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Abstract

This report contains the proofs of the uniqueness
and existence theorems for an electromagnetic fleld w.uaen
the normal component of both the electric and magnetic fields
are given on a smooth surface. The truth of the above
theorems was suggested by V. Rumsey. The results are ob-
tained for an exterior domain. However, the same method can
be used for the interior problems. Whereas one synthesizes
an electromagnetic field by a surface current when either
the tangential electric or magnetic fileld is given, we
synthesize our electromagnetic field by means of the electric
and magnetic surface charges.

We also show that solutions to Maxwell's equations can
be expressed in terms of solutions to a second order partial
differential equation in certaln coordinate systems when the
parameters é; and }4 are allowed to have a certain
anisotropic property. This result represents an extension

of those obtained by C. Miller and by B. Friedman.
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Introduction

This report will be concerned with some boundary-
value problems for Maxwell's equations; in particular,
those concerning the normal component of the eleccric
and magnetic flelds. The space is the Euclidean 3>-
dimensional space and the boundary will he 2 simply
connected surface. In electromagnetic theory explicit
solutions of boundary-value problems are krown only in
cases where some components of the electric or magnetic
fleld satlsfy a second order partial differential
equation. Excluding some speclally symmetrlc boundary-
value problems, only 1n the caset. when the surface is
a sphere, a cylinder (circular, elliptic, or parabolic)
or a plane can the solutions be expressed 1n explicit
forms. In all these cases the electromagnetic field
can be decomposed into "T.E." (transverse electric) and
"T.M." (transverse magnetic) flelds and the solutions
are synthesized through solutions of & second order
partial differential equation, i.e., the Helmholtz's
equation (A + kz)w = 0., General separability problems
in orthogonal coordinates have been investigated by
Bromwich [1919], MGller {1949] and Friedman [1955] and
in general coordinates by Itch [1959]. In general, it
is possible to use the Stratton-Chu formuls [Stratton,

p.466] to represent the solution of the Maxwell's



equations in terma of surface integrals if the tangentilal
components of the electric field and magnetic fieid are

given on a surface. Existence and uniqueness of the solutlon
of Maxwell's equations when the tangential components of
elther the electric field or the magnetic field are given on
a smooth surface i1s known., Proofs of these results have

been given by Saunders [1951], Mﬁller [1957]) and recently

by Werner [1962]. 1In a recent paper, Rumsey [1959) suggested
that the electromagnetic field would be determined uniquely
when the normal components of the electric and magnetic fields
are given on a smooth surface. This proposition is obviously
true in the cases when the boundary surfaces are infinite
planes, cylinders, or spheres, because in these cases the
problem reduces to that of uniqueness and existence of a
scalar boundary-value problem.

In Chapter I we shall collect some known formulas of
electromagnetic theory. 1In particular, the Stratton-Chu
representations of an electromagnetic field are recorded.
Using the Stratton-Chu formulas we can prove a rather
trivial uniqueness theorem of an electromagnetic field.
However, in order to use the Stratton-Chu representations
to calculate an electromagnetic field, one would have to
know the tangentisl components of both the electric and
magnetic fields on the surface. It 18 known that only the
tangential electric fleld or magnetic field is sufficlent to



determine an electromagnetic field uniquely. We therefore
cannot prescribe the values of the electric and magnetic
fields arbltrarily on a boundary and expect the surface
representations to satisfy Maxwell's equatlons. By the
existence theorem, we know that given a tangential electric
or magnetic field on a surface, there exists an electro-
magnetic fleld which satisfles the Maxwell's equations and
takes on the appropriate boundary values. Saunders [1951]
had actually shown the existence of the "Green's Matrix" by
means of which one can calculate the electric or magnetic
field by knowing its tangential values on a smooth surface.
The Green's matrix cannot be explicit, however. But, in
speclal cases (and important cases) when the boundary con-
ditions call for the vanishing of the tangential electric
field or magnetic field, the Stratton-Chu representations
can be used directly to calculate the electric or magnetic
field. 1In other cases, one usually tries to synthesize
solutions to Maxwell's equations by means of scalar functions
satisfying a partlial differential equation.

Chapter II i1s devoted to the synthesis of the explicit
solutions to Maxwell's equations in terms of a function
satisfying a second order partial differential equation.
The possibllity of expressing solutions tc Maxwell's
equations In terms of scalar functions satisfying a second

order linear partial differential equation had been
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investigeted by Bromwich (1919], Maller [1949], Friedman
[1955] etc., in the case of orthogonal coordinates. Itoh
[1959] has investigated the possibility by means of tensor
calculus in the general coordinates. In all cases, except
Friedman, the & and p are assumed to be constants.
Bromwich imposed conditions on the metric elements and
showed that the conditions were met by spherical coordinates.
Maller showed that the only coordinate systems satisfying
the conditions imposed by Bromwich were rectangular, cylin-
drical, and spherical. 1Itoh treated the general non-
orthogonal coordinate system and arrived at the same con-
clusion as Mﬁller's. Friedman has investigated the case
when the dielectric constant takes on different constant
values in different orthogonal coordinate directions. He
also imposed the Bromwich conditions. In this chapter,

we follow the work of Friedman and extend the results of
M&ller and show that the conclusions of Maller are still
true when two of the coordinate directions are not mutually
orthogonal but the third 1s perpendicular to the other two.
We shall express the solutions to Maxwell's equations in
terms of solutions of a second order differential equation.
The present results can be used in the case of electro-
magnetic wave propagation over the particular anisotropic
media.

Chapter III 1s devoted to the proofs of two uniqueness



theorems. One of the theorems stetes that i1f the normal
component of the electric and magnetic flelds vanish on &
regular surface, and if the electromagnetic field satisfles
the radiation condition, then the electromagnetic field
vanishes identically in the exterior of S. This uniqueness
theorem furnishes a proof of Rumsey's assertion that the
normal component of the electric and the magnetic fields
determine a field, 1f there exists one, uniquely It seems
"unnatural" to prescribe normal components of the electric
and the magnetic fields, since the known representation
theorems, such as the Stratton-Chu formulas, call for known
tangential components. However, it is well lnown that in
the electromagnetic boundary-value problems involving a
spherical surface, the most fruitful treatments are to
"separate" the Maxwell's equations into "T E." and "T.M."
modes, as was done in Chapter II. The boundary values for
the two scalar functions are closely related to the normal
component of electric and magnetic fields.

Chapter IV will contain the proof of the existence
theorem for the case when the normal component of the
electric and magnetic fields are given on a smooth surface.
We shall construct an existence proof by means of a
system of integral equations. The proof is carried out for
the exterior domain; however, the method can be used for
interior problems. Whereas one synthesizes an electro-

magnetic field by a surface current when either the -



tangential electric or magnetic field 1is given on a surface,
we synthesize our electromagrnetic field by means of the
electric and magnetic surface charges. The starting
formulas are the Stratton-Chu formulas. Using the given
boundary values on the normal component of the electric

and magnetic fields, we form a system of two Fredholm
integral equations, the solutions of which give us the
desired surface charges. Using the known charges, we

can derive the surface currents. We then use these

charges and currents in the Stratton-Chu representations

for our electric and magnetic fields.



1.1

I.

A. Maxwell's Equations

The mathematical theory of electromagentics consists
of the study of the four vectors ﬁ, B, ﬁ, and ﬁ satis-
fying the Maxwell's equations;

UxE + g-g -0, (1a) vB=o0, ()

vl - g% =3J, (1) v3ap,  (1d)
together with

3 - E,ﬁ and ﬁ'- uﬁ,

where E is the electric intensity, ﬁ the magnetic
intensity, B the electric displacement and B the
magnetic induction. 3 is the volume current density and
(7 is the volume charge density. E; is called the electric
inductive capaclty and u the magnetic inductive capacity.
&€ and p are in general tensor functions of position.
However, in many important applications, p and & are
constants. The ratic of £ in a medium to that of free
space is sometimes referred to as dlelectric constant and
denoted also by *&.

The most important and understood case of the Maxwell's
equation 1s that when the variation with respect to time

t enters as e_iwt, where w: 1s a constant called
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circular frequency. In this case the Maxwell's equations

become
wE - ol - o, (2a) vB =o. (2¢)
vl +awE =T, () VDapQ  (20)

if we let E, ﬁ etc. to represent the time independent
parts of the quantities in the Maxwell's equations (la) -
(1d). Except in Chapter II we shall take §,u and o
to be constants.

The interesting and difficult problems of electro-
magnetlic theory are the boundary-value problems in which
"scattering" objects are present in the otherwise homo-
geneous, 1isotropic medium. In such cases one synthesizes
the solutions to (2) by adding to a particular solution
of (2) the solutions with ¥ = 0. This requires finding

a solution of:

vxE - 1ol = o, (3a)
TR + o€k = 0. (3b)

with prescribed boundary values. When the region con-
8idered extends to infinity, it 1s necessary, for both
physical as well as mathematical reasons, to introduce a
condition regarding the behavior of the solution at in-
finity. Assuming differentiability and that E ,u,

and ® are constants, we can derive from (3a) and (3b)
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the equations

VxvxE-«E - o, (4a)
vxvxi - KH - 0, (4p)
where
2 2

K™ mw ey .

From (4a) and (4b), we get vE =vH =o.
*
Using the vector identity

VxVxP =v(vF) - oF,
we get

(6 + K°)E =0, (6a)
(& + x°)F = 0. (6b)

One can see that each of the rectangular components of the
electric fleld f and the magnetic field R’ satlsfies

the scalar "wave" equation

(s + %%)9 = o. (7)

Therefore, many properties of the solutions to the
Maxwell's equations can be derived from those of the
sclutions to the scelar wave equation. In the next
section, we shall collect some formulas which will be of
use for the later chapters. Proofs for many of them can

be found in the standard text by Stratton [1941] and in

* A 1s the Laplacian differential operator
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"
a recent book by Muller [1957). Therefore we omit many

and Jjust sketch some of them.

B.

Radiation Conditions and Representations

In this section, we shall use the terms regular
curv 5, regular surfaces, and regular regions. Their
definitions can be found in Kellogg [1929; Chap IV
sections 8 and 9] or in Msller (1957,p.20]. We shall need
Definition 1. A complex function ¢ in B> (3-

dimensional euclidean space) is sald to satisfy the

Sommerfeld radiatior: condition 1if

a9 1
lim rlxt - 1k¢| = o 1lim |o| = 0fz)
3T Tvon T

uniformly with respect to directions.

A similar radiation condition for the electro-
magnetic field in unbounded medium is the SilveruMaller
radiation condition.

Definition 2. An electromagnetic fileld in E3 is said
to satisfy the vector radiation condition (Silver-Mﬁller)
if

1m r|2xvxB+ k| mo and 1im [B] = 0(%)
b oo * 100

or
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n r|f x9x B+ 1| mo and 1im |E| = 0(%),
b o] - -boo
where r 1is the distance from a fixed point chosen as the
origin and £ 1s the unit radial vector. |R| -W
where #* denotes complex conjugate.

Remark: The conditions 1lim |@| = 0(%) and
o .

1im [B]| = O(%) or 1lim |[H| = o(%) can be dropped.
b0 o

Proofs of these can Le found in Wilcox [1956,1957].

The following representation theorems are well
known.
Theorem la. Let G be a finite, regular region and S
its boundary; let o€ 02(0) be a solution to

A9 + kev = 0

and ® € cl(G)*,
then for ; € G, we have
k|x-y|  Gik|x-y] "
- 1 \ d e _ e d

where 3 is the exterior unit surface normal, and

S

is the differentiation along the exterior normal.

# {3 1s the clogure of G; it 1s the region G plus its
boundary. C“(G) is the space of functions wnose

derivatives up to and including k*h order are con-
tinuous.

#* We denote X = X = (xl,xz,.f})2 as thejpoint having
rectangular coordinates x ,x , and x” respectively.
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FPor point x ¢ G we have
Theorem 1b. Let
1) G be a regular region, S its boundary
and ¢ a solution to (A+k2)¢ = 0.

11) ¢ 18 of class ct

in the closure of the
exterior of G.
111) ¢ satisfy the Sommerfeld radiation condition.

Then for x ¢ &
1 5 eiklx-y| iklx-y| 3
(x) 'Wé (o(y) 31 31-,‘_3,[ a5 3%11] dsy

where B 18 the surface normal pointing into G.

The vector analog of the above two representation theorems
are

1] 2
Theorem 2a [Muller p.134]. Let £ and ® ve of C (G)
in a finjte regular region G enclosed by a regular sur-
face S. E,ﬁ € Cl(G) and satisfy the Maxwell's
equations

vVxE - 1mu§ = 0,
Vv x ﬁ + Lwtﬁ = 0,

then for x € G

B(x) = - %F é (@ xH) o+ M xB) xv0 + (A-F) vo) dSy

H(x) = 4= [ 1@ xB)o -B x H) x v0 - (R-H)vesas,,
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1k|x-y|
where O = ET§:§T—— and R 18 the exterior surface normal

to the surface S.

Theorem 2b. Let G be a finite, regular region. Let B
and R satisfy the Maxwell's equation in Theorem 2a in the
exterior of G. If ﬁ and R satisfy the vector radiation
condition, then for x in the exterlior of S, the formulas
in Theorem 2a hold if we replace the exterior normel by an
interior unit normal (pointing into G).

Theorems 1 and 2 give representations of the solutions to
the scalar wave equation and the Maxwell's equations in
terms of thelr boundary data. These representations furnish
a means of constructing solutions to the appropriate
equation when the boundary data are given.

Theorem 3. [M&ller p.156]. Let S be a regular surface
element which is bounded by a regular curve c¢. Suppose

v is a continuously differentiable surface fileld, then
fvo-'xf ds = [ VR dl,
3 e ©

where Vo- is the surface divergence operator, 35 is a
unit surface tangential vector which is normal to ¢ and
points away from S. Using Theorem 3 and the Maxwell's

"
equations, Muller showed that
V'K - 1wf° =0,

VR - 1w = o,
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where K--'r‘xxﬁ, K'-'ﬁxﬁ,

Com-e@h, G =u @D,

We can therefore write the representations for ﬁ and ﬁ

as

B(x) = 3= é [1oue - B x vo +£l¢°v¢] dsy,, (8a)
H(x) = ,}wé [1wef'e + & x vo + r{e; V9] ds, (8b)
where

VoK = w@ , VR = wd,

conversely, it can be shown [Mt';ller pp.210-212] that if
it,?o,f{' and 06 are given by the above relations the
surface integrals represent an electromagnetic field; that
18, satisfy the Maxwell's equations for points not on S.
These representations of § and ﬁ in terms of the bound-
ary values are known as the Stratton-Chu representations.
In Chapter IV, we shall use the Stratton-Chu formula to
construct an electromagnetic field when the normal component
of the electric and the magnetic fleld are given on a
smooth surface.

The above representations give the followlng two
trivial uniqueness theorems,

Theorem 4. Let ¢ satisfy the equation

(b6 + k2)<P =0

p* We use 4 an_? g o1 conformity with Stratton;
Miller used and J'.
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in the whole space, and let ¢ satisfy the radiation con-
dition

o)
1in r |3 - ike| = o, rol< ¢,
Then ¢ a0,

Proof: We can use the representation in Theorem la for

?, where we can take x = 0 and S being a spherical
surface. The radiation condition will insure the vanishing
of the surface integral when the radius of the sphere goes
to infinity. Hence we get @(x) = ¢(o) = O. Since x 1is
an arbitrary point, we conclude that ¢(x) =0 over the
whole space.

Remark: This Theorem 13 the analog to the statement that
the only regular potential function over the whole space

is a constant,

Theorem 5. If E and R satisfy the Maxwell's equations

vxB - iapﬁ = 0,

v x il + 1a{§ = 0,
over the whole space and the radlation condition

lim r]? x ¥ x B - 1kE| = o, |rB|< ¢, and r|H|< ¢,
I~»00

then § = § & o,
Proof: We take the representations for the i and ﬁ as
in Theorem 2a. Take x = 0 and S a spherical surface of

radius R.
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then
1ﬁ1£ [iwﬂ(? x®)o + (FxB) x v + (B-F) vo)

- ¢[1m/4f‘.x§+1k§]-¢%-o(;1),

eikR

where o = = -

Hence the surface integral for the electric field is zero
as R*e ., Similarly ﬁ 18 zero.
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II
Representation of Solutlons to Maxwell's Equations in

Terms of Scalar Potentlals in a Nonhomogeneous Medium

This chapter is devoted to the synthesis of solutions
to Maxwell's equations in certain coordinate systems and
for an anisotropic dieleciric constant £ . We thall assume
,/(- constant and éf to be a function of position and aniso-
tropic as prescribed in Theorem la.

We shall employ the differential geometrical quan-
tities as used in Stratton [1941 Chapter I]. Specifically,
we let ul, u2, and u3 be parameters. We shall denote

a s8space point by

? = Fulu®, ), (1)
<>
> >
I‘i - 8.1 - %ii s 1 =1,2,3 (2)

and assume that 31, 32 and 33 are linearly independent.

We also define
> >
84y = 8,8, and g =det g, , (3)
1 -+ > -»2 -» > > > > \
a -vé-(a2 x 85), & -vé(a3 x &), 83 -vé(al X a5); (%)
g can also be expressed in
-+ > >

Since Zi s 1 =1,2,3 are assumed to be linearly
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independent, g 18 not zero. From the definition of
»>]1

a~, we have:
0 1if 1$J
3,30 -0 - f (5)
¢y 1if 1 =
Any space vector can be expressed as *
Bared -, (6)
Where fi - ?‘-a’i’ f = i‘k'-a’ >
J J
Introducing g'J such that

gi‘jgjk = 51;_ ’

we can express fi in terms of fJ as follows

f%-gdi

mhe f! ana fJ in (6) are the contravariant and the

M, la giJfJ. (7)

covariant components of the vector 35 respectively. In
terms of the above notations, we shall name:

Theorem 1Q, Let E - ei'ﬁi - eJ'zafJ and i-f - ﬂ"'a'i - hjg'j
denote the electric and magnetic flelds. Let /t- constant
and Z be such that

F3 - 516131 + 5292;2 + %eB'a'}.

rere
N

* We follow the sixmmation convention and write

¢9.j’b1 -t,,e_?‘bl + aaba + an3
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Let 333 - 333(u3), 813 T 82) f 0,

g g
12 o 512
€1 822

be independent of u3,

Let £ - & = E(uB);then a possible T.E. electramagnetic
field is given by
B2o

93-0,

where ¢ 18 a solutlon to the following equation

2
1 3% 2 1 {'a 22 d¢ 12 d¢
+k 9+ 24— [fB &8 —H +V&8 g° — 1
€33 du-du’ & (du e 3u2 ou

5] 29 )

where k° -<D?/(E'.
In curvilinear coordinates the curl of a vector ?

can be expressed as [Stratton p.47]



2.4

(Ta)
oy My o By Ay, My Ay,

1 2
PRl R (3P R G5

Using (7a) we can express Maxwell's equations in the

medium satisfying the conditions in Theorem la as

de de
1 C%% Ll
& 52 33 = pw (8s)
de de
S N - d
Wi sl e (80)
ae2 Bel
Vel 5t - 5P - pen, (8e)
dh )
g - 31 =t 2y ()
oh oh
Vé-—['a:% - ﬁ] =.i ngea ) (9p)
3, dh
1 1 3 .
wisT -5 = & fge)
Let us assume e = o, (10)
from (9¢) we get
dh, 3n,
- - . 11
Sl 52T ()

If we assume that all components have contimuous first
derivatives, (11) implies that there exists a function ¢

having second continuous derivatives such that
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el 29 hy = gk e (12)
LVNB33 dudoul 33 dusoul
Using (6) we can write
de de
d J 2 d J
- e"), - e o 13
A @)

By the assumptions of the Theorem and e3 - O,we have [fron
(8a) and (8b)]

1 ) 1 2 11 12
T 33 (8p1e™ + gppe”) = iMwg ™ "hy + Mg “hy, , (l4a)

Q/

5 393 (8178 + &10¢7) = 14082 n, + 1wAgPn, .« (L4b)

u

Using (12) and the assumptions on the metric coefficients
*

€45 » We can integrate (14a) and (14b) to get

g——
el m lop \:%2 _:i’z . (15a)
2 ﬁ )
e = -1@/( —J%z S% . (150)

*We note that gl! = 3.3t -é-l'a’2 x -53|2 --é- [322533-323] -
1 12 1 2 > > > > b >
g 822833, g =z {(82'83)(83 a,) - (ay+a,) (a3-a3)}-

2 8y 8y g2 lg g
g 821833 "¢ 611833,
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From (15a) and (15b) we get

| —

1 ) 3 g
1 = 81y® = 1A {81‘13—\;2-812 5‘;1% J-Ez ? (162)
1 L) 3 } 33
e, = e = i -g . 16b)
2 = 8yt * /‘{8215;2 223%1‘ )g (
Substituting (16a) and (16b) into (8¢c) and using
11
& =g 82efs,
12 1
& = - g 8233,
22 1
g .'5811833’
we get
b 1 d 12 J¢ 11 d3¢ =
1Mdaon’ = 1o( == - + Jg
poo® = sopgs {- ST LB Y e vmett )
d 22 3¢ 12 3¢
bl [ - ] [ 17
w7 VE e S - s it om

From (9a) we get
oh Bh2 3
1 - ] m-tsael m? 1223 230 2 208, (18
" e Rl Tl pE G
On the assumption that 333 depends only on u3, (18) can

be integrated with respect to u2 to yleld
2

hB-é; %ga—uj-o-kaﬁ;;w. (19)
One can see from (19), (12) and (15b) that (9b) 1s satisfied.
From (17), (19) and the relation hy = 333h3, we obtain the
differential equation satisfied by ¢,
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2 .
1 079 2 1{3 22 d¢ 12 09
—-——35-3+k¢+- — [Bg" —+Beg " ]+
9 12 d¢ 11 3¢ 2 2
— [V& 5 +/8 8 —I]}-o,k-wﬂf. 20)
du 8 Ju du (

The assertion of Theorem la is expressed in (12), (19), (16a),
(16v), (10) and (20).

Entirely similar to the proof of Theorem la, we have
Theorem 1b. If the conditions of Theorem la are satisfied,
if in addition, El - 52 = £ = const., 53 - Ej(ul,ua,uB),
a possible T.M. wave 1s given by:

where ¥ 18 a solution of

2
1 ¢ 2 £ 1 22 3¢ 12 J9
—— + k"9 + [VE & ._2+\/ =]
833 du”du €3 '3 { auz du €& dul

+ v = Q, 21

Remark: If &, =& = & (u3), we can still reduce the

finding of a T.M. wave to the equivalent problem as specified
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in Theorem la.
If we try to express the results of Theorems la and

1b in orthogonal coordinates, we 1ntroducef [ Assume B33 @ 1]

hy = VE)1» N = VEpps By = /B33 = 1)

ii 1l
\j'é - hlhghj’ fi = %1F1, fi - hiFi’ g d h—zg (no sum)
’ 1
. h h.h
13 hy 22 1k
8*{2"'1,'1'2‘ g {E-"lrz‘) g -Sik-O, 1'#1{7

and we obtain

Theorem 2a. If the conditions of Theorem la are satisfled,

il.e,,

1) 51 - Eeh- 6(u3), 53 - f}(ul,,\.z?,u}), /»L = const.
11) h3 - 1, F% 1ndepencien€ of uj,

111) Es g0,

we have a possible solution to the Maxwell's equatlions given

by
2 2 2
1 9 1 3% K 2
H, = ) o H - ; H, = + k9
1 1 Jdu“du $ He }g Bu35u2 3 Bu35u3

1 99 1 3¢
E, = io 3 ey ; Ex & 0
1= Poh Ry 32 B THHR T B T O

where ¢ satisfies the following equation

2 : h, J¢
ik SRR 1 d Mo ag d 1

? + — =) + =2 2)[= o.
311351113 Hl‘% [bu ( 1 du ) ou (i; du )]

Theorem 2b. If the conditions of Theorem 1b are satisfiedq,

*The hi's here are metric coefficients and not components
-of the magnetic field.
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a possible electrcamagnetic field is given as follows:

2 2 2
1 3% 1 %Y Y 2
E, = 3 By mf Sg—p By m g + kK ¥;
1 Kl du-du 2 E2 du”du 3 du”du ’
1 oY

Hl =i HE 52 E; H2 = jof h

where V¥ satisfies

2 h h
Y 2, £ 1 d /2 d 1 d¥

+ kv — + — ] = 0
Bu35u3 z) Hlﬁ2 [buI(Hl bul) B'uz (“2 du ) .

where k° = ugé/(.
In both Theorems 2a and 2b, the electric and magnetic fields
are expressed as
A A A
E = Epe; + Epe, + E485
A A A
H = H)8) + Hyep + Hyey
A ST

where ‘e, = —
1 aui B_I

We would like to discuss the geometric significance
of the assumptions in Theorem la on the metric coefficlents
81,1‘ The assumption 843 = O, 1*—3, implies that the
"u3-a.xis" is perpendicular to the ul-uz "plane".

To analyze the significance of the assumptions that
833 = 855(+7),

& -3
=12 and —21 are independent of u3,
€11 822

”
we follow exactly the same treatment by Muller [ /?4—7 ]

in the case when 810 = O; we arrive at the following two
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possible cases,

3F
1) The "u”?-axis" (i.e. the direction of ——3) is
du

perpendicular to a famlly of concentric spherical surface.
This gives rise to a spherical coordinate system.

11) The ‘u3-axis is perpendicular to a family of parallel
planes. This gilves rise to the rectangular coordinate
system or the cylindrical system with the z-axis being the
u3—axis.

Remark: We also note that spherical coordinate system can
be used to solve boundary-value problems in which the
boundary 1s a circular cone; the base of which 1is a part

of the spherical surface with center at the vertex.

Theorems la; 1b, 2a and 2b state the sufficient con-
ditions that a T.E. (no e3) or a T.M. (no h3) electro-
magnetic field exists. If the conditions are satisfied,
the T.M. and T.E. electromagnetic fields will exist inde-
pendent of each other. Therefore we must prove that an
electromagnetic field has unique T.E. and T.M. decomposition.
The unique decomposition theorem is not known except in the
speclal case when & and /(are constants [see Wilcox
(1957)]. However, if A, = /o = /s ./((r), 61-52725. &(r),

then equation (20) takes the following form in spherical

coordinates

2 2
9079 2 1 1 d ] 1 ¢
—z+k¢+-—[—1— —5z(s1né +—=—p =} = 0.
or r2 siné ( 33) 5in“00¢ .
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% .2
Given E,=—g + k ® at r =a, we can solve for ¢
T 3r -
[see Chapter IV] over th- whole spherical surface 1if
JELAS = o. If we now let ® = r¥, we see that

(A+k2)f- 0.
Hence if we restrict ourselves 50 a certain class of

k2

- w%ﬂg , we can solve ¥ 1in the exterior of a spherical
surface when ¥ 18 prescribed on the surface. Results of
this nature can be obtained by means of the G.2en's function
shown to exist by F. Odeh (1960) for a certain class of K.
We have shown in Theorems 1 and 2 the sufficient con-
ditions that one can construct a solution to the Maxwell's
equation by means of solutlons to the scalar wave equation

with variable k2 depending on u3

alone (this can be done
by rescaling of the w’ coordinate). In this section we
give a necessity argument. Thils argument can only be re-
garded as heuristic instead of a rigorous proof. We shall
"prove"” that when Ei and /k& satisfy conditions assumed
in Theorems 1 and 2,we can have T.E. or T.M. wave only if
the metric coefficients satisfy the conditions there.

Specifically,we shall show
Theorem 3. If & =& = £(w), H = K = A(W),
&5 ) pmp@)
and if g13 = 32} = 0,
we can have T.E. or T.M. wave only if

1) 83 depends only on u3.
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11) Vg gn, ' 312, and g gea, depend on uw’ in such
a way that the dependence enters as a product with a function
of u3 .
[These are equivalent to the conditions in Theorem la)
Let us assume e’ & 0. From V'D = o (source free),
we get ‘ )

1
0 =78 - & 2p(ret ) + 2pliet ) + 250608 {0 (22)

But fl -52 - {(uz), hence

d .1 d , 2
e Vg) + e“Vg) =o. 23)
—Iau(“ """au(“. (
(23) implies that there exists a ¢ such that
1 o9
e g = 24
B=72 (24)
2 o9
e \E = . 25
\E 5T (25)
From (8a) and (8b)
de 9 1 2
2 1 1.1 (811€" + 840€7) o 26)
oe
3 1 2 1 9 1 2
PR S T TVE 5,580 B ) (21)

Prom (9¢)

1

)
2
T (8500t 4 8pp h7] f-a%g[snh + goh°], (28)

We substitute (24) and (25) into (26) and (27) and then
(26) and (27) into (28). Since ¢ 18 quite arbitrary,we
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equate the coefficients of various derivatives of ¢ in

*
(28) " ; then we get the following results;
1) Equating the coefficients of P30, We get

__.) -0.
(333 1
11) Equating the coefficients of cp31, we get
(——) = 0,
€332
111) Equating the coefficients of 022, we get
g g
11 21
-g ( ) + 8 ( ) =) =o.
11'g 3 12VVE sll 3
iv) Equating coefficients of tpu., we get
G2 ) -o.
822 3

v) Equating the coefficilents of Py + We get

V%(g22(811)3 - 813(820)3) =o or

g
(8;;)3 since gy, f0 .

vi) Equating the coefficients of P54 We get
1 811 82
{3[822(72‘)3 - (821)( z ) ]}1
vil) Equating the coefficients 9, , we get

e
{16y, s - 81032518, =0,

3%9 ¢

* @ - P, =
1 auhad kK

o/

(292)

(29b)

(29¢)

(294)

(2%e)

(291)

(29g)



(29a) and (29b) imply &35 depends only on u

(29¢) implies that

(29d) implies that

2.14

3.
b
g 12
2l o . 522 is independent of u3;
g

81 .
812

12 3
- - EII is independent of u”;
822 g
2

(29e) implies that Ell - &
B - gL

is 1independent of u

(29a) - (29e) are consistent and imply that

1.2

gy = £, (%) a@d),
1l 2

8o = £1o0ul,u%) a(w?) ,
1.2

8op ™ fzg(u »u%) G(uB) )

B33 = E55(u7).
Hence

VB = [g55 G(f1;0p - £15)]

1/2
3

(30a)
(30p)
(30c)

(304)

(31)

consequently, we see that (29f) and (29g) are satisfied.

Equations (30a)-(30d). are the equivalent statements of

the theorem.
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ITT
Uniqueness Theorems for Maxwell's Equatilons
if Normal Component of the Electric and
Magnetic Fields are Prescribed.

We shall devote this chapter to the proofs of two
uniqueness theorems concerning the solutions of Maxwell's
equations if the normal component of the electric and
magnetic filelds are prescribed on a surface. Specifically,
we shall establish
Theorem 1. Let S be a closed regular surface; let § and

R satisfy

PxE-dauff=o
VxH + 10 =0

in the exterior and on S. Here, u and o are taken

to be positively real and & can be positively real

or £= & +1&, with &£, & >0. Let E and

ﬁ be plecewise continuously differentiable on the

regular points of S and in the exterior of S. 1If

rl=dBao

on the regular points of S and if the vector radiation

condition

m rlfxvxE+ 1kB] =0, limr|Bl <
P )

is satisfied, then
T =% 40 in the exterior of S.
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Let S be a smooth closed surface which encloses
a simply connected region. Near the surface, we can intro-
duce a set of local coordinates such that u3 18 a parameter
characterizing the distance along the exterior surface

1 and u2 be parameters characterizing

normal. Let u
points on the surface S. Let us write a point in space as
?(ul,ue,uB) - ;(ul,uz) + 3, where X 18 a point of the

surface. The curves ul

and u2 can be chosen sc that the
curves for constant ui form an orthogonal coordinate
system. Let hl’ h2, and h3 be the metric elements as
introduced in Theorem 2a of Chapter II. We can prove
Theorem 2. Let S be a closed surface of class <22 which
encloses a simply connected reglon. Let § and ﬁ
be solutions to Maxwell's equations in the exterior
and on S. Let H3 = Hn =H.8 =0 and

S§3(hlh2E3) =0 on S. Let the vector radiation

u
condition be satisfied. Then ﬁ - ﬁ mo: on and in

the exterior of S.
Remark: The conditions for ﬁ and ﬁ can be interchanged.
Theorem 1 asserts that in the exterior problem there is only
one electromagnetic field with the prescribed normal com-
ponent of the electric and magnetic fieldson a surface. In
the interior problem, the ausertion is not true because of
the possibility that "mode" solutions may exist. However,

if we assume that I- £ > 0, Lemma 2 below will assure that
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there 18 no non-trivial interior fleld. The proof of
theorem 1 1s based on a new vector ildentity, while the
proof of theorem 2 18 based on the maximum principle
theorem for solutions of an elliptic partial differential
equation, a result due to E. Hopf [see Hellwig p.86]. We
shall first state a few lemmas.
Lemma 1 [Rellich (1943)]. Let ¢ be a solution of
(A+k2)u-0 k>0
for r > Ro with Ro fixed,
then there exists a positive number P such that

for all large enough R, the following inequality

holds:

2
f [u|*av. > PR
R, <Ry <T <R

Corollary: Let ﬁ and ﬁ be solutions to the Maxwell's
equations
vxE- 1ol =0
VxH+ 108 =0
for r > R, with R, fixed.
Then there exists a positive number P such that
for all large enough R, the following inequality
holds:

1Bl av > PR
Ry <R, ¢T <R

The truth of this corollary follows from the fact that each
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rectangular component of the electric and magnetic field

satiasfles the scalar wave equation.

Lemma 2. Yet the surface S, the electric field ﬁ, and
the magnetlc field ﬁ satisfy the conditions in
Theorem 1. Then 1if
fs'ﬁ- (B* x H) as = o,

we must have
ﬁ = § = 0 1in the exterior of S.
1"
Proof: [Muller p.284])
1) Suppose w,pn > 0, & = £, +1&, with € o éi > o.

Using the divergence theorem, Maxwell's equations,
the radiation conditions and the condition of the

lemma, we get

[ 110 € |B]® - 1omfI®) av = FF, 1 1B s+ 0(2)
DR r=R

where * denotes complex conjugate and DR is the
reglon in the exterior of S but inside a large sphere
of radius R. Because él > o, the real part of the
left-hand side of the above equation is negative and
the real part of the right-hand side is positive, hence

/ Iﬁl2 dv = o

Dg

This implies that § = 0 1in the exterior of S.
11) ([wWilcox 1956] Suppose k > o



The radiation condition implies that

A
omlim [ |rx (vx B) + 1k§|2 ds.
R+ pmR

Expand the integrand and use some vector identitles

to get
m [ |2 as = o(1)
R =R

By Rellich's lemma (corollary of lemma 1)

E %o for r > R.
This implies ﬁ & 0 1in the exterior of S by
continuation.

Lemma 3. Let S Dbe a regular closed surface; f and g
be plecewise c2 functions on §. If 3 is the
unit surface normal on S at 1its regular points and
V£f denotes the surface gradient,
then

/ 3-(vtf x vtg) ds = o
]

Proof: The assumption on the surface S permits one to
decompose the surface into finitely many regular
surface elements, in each of which a coordinate system
can be introduced.

If we write a space polnt in the neighborhood of S as*

T . ;(ul,uz) +u K(ul,ua), u3 >o0
* >
r-aa or >3 Ji -
8 T TE Y
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then
v, =8 2L 4 3 o
R

t
vtg - a —EI + 22 3 >

->

a}.

L

>
n =

We find
o ) 1 22 >
(Vf”ts)n'(afliu f‘,aﬂ**

But ds = ~Ng duldu ;

->

Hence

*1 *2 > - 11 23> - 11 22 12 12
X a a3 glig a8y x aJ 3 (g -g7%g"7)

(al S &2)'33 - 8- -IE- ‘u3 -0

Therefore
of 9 of 9 1.2
[ B (V.f xV.g) ds = [ - 9Er)  audu
3 (¥ ¢8) 3 (BuI e dut du
N
f g Af g 1.2
aml S, du” duc A

where S, are the surface elements into which S 1is
decomposed. The integration is over the corresponding

plane areas in the ul-u2 plane. We observe that
f of or (
= - -—2—51 f—&g)"—"g(f )
aul du du ut
using the two dimensional Green's Theorem, namely

S(plry)ex + aluylay ) = [ G- 3B) e,
c
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we can therefore write 2
1l

og du dg du
SR (V.f xV,.g) ds =2 [ (f + £ 28 ) a
[ (9t x Ve8) : At A

where C_ is the bounding curve of S, and 1 is
the arc length. Since the sense of the line integral
on the common edge (or common division curve) of two
nelghboring surface elements 1is opposite, the sum of
the surface integrals will be zero. Hence the result
1s proved.

Lemma 4: [Hopf, see Hellwig (1960, p.86) ]
Let the differential operator A be defined as

Au-g a, u +g a,u x--(xlx2 L
i,k=1 ik xixk 1=] 1 xi T

in an n-dimensional space. Let

Aik(x)’ ai(x)ec in a closed region 8. Let A be
elliptic 1in &, 1i.e.

n
121&-1 aik(x) yiyk > o with equality holding only
?

if y“l - yk = o, Then 1f ue C2 is a solution of

Au = 0, u takes its maximum and minimum on the
boundary. This implies that if X, &G and
u(xo) 3 u(x) for x€8, u(x) = u(x,) in & for
each x.

With these four lemmas, we can now give the proofs of the

theorems stated at the beginning of the chapter.
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Proof of Theorem 1.
By means of Stoke's Theorem, we get for any closed
regular curve cz enclosing a regular surface element 2

on S

o= [ nitas [ RvxEas = . / a8
z z

-
a o Cs
Since Cz is any closed curve on S, the above
equation implies that there exists a function f(§) such
that

> > X
£(x) - £(x;) = £ B.a1
o

Similarly, from the condition ﬁ-ﬁ = 0 on the surface,
there exists a function g(X) such that
- -»
g - &(%,) = [* 'l
b4

o
These two equatlions are the same as

>
E=ve , B =ve on S
By the assumption of Theorem 1 we see that f and g will

be of class 02 (plecewise) over S. Therefore by Lemma 3

é K(E X ﬁ*) ds = £ 3'(th x V.g) ds = o

and Lemma 2 implies that E = H = 0 on and in the exterior

of 8.

Remark: The statement of Theorem 1 is not true for the
interior problem because of the possibility of the

existence of mode solutions (solutions such that
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2 =nll =0 onthe boundary). As an easy example,
let us consider the interlor of a closed circular
cylinder of length 1 and radius a. It is known
that there exists an electromagnetic fleld satisfying

6+ %) H, =0

3H
z - 1l Z
VB "1 3w

H

i 2z

Jﬁ%"ﬁ 35
E

= 0

z ™ H.0 - Hcp
where 2z, 0, @ are the cylindrical coordinates, and
the z-axis 1s along the axis of the cylinder. If we
look for a solution which is independent of 9@, we

find that

H, - sin (1% z) I, (k,p)

where n = integer, k = *Jk2 - (Ig)e , and Jo(x)
is the Bessel function of zero order.

is a nontrivial infinitely differentiable solution
inside the cylinder which vanishes at 2z = 0 and
z = 3, This electromagnetic field will have

ng = n~§ = 0 on the boundary if a 1is so chosen
that k,a 1s a root of the Bessel function. How-
ever, if IQ k > o, kn willl be complex and it is

known that the Bessel functions of real order have

no complex zeros,
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Proof of Theorem 2

From the divergenceless of ﬁ we get

1 o) )
-VE - hoh,E,) + hh.E.)
o EIEEH; [S;I (ho 3 1) S;E( 30, Ep

+ 3_23(hlh2E3) ].
If we choose u3 such that h3 = 1 on the surface
3, then the above equation and the condition of
Theorem 2 give

Py

0
(hoE,) + (h,E,) = o. (A)
auI 271 Buz 172
From the argument in the proof of Theorem 1 we see

that n°H = o 1implies that there exists a function

® such that
A A 1 29 A
B, = V@ = B8y + By = g Iy 6y
1 du
1 d¢ A
+ 5= 2y ey (B)
2 du

A
where e, and 32 are mutually orthogonal unit

surface vectors. From (A) and (B) we get

h, - . h
this equation nolds on any point of S 1in which a
local orthogonal coordinate system 1s introduced.

At any point of S we can choose a coordinate system

such that h1 and h2 are greater than zero. Now

®, being a solutlon to the eguation, is continuous
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over S {a compact set). Hence ¢ must attain

its maximum on S. Let it attain its maximum at a
point xoe S. We apply Hopf's lemma to get

?(x) = 9(x,) 1in the neighborhood of x,. Re-
peated applications of Hopf's lemma will give

¢ = const. over S. This implies ﬁt =0 on 3S.
By‘the uniqueness theorem, which states that an
electromagnetic field 1in an exterior domain 1is
uniquely determined by the tangential electric fleld
on 1ts boundary, we see that i # 0 in the exterior

of S. Hence, also ﬁ & 0 and the theorem is proved.
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Iv.
Existence Theorem« for Marwell's Equations
1f the Normal Component of the Electric and

Magnetic Flelds are Given on a smooth Surface

In this chapter we shall construct a solution to the
Maxwell's equations 1n the exterior domain when the normal
component of the electric and the magnetic fields are gilven
on a smooth boundary surface. Then by Theorem 1 of chapter
III, a solution so found will be the solution, In particular,
we state our result in the
Theorem. Let

i) S bve a Cl‘l closed surface which encloses a simply

connected region,
11) e(y) , h(y) (yes) ve Holder continuous functions

on S satisfylng the conditions
ée(y) ds = éh(y) ds =0 ;

then there exist ﬁ and i satisfying
a) The Maxwell's equations
vx E - 1wuﬁ =0 ,

in the exterior of 3.
b) The vector radiation condition

1im r|® x ¥V x E + 1kE| = o and
oo
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¢) nBE=e(x) ,nH=h(x) for xes,

Define a map T implicitly as follows:
Let ¢ be the solution of
8,9 = 1un

such that [ ¢ ds = o,
S

where A, 1is the "surface Laplacian’ (see also eq.
(4.3)).
Put

TP =V, 0 =K.
Similarly define ¢ and R’ for a function o’.
Then » and »’ are solu’ions to the following
equations:
e(x) = 2% + 1 [ Do (B(x) 72(y))0 + (E(y)-H(x))-

(1 (1) x Vo - & o(y) 5= ®) s,

n(x) = 558 + 3 { (102 (B(x) 10" (1)) - Bly)-R(x)

1 D
(To(y)) x Vo - TP (y) 33; ?] dsy

and the explicit expressions for ﬁ and ﬁ are given

by the formulas:

V=Y

E(T) = [1apﬁ¢ R x v+ 1o Vo) ds_ v

&

ﬁ(r - é (1080 + ¥ x VO + —*v¢] dsy .
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Remark: The restriction 11) on e(y) and h(y) 1is
necessary because if § and ﬁ are solutions to

the Maxwell's equations, we have by Stoke's Theorem

/ nE as -'Im%r JRvVv xB ds =o
S S

for a smooth surface 3.

Similarly,

/ B-H as "Iéﬁ f nVxEds =o.
S S

OQur starting formula 1s the famous Stratton-Chu

formulas (Eqs. (8a), (8b) of Chapter I):

B(F) = g [ [1ouke - R x V6 + 7 p ve) as, (¥.12)
S

H(F) = 1= ! (10688 + K x v& + 3 o/ 8] as, (4.1b)

where

R=nx®B, ¥ =Rx3%,

ViR = d0p, v R =10, (4.1c)
RIYES

e r——
> > 3
r-y

Q Ll Q(;);) =

K is the surface normal pointing into the
interior of S,
; is any exterior point,
V€ is the surface divergence operator.
Observe that if we take R and R/ to be known and
define p» and . by (4.1¢c), we can show that (4.l1a) and

(4.1b) represent two vector fields 2 and ﬁ, which satisfy
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Maxwell's equations for points ? not on S. PFurthermore,
B and B in (4.1a) and (4.1b) satisfy the radiation con-
dition. Only the boundary conditions are not yet seen to

be satisfied. We are given two relations; consequently
there should be two unknowns to be determined. We therefore
regard o and ¥ as unknowns in (4.la) and (4.1b) and
restrict K and K’ to be the surface gradients of @

and 9’ respectively where the functions ¢ and ¢’ are

related to » and »' as follows:
L,9 = 1w , R = Ve® (4.2a)
8,9 =10, R’ = V.0,

Here 4, 1s the "surface Laplacian” defined by

el 2 (gld 00
B, @ S (8™ \® BuJ‘ (4.3) (sum)

with 313 being the metric coefficients on the surface.
If we can prove that for each > there exists one and
only one ' satisfying (4.2a), (and similar result for >’
and R’ ), we see that (4.la) and (%.1b) actually contain
two unknowns > and =:’. That there is at most one ﬁ
for a given » 18 clear from the results of Theorem 2 of
last chapter, since the only continuous solution to
At¢ = 0 18 a constant. We therefore complete our solutions

by finding > and .’ from

* In the following we shall also write
> -» >
r=y, x=Xandy =y,
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162 -,lﬁé[iuui%'@-x’xw +%ov§] 88,y V =V, (h.ba)
ﬁ(?) -4 %f é (1o ¢ + X x V& + & o’ v§l dsy (4.4v)
where ¥ = V.9, R/ = Vt¢', (4.4¢c)

AP = 100 , A9/ = 10p’
and Vtw is the surface gradient of @.
Remark: The condition S € C4 i1s needed for the validity
of the inequality to be given in lemma 2. (See (4.10))
We shall need’
Lemma 1. Let p be continuous on S and put
P(P) = K(x)'é n(y) v 3 (F,%) as T = X + Ba, Xes.

Define

Po(X) = 1im P(T) as a%o, d>o;

P,(X) = 1im P(¥) as dvo, d<o.

Then
Pe(x) = -2mu(x) + P(x),
P, (x) = 2mu(x) + P(x) ,
where

P(x) = [ (@A) VAT oy = [ w1 R g0,

This lemma can be proved in the same way as Kellogg [1929,

>
r-y|

Let us take the scalar product of (4.4a) and (4.4b) with

A(x) and let dno,
*From now on p willl denote the exterior surface normal.




4.6

we get
1im, A(x) -B(X + dA) = - 35 4 11m 2 A fra0uidE-
d-’rg"_ n(x)+E(x + dn) = e(x) té——)- 1im g7 n-f

(4.52)

R’ x vélas - 111-1; é l.o(y)gral— ¢(x,y) dsy ,
X

1m 8(x) AR + @) = n(x) = Fp + Linge $x)- [ 10§ +

Rxve) as - gz [ 5 o ()VE(x.y) as . (4.5b)

y
Since §(x,y) -O(—’x%y—'-) as x»y, we have

Uum [R-R(y) ¥(r,y) as_ = [(@B(x) K(y))E(x,y) s,  (4.6a)
d»o S y s y

1im 2/ & x vé(r,y) ds_ = 1lim fﬁ(x)-ﬁ(y) X V§(§+dﬁ,'§) ds
d»o d»o

y y

= +f A(x)-B(y) x V& (x+dn, y) ds, +

é [(A(y) - 3x)1-R(y) x vE dsg - (4.6b)

y

But K(y) = v, 9(y) and

A(y) v @(y) x VE(G+dh,y) = A(y) v, @(y) x v d(x+aR,y);

by lemma 3 of Chapter III we have

fRAR(y) x Vy§(§+dﬁ,y) ds, = o.

Hence
Lim n(x)- é R(y) x vg(F+eh,§) as, = é['ﬁ(y)-ﬁ(X)]'K(y)x
vyi dsy. (4.7)

Using (4.6a) and (4.7), we can write (4.5a) and (4.5b) as
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follows:
e(x) = 2 + f [ Lol R¥)E + ) - Rx))-

R'x v, - él-p(y)ag-x £) as, (4.80)

and

n(x) = 28l + Jo [1s02@x) R (7)E - (ly)-B()°

1 d
R(y) x V8 - 4 ' (v) 58] dsy (4.80)
vwhere
Rmvo , 80 =i, (4.8¢c)
R=voe' , A0 =im'. (4.84)

Equations (4.8a)-(4.8d) can be regarded as four equations
for the four unknowns p, p’, 9, and ¢'. However, if we
know that we can solve for ¢ and ¢’ from (%.8¢) and
(4.84) for given » and ), we can regard (4.8a) and (4.8b)
as two equations for two unknowns. In the language of
operator theory we shall prove that the map of

2 to K (o' to %) 1s a bounded linear operator from the
space of continuous functions on S to the space of con-
tinuous tangential flelds. The first two integral operators
in (4.8a) and (4.8b) are completely continuous operators that
map continuous tangentlal fields into cintinuous functions.
The last integral operator in (4.8a) and (4.8b) 1s a com-
Pletely continuous operator which maps continuous functions

on 8 into continuous functions on S. Therefore, if there
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exist no non-trivial solutions to the homogeneous integral
equations (the conditions in Lemma 7 will insure this), we
can conclude that there exist unique » and p’ to the
system of integral equations.

To prove the above assertions we shall ne:d
Lemma 2. Suppose p 18 a real, continuous function on S

and [ p d3 = o. There exists a unique ¢
S

satisfying

almost everywhere with the property

max |V, @(x)]| gC max | o(x)], (4.10)
X€ES XeS

where C 18 a constant depending on the surface S
only. The existence of a function ¢ satisfying
equation (4.9) is known from the theory of harmonic
integrals [C. B. Morrey, Jr. and James Eells,Jr. (1955),
p.124]. We shall sketch a proof for the existence of
the function @ and the inequality (4.10) in the
appendix.

Lemma 3. Let K(x,y) be defined on S and continuous

for x#y. Assume that positive numbers A, o,

exist such that

A
[K(x,9) | & 57
for x, yéS and

|K(xy¥) - K(xp,y)| ¢ Bl %ol
T
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for all § with T < T3

and all X, X, Y€S with [X-%|< T and
{x-y) 227,

Let u(x) be continuous on S. Deflne

- . If
IRl max ) B(x)/ I

Ku(x) = [ e(y) K(x:Y) dBy,
S
then
| Ku(x) ] < ¢ puif

1
| Kuxg)-Ke(xp) | < C x| T#%
1+

s’

) 1+T] .

for all X)s X, S with ]xl—xel < min [1,

B o

A proof of this lemma can be found in Werner [1961,p.10}. A
similar result can also be found in Miller [1957,p.307].

Let us denote the space B = {p: p&eC in S and
[ 7 ds = o}*

S
and introduce the norm | o}y = max |»(x)l, where ||
xXé&S

denotes the absolute value of a complex number. The intro-
duction of thils norm makes B a Banach space of continuous
functions on S. Similarly we define B’ -{ﬁ: Rec in S}
with norm [IR/ = max |R| = max ﬂ; . With this norm

¥ Thls shorthand notation means that B consists of all com-
plex continuous functions on S such that the continuous
functions satisfy the condition

[ pdsm=o .
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B’ becomes the Banach space of continuous tangential vector

fields on S. We now prove

Lemma 4. The map T:p+K from the Banach space B to B’
by means of

B, P miwp, s @ =R
i3z linear andibounded.

Proof: Linearity is clear. Since the coefficlents of the
partial differntial equation are real, both the real
and imaginary parts of @ must be solutions to the
same equation with the right hand side being the real
and imaginary parts of » respectively.

Let us write
Q = C@; +1 ¢ﬁ 3
po=m oL+ 10, .

By lemma 2 we have

max |V, €| < ¢ max |o (x)] ,
X€S X&S

max |V, | < ¢ max |o, (x)]
x€g ¢ 1 =7 xeg 1MV

these two together give
e, @11 = [IR]] = |lzel] < cllipll.
Hence T 1s bounded.
Lemma 5. The following maps have kernels satisfying the
conditions of lemma 3.
1) K,:B'4B, -{p:oec in s} where Kl(K) - é‘ A(x)"
R(v)8(x,y) ds,
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11) Ky BB, where K@) = [R(y) [A(y)-A(x)

X Vyi dsy 3

d
111) Kyi BB, where K3(p) - éo(y) 5 $(x,y) ds, -
Proof:
1) Since §(x,y) has a singularity of the order

1

X-y|~ a8 X'V, Wwe see that there exists A, such that

A
-
In(x)$(x,y)| < T_Tx}y y X YES.
11) Since we assume Se&Cu, there exists A; such that

R(x)-Ay)| < & Ix-y], x,yes

and therefore there exists A2 such that

|B0-Ex) x v 30| < RE)-BW 195000 oz

111) a-i—xi(x,y) fﬁ(x)-vxg(x,y) - A(x): i:; 3.

If we introduce a rectangular coordinate system with x

as origin, and consider the tangent plane through x as the

ul-u2 plane, we can represent the surface points in the

neighborhood of x asf

1

¥=u 31 + uegé + B(x) f(ul,ue),

where 31 are unit vectors in the tangent plane and

of(0,0) o.

u
We have
2 ET) = otuh)? + @B)?) =0 (Ix-y|?)

#This 1s usually referred to as tangent-normal system.
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and hence we get
2 A5
|3‘5; §(x,y) | Sﬁ?ﬂ y  X,YyES.
The proofs that Kl, K2 and K3 have kernels satis-
fying the second condition of lemma 3 are similar, hence we
shall only give the proof for the kernel of Kl.

Because of the aasumption on S, the number To

which is required in lemma 3 always exists. We note that

1R(x))8(xy,¥) - Blx)E(x05¥) | < (B(xpH¥)-F(x00¥) | +

1 (xp09) | B (x)-Rlxp) | .
If
lxl-xel < 9 and le-yl > 27, we get

180xg09) | 1R(xy)-Rx) | < 2% 1, %1

Applyling the mean value theorem, we get

1050.9) - Bxpo) | < 23 1R

Consequently, for 7" < 75 <1, we get

Rxy)glxy.9) - Blx)flou)| <28 Igmgl (o)
Equation (4.11) is the second condition of lemma 3.

Hence the proof of lemma 3 is completed.

We now define
BXBw= {(;)1,92) : D.EB } .

By introducing the norm of '; - (91,02) as follows:

N2 = (max Joo| + max Jo,] ) = [log]] + 1o
XES 1 X&S 2 1 2”
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the set B x B becomes a Banach space. We can write (4.8a)
and (4.8b) as

) (4.12)
2fe(x)) (p(x) > . (LlT + Ly LT b(x) >
2ph(x) p’(x) -L,T LiT+Ly | \ P’ (x)

or symbolically as

CaP+Th = (I+1)) (4.13)

We now prove

Lemma 6. The operator T 1is a completely continuous linear

operator from
BxB-+*B xB,

where
B=gyp: € in S and [p ds = o f.
{ ! !

Linearity is clear from (4.12). In order to prove that
an operator is completely continuous, we must show that
it maps a bounded sequence into a compact 8equence (a
sequence which has a convergen subsequence). We firast
show that T maps B X B + B x B. For this we show that
— R .
[ ds, {{110n@B(0) REDF +El0)-REMRx v fde(vIgzRas,} =
ang ———__ %(x)
[ do, { {10 B(x) R (9)F -(R)-R())T, 3k’ ()55flaey} =,
it

[o ds = f0’ds = o.

From the steps by which we derived (4.8a) and (4.8b),
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we see that

= [ B(x) as, = 1an,f A(x) B(Esa)as, + [ 25 ds, 0 (4.24)

where B 1is given by (4.1a). It can be shown' that % and
R as given in (4.1a) and (4.1b) satisfy the Maxwell's

equations for points not on S. Hence

éig+ é 3(x)’§(§+dﬁ)ds - éig+ —1%;E£ A(x) v x §(§+dﬁ)dsx(: :;)

But we are also glven

[o(x) ds, = [o' (x) ds, = 0.

Hence from (4.1%) and (4.15) we get
J ds, F(x) = o,
S

Similariy,

£ dx, G(x) = o.

Having shown that T maps B x B -+ B x B, we now
show it is completely continuous. From lemmas 3, 4 and 5,
we see that T will map a bounded sBequence in B x B into
& bounded, equi-HSlder continuous sequence. This means that
the resulting sequence is uniformly bounded and equlcontinu-
ous over S. By the theorem of Ascoli [see Kellogg p.265],
the resulting sequence will contain a convergent subsequence.

The 1imit of this uniformly convergent subsequence will also

*See Appendix II
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be continuous and belongs to B x B. The proof that T is
completely continuous 1s therefore completed.

Since T is completely continuous, we can apply the
Fredholm alternatives to discuss the solutions for (4.13).
Since we have not succeeded in finding the explicit ex-
pression for the adjoint of T 1in (4.13), we shall 1limit
ourselves to the case when the homogeneous integral equation
has no non-trivial solution. The condition of the following
lemma will insure that there is no non-trivial solutlon to
the homogeneous integral equation.

Lemma 7. If we assume that B and ¢ are positive con-

stants and § = Zo + 1 &, with Eor c‘.l > o*,
the integral equation (4.13) [which 1s equivalent

to the system in (4.8a) and (4.8b)] has no non-trivial
solution.

Proof: Let 5 = (5,7') be a solution of the homogeneous
equation (4.13). We form the electric and magentic
fields by means of (4.4a) and (4.4b). o and >’ being
solutionsof the homogeneous system (4.8a) and (4.8b)
imply that

(ﬁ-ﬁ)e = @RH) =0 on s,
e s
where ( )e denotes the values obtalned when the

points of S are approached from the exterior. By the

uniqueness theorem (theorem 1, Chapter III), we see that

*
Physically, this means that the medium 1s lossy.
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the electromagnetic field in the exterior of S
vanishes identically; 1. e.

g, -, a0, (4.16)
From the jump condition, we have
Ax [B-E) =R -y @, (¥.17a)
Ax [H-H)=Rave. (4.17b)
From (4.12) we therefore get
AxE =R =v. 2 (4.18a)
AxH, «-K= VP (4.18b)

consequently )
M@ xH, s = R (V@ x v, @ Yas =0 (4.19)

by lemma 3 of Chapter III.
But if the condition on the dielectric constant & in
the lemma is satisfied, (4.15) implies that £, =, = o.

Now

A (B-E) =5, (4.20a)

> b4
n'[ﬁe—ﬁil -F H (4.20b)
therefore we get

pmn mo

as asserted.

If the conditions of lemma 7 are satisfled, the

e s
Ee is the electric fleld in the exterior of S.
ﬁi is the electric field in the interior of S.
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homogeneous equation (4.13) (or (4.8a) and (4.8b)) has only

a trivial solution. Hence by Fredholm's first alternative,
there exists a unique solution 3 &BxB ¢to (4.13) for a
given 3 € B xB. This is the same as saying that the system
(4.8a)~(4.84) have unique solutions if conditions of lemma 7
are satisfied. Having solved for » and ’, we can obtaln
Z anda ®‘; substituting these four quantities into the re-
presentations (4.1a) and (4%.1b), we have the desired solutipns
to the Maxwell’s equations.

We shall remark briefly on the limiting values of the
electric and the magnetic fields as we approach from the ex-
terior or the interior of S. By the assumption that e(x)
and h(x) are HOlder continuous, continuous solutions for
o and ! from (4.8a) and (4.8b) are then Holder continuous;
R and B’ are Hblder continuous if p and .’ are con-
tinuous. Therefore we conclude (see theorem 48 p.217 of
Mﬁller) that the electric and the magnetic flelds given in
the statement of the existence theorem are continuous up to
and on S, as we approach from either side of 8.

Given a smooth surface S, the results of this chapter
show that we can always decompose an electromagnetic field
into two fields, one of which has no normal component of the
electric field while the other has no normal component of
the magnetic fleld on the surface S. This should be com-
pared with the conclusions in Chapter II that only in
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spherical, cylindrical or rectangular coordinates can we

have T.E. or T.M. wave.
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Appendix I

We shall sketch the proof of lemma 2 of Chapter IV.
Specifically, we shall show
Theorem. Let > be a continuous function on S and

[, ds = 0. Let Séca. Then there exists a unique
S

¢p satisfying the following equation

1 9 1) 4 ,
L2 -\E_ ¢ (g™’ vE —u_J) = -5, 1¢1,J¢2 (a.1)

du S

and

éq’ ds = 0.

Purthermore, there exists a constant C depending on

the surface S such that

Mex |V, @ (x)] ¢ ¢ max |.(x)].
x€S XES

Proof: With no loss of generality, we may assume p(x) to
be real. We shall use the lemma of Lax and Milgram to prove
that there exists a “weak” solution to (A.1). Then we shall
show that this weak solution satisfies (A.1) almost every-
where.

By the assumption on the surface S, we can, by the
Heine-Borel Theorem, cover it with a finite number of open
coordinate patches. We denote a covering by

N
U w v Uy = S. Each of the coordinate patches 1s taken
Qm]l

to be small enough that there exists a coordinate system



xé - xg such that the following lemme holds:

Lemma a@. There exist positive Ra’ra'Ma’ and Wa such that
1) Ry > -/g(x) > ry, for era';
i
11) g'(yy) = &M, fora y,eu, ;
2 2 i 2 2
11) mo(Ed + ¥a) e d(x) &y I, < M(¥E] +E3),
. , 2 2
for "X€U,, 1 ¢ a <N, and IEII + 18351 #o.
We now choose such a covering ‘2 for the surface S

and define a space Pao of functions.

Definition: The function féP2 if and only if
1) fEL,(S);

11) There exists a sequence of C:L functions such that
1m || - £ 12 = 11m [ (£ - £,)% ds = o,
o neo S
1im ||pf_ - Df ||, = o
n, e n m' Lo ?
where D 1s any first derivative.

We define a scalar product in P2 as follows:

N > ,
a=l U,

+
axt dx+ sz %<

o

=[[@Y + VP V¥ ] ax.
74
The norm of @é P2 is defined as follows:

Hell?2 =<e, ¢> .

If in addition,
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111) [f ds = o,
S

we say fé€ PQO'

With this definition of scalar product, Pag becomes a
Hilbert space of functions with properties satisfying 1), 11),
and i1i). Furthermore, we note that the functions of Py,

1

are limits of sequences of C functions in S. Therefore,

for calculations we can take the functions to be of class Cl.
Lemma B. (Poincare ‘s inequality) If 1EP,,, then there
exists a constant Cl > o such that

u -2

3 2

+ (S’—;‘z ax 3 fq( u? ax.
Here, Cl depends only on the surface S.

Proof: We shall prove this inequality by contradiction.

Suppose the inequality 1s not true; then there exlsts a se-

quence of functions {fn} & Py such that

of of
2
ffzdx-l and 11mf[-—I“2+ —z“ ] dx = o.
u ° n-»oﬂ(Bx) (ax)

This means that the sequence { fn } is bounded [in the sense
of the norm we introduced for functions in on]‘ Consequently,
the sequence {fn} contains a subsequence, which will also
be denoted by {rn] , converging weakly to a function
fGPQO; i.e. there exists f¢& P20 such that*

n-»oo

11 f dAd&x + | Vg 'vf_ dx - fg dx + f-vg dx, A.2
m{,{(sn  Veve, Jreaxs [ veve (a.2)

for all gg£P,,. But it can be proved [see Morrey (1956)])
20

*
We denote of o > )
vVf'vg = — + =
axt 2x 3x~ ox
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that 1f {r ] converges weakly to f 1in Py, {f}
converges strongly to f in L2. This means

2
1im [ |£_-f|€ dx = o. (A.3)
e Y O
But (A.3) implies
2 2
1im [ |£ |° ax = [ £° ax. (A.4)
neeo X (74
This being the case, we get from (A.2)

1lim VgVl dx = | Vg-Vf dx. A.5
Lin [ Vg'VE, dx = [ Ve (a.5)

But by the assumption on an, we get

1im | fv;;-vrn dx| ¢ 1lim /f |Vg|2dx / lvrn|2 dx -+ o.
N> 174 noc 174 74

Hence

&vr-vs dx = o, for all g€ Py,. (A.5a)

If now we choose g = f, we see that (A.Sa) implies that
f = constant.
But by the requirement that [ f ds = o, we have
S
fwso on S.
Since we have shown in (A.4) that
2 2
[ I£]® ax = 1im [ |£ 1% ax = 1. (A.6)
U nro U

(A.6) says that f cannot vanish identically on S. This
contradiction proves the lemma.

By means of lemma & we can immedlately show
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Lemma 7. There exist positive constants Al, a,y, A2, 8p,

A3, and a3 such that for QéPg,
2
2,/ c(?edssf@zdstlfcp ds,
S U S
2 2 2
ap [ 19, €1" as < [ Ve |” ax < &y [lvg @1” s,

ay J1@2 + v @1%)as < [1@11% ¢ 8y [1@F + [v, @]%]as.
S S

Lemma A\ . [Lax and Milgram]. Let H be a Hilbert space,
B(u,v) a bilinear functional in H such that

1) B(u,v)| < K ||l tIvll,
2
11) Kyl ull® ¢ [B(w,u)l,

for some constants K, Kl > o. Then for every ué&H,
there exists a u/&£H and conversely for every u’€ H,

there exists a 4é&€ H such that

B(u,v) = < u’,v,
for all vé&H.
For a proof to thlis lemma, we refer the reader to
Hellwig [1960, p.203].
Using the Lax-Milgram lemma, we show that there exlists
a function @ such that

£ (Vo "Vp) ds = ét,v > ds, (A.T)

for all y& Py, = H.
In order to show this we define B(@,Y) for @,y € Py,

as follows:
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B(@, ) = [ (7@ %, ¥) as. (2.8)

By Schwarz's inequality and Lemma Yy we get

IB(@, )] = 1[(V@ ¥, ¥) a8l ¢ @vt @l%as élvﬂ’leds

sk Hell 11vl. (A.9)
By Poincaré ‘s inequality and Lemma 7, we get
H@UZ =) (2% + [vel®) dxscg(lvel"‘dx (.10)
Sk 18O, @)
> B(@. @) %k, |1l (8.11)

(A.9) and (A.11) are the conditions satisfied by our bilinear
functional B(u,v). Therefore, for each u’¢ Pyy there
exists a ueP20 such that

B(v,u) = <v,u’>, for all VvEP,,. (A.12)
20

But the right-hand side of (A.7) is a bounded linear

functional on P20 for a given péPao, since
l £V9 as| g ¢ |lall Ilvll.
Therefore, there exists a uw é Ppo such that
[ vo ds = ¢<v,u’>, for all véPao. (A.13)

S
From (A.12) and (A.13) we see that there exists a u such

that

B(v,u) = ,(Svtv-vtu ds = js' vp ds, for all véEP,,. (A.14)
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We observe from (A.14) that if u nas second continuous
derivatives, we can integrate by parts (using Theorem 3 of

Chapter I) to get

[v 4, u ds = -f v, as, (A.14%a)
S S

for all veg P2O' That u has continuous second derivatives
everywhere cannot be proved unless we put more restrictions

on the behavior of » 1in (A.1). Since we assume seacu,

the coefficients of the operator are at least 02. From
Theorem (4.3) of Morrey (1956, p.4T) and Theorem (4.7) of
Morrey (1954, p.129), we conclude that the function u as
given in (A.14) will have Holder continuous first derivatives
and the derivatives belong to P,. Hence (A.l%a) holds for

u. (A.l4a) implies that
Au = -0+ C (A.14b)
almost everywhere. The constant C in (A.1llb) is zero since

/ A u ds = / vt°(vtu) ds = 0o and by assumption
S S

[ » ds = 0.
S

Consequently, we obtain a function ¢ satisfying (A.1)
almost everywhere.

To prove the lnequallty

Max |V, @] < C Max [p], (A.1l4c)
XeS X&£S

we may use the Heine-Borel Theorem to cover the surface S
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a finite union of open sets u (a=1,.. .N). Let D, be a

(6]

closed set such that D, C U, and such that U l')a > 8.
Cs]

Let us consider one of the sets Da 's and call it

D=D,cU, =U. Let D be another closed set such that
DcU’c DcU, where U’ 1s an open set in U. Let ut
and u2 be parameters for the surface element U. We choose
ul! and u® such that giJ(El, 32) = §3 for a point
(‘51, Ee)é D. If U 1is small enough, there exists a Green‘s
function G(ul,uz; El, §2) which 1s a solution to

Zix e T -5l SR ()
The existence of a function G(ul,u2; El, ~52) satisfying
(A.15) has been proved by E. E. Levi (1907) by using the
method of the parametrix if giJG 03 ; this means that the
surface has to be of class Cu. Also, F. John [1950] has
proved, by the Cauchy-Kowalewskl Theorem, the existence of a
Green’s function for linear elliptic differential equations
with analytic coefficients for a small region. For our

equation, the Green s function will behave like:
2 2\ 2 2 2,2
aul,u?; ¥, ¥ >k 108 V(ul- EH)2 + (uB-E2)

in the neighborhood of the point (‘gl, §2). We construct a

function J such that 3’602 and

¥ (x) = 1 for xéﬁ~
o for x&U-D
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We use the Green’s identity on a region U-Z, , where Zg¢

is a small circle excluding the point (!l, Ea), to get

[ (5000 )80 (x) - (118, (¥ (x)o(x, E))] du
< (A.16)

- ([ + NP (x) 3=(X (We(x ) - I ¥ (x)6(x, §)lal,,
Cc Cg o] (o]

where C is the boundary curve of u, Cé is the boundary

>
curve of ZE and no

normal to the boundary and which points away from the region

is the surface tangent vector which 1is

U-% . Since ¥ (x) » o in the neighborhood of C, as & + o,

we get from (A.16) (A.17)

9 ($) = ¥ (0alx, E)o(nds, - [ @x)ag(y (x)a(x, ))asy,

for T = (El, }2)55, From (A.17) we get

IDE P(B)l 'xf: X (%) (x) D G(x, §) as_| +

lfl_l.)cp’(x)lbE s, (J(x)a(x,%)) as,|, (a.18)

where Dg is any derivative. If the region U is small

enough, there exists a constant K such that for
T - (§1, }2)6 D, we have

v, 9(2)1% < K o 5)% + (ngamen"-‘]. (.19)

But from (A.18) we get

IDEJP(E)I < Ky max lo()| + Kp max | (x)]. (4.20)
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(A.20) is true for all ¥ & D; hence from (A.19) we have
max |V )| ¢ Ky max {o(x)]| + K. max | P(x)|. A.21)
x &b s PE Y xeu (x) 5 xeU P (

In each of the open sets, the union of which covers S, (A.21)
holds with appropriate constants. This implies that there
exist K6 and K7 such that

max |V x K. max |p(x)| + max | P (x)], A.22)
M e P(x)] € 6 Max (x) | K7xes {x) ( )

where K6 and K7 are constants depending on the surface and
on a decomposition of the surface.

For any function  &C such that épnds = 0, Wwe
denote by ‘Pn the corresponding solution such that é 4’nds =0,

Suppose there exists no constant C such that
max |V, P (x)| & ¢ max]>(x)]
X €S8 tCP h

holds; then there exists a sequence of functions { pn} with

> &€C and [ > ds = o for which 1lim|p (x)| = o and such
n g 'n ool

that the sequence of functions {@n} satisfying

r;aéts IVt <Pn| = 1. The sequence {Cpn} is therefore uniformly
bounded and equicontinuous; consequently, it contains a sub-
sequence converging uniformly to a function ‘Y/ ; this function
Y~ will be a solution to (A.l) with p = o. [See Morrey
(1956) p.45). But we have proved in Theorem 2 of Chapter III
that ‘Y"' o on S. This means that a subsequence of %pn}
[also denoted by gcpn?] converges uniformly to zero. Con-
sequently, for n > N, we have £> ICPn(x)l and
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81 > |,>n(x)| for all x&S. Therefore, [see (4.22)]
1 =max |[v @ (x)| ¢ K max |0 (x)] + K, max | @ _(x)]
xes °n N6 g0 Txes B

cannot hold for n > No' This contradiction proves the

inequality of the Theorem.
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We want to show in this Appendix that ﬁ and i as

given in (4.4a)-(4.4c) satisfy Maxwell’s equations (Miller

p.211) for points not on S. We have

E-}ﬁ?}s’[iof( R-R xVo+7 o) as, V=V

ﬁ_%_fé[mg'h"+i€xv§+-}1;p’vf] ds,
where
R=v¢ , R =v ¢

%¢ - vt-ﬁ == lop , %¢’ -Vt 'K/ = 1wp’,

In the above formulas the varliable point 1s denoted by

(B.1)

(B.2)

-

>
r

or r, and the integration varliable is denoted by } or y.

We take the curl of ﬁ to get
V. x % =i [ 1pov, x R(y)(r,y))as, - V. x (V. x [
r T 3 HeVr 24 y r r= 3

R (9)§(roy)asy) .

(B.3)

The last term of (B.1l) has no curl since it is the gradient

of some function. Using ¥ x (V¥ x 3) - v(v-?) - A3,
noting that

a8(r,y) = -K¥§(r,y) for rgy,

we may write (B.3) as follows:

Ve xE =P8 [(10f R (MT(ry) + RO x T J(r.y))as,

- TV R )(ry)as),

and

(B.4)
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Using Theorem 3 of Chapter I, we see that
vr‘fsil(Y)I(raY)dsy - £ K/(Y)'vri(r.vY)dsy - “é K"'Vg,i(r,y)dsy
) —é VpyBX a5 + {;f(“’y)"ty‘i{' (v)dsy =

1c>£ o’ (y)§(r,y)asy |

Hence we get

vr(vr-é‘ K’i ds,) = -1w£ S Vg a8y ( B.5)
Substituting (B.5) into (B.4) we get
v, x E - lh‘-;l‘F‘- é [1wéﬁ'(y)§(r,y) + R(y) x vg(r,y) +

i

)L

p'9g(r,y)] as, = 1p H,

Simlilarly we can prove

fo-f+1c.>c-§-o,
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