i x x irli i

in an n-dimensional space. Let

Aik(x), ai(x)E C in a closed region 0. Let A be

elliptic in 9, i.e.

n yy
, ak(X) yk > o with equality holding only

if yi M yk . o. Then if uEC 2  is a solution of

Au - o, u takes its maximum and minimum on the

boundary. This implies that if xo EG and

u(x 0 ) > u(x) for x a, u(x) - u(xo) in & for

each x.

With these four lemmas, we can now give the proofs of the

theorems stated at the beginning of the chapter.
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Proof of Theorem 1.

By means of Stoke's Theorem, we get for any closed

regular curve C7 enclosing a regular surface element Z

on S

o0 f - .it•ds -If in*v x I*ds - 9-- -

Since CE is any closed curve on S, the above

equation implies that there exists a function f(•) such

that

f( f(4 0 ) - f -dal
xo

Similarly, from the condition - o on the surface,

there exists a function g(*) such that

g(x) - g(4o) - fx it'dT
'Co

These two equations are the same as

E - vtf , -Vtg on S

By the assumption of Theorem 1 we see that f and g will

be of class C2 (piecewise) over S. Therefore by Lemma 3

f" 4(I x it) ds - f -n'(V tf x Vtg) as - o

S S

and Lemma 2 implies that E - H - o on and in the exterior

of S.

Remark: The statement of Theorem 1 is not true for the

interior problem because of the possibility of the

existence of mode solutions (solutions such that
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hl- i.i - o on the boundary). As an easy example,

let us consider the Interior of a closed circular

cylinder of length I. and radius a. It is known

that there exists an electromagnetic field satisfying
(A + k2 ) Hz M 0

V Ep 11

Ez -H -H -o

where z, p, • are the cylindrical coordinates, and

the z-axis is along the axis of the cylinder. If we

look for a solution which is independent of 9, we

find that

(lrnZ)Hz sin T z) Jo (knp)

where n- integer, kn = k2 - (72• and Jo(x)

is the Bessel function of zero order.

This is a nontrivial infinitely differentiable solution

inside the cylinder which vanishes at z - o and

z - 1. This electromagnetic field will have

n. - n.1 - o on the boundary if a is so chosen

that kna is a root of the Bessel function. How-

ever, if IM k > o, kn will be complex and it is

known that the Bessel functions of real order have

no complex zeros.
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Proof of Theorem 2

From the divergenceless of I we get

1 V'1 . 1 (h 2 h3 EI) + ._!(h 3 h1 E2 )
"1hh2h3  uU

+ -- (hl1h2E3)1

If we choose u3 such that h3 - 1 on the surface

S, then the above equation and the condition of

Theorem 2 give

(h2El) + (h1 E2 ) - o. (A)

From the argument in the proof of Theorem 1 we see

that n't - o implies that there exists a function

T such that

•t " t• " l•1 1 E2q2 " A •

Ue1 (B)

A A

AA

where eI and e2  are mutually orthogonal unit

surface vectors. From (A) and (B) we get

) ( h ýu'f 1) + N "I h1 ul)"oh2 2 -l

this equation holds on any point of S in which a

local orthogonal coordinate system is introduced.

At any point of S we can choose a coordinate system

such that h1  and h2  are greater than zero. Now

9, being a solution to the equation, is continuous
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over S (a compact set). Hence 9 must attain

its maximum on S. Let it attain its maximum at a

point xoE S. We apply Hopf's lemma to get

9(x) - 9(xo) in the neighborhood of xO. Re-

peated applications of Hopf's lemma will give

S- const. over S. This implies it a o on S.

By the uniqueness theorem, which states that an

electromagnetic field in an exterior domain is

uniquely determined by the tangential electric field

on its boundary, we see that I a o in the exterior

of S. Hence, also A O o and the theorem is proved.
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IV.

Existence Theoreme for Maxwell's Equations

if the Normal Component of the Electric and

Magnetic Fields are Given on a Smooth surface

In this chapter we shall construct a solution to the

Maxwell's equations in the exterior domain when the normal

component of the electric and the magnetic fields are given

on a smooth boundary surface. Then by Theorem 1 of chapter

III, a solution so found will be the solution, In particular,

we state our result in the

Theorem. Let

i) S be a C4 closed surface which encloses a simply

connected region,

ii) e(y) , h(y) (yeS) be Holder continuous functions

on S satisfying the conditions

fe(y) ds- fh(y) ds- 0
S S

then there exist ý and satisfying

a) The Maxwell's equations

V x - icl -o

V x + ic - o,

in the exterior of S.

b) The vector radiation condition

lim rIý x V x E + iklI - o and
r%*
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c) n'• - e(x) , i- h(x) for x e S,

Define a map T implicitly as follows:

Let ( be the solution of

such that f q ds - o,
S

where At is the "surface Laplacian" (see also eq.

(4.3)).

Put
TO- V -

Similarly define q' and V for a function o'.

Then 2 and ,' are solu'4ions to the following

equations:
e (x) -• + f [iU(in"(x).-T o(y))0 + (•y-(x)"

S

(T.o' (y)) x V- ( ,y) T- ~ d
x

h(x) - + T f [iwt (4n(x).Tp'(y)) - (n*(y)-n(x)>'Ft S

(Tp (y)) x v- o' (y) 0-]r- ¢1 dSy

and the explicit expressions for ý and are given

by the formulas:

y y

S 4y
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Remark: The restriction ii) on e(y) and h(y) is

necessary because if ý and q are solutions to

the Maxwell's equations, we have by Stoke's Theorem

f 'Al dsi i- 1 fi.Vx A ds mo

S S

for a smooth surface S.

Similarly,

f 'n.q ds -1f 'n.V x ý ds - o.

S S

Our starting formula is the famous Stratton-Chu

formulas (Eqs. (8 a), (8b) of Chapter I):

T) 1 f x V + -VIp ds. (4.1a)
rS

"r 1 f [i + I x V + v 'Vt) ds. (4.1b)s

where
n x , -'n x

V.- i(op, Vt.i' - i>o', (4.lc)
Sik r-'yi

Ir-y

n is the surface normal pointing into the

interior of S,

r is any exterior point,

V. is the surface divergence operator.

Observe that if we take i and it to be known and

define o and / by (4.1c), we can show that (4.1a) and

(4.1b) represent two vector fields ý and q, which satisfy
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Maxwell's equations for points r not on S. Furthermore,

Sand A in (4 .1a) and (4.1b) satisfy the radiation con-

dition. Only the boundary conditions are not yet seen to

be satisfied. We are given two relations; consequently

there should be two unknowns to be determined. We therefore

regard p and •' as unknowns in (4.1a) and (4.1b) and

restrict t and i' to be the surface gradients of 9

and 9' respectively where the functions 9 and q" are

related to o and o' as follows:

at9-iC:• V (vt (4.2a)
4 -C b i t, - VtcP'.

Here At is the "surface Laplacian" defined by

t 1 " , (gSij g (4.3) (sum)

with gij being the metric coefficients on the surface.

If we can prove that for each . there exists one and

only one t satisfying (4.2a), (and similar result for 2'

and Vi ), we see that (4.1a) and (4.1b) actually contain

two unknowns D and )1. That there is at most one i

for a given is clear from the results of Theorem 2 of

last chapter, since the only continuous solution to

A( - o is a constant. We therefore complete our solutions

by finding ) and .' from

* In the following we shall also write
.-, -9+ dr - r, x - x and y - y.
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,~.f [ Vu4t - i'x V§ + - V§ I~ ds 1 V -v (4I.4fa)

r - + 1 f iu + x v§ + !:0 VI1 dsy (.4b)

where Z- vt ' -vt (4.4c)

at• - iOW , PAt - iwpo

and Vtq is the surface gradient of 9.

Remark: The condition S e C4 is needed for the validity

of the inequality to be given in lemma 2. (See (4.10))

We shall need*

Lemma 1. Let p be continuous on S and put

P(+) - +n(x)-f p(y) Vr(+r,y) ds J r M + nd, xS.
S

Define

Pe•) - lm P(*r ) as d'1o, d>o;

Pi (X) - lim P(') as d-o, d<o.

Then

Pe(X) - -2ir(x) + P(x)

Pi(x) - 2rp(x) + P(x)

where

n-x) X-.f- d- a f , y (x,)y) dsP(X) - f P(y)n(x)?xVX~y dc #Y nx dy.
S S

This lemma can be proved in the same way as Kellogg [1929,

p.164] for (r,)- 1Ir-yI
Let us take the scalar product of (4.4a) and (4.4b) with

n(x) and let d+*+o
*From now on jj will denote the exterior surface normal.
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lir+n 2Z-7'+x + d~n) - e (x) - + li urn 1 - C~ fiwi~f
dod-t-o S

xVflds f -!"(Y) ý (x,y) ds~ (4-.5a)

1irni~(x.it( 4'1 14

d~~o ) dns T- h~~-~ lm~nx.f (4ai

Since J(x,y) 0 ( as x-.y, we have

lir nlf~i(y) T(r,y) day M (nx1y)~ )ds~ (4I.6a)

Jim in.f ý x Vf(r,y) dsy -i urn+f(x)41(y) x Vt(*X+di,-Y-) ds~

-+f in"'(x) -ý(y) x Vy ~(-X+dn,y) ds y +

- M(~y) - -n(x)]11(y) x Vy7t dsy (4.6b)
S

But K(y) - VtT(y) and

'A(y) 'Vj4(y) x Vj ~('X+Ai,y) - n(y) Vt4,9(y) x Vj (x+d+, y);

by lemma 3 of Chapter III we have

f i-1l(y) x Vyf(~+cXi,y) dsy M 0.

Hence

Jim n (x)'- f i (y) x Vf (-)+dAi, Y) dsy = f I *(y) -"(X)) (y) x
d~o SS

Vyf da . (41.7')

Using (4i.6a) and (4..7), we can write (4.5a) and (41.5b) as
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follows:

e(x) L+ If [iaJ, ("(x)'i (y))I +÷ (n(Y) -(X)

y sn y48a

and

h(x) - +p+"fiw (x)- (Y)) -(y)(X)

S
9(y xo,, 0 (y) ldsy (4.8b)

where
ý - vt• , At C - i(OP, (4.8c)

tS - vt•', t" - iwo'. (if.8d)

Equations (4.8a)-(4.8d) can be regarded as four equations

for the four unknowns p, pr' q, and q. However, if we

know that we can solve for 9 and (' from (4.8c) and

(4.8d) for given 2 and /, we can regard (4.8a) and (4.8b)

as two equations for two unknowns. In the language of

operator theory we shall prove that the map of

9 to i (p' to ý') is a bounded linear operator from the

space of continuous functions on S to the space of con-

tinuous tangential fields. The first two integral operators

in (4.8a) and (4.8b) are completely continuous operators that

map continuous tangential fields into cintinuous functions.

The last integral operator in (4. 8 a) and (4.8b) is a com-

pletely continuous operator which maps continuous functions

on S into continuous functions on S. Therefore, if there
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exist no non-trivial solutions to the homogeneous integral

equations (the conditions in Lemma 7 will insure this), we

can conclude that there exist unique p and p' to the

system of integral equations.

To prove the above assertions we shall ne3d

Lemma 2. Suppose P is a real, continuous function on S

and f p ds - o. There exists a unique
S

satisfying

at - P (4.9)

almost everywhere with the property

max I•Vt C (x)l ,C C max j .(x) (4.1o)

xeS xES

where C is a constant depending on the surface S

only. The existence of a function 'f- satisfying

equation (4.9) is known from the theory of harmonic

integrals (C. B. Morrey, Jr. and James Eells,Jr. (1955),

p.1 2 4]. We shall sketch a proof for the existence of

the function JP and the inequality (4.10) in the

appendix.

Lemma 3. Let K(x,y) be defined on S and continuous

for x py. Assume that positive numbers A, or,

exist such that
A

SK(x,y) < AI

for x, yES and

IK(xIy) - K(x 2 ,y)l < BjXl-x1 I
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for all ¶ with l--< 1o

and all xl, x2 , yE S with I xl-x2 1< T, and

Sxl-yI > 2 7-.

Let LL(x) be continuous on S. Define

-max .p(x)/ If
x&S

KV(x) - f p(y) 1(x,y) dsy,
S

then

I KL(x) I C< C IV11

lK g(x1 )-K p(x2 ) ) < C lXl -x 2 (1+
1+

for all x1 , x2 dS with 1x1 -x 2 1 < min [1, T ,

A proof of this lemma can be found in Werner [196 1,p.lO]. A

similar result can also be found in Miller [1957,p.307].

Let us denote the space B -fp: p6C in S and

f o ds -o.
s

and introduce the norm Io°j - max j,(x)6 where I I
XeS

denotes the absolute value of a complex number. The intro-

duction of this norm makes B a Banach space of continuous

functions on S. Similarly we define B' -f¶: ýe&C in Sy

With norm I11/I -max 1 "1 -max i-iA. With this norm

4 This shorthand notation means that B consists of all com-
plex continuous functions on S such that the continuous
functions satisfy the condition fpds-o •
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B/ becomes the Banach space of continuous tangential vector

fields on S. We now prove

Lemma 4. The map T:P4 from the Banach space B to B"

by means of
60• -iP o P oq

Is linear and bounded.

Proof: Linearity is clear. Since the coefficients of the

partial differntial equation are real, both the real

and imaginary parts of 4 must be solutions to the

same equation with the right hand side being the real

and imaginary parts of p respectively.

Let us write

o- r + ip.

By lemma 2 we have

max IVt •I < C max Ior(x)l
x6s x6S

max I't 'Vi < C max I?1i(x)j ,
xE S x4 S

these two together give
INIvt•1 - I1111 - IITpll I< cllollo

Hence T is bounded.

Lemma 5. The following maps have kernels satisfying the

conditions of lemma 3.

i) KI:B'-B, m"{:o•C in Sl where KI()- f A(x)'1 S
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ii) K2: B where K2 ( n) n2: ~~' nl*2() (Y) -n+(x)]

S
x Vyl dt~y,

iii) K: B*4B where K,(P) - fy))ds
S

Proof:
i) Since f(x,y) has a singularity of the order

Ix-yI as x*y, we see that there exists A1  such that

A1
In(x)f(xY) I -< T xy6 S.

ii) Since we assume SeaC 4 , there exists A such that

ln(x)-_n(y)I S 4 Ix-yk x'y6S

and therefore there exists A2  such that

.• • - A2I Cn(y)--•(x)) x vyf(x yll_ InS14xl-n*(y) 1 IvyVCy) lI<x7 l

If we introduce a rectangular coordinate system with x

as origin, and consider the tangent plane through x as the

u1 -u 2 plane, we can represent the surface points in the

neighborhood of x as

4 10. 2-* 1 2y -uel + u e2 + n(x) f(u ,u

where ei are unit vectors in the tangent plane and

f(o 'o) ft o.

We have
A (x)"66-) - o0.(u1)2 + (u22) _ 0 (Ix-yl 2 )

*This is usually referred to as tangent-normal system.
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and hence we get
,• (x~y, Y)I<• - 1 x'y6S.

y -Ix-yI

The proofs that K1 , K2  and K3 have kernels satis-

fying the second condition of lemma 3 are similar, hence we

shall only give the proof for the kernel of KI.

Because of the assumption on S, the number 7o

which is required in lemma 3 always exists. We note that

I ,(x1)I(x,,Y) -4(x 2)(x 2,y)l _ I(xl,y)-f(x2,y)I +

I,(x 2 ,y) I I(xl)-4(x2)11
If

Ixl-X _< and jx l -yi > 27, we get
L4 1-0

IFx2, Y) I" (I) _x)-(x2)I _1 1 I~x2'l

Applying the mean value theorem, we get
A

l,(Xl,y)- _ .(x2,y)I IlX*x 21.

Consequently, for ;_< o < 1, we get

l• f(xm)C,y) - P(x2)f(x2y)l _ Ix,-x21 •.l

Equation (4.ll) is the second condition of lemma 3.

Hence the proof of lemma 3 is completed.

We now define

SBx -w(Ql, ?2) : 6iB B

By introducing the norm of 01,0 (l2) as follows:

I1•11 - (max Ip11 + max 1,)21 ) " II'111 + 11P 2 11x6S XrS
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the set B x B becomes a Banach space. We can write (4.8a)

and (4.8b) as

(2Ee(x) _ C(px) '\ + / L1T+L 3 L2T (Ll2

2h(x)} p/(x) -L2T L1T+L3  /

or symbolically as

e - p + Tp - (I + T (4.13)

We now prove

Lemma 6. The operator T is a completely continuous linear

operator from
B x B -B x B,

where

B -fP: 1) C in S and fp ds Mo]
S

Linearity is clear from (4.12). In order to prove that

an operator is completely continuous, we must show that

it maps a bounded sequence into a compact sequence (a

sequence which has a convergen subsequence). We first

show that T maps B X B . B x B. For this we show that

.fdsx, [ lp((x)"* (y)) + (n (y) - n(x)). 9x Vf. (y)n )dsj-

S

and _ x)
-' (nyy)-nnx)]dsy -0

if
fp ds - fo'ds - o.

From the steps by which we derived (4. 8 a) and (4.8b),



4.14

we see that

1 f F(x) dsx - lim~ + f 24Q. dsx (4.14)

where I is given by (4.1a). It can be shown* that ý and

A as given in (4.1a) and (4.1b) satisfy the Maxwell's

equations for points not on S. Hence

lim+ f n(x). (-i*(+di)ds - limr -T1- if (x)-V x A(-+A)ds 0
d*oT S do+C S

(4-15)

But we are also given

f-'(x) dsa - fo' (x) dsx - o.

Hence from (4.14) and (4.15) we get

f dsx F(x) - o.
S

Similarly,

f dxx G(x) - o.

S

Having shown that T maps B x B * B x B, we now

show it is completely continuous. From lemmas 3, 4 and 5,

we see that T will map a bounded sequence in B x B into

a bounded, equi-H6older continuous sequence. This means that

the resulting sequence is uniformly bounded and equicontinu-

ous over S. By the theorem of Ascoli [see Kellogg p.265],

the resulting sequence will contain a convergent subsequence.

The limit of this uniformly convergent subsequence will also

*See Appendix II
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be continuous and belongs to B x B. The proof that T is

completely continuous is therefore completed.

Since T is completely continuous, we can apply the

Fredholm alternatives to discuss the solutions for (4.13).

Since we have not succeeded in finding the explicit ex-

pression for the adjoint of T in (4.13), we shall limit

ourselves to the case when the homogeneous integral equation

has no non-trivial solution. The condition of the following

lemma will insure that there is no non-trivial solution to

the homogeneous integral equation.

Lemma 7. If we assume that p and ca are positive con-

stants and 6m " , +i~ with 0, & > o*,
the integral equation (4.13) (which is equivalent

to the system in (4.6a) and (4.8b)] has no non-trivial

solution.

Proof: Let p - (o, ) be a solution of the homogeneous

equation (4.13). We form the electric and magentic

fields by means of (4.4a) and (4.4b). o and '' being

solutionsof the homogeneous system (4. 8 a) and (4.8b)

imply that
n " -o on S

where ( )e denotes the values obtained when the

points of S are approached from the exterior. By the

uniqueness theorem (theorem 1, Chapter III), we see that

Physically, this means that the medium is lossy.
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the electromagnetic field in the exterior of S

vanishes identically; i. e.

eu&u - ** (4.16)

From the Jump condition, we have

- -X ' - -V 01, (4.17a)

4 (leit] - i4 - ('..17b)

From (4.12) we therefore get

n x Vl " 5"v (4.18a)

"n x - -Vt (4.18b)

consequently

r' - (fi X Ai*)ds - -f*- (Vtq2' x Vt q *)ds - o (4.19)

by lemma 3 of Chapter III.

But if the condition on the dielectric constant E in

the lemma Is satisfied, (4.15) implies that - 0i o.

Now Now A i - , (4.20a)

A.[ -iti] - (4.20b)

therefore we get

I- P' I o

as asserted.

If the conditions of lemma 7 are satisfied, the

e is the electric field in the exterior of S.
1i is the electric field in the interior of S.
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homogeneous equation (4.13) (or (4.8a) and (4.8b)) has only

a trivial solution. Hence by FPredholm's first alternative,

there exists a unique solution C, - B x B to (4.13) for a

given e 5 B x B. This is the same as saying that the system

(4.8a)-(4.8d) have unique solutions if conditions of lemma 7

are satisfied. Having solved for p and ,', we can obtain

I and t'; substituting these four quantities into the re-

presentations (4.1a) and (4.1b), we have the desired solutinns

to the Maxwell's equations.

We shall remark briefly on the limiting values of the

electric and the magnetic fields as we approach from the ex-

terior or the interior of S. By the assumption that e(x)

and h(x) are Holder continuous, continuous solutions for

p and p' from (4.8a) and (4.8b) are then Holder continuous;

i and I are Hllder continuous if p and .' are con-

tinuous. Therefore we conclude (see theorem 48 p.217 of

Mkller) that the electric and the magnetic fields given in

the statement of the existence theorem are continuous up to

and on S, as we approach from either side of S.

Given a smooth surface S, the results of this chapter

show that we can always decompose an electromagnetic field

into two fields, one of which has no normal component of the

electric field while the other has no normal component of

the magnetic field on the surface S. This should be com-

pared with the conclusions in Chapter II that only in



4.18

spherical, cylindrical or rectangular coordinates can we

have T.E. or T.M. wave.
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Appendix I

We shall sketch the proof of lemma 2 of Chapter IV.

Specifically, we shall show

Theorem. Let ) be a continuous function on S and

f,2 ds - o. Let S6C0. Then there exists a unique
S
Ip satisfying the following equation

Atf -._ ' (giJ vr- '€) - - •, l1i,j 2 (A.1)

and

fq ds - o.
S

Furthermore, there exists a constant C depending on

the surface S such that

Max IVt~ (x)l < C max I,(x)I.
xeS x6S

Proof: With no loss of generality, we may assume p(x) to

be real. We shall use the lemma of Lax and Milgram to prove

that there exists a "weak" solution to (A.1). Then we shall

show that this weak solution satisfies (A.l) almost every-

where.

By the assumption on the surface S, we can, by the

Heine-Borel Theorem, cover it with a finite number of open

coordinate patches. We denote a covering by
N

-.U Ua = S. Each of the coordinate patches is taken
aw1

to be small enough that there exists a coordinate system
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a xa such that the following lemma holds:

Lemma a. There exist positive Ra,ra,Ma, and 77a such that

i) R > g(x) >ra, for x&Ua;

ii) giJ(ym) - 4*j, for a y, 6-Ua ;

i2) + 21 gij(x) j 'M( < 2 2

for-x-U., 1 a, < N, and IýI + ItI o.

We now choose such a covering '( for the surface S

and define a space P2 0  of functions.

Definition: The function f6P2  if and only if

i) f6 L2 (S);

ii) There exists a sequence of C1  functions such that

lim H1f - fn'12 - lrm f (f - fn)2 ds- o,

li1n II)n - Df m II - 0,

n, m-*co n2

where D is any first derivative.

We define a scalar product in P 2  as follows:

N 4 C' -v __

am a xxC C'x

=f (? + vf. Výi ] :x.

The norm of g P2  is defined as follows:

If in addition,
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iii) f f ds - 0,
S

we say f'P 2 0 '

With this definition of scalar product, P2 0  becomes a

Hilbert space of functions with properties satisfying i), ii),

and Iii). Furthermore, we note that the functions of P2 0

are limits of sequences of CI functions in S. Therefore,

for calculations we can take the functions to be of class CI.

Lemma A. (Poincaz'e's inequality) If uxP 2 0, then there

exists a constant C1 > o such that

(u . 2 + ( ?u) 2 dx7f u2 dx.

Here, C. depends only on the surface S.

Proof: We shall prove this inequality by contradiction.

Suppose the inequality is not true; then there exists a se-

quence of functions {fn} - P20 such that
f fn 2 dx - 1 and lim f[xrn) 2 dx - o.

This means that the sequence [fn] is bounded [in the sense

of the norm we introduced for functions in P2 0). Consequently,

the sequence tfn) contains a subsequence, which will also

be denoted by ffn] , converging weakly to a function

f6P20; i.e. there exists f6P 2 0  such that

lim ffgfn dx + fVg.Vfn dx f fg dx + Vf.Vg dx, (A.2)

for all g E P2 0 " But it can be proved [see Morrey (1956)]
We denote VC.Vg - +

vx ' 6x 3x
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that if ¶fnJ converges weakly to f in P20, jfn1

converges strongly to f in L2 . This means

lrm f Ifn-f12 dx - o. (A.3)

n-oh0V

But (A.3) implies

lrm f Ifn12 dx f f2 dx. (A.4)

This being the case, we get from (A.2)

lrm f Vg'Vfn dx - f Vg'Vf dx. (A.5)

But by the assumption on Vfn, we get

lir I f Vg'Vfn dxl < lrm ýf Vg,2 dx f" IVfn1 2 dx -0.
fln n- ~

Hence

f Vf'Vg dx - o, for all gfP2 0 " (A.5a)

If now we choose g - f, we see that (A.5a) implies that

f - constant.

But by the requirement that f f ds - o, we have
S

f-o on S.

Since we have shown in (A.4) that

f I1f 2 dx _ lim f Ifn1 2 dx - 1. (A.6)
it. ncO' W

(A.6) says that f cannot vanish identically on S. This

contradiction proves the lemma.

By means of lemma a we can immediately show
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Lemma Yr. There exist positive constants AI, al, A2 , a2 ,

A3 , and a3 such that for q6P 2 `

alf e 2 dso<,f V2 dx ,A 1 f4V 2 dp,
S i

a2 f jVt'I 2 ds < f I Vs 12 II I< A2  f[ jVtV 2 do,
S "s

a e2 +1q 2 ]8 I(112 A 2 2 ]sa3 f( V'lJs. ~'I, 3 fRq + [Vt (I Js
S

Lemma X . [Lax and Milgram). Let H be a Hilbert space,

B(u,v) a bilinear functional in H such that

i) IB(u,v)l .< K Hjull Ilvlj,

ui) K1lullul 2 < IB(uu)I,

for some constants K, K1 > o. Then for every u&H,

there exists a u'6 H and conversely for every UoE H,

there exists a u E H such that

B(u,v) - < u',v>,

for all v6H.

For a proof to this lemma, we refer the reader to

Hellwig [1960, p.203].

Using the Lax-Milgram lemma, we show that there exists

a function (P such that

f (Vtq -VW) ds - fy- ds, (A.7)
S tS

for all }0t6 P2 0 " H.

In order to show this we define B( ?,) for t' , 6 P20

as follows:
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B(• F,) -f (vtc "Vt-ýk) ds. (A.8)
S

By Schwarz's inequality and Lemma y we get

-I(Vt~p * Vt Y) dsi 1 4 fI V dIs fd~y~s
S YS S

S K I 11 -01vl . (A .9)

By Poincare ,s inequality and Lemma -r, we get

I,411i2 _f. (2 + Ivfl12 ) dx ,< c f IVfI2 dx (A.lO)

or 2
\<1. IB(• P,,) I

o r IB ( q/ , (P) I >, K .1 I 1 1 ' 1 12 . (A -1 1)

(A.9) and (A.11) are the conditions satisfied by our bilinear

functional B(u,v). Therefore, for each u' 6 P2 0  there

exists a u6P2 0  such that

B(vu) - <v,u'>, for all v P2 0. (A.12)

But the right-hand side of (A.7) is a bounded linear

functional on P20 for a given p6P2 0, since

I f v,) dsl '< C hoH IIlvil.
S

Therefore, there exists a u' E P2 0  such that

f v:) ds - <v,u'>, for all v6P 2 0 . (A.13)
S

From (A.12) and (A.13) we see that there exists a u such

that

B(v,u) - f 3 Vtv.Vtu de - f vp das for all v P 2 0. (A.14)
S
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We observe from (A.14) that if u nas second continuous

derivatives, we can integrate by parts (using Theorem 3 of

Chapter I) to get

f v At u ds ,-f ds, (A. 14a)
S S

for all vC P2 0 ' That u has continuous second derivatives

everywhere cannot be proved unless we put more restrictions

on the behavior of 2 in (A.1). Since we assume SE.C4,

2
the coefficients of the operator are at least C . From

Theorem (4.3) of Morrey (1956, p.47) and Theorem (4.7) of

Morrey (1954, p.129), we conclude that the function u as

given in (A.I4) will have Holder continuous first derivatives

and the derivatives belong to P2. Hence (A.l4a) holds for

u. (A.14a) implies that

t -0 + C (A.l4b)

almost everywhere. The constant C in (A.14b) is zero since

f At u ds - f Vt'(Vtu) ds - o and by assumption
S S
f 2) do -o.

S

Consequently, we obtain a function q satisfying (A.1)

almost everywhere.

To prove the inequality

Max IVt fl < C Max Ipl, (A.l4c)
xeS x6S

we may use the Heine-Borel Theorem to cover the surface S
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a finite union of open sets u,(ca-l,...N). Let ba be a
N

closed set such that Dac Ua and such that V f5a : S.
a-I

Let us consider one of the sets 5 's and call it
5 - rD c Ua - U. Let D be another closed set such that

B5 cU' c- D -U, where U' is an open set in U. Let u1

and u2 be parameters for the surface element U. We choose

u 1and u 2  such that giJ(,gl, 2) _ SiJ for a point

(ý ), D2)6 5. If U is small enough, there exists a Green's

function G(u1 ,u 2 ; tl, 2) which is a solution to

u (giJ - 1ul) 2u2) (A.15)

The existence of a function G(ul,u 2  i, 22) satisfying

(A.15) has been proved by E. E. Levi (1907) by using the

method of the parametrix if giJ C3; this means that the

surface has to be of class C . Also, F. John [1950] has

proved, by the Cauchy-Kowalewski Theorem, the existence of a

Green's function for linear elliptic differential equations

with analytic coefficients for a small region. For our

equation, the Green s function will behave like:

G(u 1 u 2  1 ,2) log FVu- .l) 2 + (u2 0 2

in the neighborhood of the point ( 2I, •2). We construct a

function r such that 6C2 and

(x) a for x6b
o for x6U-D
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We use the Green's identity on a region U-Z4 , where ZF

Is a small circle excluding the point (Isl, i 2), to get

f ["(X) G(x, ý )At (x) - (x),&t (x)ox G ))x, dsx
U- FT ý(A.16)

-(f + f) If (x) o -( (x) G(x, 7 )) -o ý (x) G(x, 9)dlxJ
C Ce TH o

where C is the boundary curve of u, C. is the boundary

curve of FT and n is the surface tangent vector which is

normal to the boundary and which points away from the region

U-Tr. Since S (x) P o in the neighborhood of C, as 6 - o,

we get from (A.16) (A.17)

f(') - f (x)G(x, V)2(x)dsx - f _ (x)At(r (x)G(x, '))dsx,
U U-D

for - , )e. From (A.17) we get

Da E I f ur (x):(x) DG G(x, •) dsxI +

U-

where D is any derivative. If the region U is small

enough, there exists a constant K such that for

S. (• ý2)6D, we have

Ivt ( 1i)12 < K [DqSI•(')) 2 + (D 2 (•)) 2]. (A.19)

But from (A.18) we get

IDtiq()I 4 K1, max Ip(x)I +K 2 max If (x)I. (A.20)
'6U x6U
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(A.20) is true for all 6 D; hence from (A.19) we have

max IVt t(•)( < K4 max Ip(x)l + K5 max J% (x)l. (A.21)
xC1 x6U xeU

In each of the open sets, the union of which covers S, (A.21)

holds with appropriate constants. This implies that there

exist K6  and K7 such that

max Ivt f(x)l ý K6 max IP(x)I + K7 max l4ý(x)l, (A.22)
x ES xES x<S

where K6  and K7 are constants depending on the surface and

on a decomposition of the surface.

For any function n6 C such that fpn ds - o, we
S

denote by (Pn the corresponding solution such that f"n dS -o.
S

Suppose there exists no constant C such that

ma IvtT (x)l < C maxjl(x)l
x6S

holds; then there exists a sequence of functions with

?nnC and f )ndS - o for which limn) - o and such

that the sequence of functions P'n I satisfying

max IVt qnI - 1. The sequence {jqn3 is therefore uniformly
x 6S
bounded and equicontinuous; consequently, it contains a sub-

sequence converging uniformly to a function • ; this function

Swill be a solution to (A.1) with p - o. (See Morrey

(1956) p.45]. But we have proved in Theorem 2 of Chapter III

that •--o on S. This means that a subsequence of ýn j

[also denoted by ?Pn 7] converges uniformly to zero. Con-

sequently, for n > No, we have C > I cn(X) l and
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E1 > I)n(X)l for all x6S. Therefore, [see (A.22)]

1" -max IyOqn(x) l •< K 6 max l.On(X) l + K 7 max I Vn(x) 1
x6 S X6 S x6 S

cannot hold for n > No. This contradiction proves the

inequality of the Theorem.
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Appendix II

We want to show in this Appendix that ý and A as

given in (4.4a)- (4.4c) satisfy Maxwell's equations (Mnller

p. 2 11) for points not on S. We have

- 1 f c•i - v + 1 oVj] ds V -VY (B.1)

i " f JiCOF + x V1 +• pVf] dSy (B.2)

where

•- vt iG , 4:' -Vt& . i4'p*

In the above formulas the variable point is denoted by r

or r, and the integration variable is denoted by y or y.

We take the curl of E to get

Vr x "•- sf iflc-Vr x (9(y)j(r,y))ds y- Vr x (Vr • f
S S

91 (y)§(r, ylds y .(B.3)

The last term of (B.l) has no curl since it is the gradient

of some function. Using V x (V x -) V(V') - and

noting that

Arf(r,y) - -k 2 j(r,y) for r #y,

we may write (B.3) as follows:

VrX I Mir, f(icie Vt(y)f(r,y) + It(y) x V j(r~ y)) ds~
Sy) yd
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Using Theorem 3 of Chapter I, we see that

-f 9'(y)!(r,y)dsy - f V/(y).Vr(ry)dsy - -f VV Cr,y)dsy
"-fs Vtf p y + f f(r,y)Vv-9'(y)dsy-

icf V,(y)9(rdy)ds y.

S
Hence we get

Vr(Vrf 9'/_ dsy) - - ' 'yV dSy (B.5)

Substituting (B.5) into (B.4f) we get

Vrx f [: - C Y f (ci'y)(r. y) + I (y) x VI (r, y) +
S

P 0,vf(r, y)] dsy - iWL i.

"Similarly we can prove

v x A + i~e• 0
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