UNCLASSIFIED

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.
distribution statement a
APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,

SECURITY

MARRING

The classifite or limied spares of onis reperi apolies io each page, uniess orberwise marked. Separais page priniours MUST be marked accopdingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18 , U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIbited By LAiv.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection witi a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other daca is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any ri.ghts or permission t e manufacture, use or sell any patented invention that may in any way be related thereto.

CONFIDENTIAL

GENERAL DYNAMICS CORPORATION
 Electric Boat division
 Groton, Connecticut

PROCESSING OF DATA FROM
SONAR SYSTEMS (U)

VOLUME V
by
John H. Chang
Verne H. McDonaid
Peter M. Schultheiss
Franz B. Tuteur
Yale University

Approved:
 Chief Scientist

This matertal contalns information affecting the national defense of the Unded States within the maning of the espionage 1 iws, tule 18 . U.S.C., becs. 793 and 794, the trinembation or revelation r^{*} which in any manner to an unauthorized person is prohlifted by law.

GROUP - 4 DOWNGRADED AT 3 - YEAR INTERVALS; DECLASSIFIED AFTER 12 YEARS

C417-68-078
July 31, 1968

ABSTRACT

Volume V deals with the following topics:

1) Passive detection in an susotronic noise field Earlier studies of passive detection in an anisotropic noise environment were only concerned with the anisotropy caused by a single plane wave interference (Volumes III and IV). The present volume presents analyses of detection in a noise field dominated by several plane wave interferences or by a single spatially distributed interference. Conventional as well as optimal detectors are considered.
2) Passive tracker accuracy
a) Ore study examines the effect of a plane wave interference on the performance of a split beam tracker. Conventional as well as null steering types of bean-formers are ar lyzed. The contribution of the interference to the measured bearing error is decomposed into a systematic and a random component. Factors which affect the relative magnitude of these components are discussed.
b) A second study initiates an effort to set absolute lower bounds on the bearing accuracy attainable with a given array in a given noise environment. Only the simplest case (two element array, independent roose) is discussed here.
3) Active receivers using replica correlation

The performance of a simple replica correlator is compared with that of a similar instrumentation using clipped (binary) hydrophone outputs. Detertion as well as range and Doppler measurement are
examined. One finds that large clipping losses can occur when the target is moving rapidly. In most other situations the cifping loes is small.
4) Adaptive Signal Processing

In situations where processor design is hampered by lack of adequate knowledge concerning signal or noise statistics one cen employ stochastic approximation cechniques to cause the processor to approach en optroum configuration. This procedure is used to adjusi a tapped delay line filter for operation in a noise environment with unknown spectral properties. Cunditions of convergence and rates of convergence are examined.

TABLE OF CONTENTS

Report No.	Title	Page
	Abstract	iii
	Foreword	v
	Introbuction	1
29	Tracking in the Presence of Interference	A-1
30	The Effect of Multiple or Distributed Interferences on the Performance of a Conrentional Passive Sonar Detector	B-1
*31	The Fffect of Clipping on the Performance of Replica Correlators	A-1
*32	Some Comments on Optimum Bearing Estimation	B-1
*33	The Effect of Noise Anisotropy on Detectability in an Optimum Array Processor	C-1
* 34	Methods of Stochastic Approximation Applied to the Analysis of Adaptive Tapped Delay Line Filters	D-1

[^0]
FOREWORD

This report is the fifth in a stries describing work performed by Yale University under subcontract to Electric Boat division of General Dynamics Corporation. The report covers the period from 1 July 1966 to 1 July 1967. An unclassified supplement to this volume has been bound as a separate document (U417-68-079). Electric Boat is prime contractor of the SUBIC (Submarine Integrated Control) Frogram under Office of Naval Research contract NOnr 2512(00). LCDR. E.W. Lull, USN, is Project Officer for ONR; J W. Herring is Project Manager for Electric Boat division under the direction of Dr. A.J. vanWoerkom.

I. Introduction

The followirg is a summary of work performed under contract
8050-31-55001 between Yale University and the Electric Boat Company during the period, 1 July 1966 to 30 September 1967. More deta\{led discusaions of the results as well as thelr derfvations are :ontalned in a series of six progreas reports which are appended.

Several studies reported in earlier volumes of this series were concerned with passive detection th the presence of strong interference from a point source. The general subject of passive sonars operating in an anisotropic nol:se endronment is pursued further in the present volume. The effort reported here has taken two new directions:

1) Anisotiopies are no longer attributed to a single interfering plane wave. Environments containing several point sources of interference or a spatially distributed interference are studied. Conventional as well as optimal detectors are analyzed.
2) The effect of a single plind wave interference on tracking accuracy is examined.

The problem of tracking accuracy is albo considered in another context. An attempt is made to divorce the accuracy problem from particular instrumentations and to set absolute bounds on the beailing accuracy attainable by processing the outputs of a set of hydrophones operating in a spectfied notse envirument. Only the simpiest fossible case (two hydrophones, noise independent from rhone to phone) is presented here.

In addition, this volume continues the atudy of active sonar systems initiated in Volumic IV. The specific problem considered here/the effect of clipping on the performance of replica correlators. Results are obtained for a wide class of signal waveshapes and for environments dominated either by reverberation or by ambient noise.

Finally, an effort is initiated to deal with the aignal detection and extraction problem in a noise environment whose statistical properties are largely or wholly unknown. This leads to the study of adaptive processing procedures. Only preliminary resulta, based on the method of stochastic approximation, are presented in this volume.

1I. Detection in an Anisotropic Noibe Environment

Report No. 30 deals with the petformance of a conventional detector operating in a noise environment dominated by several point sources of interference or, as a limiting case, by an interference source spatially distributh over some finite angle. The results indirate that the performance degradation due to such complex interference sources is less serious than that caused by a single point source of interference with the same cotal power. For a linear array of M equally spaced hydrophones the maximum differential amounts to $10 \cdot 10 \xi_{1 n^{\sqrt{2}} / \sqrt{3}} \mathrm{db}$ of equivalent input signal-tu-noise ratio. .his is precisely the performance differential between a conventional array operating in a nolse environment independent from hydrophone to hydrophone and a similar array operating in a noise environment of equal power but originating argely from a point source of inturference. One therefore suspects that a smooth transition will take piact from the case of a single point source of interference to that of isotropic nelse as the number of interferances incrases and their locations become more uniformly distributed in space. Numerical computations generally confinin this inference. For several closeiy spaced interferences all relaravely remote from the target in bearing one finds, not surprisingly, that the configuration is equivalent to a single interference. As the spacing between interferences increases the performance index rises quickly to its asymptotic value. For the sicuat ons considered in the computations the esymptotic improvement is somewhat luss than the figure of $10 . \log _{10} \sqrt{2 \mathrm{M} / 3} \mathrm{db}$ quoted above One major rasson for this discrepancy is the fact that the pustulated spectra (falleff with second power at froquency above 5000 cps) are not sufficiencly broad to yield noise independent from hydrophone to hydrophone in the isotropic limit.

Qualitatively similar results are obtained for the case of a distributed interference. Again owe finds that the performance index quickly appreaches its asymptctic maximum as the interference spread grows. This approach becomes more rapid as the numter of hydrophones increases (and hence the beam-width decreases, since fixed spacing between hydrophones is asgumed).

Report No. 33 studiss a likelfbood ratio detector operating in an anisotropic enviroment similar to the cne just discussed. Jit had been shown in earlier work (Volume III) that interference from a single plane wave resulted in a performance degradation nor exceeding the degradation caused by the loss of one hydrophone in the absence of the intcrference. A similar statement renains true in the presence of several incerferences, 1.8. , the effect of R interforences can be eliminated at a cost not exceeding R hydrophones. However, it appenes that this bound on perforiance degradation Is often quite pessimistic. Thus interferences in close angular proximity of each otner have the effect of a single interference and can be dealt with at a sacrifice of only one hydrophone. Orily when all interferences are widely separated from each other and from the target can the loss figure approach R hydrephones (and then enly in a strongly interference dominated environment). A spatially distributed interference may again be interpreted as the limiting version of a large number cf closely spaced individual interferences. These may then te grouped into clusters more or less equivalent to single pijint sources of interference so that serious lossus occur only if the number cif clusters, i.e., tin total angular spread of the interference, f b lerge. Since anaiytical evaluation of the likelihood ratio detsctor léds to expressions that are formally simple but practically difficult ko evaluate and inturpret, many of the conclusions are based on numerical computations. Ariays of different geonetrics (circuler and linear) and a variety of interferen e configurations are considered.

Feport No. 29 analyzes the performance of a pplit beam taacker operating in an environment consisting of ambient noise (assumed independent from hydrophone to hydrophonc; and ε plene wave interference. Signal, nolse and interference are assumed to be stationary Gaussian processes with similar power specira. Tw types of beam-formers are considered:

1) Conventioral bean-formers (in each array half: delay for alignment with target, then add).
2) Null stecring (in each array half: steer on interference, suburact hydrophone outpi:ts pairwise, then beam-form on target and add). In each case one $:=$ the b:ams is shifted 90° in phose relative to the other, after which nultiplication and smoothing completes the tracking procedure.

In the conventional tracker plane wave interferences (or other spetial asymmetries in the noise field) contribute to the tracking error through two distinct mechanisms.
a) The null of the average tracker output is shifted away from its nominal location by an amount depending on the proximity, strangth and spectral properties of the interference (systematic error).
b) The output fluctuation is increased by an amount depending primarily (excupt for interferences close to the target in bearing) on the interference power (random error).

The null steering tracker eliminates the complete time function of interference (at least iderlly) and therefore removes both sources of error.

Whether cracking problems caused by noise field asymmetry warrant the use of instrumentations more complex than the conventional split beam tracker clearly depends on the total additional error (a) plus b)]. However, the choice of remedial misasures (spectrim shaping, null steering, more
powerful adaptive procedures, etc.) might depend to a considerable extent on the relative magnitude of errore a) and b). The following considerations appear relcinnt:

1) Only when the noise field is interference jomincted does the Interference contribute significantly to the randon error. (With a linear awrey of $2 M$ equaliy spaced hydroptiones the environment fs interference dominated when the interference to amolent noise ratio exceeds $\sqrt{(4 / 3) M})$.
2) Even when the noise field is interference doninated the systenatic tror tends to exceed the randon error in many praceically interesting situations.
3) A certain mount of control can be exertad over the syatematic error by shaping the spectrum of each chamel prior to miultiplication.

If the primary source of difficulty is systemetic error, only st.tistical properties of the nsymmetrical noise component are required for correction. These mey not be kiown a priori so that meesurement and at lesst a primitive form of adaptation may be indiceced. however, if one wishes to deal with the random component of error, one must obinin an estinath of the sctual interference time function and the need for adaptation beconts more rundamental. Even in that case one should, of course, still ust i.ll available a priori information. Thus, if one knows that the noise: ficle asymatry fis coused oy an interfering plane wave, one need only rimasure the interference bearing. Then the reletively ginple null steering procedure solves the problem. In the absence of such strong information concurning the cause of :olse fitid asymatiy one may be forced into more elaborat adaptive techniques.

Report No. 32 considers the tracking protlut: fron a much more general point of view. The insic aln is to deteraine the best passive bearing acauracy attainable with a given arrey in a given noise enviroment, without making any prior assumptions about data processing procedures. Report No. 32 deals only with the simplest possible case, that of a two elenent array with noise independent from hydrophone to hydrophone. In that situation a sinple crosscorrelator ettains the Crancr-Rao lower bound of bearing error and is therefore an optimal bearing estinator. A two element split beam tracker using diffurentiation to achieve the 90° phase shift between channels is equivalent in performance to the autocorrelator. If a pure 90° phase shift is uste in place of the differentiation there is a slight degradation of performance. The ras bearing error of the optimal instrumentations varies as $(S / N)^{-1}$ for $S / N \ll 1 \quad[S / N \equiv$ input signal-to-noise ratiol and as $(S / N)^{-1 / 2}$ for $S / N \gg 1$.

IV. Clipped Ruplice Correlators

Report No. 31 exarinus the performance of an active sonar receiver using replica corrention. Det.ection es well as range ind Doppler measurenent are considereci. The output of each array dement is clipped prior to conventional beanforning and the subject of primary interest is the performance degradition due to clipping. Anblent nolsc as wall as reverberation lifited environments are studied, with primary enphasie on the lattor. The reverberstion model is the one developed in Volume IV (atetionary, independent, Poisson distributed point scatterers).

The gencral conclusions may be sumarized as follows: Serious clipping losses can erise in a reverberation limited environment when the target is noving rapidly enougli, to shift the target return elmost entirely out of the reverberation band. In such cases the unclipped detector has an output ussentially free from revarberation in the signal band, whereas the clipping operation transfers part of the reverberation power into the aigail band. In other words, clipping dastroys much of the potential signal-tonnoise advantage of ex rapidly tioving target. With this exception the clipping loss appears to be quite small in most practically interesting situations. If one defines the clipping loss R as the ratio of the output signel-to-noise ratios with and without clipping, one can show under fairly genural conditions that $\mathrm{K}>0.89$ (equivalent to a loss of about 1 db of input signal-to-noisc ratio). The primary requirement for this statement to be true is that the transitted signal be narrowband in sota meaningful sense (in a reverberation linited environment it is sufficient - but by no weans necessary - that the wavelergth of the hightst modulation frequency be large compared with the array dimansions). In the absence of such minimal requirerents one can construct pathologicel examples which yicld values of R erbitrarily close to zero.

The structure and performance of the optimum detectore discussed in earlier volumes of this series depends critically on prior knowledge of signal and noise statistics. It has been pointed out that such knowledge ia likely to be incomplete at best. Several reports have postulated that certain noise parameters (e.g. total noise power) were unknown and have studied the resulting detection problem, arriving at primitive forms of adaptation to the nolse field.

Report No. 34 represents the first attempt in this series to deal with a truly adaptive situation, one in which there fs an absolute minimum of avallable a priori information. The report is of an introduc'ory nature. It seeks to define the problems and create the mathematical framework for later studies. Specific results are obtained only for a signal processor using a single hydrophone, but the procedures diecussed generalize without difficulty to array processing probiems.

In the situation analized here the output of the single hydroptone is passed through a tapped delay ine filter whose tap weights are adaptively adjusted to minimize the mean square error between the filter output and the signal component of the 1iput. Stochastic approximation is used as the basic technique of adjustment.

It is clear that detection is impossible in the total absence of any information concerning signal or noise. Three cases short of such total ignorance are considered: 1) The signal waveshape is known, the notse is a stationary stochastic process with unknown statistical properties 2) Signal and noise are stationary atochastic processes, the signal spectrum is known, the noise spectrum is not 3) Signal and nolse are stationary stochastic processes, the noise spectrum is know, the signal spectrum is not.

In each sase one finds that proper use of the stochastic approximation technique generates a filter whicn converges to the optimum Wiener filter. Conditions of convergence and rates of convergence are similar for the three cases. A convenient choice of the gain parameter in the atochastic approximation algorithm causes the mean square error to converge to its minimum with the approximate first power of time. Certain preliminary results dealing with the application of stochastic approximation techniques to non-stationary nolse flelds are also presented.

CONFIDENTIAL

Tracking in The presence of interference

Peter M. Schultheiss

Progress Revort Vo. w

General Jynamics/Electric Boat Res arch
(8050-31-55001)
November 1966

DEPARTMENT OF ENGINEERING
 AND APPLIED SCIENCE
 YALE UNIVERSITY

CONFIDENTIAL

CONFIDENTIAL
 Summary

The report analyzes the effect of a plane wave interference on the performance of a split beam tracker. The performance of a conventional Eracker is compaled with that of a tracker designed to null the interference prior to beam forming on the target. The receiving array is assumed to be linear with equally spaced hydrophones. Signal, ambient noise and interference are assumed to be statistically independent Gaussian random processes with power spectra of the same form. The observation time T is assumed to be large compared with the correlation time of signal, ambient nofse and interference, but short enough so that target and interfrrence bearings do not change significan.ly in T seconds. For computational simplicity the ambient noise is assuned to be statistically independent from hydrophoie to hydrophone. The foliowing results are obtained

1) The tracki g error consists, in general, of two parts
2) Systematic error is measured by the displacement of the target null of the average tracker output from the true target bearing. It is due to asymmetry in the noise field, caused lure by the interference.
b) Random error 1 : the fluctuation of the t :acker output about its average value. It is due to the finite smoothing time T.
3) The nulifng tracker conpletely eliminates the interferance. Wich the spatially symmetrical ambient noise postulated in the analysis, its output is therefore free from systematic error and exhibits a random error depending only on the ambient noise.

CONFIDENTIAL

3) The conventional tracker has both systematic and random error components. The ratio of systemstic to randomerror is greatest for spectra whose Fouricr trensforms decay slowly (e.g., white spectra) at smallest for spectra with rapidly decaying Fourier cransforms. However, cven in the latter case the systematic error tends to exceud the random error (often by a lerge fnctor) under most reasonable operating conditions, as long as the environment is interference dominated. For interferences well separated from the target the borderline between interference domineted and ambient noise domineted operation is reached at an ambent roise to Interference ratio of $\sqrt{(4 / 3) M}$. M is the numbur of hydrophones in each half of the array.
4) At low interference to signal ratios the systematic error of the conventional tracker rises linearly with the interforence to signal ratio. The slope of this rise depends strongly on the spectral shape, being largest for specira with slowly decrying Fourier transforms. Spectrum shaping can be accomplished by Insertion of appropriate filters into each channel of the trackes. When the interference to signal ratio increases beyond a cortain point the systematic error increases rapidly. Soon thereafter the target null disappears entirely and tracking becones impossible. This may happen at interference levels at which the randon error is not at all txassive. Even at interforence to signal ratios as iow as 5 the systematic error can easily amount to a mejor fraction of a degree.
5) With fixed hydrophone spacing the ams random error of the conventional tracker vartes as $\mathrm{T}^{-\frac{1}{2}} \omega_{0}^{-3 / 2} \mathrm{M}^{-3 / 2} \underline{I}$ in an inturforence A-ii

CONFIDENTIAL
 D() in ul (wiry

dominated environment and as $T^{-1 / 2} \omega_{0}^{-3 / 2} M^{-2} N$ in an ambient noise dominating environment. w_{0} is the bandwidth of the spectrum, I the average interference pow n and N the average noise power. For fixed array length (hydrophone spacing inversely proportional to M) the M dependence is $M^{-\frac{1}{2}}$ (interference dominant) and M^{-1} (ambient noise dominant) respectively.
6) The mas error of the mulling tracker is approximately the same as tho: of the conventional tracker in an moment noise dundaated environment. In an interference dominated environment the ms wirer of the conventional tracker is larger by the actor $\sqrt{8} / \mathrm{Y} \sqrt{\mathrm{M}}(\mathrm{I} / \mathrm{N})$.
7) It is apparent from 2) and 6) that one might employ interferfence nulil:ag for tho reasons
() To eliminate systematic error
b) To reduce random error

Since mulling achieves significant random error reduction only in a strongly interference dominated environment, one must inquire whether such an environment occurs sufficiently often to justify the added complexity of instrumentation. If it does not, one must further incuire whether one cannot eliminate systematic ex cor by procedures much simpler to implement than mulling. This appears distinctly possible because syster.itic error depends only on average parameters of the interference (bearing, power, etc.), not on details of the interference time function.
$A-i i i$
(o nd i

CONFIDENTIAL
 •0 (1) (0)

1. Introduction

This report is concerned with the effect of interference from a point source on the performance of split beam trackers. Instrumentations with and without provistons for nul. stetring on the interference are analyzed. Because interest centers on the intetsorence problem, the simplest possible assumptions are made concerning all other anpects of the system. Thus interference, ambient noise, and signal are assumed to be indeperdent Gaussian randum processes with spectra identical over the processed frequency band. The ambient noise is regarded as statistically i.deperdent from hydre ohone to hydr phone. The proressing array is linear ard onsits of equally spaced siements.

Vari, , possible instrumentations differ considerably in their detailed characteristifs, but each exhibits an average output \bar{z} which varies with ste.. ing angle e roughiy in the manner outlined in figure l, at least for values of 9 close to the target bearing θ_{0} and reasonally remote from the Interference bearing A_{I}. In the absence of systematic error, \bar{z} passes throus:. zero at $\theta=\theta_{0} \quad$ The instantaneous tracker output is the value of E near y_{0} at which the random variable $z(t: \theta)$ (whose mean value is \bar{z}) pasies through zero. The rms trackin, error is therefore the standard

Figure 1

A-1
deviation of this zero location. As long as this standard deviation is small compared with θ_{M} there is no serious danecr that the target will be lost. On the other hand, if the rus error becomes comparable to θ_{M} (i.e., if $z(t)$ can exceed z_{M} with a probability that is not negligible), sustained tracking is no longer practical.

Formal computation of the acro distribution of a random process such as $z(t: \theta)$ (considered as a function of θ) is an extremely difficult problem. However, a simple approximation can be obtained for the situation of primary interest here, the case of trackers employing smoothing times large compaied with the correlation tione of the tracker input. The assumption of large smoothing times has two important consequences:

1) The tracker output $z(t ; \theta)$, considered as a function of t, is an approximately Gaussian random process. ${ }^{1}$ Furthermore, $\left\{z\left(t_{1}: \theta_{1}\right), z\left(t_{1} \cdot \theta_{2}\right)\right\}$ may be regarded as Gaussian in two dimensions.
2) Smoothing over : long period of time results in relatively small scattering in both amplitude and slope of $z(t ; \theta)$--considered as a function of θ--about the everages specified by \bar{z}. Sensitivity considerations require the slope $\frac{\partial \bar{z}}{\partial \theta}$ to be rcasonably large neair $\theta=\theta_{0}$. But if $\frac{\partial \bar{z}}{\partial \theta}$ is a sizable positive number (as suggested by figure 1) and the scattering in slope is small, the probability of $\frac{\partial V}{\partial \theta}$ assuming a negativ: value near θ_{0} is extremely small. In other words, with a probaoility close to unity, $z(t ; \theta)$--considered as a function of $\theta-$ hes one and only wae zero in the neighborhood of ϵ_{0}.
[^1]As soon as the possibility of multifec zeros in the θ range of interest can be ruled out, f: becomes a relatively simple matter te calculate the zero distribution by computing the clostly related probability thai $z(t ; \theta)$ has $a \operatorname{zere}$ in $(\theta, \theta+d \theta)$. Designating the latter prebability by $P(\theta)$ d θ onc obtains

$$
\begin{equation*}
P(\theta) d \theta=\operatorname{Pr}(z(t ; \theta+d \theta)>0)-\operatorname{Pr}(z(t \cdot g)>0) \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P(\theta)=\frac{\partial}{\partial \theta}[\operatorname{Pr}(z(t ; \theta)>0)] \tag{2}
\end{equation*}
$$

In view of the Gaussian nature of $z(t: \theta)$

$$
\begin{equation*}
\operatorname{Pr}_{r}\{z(t ; \theta)>0\}=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{(z-\bar{z})^{2}}{2 \sigma^{2}}} d z \tag{3}
\end{equation*}
$$

where σ_{z} is the standard deviation of z. Both \bar{z} and z_{z} are, in gencral, functions of θ. Substituting into (2) one obtains

$$
\begin{align*}
P(\theta) & =\frac{\partial}{\partial \theta} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{(z-\bar{z})^{2}}{2 \sigma_{z}^{2}}} \mathrm{~d} z \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{z}} \int_{0}^{\infty} \mathrm{d} z e^{-\frac{(z-\bar{z})^{2}}{2 \sigma_{z}}}\left\{\begin{array}{l}
\left.\frac{z-\bar{z}}{\sigma_{z}} \frac{\partial \bar{z}}{\partial \theta}+\frac{(z-\bar{z})^{2}}{\sigma_{z}} \frac{\partial \sigma_{z}}{\partial \theta}\right\}
\end{array}\right. \tag{4}
\end{align*}
$$

Straigheforward evaluation of the integral leads co the result

$$
\begin{equation*}
P(\theta)=\frac{1}{\sqrt{2 \pi \sigma_{z}}} e^{-\frac{\bar{z}^{2}}{2 \sigma_{z}^{2}}\left(\frac{\partial \bar{z}}{\partial \theta}-\frac{\bar{z}}{\sigma_{z}} \frac{\partial \sigma_{z}}{\partial \theta}\right)-\frac{1}{2 \sigma_{z}}\left[1+\operatorname{erf}\left(\frac{\bar{z}}{\sqrt{2} \sigma_{z}}\right)\right] \frac{\partial \sigma_{z}}{\partial \theta}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{erf} x \equiv-\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y \tag{6}
\end{equation*}
$$

If the standard deviation of z is constant over the θ range of interest, $\frac{\partial \sigma_{z}}{\partial \theta}=0$ and Eq. (5) reduces to

$$
\begin{equation*}
P(\theta)=\frac{1}{\sqrt{2 \pi} \sigma_{z}} e^{-\frac{\frac{-2}{2}}{2 \sigma_{z}^{2}}} \frac{\partial \bar{z}}{\partial \theta} \tag{7}
\end{equation*}
$$

Sustained tracking is clearly feasible only if the typlacal fluctuation in indicatcd θ is small compared with $\left|\theta_{M}-\theta_{0}\right|$ (see figure 1$)$. In that case σ_{z} must be small compared with z_{2} and one can approximate

$$
\begin{equation*}
\bar{z} \simeq \bar{z}_{0}+\left.\frac{\partial \bar{z}}{\partial \theta}\right|_{0}\left(\theta-\theta_{0}\right) \tag{8}
\end{equation*}
$$

\bar{z}_{0} and $\left.\frac{\partial \bar{z}}{\partial \theta}\right|_{0}$ are the values of \bar{z} and its derivative at $\theta=\theta_{0}$.
Substituting into Eq. (7) one then obtains

$$
\begin{align*}
& P(\theta)=\left.\frac{1}{\sqrt{2 \pi} \sigma_{z}} \exp \left\{-\frac{\left[\overline{z_{0}}+\left.\frac{\partial \bar{z}}{\partial \theta}\right|_{0}\left(\theta-\theta_{0}\right)\right]^{2}}{2 \sigma_{z}^{2}}\right\} \frac{\partial \bar{z}}{\partial \theta}\right|_{0} \\
& =-\frac{1}{\sqrt{2 \pi}\left(\left.\frac{\sigma_{z}}{\frac{\partial \bar{z}}{\partial \theta}}\right|_{0}\right.} \exp \left\{-\frac{\left[\theta-\theta_{0}+\frac{\overline{z_{0}}}{\left.\frac{\partial \bar{z}}{\partial \theta}\right|_{0}}\right]_{2\left[\frac{\sigma_{z}}{2}\right]^{2}}^{\left.\left.\frac{\partial \bar{z}}{\partial \theta}\right|_{0} ^{2}\right]}}{\{ }\right. \tag{9}
\end{align*}
$$

Thus the zero location (the indicated bearir.g) has an approximately
 The latter is, of course, the ratio of fluctuation to sensitiyity at the null, the figure of merit frequently used to measure the accuracy of null
 such factors as asymmetry in the noise field or imperfections in the instrumentation.

If the standari deviation of z varies with θ one must revert to Ec. (5). However, for most cases of interest in the present study it will bc found that the concribution to Eq. (5) of terms involving $\frac{\partial \rho}{\partial \theta} z$ is small, so that Eq. (9) gives a reasonable approximation. This is almost evident by inspection of Eq. (5), f.r If one multiplies this eauation by $\partial \theta$ it reads

Consider values of \bar{z} satisfying $|\bar{z}| \leq 0_{z}$, the range in which the exponential function has a value significantly different from zero. mission of the temn $\binom{\bar{z}}{\sigma_{z}} \partial \sigma_{z}$ requires that the change of σ_{z} be much smaller than the change of \bar{z}. Sut since $\bar{z}=0$ at some point near θ_{0} it follows that $\bar{d} \bar{z} \simeq \bar{z}$. Tha maximum \bar{z} being considered is o_{z} Hence the term $\left(\frac{-\bar{z}}{-\bar{z}}\right) \partial \sigma_{z}$ can certainly be ignored if the variation ∂_{z} of the standard deviation is a small fraction of σ_{z} over the θ interval corresponding to $0 \leq \bar{z} \leqslant \sigma_{z} \cdot 1$ To eliminate the last term of Eq. (5a)

[^2]one need only recognize that the error function has a maximum value of unity. Hence variation of σ_{z} by only a small percentage over the θ range of interest makes the term negligible compared with the term in $\partial \bar{z}$ for $|\bar{z}| \leq \sigma_{z}$.

It appears reasonable--and numerical examples worked out confirm this by an ample margin--that the variation $0: \sigma_{z}$ over the operating θ range of a functioning tracker should indeed be a small fraction of σ_{z}. Hence Eq. (9) is a good approximation to Eq. (5) for all θ such that the condition $|z| \leq \sigma_{z}$ is not violated drastically. Under these conditions the θ range for which Eq. (9) is satisfactory has a cumulative probability very close to unity.

1I. Conventional Trackers

A. General Relations

An elementary version of the conventional split buan (phase) tracker is shown in Figure 2. Suppose that the delay of the signal fron hydrophone to hydrophone is t_{0} while the delay of the interference from hydrophone to hydrophone is Δ. Then
and

$$
\begin{equation*}
\text { signal } s_{j}(t)=s_{1}\left[t+(j-1) t_{0}\right] \tag{10}
\end{equation*}
$$

interference $\quad f_{j}(t)=i_{1}[t+(j-1) \Delta]$

Figure 2

A-7

If the delays τ_{j} are adjusted so that

$$
\begin{equation*}
\tau_{j}=(j-1) t_{1} \tag{12}
\end{equation*}
$$

then the summer outputs are

$$
\begin{equation*}
v_{A}(t)=\sum_{j=1}^{M}\left\{s_{1}\left[t+(j-1)\left(t_{0}-t_{1}\right)\right]+i_{1}\left[t+(j-1)\left(\Delta-t_{1}\right)\right]+n_{j}\left[t-(j-1) t_{1}\right]\right\} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{B}(t)=\sum_{j=1}^{M}\left\{s_{1}\left[t+(j+M-1)\left(t_{0}-t_{1}\right)\right]+1_{1}\left[t+(j+M-1)\left(\Delta-t_{1}\right)\right]+n_{M+j}\left[t-(j+M-1) t_{1}\right]\right\} \tag{14}
\end{equation*}
$$

If $t_{1}=t_{0}$ the array is stecred on target. The time delay t_{1} is related to steering angle $\theta \quad(\theta=0$ corresponds to broadside) through the equation

$$
t_{1}=\frac{d}{c} \sin \theta
$$

d is the spacing between hydrophones and c is the velocity of sound in water.
$H_{A}(j \omega)$ and $H_{B}(j \omega)$ in Figure 2 are linear filters whose transfer functions remain unspecified for the moment. For proper functioning of the tracker they should, of course, differ in phase shift by 90° over the entire frequency band processed. The symbols $h_{A}(t)$ and $h_{B}(t)$ will be used to designate the weighting functions (impulse responses) corresponding to the transfer functions $H_{A}(j \omega)$ and $H_{B}(j \omega)$ respectively. In terms of this nomenclature the output $y(t)$ of the multiplier is

$$
\begin{equation*}
y(t)=\int_{0}^{\infty} d \sigma h_{A}(\sigma) v_{\dot{A}}(t-\sigma) \int_{0}^{\infty} d \rho h_{B}(\rho) v_{B}(t-\rho) \tag{15}
\end{equation*}
$$

Assuming, without loss of generality, that the low pass filter has a transfer function with unity gain at zero frequency, the average tracker output $\overline{\mathrm{z}}$ is given by

$$
\begin{equation*}
\bar{z}=\overline{y(t)}=\int_{0}^{\infty} d<h_{A}(\sigma) \int_{0}^{\infty} d \rho h_{B}(\rho) R_{v_{A} v_{B}}(\sigma-\rho) \tag{16}
\end{equation*}
$$

where $R_{v_{A}} v_{B}(\imath)=\overline{v_{A}(t) v_{A}(t+\tau)}$, the crosscorrelation betwetn v_{A} and v_{B}. If one defines the cross-spectral density by
thin

$$
\begin{equation*}
G_{v_{A} V_{B}}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} R_{v_{A}} v_{B}(\tau) e^{-j \omega \tau} d \tau \tag{17}
\end{equation*}
$$

and Eq. (16) becomes

$$
\begin{equation*}
\bar{z}=\int_{-\infty}^{\infty} d u \cdot H_{A}^{*}(j \omega) H_{B}(j \omega) G_{v_{A} v_{B}}(\omega) \tag{19}
\end{equation*}
$$

The fluctuation of the iracker output is characterized by the variance $0_{z}{ }^{2}$. Postulating a low pass filter with the welghting function

$$
h(t)=\left\{\begin{array}{lc}
\frac{1}{T} & 0 \leq t \leq T \tag{20}\\
0 & t: T
\end{array}\right.
$$

and assuming T large compared with the correlation time of $y(t)$, one obtains ${ }^{1}$

$$
\begin{equation*}
\sigma_{z}^{2}=\frac{1}{T} \int_{-\infty}^{\infty}\left[R_{y}(\tau)-R_{y}(\infty)\right] d \tau \tag{21}
\end{equation*}
$$

$R_{y}(t)$, the autocorrulation of $y(t)$, is given by

$$
\begin{equation*}
R_{y}(\tau)=\overline{y(t) y(t+\tau)}=\overline{x_{A}(t) x_{A}(t+\tau) x_{B}(t) x_{B}(t+\tau)} \tag{22}
\end{equation*}
$$

[^3]Since $x_{A}(t)$ and $x_{B}(t)$ arc Guussian random processes, this fourfold average can be expressed in terms of corrulition functions.

$$
\begin{equation*}
R_{y}(\tau)=R_{x_{A} x_{B}}^{2}(0)+R_{x_{A}}(\tau) R_{x_{B}}(\tau)+R_{x_{A} x_{B}}(\tau) R_{X_{A} x_{B}}(-\tau) \tag{23}
\end{equation*}
$$

Recognizing that

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}_{\mathrm{A}} \mathrm{X}_{\mathrm{B}}}(0)=\mathrm{R}_{\mathrm{y}}(\infty) \tag{24}
\end{equation*}
$$

one ohtains from Eq. (21)

$$
\begin{equation*}
\sigma_{z}^{2}=\frac{1}{T} \int_{-\infty}^{\infty} d \tau R_{x_{A}}(\tau) R_{x_{B}}(\tau)+\frac{1}{T} \int_{-\infty}^{\infty} d \tau R_{x_{A} x_{B}}(\tau) R_{x_{A} x_{B}}(-\tau) \tag{25}
\end{equation*}
$$

Now invoking Parseval's theorem

$$
\begin{equation*}
\sigma_{z}^{2}=\frac{2 \pi}{T} \int_{-\infty}^{\infty} d \omega G_{x_{A}}(\omega) G_{x_{B}}(\omega)+\frac{2 \pi}{T} \int_{-\infty}^{\infty} d \omega\left|G_{x_{A} x_{B}}(\omega)\right|^{2} \tag{26}
\end{equation*}
$$

Finally, expressing the result in terms of the auto- and crosscorrelation functions of $v_{A}(t)$ and $v_{B}(t)$,

$$
\begin{equation*}
\sigma_{2}^{2}=\frac{2 \pi}{T} \int_{-\infty}^{\infty}\left\{\left\{\left.i H_{A}(j \omega)\right|^{2}\left|H_{B}(j \omega)\right|^{i} G_{v_{A}}(\omega) G_{v_{B}}(\omega)+\left[H_{A}^{*}(j \omega) H_{B}(j \omega)\right]^{2}\left[\left.G_{v_{A} v_{E}}(\omega)\right|^{2}\right\}\right.\right. \tag{27}
\end{equation*}
$$

Equations (19) and (27) are the fundamental relations describing the operation of the tracker. Note that they derend only on the spectral properties of the summer outputs. They will therefore hold equally well when the beam-forming system contains provisions for nulling on interference or for discriminating against an anisotropic noise. The effect of such
\qquad
${ }^{1}$ with a single subscript denntes the autocorrelation of the subscripted variable. A double subscript indicates the crosscorrelation between the two subscripted variables.
provisions on tracker performance 1 is completely described by their Influence on the spectral roperties of ($\left.v_{A}, v_{B}\right)$.

The simplest possible choice of $H_{A}(j \omega)$ and $H_{B}(j \omega)$, retaining only the feature essential for tracking, (the 90° relative phase shift) is

$$
\begin{align*}
& H_{A}(j \omega)=\frac{j \omega}{|\omega|} \tag{28}\\
& H_{B}(j \omega)=1 \tag{29}
\end{align*}
$$

It will shortly become apparent that changes in the filter functions can be treated as equivalent changes in the input spectra (see p. 15; : so that Eqs. (28) and (29) are no. restrictive in any important sense.

Using Eqs. (28) and (29), Eq (19) becomes

$$
\begin{equation*}
\bar{z}=2 \int_{0}^{\infty} \mathrm{d} \omega \backslash\left\{G_{v_{A} v_{B}}(w)\right\} \tag{30}
\end{equation*}
$$

while Eq. (27) reduces to

$$
\begin{equation*}
\sigma_{z}^{2}=\frac{2 \pi}{T} \int_{-\infty}^{\infty} \operatorname{din}^{\infty}\left[G_{v_{A}}(\omega) G_{v_{B}}(\omega)-\left\{G_{v_{A} v_{B}}(\omega)\right\}^{2}\right] \tag{31}
\end{equation*}
$$

Equations (30) and (31) will form the basis for most computations in this report.

B. Average Tracker Output

According to Eq. (30) the avarage tracker output depends only on the cross-spectral density of $v_{A}(t)$ and $y_{B}(t)$. This quantity is easily computed from the corresponding autocorrelation function. Using Eqs. (13) and (14) and assuming independence of the ambient noise from hydrophone to hydrophore (as well as the independence of signal, interference, and ambient noise from each other)
$1 J()$ stands for the imaginary part of the bracketed quantity.

$$
\begin{align*}
R_{v_{A} v_{B}}(\tau)= & E\left\{\left[\sum_{\ell=1}^{M} \sum_{k=1}^{M}\left\{s_{1}\left[t+(\ell-1)\left(t_{0}-t_{1}\right)\right]+1_{1}\left[t+(\ell-1)\left(\Delta-t_{1}\right)\right]+n_{\ell}\left[t-(\ell-1) t_{1}\right]\right\}\right.\right. \\
& \left.\left.\times\left\{s_{1}\left[t+\tau+(k \cdots M-1)\left(t_{0}-t_{1}\right)\right]+1_{1} \mid t+\tau+(k+M-1)\left(\Delta-t_{1}\right)\right]+n_{M+k}\left[t+\tau-(k+M-1) t_{1}\right]\right\}\right] \\
& =S \sum_{\ell=1}^{M} \sum_{i=1}^{M} F_{S}\left[T+(k-\ell+M)\left(t_{0}-t_{1}\right)\right]+I \sum_{\ell=1}^{M} \sum_{k=1}^{M}{ }_{I}\left[i+(k-\ell+M)\left(\Delta-t_{i}\right)\right] \tag{32}
\end{align*}
$$

$\rho_{S}(T)$ and $\rho_{I}(\tau)$ art the nomalized autacorrelation functions of signal and interference respectively. S is the average signal power and I the average interference power.
spplying Eq. (!7) to Eq. (32) one oivains

$$
\begin{equation*}
G_{v_{A} v_{B}}(\omega)=S \sum_{\ell=1}^{M} \sum_{k=1}^{M} \stackrel{S}{S}^{M}(\omega) e^{j \omega(k-\ell+M)\left(t_{0}-\ell\right)}+I \sum_{\ell=1}^{M} \sum_{k=1}^{M} g_{I}(\omega) e^{j \omega(k-\ell+M)\left(\Delta-t_{1}\right)} \tag{3i}
\end{equation*}
$$

$y_{S}(\omega)$ and $g_{\mathrm{I}}(\omega)$ are the normalized spectral densitics of sigial and interference respectively, i.e.

$$
\int_{-\infty}^{\infty} g_{\mathrm{S}}(\omega) d \omega=\int_{-\infty}^{\infty} g_{\mathrm{I}}(\omega) d \omega=1
$$

It is clear fron Eqs. (19) and (3j) that modification of $H_{A}(j \omega)$ and ${ }^{i i}{ }_{B}(j \omega)$ by the same factor $h(j \omega)$ is equivalent to modification of $g_{S}(\omega)$ and $g_{I}(\nu)$ by the factor $|\mathrm{H}(\mathrm{j} \omega)|^{2}$. is anticipated on p .14 one can therefore study the effect of filtering operations, such as prewhitening, simply by cunsidering appropriate nodifications in the input spectra. ${ }^{2}$
${ }^{1} \mathrm{E} \|$ designates the expectation of the bracketed quantity.
2_{6} similar statment holds concerning the effect of filters on the output fluctuation [see Eq. (31)].

Substitution of Eq. (J3) into Eq. (30) yiolds
 $\left.\bar{z}=2 \sum_{\ell=1}^{M} \sum_{k=1}^{M} \int_{0}^{\infty} d \omega \quad S \sum_{S}^{i}(\omega) \sin \left[\omega(k-\ell+M)\left(t_{0}-t_{1}\right)\right]+1 \xi_{I}(\omega) \sin \left[\omega(k-\ell+M)\left(L-t_{1}\right)\right]\right\}$

Equation (34) will now je evaluatiad for var ous signel and interference spectra.

1) White Spectra. Consider first the case of signal and interference spectra white (or prewhitened) over the entire processed frequency band.

Thun

$$
g_{S}(\omega)=g_{I}(\omega)=\left\{\begin{array}{cl}
\frac{1}{2 \omega_{0}} & |\omega|<\omega_{0} \tag{35}\\
0 & |\omega| \geq \omega_{0}
\end{array}\right.
$$

Equation (34) is now casily integrated, with the result
$\bar{z}=\sum_{l=1}^{M} \sum_{k=1}^{M}\left\{S \frac{1-\cos \left[(k-\ell+M) \omega_{0}\left(t_{0}-t_{1}\right)\right]}{(k-\ell+M) \omega_{0}\left(t_{0}-t_{1}\right)}+I \frac{1-\cos \left[(k-\ell+M) \omega_{0}\left(\Delta-t_{1}\right)\right]}{(k-\ell+M) \omega_{0}\left(\Lambda-t_{1}\right)}\right\}$ (36)

Since the indices k and ℓ occur only in the combination $k-\ell$, it is
cor -ent to introduce the notation

$$
\begin{equation*}
k-\ell=r \tag{37}
\end{equation*}
$$

Then Eq. (36) becornes

$$
\begin{equation*}
\bar{z}=\sum_{r=-(M-1)}^{M-1}\left\{S \frac{1-\cos \left[(r+M) \omega_{0}\left(t_{0}-t_{1}\right)\right]}{(r+M) \omega_{0}\left(t_{0}-t_{1}\right)}+I \frac{1-\cos \left[(r+M) \omega_{0}\left(\Delta-t_{1}\right)\right]}{(r+M) \omega_{0}\left(\Delta-t_{1}\right)}\right\}(M-|r|) \tag{38}
\end{equation*}
$$

Introducing :he notation

$$
\begin{equation*}
x_{1}=\omega_{0}\left(t_{0}-t_{1}\right) \quad \text { and } \quad y_{1}=u_{0}(1-t) \tag{38a}
\end{equation*}
$$

one can rewrite Eq. (38) in the form

$$
\begin{equation*}
\bar{z}=S \sum_{r=-(M-1)}^{M-1}\left\{\frac{1-\cos (r+M) x_{1}}{(r+M) x_{1}}+\frac{I}{S} \frac{1-\cos \left[(r+M)\left(x_{1}+y_{1}\right)\right]}{(r+M)\left(x_{1}+y_{1}\right)}\right\}(M-|r|) \tag{39}
\end{equation*}
$$

Here x_{1} is a measure of the array steering angle relative to the target bearing while y_{1} is a measure of the interference bearing relative to the target bearing. The relation of these two quantities to the actual target bearing θ_{0}, interference bearing θ_{I}, and steering angle θ is specified by the expressions

$$
\begin{align*}
& t_{0}=\frac{d}{c} \sin \theta_{0} \tag{40}\\
& \Delta=\frac{d}{c} \sin \theta_{I} \tag{41}\\
& t_{1}=\frac{d}{c} \sin \theta^{2} \tag{42}
\end{align*}
$$

Figure 3 shows Eq. (39), normalized with respect to S, plotted as a function of x_{1} for $\frac{I}{S}=5, M=20$ (40 element array), and $y_{1}=-5 .^{1}$ With a broadside target, $\omega_{0}=2 \pi \times 5000 \mathrm{rad} / \mathrm{sec}$, and 1 ft hydrophone spacing, $y_{1}=-5$ corresponds to an interference bearing of about 53° from the target. Figure 4 gives a similar curve for $y_{1}=-2$, corresponding to an interference bearing of about 19° under the same assumptions. Figures 5 and 6 give equivalent curves for $M=10$ (20 element array). In each case the plot exhibits generally the expected form (see Figure 1) near the target bearing. It shows a similar functional behavior, greater in amplitude, near the interference bearing. Perhaps the most striking feature of the curves is the offset in the axis crossing caused by an interference only 7 db above the signal level, even when the interference is relatively remote in angle from the target. If the tracker indicates a bearing corresponding to the zero of \bar{z}, then this effect can lead to appreciable systematic error in indicated bearing. With $M=10, y=-2$

[^4]

For:n I:E. b 2
DUNHAM LABORATORY YALE UNIVERSITY

Form EE- 12
DUNHAM LABORATORY, VALE UNIVERSITY

the zero occurs at $x_{1}=0.078$. With a broadside target, $\omega_{0}=2 \pi \times 5000$ rad/sec, and $d=1 \mathrm{ft}$, this is equivalent to ε systenatic error of 0.71°. Even with $M=20$ and $y=-5$ the systematic error is still about 0.06°. The importance of the problem clearly depends on the relative strength of target and interference. To exhibit this effect nore clearly, figure 7 shows the offset in the zero (systematic error) as a function of $\frac{I}{S}$ for $M=10$ and $M=20$ and various values of y_{1}. With the numerical values of ω_{0} and d used previously, the vertical scale can be converted to degrees of systematic error through multiplication by $\frac{57.3}{\omega_{0} \frac{d}{c} \cos \theta_{0}}=9.1$. The curves for $y_{1}=-1$ and $y_{1}=-2$ terminate within the range of the graph because larger values of $\frac{I}{S}$ cause the zero near the true target bearing to disappear entirely. An instrumentation attempting to track this zero would therefore fail.
2) Algebraic Spectra. The relatively large systematic errors introduced in the above calculations by rather remote sources of interference are due at least in part to the slow decay of Eq. (39) away from $x=0$. That effect, in turn, may be attributed to the sharp decay of $g_{S}(\omega)$ and $g_{I}(\omega)$ at ω_{0}. One suspects that gradually decaying spectral functions would produce core favorable results. More precisely, since the integrals in Eq. (34) are closely related to Fourier transforms of $\mathbf{g}_{\mathbf{S}}(\omega)$, less systematic error can be expected from spectra whose Fourier transforms (autocorrelation functions) decay rapidly away from the origin. An analytically convenient function with these general properties is

$$
\begin{equation*}
\varepsilon_{S}(\omega)=g_{I}(\omega)=\omega_{a}^{2} \frac{|\omega|}{\left(\omega^{2}+\omega_{a}^{2}\right)^{2}} \tag{43}
\end{equation*}
$$

[^5]

Substituting Eq. (43) into Eq. (34) one obtains

$$
\begin{align*}
\bar{z}= & 2 \omega_{a} \sum_{\ell=1}^{M} \sum_{k=1}^{M} \int_{0}^{\infty} d \omega-\frac{\omega}{\left(\omega^{2}+\omega_{a}^{2}\right)^{2}}\left\{s \sin \left[\omega(k-\ell+N)\left(t_{0}-t_{1}\right)\right]+I \sin \left[\omega(k-\ell+M)\left(\Delta-t_{1}\right)\right]\right\} \\
= & \frac{\pi}{2} \sum_{\ell=1}^{M} \sum_{k=1}^{M}\left\{S(k-\ell+M) \omega_{a}\left(t_{0}-t_{1}\right) e^{-\left|(k-\ell+M)\left(t_{0}-t_{1}\right) \omega_{a}\right|}\right. \\
& \left.+I(k-\ell+M) \omega_{a}\left(\Delta-t_{1}\right) e^{-\mid(k-\ell+M) \omega_{a}\left(\Delta-t_{1}\right)}\right\} \tag{44}
\end{align*}
$$

Now changing the index, as before,

$$
\begin{equation*}
\mathbf{k}-\ell=\mathbf{r} \tag{45}
\end{equation*}
$$

$$
\begin{align*}
& \bar{z}=\frac{\pi}{2} \sum_{r=-(M-1)}^{M-1}\left\{S(r+M) \omega_{a}\left(t_{0}-t_{1}\right) e^{-\left|(r+M)\left(t_{0}-t_{1}\right) \omega_{a}\right|}\right. \\
&\left.+I(r+M)\left(\Delta-t_{1}\right) \omega_{a} e^{-\left|\left(r+i i_{1}\right)\left(\Delta-t_{1}\right) \omega_{a}\right|}\right\}(M-|r|) \tag{46}
\end{align*}
$$

Finally, introducing the notation

$$
\begin{equation*}
x_{2}=\omega_{a}\left(t_{0}-t_{1}\right) \quad, \quad y_{2}=\omega_{a}\left(\Delta-t_{0}\right) \tag{47}
\end{equation*}
$$

one obtains
$\bar{z}=\frac{\pi}{2} \sum_{r=-(M-1)}^{M-1}\left\{S(r+M) x_{2} e^{-\left|(r+M) x_{2}\right|}+I(r+M)\left(x_{2}+y_{2}\right) e^{-\left|(r+M)\left(x_{2}+y_{2}\right)\right|}\right\}(M-|r|)$

Figures 8 and 9 present plots of $\overline{2}$ equivalent to Figures 3 and 6. In both cases the plots show a much smaller influence of the interference on the behavior of $\overline{\mathbf{z}}$ near the target bearing than was the case with white spectra. Some caution must be used in comparing the systematic errors directly,

Form EE- 12
DUNHAM LABORATORY. YALE UNIVERSITY
 -

-

because the physical meaning of ω_{a} is not exactly the same as that of ω_{0}. Since a substantial amount of the total power of the algebraic spectrum lies above ω_{a}, a fair comparison clearly demands that ω_{a} be chosen smaller than ω_{0}. One basis of comparison with a certain intuitive appeal is the following: Suppose that the spectrum is shaped primarily by the filters $H_{A}(j \omega)$ and $H_{B}(j \omega)$. Then it is reasonable to assume that the ambient noise has the same spectral form as the signal. We choose ω_{a} such that the detection index ${ }^{1}$ for both types of spectra is the same in the absence of interference. A straightforward computation yields $\omega_{a}=\frac{\pi}{8} \omega_{0}$.

Figure 10 presents information analogous to Figure 7, the systematic error for the case of algebrair spectra, plotted as a function of $\frac{1}{S}$ for various values of $y_{1}=\frac{8}{\pi} y_{2}$. Also shown for the sake of comparison are two of the curves from Figure 7 (white spectra). The vertical scale is the displacement of the zero measured in units of $x_{1}=\frac{8}{\pi} x_{2}$. Hence for $\omega_{0}=2 \pi \times 5000 \mathrm{rad} / \mathrm{sec}\left(\omega_{\mathrm{a}}=2 \pi \times 1960 \mathrm{rad} / \mathrm{sec}\right)$ and $\mathrm{d}=1 \mathrm{ft}$, the vertical scale must be multiplied by 9.1 to obtain systematic error in degrees (exactly as with Figure 7).
3) Exponential Spectra. Another analyticaily convenient spectral function, intermediate in its cutoff properties between those of Eqs. (35) and (43), is

$$
\begin{equation*}
g_{S}(\omega)=g_{I}(\omega)=\frac{1}{2 \omega_{b}} e^{-\frac{|\omega|}{\omega_{b}}} \tag{49}
\end{equation*}
$$

The resulting expression for $\overline{\mathbf{z}}$ is
$\bar{z}=\sum_{r=-(M-1)}^{M-1}\left\{s \frac{x_{3}}{1+(r+M)^{2} x_{3}{ }^{2}}+I \frac{\left(x_{3}+y_{3}\right)}{1+(r+M)^{2}\left(x_{3}+y_{3}\right)^{2}}\right\}(M-|r|)(M+r)$
$1_{\text {Report No. 3, Eq. (49). }}$

where

$$
\begin{equation*}
x_{3}=\omega_{b}\left(t_{0}-t_{1}\right) \quad \text { and } \quad y_{3}=\omega_{b}\left(\Delta-t_{0}\right) \tag{51}
\end{equation*}
$$

Figure 11 shows the systematic error plot corresponding to Figures 7 and 10. For proper comparison under a criterion requiring equal detection index in the absence of interference, one finds here that $\omega_{b}=\frac{\omega_{0}}{2}$. As expected, the systematic error is intermediate to that produced by the other two spectra. ${ }^{1}$
C. Output Fluctuations

According to Eq. (31) one requires the spectra $G_{\mathbf{v}_{A}}(\omega)$ and $G_{\mathbf{v}_{B}}(\omega)$ in addition to the already computed $G_{\mathbf{v}_{\mathbf{A}} \mathbf{v}_{B}}(\omega)$ [Eq. (33)]. Computing first the autocorrelation functions, one obtains from Eqs. (13) and (14)
$\mathbf{R}_{\mathbf{v}_{A}}(\tau)=\mathbf{R}_{\mathbf{v}_{B}}(\tau)=\overline{v_{A}(t){v_{A}}(t+\tau)}=\overline{v_{B}(t){v_{B}}^{(t+\tau)}}$
$=S \sum_{k=1}^{M} \sum_{\ell=1}^{M} \rho_{S}\left[\tau+(k-\ell)\left(t_{0}-t_{1}\right)\right]+I \sum_{k=1}^{M} \sum_{\ell=1}^{M} \rho_{I}\left[\tau+(k-\ell)\left(\Delta-t_{1}\right)\right]+M N \rho_{N}(\tau)$
$\rho_{N}(\tau)$ is the normalized autocorrelation of the ambient noise and N is the average ambient noise power.

Fourier transforming to obtain a corresponding expression in terms of spectral functions,
$G_{v_{A}}(\omega)=G_{v_{B}}(\omega)=S \sum_{k=1}^{M} \sum_{l=1}^{M} g_{S}(\omega) e^{j(k-\ell)\left(t_{0}-t_{1}\right) \omega}$

$$
\begin{equation*}
+I \sum_{k=1}^{M} \sum_{\ell=1}^{M} g_{I}(\omega) e^{j(k-\ell)\left(\Delta-t_{1}\right) \omega}+M N g_{N}(\omega) \tag{53}
\end{equation*}
$$

Inserting Eqs. (33) and (53) into Eq. (31) and using the index

$$
\begin{equation*}
\mathbf{r}=\mathbf{k}-\ell \tag{54}
\end{equation*}
$$

[^6]
one obtains

In the cases of primary interest here the signal power is much smaller than the interference power. (S may or may not be small (compared with M.) In that wase the signal contribution to the output variance is negligiole and Eq. (55) reduces to

$$
z_{z}^{2}=\frac{2 \pi}{T} \int_{-a}^{u} d I^{2} \sum_{r=-(M-1)}^{M-1} \sum_{4=-(M-1)}^{M-1} g_{T}^{2}(w)\left|e^{j u(1+q)\left(1 t_{1}\right)} j u(r+q 12 M)\left(A-t_{1}\right)\right|(M-1 R)(M \cdot d q)
$$

$$
\begin{equation*}
\left.+2 M . i \sum_{r=0-(i 1-1)}^{!i-1} g_{1}(\omega) r_{N}(N) e^{j u r\left(\Delta-L_{1}\right)}, M-|r|\right)+M^{2} N^{2} \varepsilon_{N}^{2}(u) \tag{56}
\end{equation*}
$$

Equation (56) must now be evaluated for the various spectra considered previously.

1) White Spectra. Consider first the spectral functions

$$
g_{I}(\omega)=g_{N}(\omega)=\left\{\begin{array}{cl}
\frac{1}{2 \omega_{0}} & |\omega| \cdot \omega_{0} \tag{57}\\
0 & \mid \omega i \geq \omega_{0}
\end{array}\right.
$$

$$
\begin{aligned}
& z_{z}^{2}=\frac{2 \pi}{T} \int_{-\infty}^{\infty} d \omega\left\{\left[\sum_{r=-(M-1)}^{M-1} g_{S}(\omega) e^{j r\left(t_{0}-t_{1}\right) \omega}(M-|r|)\right.\right. \\
& \left.+I \sum_{r=-(N-j)}^{M-1} g_{I}(\omega) e^{j r\left(\Delta-t_{1}\right) \omega 1}(M-|r|)+M N g_{N}(\omega)\right]^{2}
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\sigma_{z}^{2}=-\frac{2 \pi}{4 \omega_{0}^{2} T} \int_{-\omega_{0}}^{\omega_{0}} d \omega_{r=-(M-1)}^{2} \sum_{q=-(M-1)}^{M-1} \sum_{e^{j}}^{j \omega(r+q)\left(\Delta-t_{1}\right)}+j \omega^{\prime} r+q+2 M\right)\left(0-t_{1}\right)\right](M-|r|)(M-\mid q) \\
& \left.\left.+2 M N I \sum_{r=-(M-1)}^{M-1} e^{j \ln (\Delta-t} 1\right)(M-|r|)+M^{2} N^{2}\right\} \\
& =\frac{\pi}{\mu_{0} T}\left\{I^{2} \sum_{r=-(M-1)}^{M-1} \sum_{q=-(M-1)}^{M-1} \frac{\sin \left[(r+q)\left(\Delta-t_{1}\right) \omega_{0}\right]}{(r+q)\left(\Delta-t_{1}\right) \omega_{0}}-\frac{\left.\sin \left[(r+q+2 M) i \Delta-t_{1}\right) \omega_{0}\right]}{(r+q+2 M)\left(\Delta-t_{1}\right) \omega_{0}}(M-|r|)\left(M-\mid q l_{0}^{1}\right)\right. \\
& \left.+2 M N I \sum_{r=-(M-1)}^{M-1} \frac{\sin \left\lfloor r\left(\Delta-t_{1}\right) \omega_{0}\right\rfloor}{I\left(\Delta-t_{1}\right) \omega_{0}}(M-|r|)+M^{2} N^{2}\right\} \tag{58}
\end{align*}
$$

With the change of indtces $r^{\prime}=r+M, q^{\prime}=q+M$, Eq. (58) becomes (the primes have been omitted for simplicity of notation):

$$
(11-|r-M|)(M-|q-!|)
$$

$$
\begin{align*}
& c_{z}^{2}=\frac{\pi I^{2}}{\omega_{0}} \sum_{0}^{2 Y-1} \sum_{r=1}^{2 M-1}\left\|\frac{\sin \left[(r+q-2 M)\left(x_{1}+y_{1}\right)\right]}{(r+q-2 M)\left(x_{1}+y_{1}\right)}-\frac{\sin \left((r+i)\left(x_{1}+y_{1} ;\right]\right.}{\left(r+_{4}\right)\left(x_{1}+y_{1}\right)}\right\| / \\
& \left.+2 M \frac{N}{I}\left[\because+2 \sum_{r=1}^{M-1} \frac{\sin r\left(x_{1}+y_{1}\right)}{r\left(x_{1}+y_{1}\right)}(M-r)\right]+m^{2} \frac{N^{2}}{I^{2}}\right\} \tag{59}
\end{align*}
$$

The symbols x_{1} and y_{1} are defined in Fq. (38a). $x_{1}+y_{1}=\left(\Delta-t_{1}\right) \omega_{0}$ is clearly a measure of steering angl. relative to the interference bearing. Figure 12 shows a normalized version of σ_{z}, the square rnct of Eq. (59), plotted as a function of $x_{1}+y_{1}$ for $M=10,20$ and several values of $\frac{N}{1}$. Dependence on the latter parameter is small, as one would expect in an interference-
促
dominated environment. If the tracker is to function properly, σ_{2} must certainly be small comparcd with the peak value of \bar{z} ncar the target bcaring. According to Figures 3 and 5 horizontal excursions must therefore be confined to a range small compared with 0.1 and 0.2 for $M=20$ and 10 respectively. Over such a range Figure 12 exhibits changes equal to no more than a small fraction of the value of σ_{z} at any point within the range. Thus the approximation leading to Eq. (9) is amply justified. ${ }^{1}$

For remote interference Eq. (59) reduces to

$$
\begin{equation*}
\sigma_{z}^{2}=\frac{2}{3} \frac{\pi}{T \omega_{0}} I^{2}\left\{M\left(2 M^{2}+1\right)+3 \frac{N}{I} M^{2}+\frac{3}{2}\left(\left.\frac{N}{I}\right|^{2} M^{2}\right\}\right. \tag{60}
\end{equation*}
$$

If $M \gg 1$ one can therefore write approximately

$$
\sigma_{2}^{2} \simeq \begin{cases}\frac{4}{3} \frac{\pi}{T \omega_{0}} M^{3} I^{2} & \text { for } \tag{61}\\ \frac{N}{I} \ll \sqrt{\frac{4}{3} M} \\ \frac{\pi}{T \omega_{0}} M^{2} N^{2} & \text { for } \\ \frac{N}{I} \gg \sqrt{\frac{4}{3} M}\end{cases}
$$

Much as in the case of detection one finds the fluctuation power varying with M^{3} in an interference-dominated environment and with M^{2} in an ambient-noise-dominated environment. The dividing line between the two, again as in the case of detection, depends on $\sqrt{M}, s \quad t$ even a relatively weak interference can dominate the output fluctuation if the array is sufficiently large.
2) Algebraic Spectra. Next consider again the algebraic spectra

$$
\begin{equation*}
g_{I}(\omega)=g_{N}(\omega)=\omega_{a}^{2} \frac{|\omega|}{\left(\omega^{2}+\omega_{a}^{2}\right)^{2}} \tag{62}
\end{equation*}
$$

[^7]Substitution into Eq . (56) yields, after the usual algebraic
simplifications.

$$
\begin{align*}
& a_{z}^{2}=\frac{\pi^{2} I^{2}}{8 T} \int_{a}^{2 i n-1} \sum_{r=1}^{2 M-1}\left[\sum_{q=1}^{-\left|(r+q-2 H)\left(x_{2}+y_{2}\right)\right|}\left[1+\left|(r+q-2 M)\left(x_{2}+y_{2}\right)\right|-\frac{1}{3}\left|(r+q-2 M)\left(x_{2}+y_{2}\right)\right|^{3}\right]\right. \\
& \left.-e^{-\left|\left(r+r_{1}\right)\left(x_{2}+y_{2}\right)\right|}\left[1+\left|(r+q)\left(x_{2}+y_{2}\right)\right|-\frac{1}{3}\left|(r+q)\left(x_{2}+y_{2}\right)\right|^{3}\right]\right](M-|r-M|)(M-|q-r|) \\
& +Z M \frac{n}{1} \|\left\{\int_{1}+2 \sum_{r=1}^{M-1} e^{-r\left|x_{2}+y_{2}\right|}\left[1+\left|r\left(x_{2}+y_{2}\right)\right|-\frac{1}{3}\left|r\left(x_{2}+y_{2}\right)\right|^{3}\right](M-r) \|+M^{2} \frac{N^{2}}{1^{2}}\right. \tag{63}
\end{align*}
$$

For $\left|x_{2}+y_{2}\right| \gg 1$ (steering angle remote from interference) and $\omega_{a}=\frac{\pi}{8} \omega_{0} \mathrm{Eq}$. (63) becomes identical with Eq. (60).

Plot: of Eq. (63) for several values of N and $\frac{N}{I}$ are shown in Flqure 13. Liere, as in Figure 12, the approximation leading to Eq. (9) is c'early satisfied.
D. Kandom Bearing Error

According to iq. (9) the random component of bearing error ir

$$
\begin{equation*}
\frac{{ }_{0}}{\left|\frac{o z}{\partial 0}\right|} \tag{14}
\end{equation*}
$$

evaluated at the target bearing. Only the slope of the average response curve (the sensitivjty) remains to be calculated. For white spectra one obtains from Eq. (39)
$\left.\frac{\frac{\partial}{z}}{\partial c_{1}}\right|_{0}=\left.\frac{\partial \bar{z}}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial \hat{z}}\right|_{0}=$

Form I:E-12
DUNHAM LABORATORY, YALE UNIVERSITY

| |
| :--- | :--- | :--- | :--- |

A similar computation for the case of algebraic spectra yields

$$
\begin{align*}
& \left.\frac{\partial \bar{z}}{\partial \theta}\right|_{0}=\left.\frac{\partial \bar{z}}{\partial x_{2}} \frac{\partial x_{2}}{\partial \theta}\right|_{0}= \\
& \left.\pi S \omega_{a} \frac{d}{c} \cos \theta_{0} \int_{r=-(M-1)}^{1} \frac{1}{2} M^{3}+\frac{1}{2 S} \sum_{r-1}^{i-1}\left[1-(M+r)\left|y_{2}\right|\right]^{-(M+r)\left|y_{2}\right|}(M-|r|)(M+r)\right\} \tag{66}
\end{align*}
$$

For remote interfeience and $\omega_{a}=\frac{\pi}{8} \omega_{0}$, Lqs. (65) and (66) are related by

$$
\begin{equation*}
\left.\frac{\partial \bar{z}}{\partial \theta}\right|_{\text {algeb. }}=\left.\frac{\pi^{2}}{8} \frac{\partial \bar{z}}{\partial \theta}\right|_{\text {white }} \tag{67}
\end{equation*}
$$

Normaized plots of Eqs. (6.5) and (66) for various values of M and $\frac{1}{S}$ are shown in fisures 14 and 15 respectively. In cach case, but particularly for the algebraic spectrum, the sersftivity quickly approaches its asymptetic value once the separation of interfurence and target exceeds the basic beamwidth of the array.

Normalized plots of random bearing error [Eq. (64)] are shown ia Figutes 16 and 17 . S. nce the ralues of $\frac{N}{I}$ all correspond to an interferencedominates urvironment, the dependence on this parameter is guite weak. ${ }^{1}$ Since S / l appears on' fin the expression for sensitivity it is clear from Figures 14 and 15 that this parameter has little influence on the random bearing ervor exrept for interferences withir a beam width of the target in which cast. Jiscussion of the fluctuntion error hecomes an academite matter because the postulated tracker can no longer distinguish betveen target and interference. Conversion of the varticai scale of figure lo into deprees of rms urror 1.: accomplished through multiplication by

$$
\begin{equation*}
57.3 \cdot \sqrt{T u_{0}} \frac{I}{S}-\frac{1}{\frac{d}{c} \cos } \tag{6,8}
\end{equation*}
$$

[^8]

Form EE- 12

Form EE－12
 ＂\％

\％	\square							30	Ve			40n					tolc		0								：
	＋					：－1																					
08	\％																										
	1－					H：	，	－ 4	den	17：		4 E	\％	5		OH：	Trat		tra：		：						
－	每事茹	：	！	－		：			W＋										，								
\＃	de：		：	：		\＃																					\＃
			\＃			：	－	\％	H．	－		，				，											\＃
Qit	\＃																										
	： 1															－	0										
同戌：	：${ }^{1}$		H			茷：	\＃		－7																		＋
H：	：	H	T－												，		210		－						，		
			$=$																								
		二	：\＃	H		：	：$:$ ：	：	\cdots		：	－				：			\＃					＋			
N：		浿	＋			W：1																	菲				
㳥	\＃		－				H＋	7－																			
	－		－	－	＋	－	：	－	－			－													－		
：H：			T				\％	T－	7	－																	
	\＃\＃：							7－7																			
$0 \cdot 2$			：	－		＋	\％	－	，	＋	．											W					
Q	：		：	＋	．		\％		：	t．：	＋					＋									：		
He	ETit						：	：	\％																－	$1+$	
							H－：																				
	：1		－	：		：		！	．	\％		＋				＋：						园			等		
0th：			㳖	\％	\％		\％	\％			：																
				：																							

		．																							
OQP																									
						\％：		\＃	\＃	－	：1／														
																			L						
\％er																									
	：			\％	：	＋	－	－			－				－										
\＃					$\mathrm{X} \times$				H：	H．	\＃\＃			\#	H		T	15		O1		＋	＋	0	
朗	T正	＋			－	＋	＋																		
						＋1：	12．													－					
\％		－	（1）			\＃＋1			T	T	1：								\＃	：					
0.07		\＃				－	＋																		
	1					\％				7：										\＃：					
菏：	：	\％${ }^{\text {a }}$				＋17	\＃		＋											－					
		－			\bigcirc	：					7									7					
：		（：									\cdots		浯		－		S			？		1			
902						$\underline{4}$																			
											－									4	＋1			H：	
						1－4：	－	\％																万：	
						T：																			
																					：				
\％								\％					＋	菑	＋	＋									
＋																									

Of considerable practicai importance is the question whether the random component of error curranty under discussion is larger or smallur than the systecatic error investignted in Scetion II.B. In order to zooid tadluss coniperison of a large nunber of anses, the following approximate analysis Is c:rricd out:

If the tracker js to function properly the shift in the null (systematic error) should be confined to a rogion sufficicntly close to the irus bearing su that th. average benring rusponse pittern (Figure l) may be regarded as linear wer the reginn in questyon. In that casc cat can waite

$$
\begin{equation*}
\text { Systuratic erxar (in radians) }=\frac{\bar{z}_{0}}{\left.\frac{\partial \bar{z}}{\partial \epsilon}\right|_{0}} \tag{69}
\end{equation*}
$$

where \bar{z}_{0} is the on-target valide of the average bearing response. Hence from Eqs. (64) and (69)

$$
\begin{equation*}
\frac{\text { systumatic urror }}{\text { rms randon error }}=\frac{\bar{z} 0}{z_{0}} \tag{70}
\end{equation*}
$$

\bar{z}_{0} is obtaincd by scting $x_{1}=0$ in Eq. (39) and $x_{2}=0$ in Eq. (4\%, Stmilarly Yquitous (5n) and (63) yiuld ${ }_{z}$. Figures 12 and 19 show normalized plots of Eq. (70) on a logarithmic scale for white and afabraic spectra respectively. An interference-dominated environerat is assumed, so that deperdence of the noise level on N may be ignored. Except for the neighorhond of $y_{1}=2 \pi$ the curves for white spectre (eigure 18) are essentially straight lines with a slope of $\left(-\frac{1}{2}\right)$, once the interference is separated from the targit b: mor than the width of the bear. pattern. This behavior has important practical implications. The abscissa y is related to target and interference bearing through the equation

Lats is cluarly equivalent :o the approximation of Equation (9).
${ }^{2}$ Lach of the curves exhibits a sharp downward excursion near $y_{1}=2 \pi$. To avoid confusion on che graph this has been shown only for $M=5$

$$
\begin{equation*}
y_{1}=\omega_{c}\left(\Delta-t_{0}\right)=\omega_{0} \frac{d}{c}\left(\sin \theta_{I}-\sin \theta_{T}\right) \tag{71}
\end{equation*}
$$

The error ratio [eq. (70)] is related to the normalized R plotted in Figure 18 through

$$
\begin{equation*}
\frac{\text { sysecmalic error }}{\operatorname{ras} \text { random } \frac{\mathrm{T}_{0}}{\pi}}=\sqrt{\frac{T}{\pi}} \tag{72}
\end{equation*}
$$

If $\omega_{0}^{\prime}=K \omega_{0}$, the corresponding $y_{1}^{\prime} i s K y_{1}$. Because of the $\left(-\frac{1}{2}\right)$ slope this results in $R^{\prime}=K^{-1 / 2} R$. Hence

$$
\begin{equation*}
\frac{\sqrt{T \omega_{0}^{\prime}}}{\sqrt{\pi}} R^{\prime}=\frac{\sqrt{T \omega_{0}}}{\sqrt{\pi}} R \tag{73}
\end{equation*}
$$

so that the error ratio remainc unchanged. In other words, the error ratio is independent of the cutoff frequency ω_{0} as long as y_{1} lies on the linear
portion of the curves. Furthermore, note that the horizontal spacing between curves is essentially constant at a value corresponding to a factor of 2 . An increase in the number of hydrophones decreases the error ratio if all other parameters remein fixed. This implies that the total array iength increases linearly with M. In practice, it may be more realistic lo consider the array length fixed and to vary the hydrophone neing d inversely with M . Assuming that phone-to-phone independence of the ambient noise is maintained during these changes one finds that to double M implies cutting y_{1} in helf. Hence the error ratio is unaffected by the change. One concludes that for flxed overall array length the cror ratio is Independent of the number of hydrophones as long as y_{1} lies on the linear portion of the curves.

The next question is elearly whether y_{1} does or does not lie on the linear portion of the curves in situations of practical interest. One need rot be greatly concerned with the nonlineerity for small y_{1}, for one
would hardly expect to operate the system with interferences separated from the target by less than a beam width. To obtain an upper bound on y_{1} consider $d=1, \omega_{0}=2 \pi \times 5000 \mathrm{rad} / \mathrm{sec}$. With a broadside target $\left(\theta_{T}=0\right)$ Eq. (71) yields a maximum y_{1} of 2π. Thus all but a small range of interference bearings near endfire produces values of y_{1} within the linear portion of Figure 18.

It is now possible to determine the value of the error ratio in the lincar region, shich is independent of all parameters except overall array length, smoothing time, and bearing angles.

$$
\begin{equation*}
\frac{\text { systematic error }}{\text { rms random error }}=53 \sqrt{\frac{T}{L}} \frac{1}{\left|\sin \theta_{I}-\sin \theta_{0}\right|^{\frac{1}{2}}} \tag{74}
\end{equation*}
$$

where L is the array length in feet. For smoothing times of the order of seconds and moderate array length this ratio is clearly larger than unity.

The error ratio curves for algebraic spectra [Figure (19)] do not exhibit all of the invariance properties present in the white noise case. Confining attention to the region $y_{2} \leq 2$ (corresponding to $y_{1}=\frac{16}{\pi}$) one still finds a horizontal spacing roughly proportional to M and hence approximate invariance of the error ratio relative to M (for fixed array length). However, the slope of the curves below $y_{2}=2$ exceeds $\frac{1}{2}$. The reasoning of Equations (71) - (73) therefore leads to the conclusion that the error ratio is a monotone decreasing function of ω_{a}. The conversion from the normalized R plotted in Figure 19 to actual error ratio is accomplished through the relation:

$$
\begin{equation*}
\frac{\text { systematic error }}{\text { rms random error }}=\frac{2 \sqrt{2}}{\pi} \sqrt{\text { T } \omega_{a}} R \tag{75}
\end{equation*}
$$

With a 40 ft . array, 1 ft . hydrophone spacing, and $\omega_{a}=10,000 \mathrm{rad} / \mathrm{sec}$
this leads to

$$
\begin{equation*}
\frac{\text { systematic }}{\text { ris randor }} \geq 4 \sqrt{\mathrm{~T}} \text {, for } y_{2} \leq 2 \tag{76}
\end{equation*}
$$

Thus the error ratio is still in excess of unity for most reasonablc smoothing times. Only with larger arrays or wider bandwidth is the random error likely to become dominant.

111. Nulling Trackers

A. General Relations

Figure 20 shows one possible implementation of a split beam tracker with provisions for nulling a plane wave interference. The block diagram

Figure 20
refresents a split beam version of the simples: configuration analysed in Report No. 21 (Oe Ficure 1 of that reporl). The delays ${ }^{\top}{ }_{\mathrm{I}}$ are adjusted In accordarce with the inte:ference delay from hydrophone to hydrophone,
so that the subsequent subtractions achieve in principle complete elimination of the interfarencr. The delays δ_{1} align the remaining signal components. From this poict on the instrumentation is identical with that of the conventional tracker (Figure 2). Thus, as pointed out picviously, Fquations (39) and (27) (or, with the previous assumptions concerning H_{A} and H_{B}, Equation's (30) and (31) remain valid. The spectral functions $\mathrm{G}_{\mathrm{V}}(\omega), \mathrm{G}_{\mathrm{V}_{\mathrm{B}}}(\omega)$ aid $G_{V_{A}^{v}}\left({ }_{\mathrm{B}}\right)$ must now be computed.

From Report No. 21, Equation (27):
$v_{\Lambda}(t)=\sum_{k=1}^{M-1}\left\{s_{1}\left[t+k\left(t_{0}-t_{1}\right)\right\}-s_{1}\left\{t+k\left(t_{0}-t_{1}\right)-\left(t_{0}-\Delta\right) ;+n_{k+1}\left(t-k \hat{L}_{1}\right)-n_{k}\left(t-k t_{1}+\Delta\right)\right\}\right.$
$\operatorname{and} v_{B}(t)=\sum_{k=1}^{M-1}\left\{s_{1}\left[t+(k+m)\left(t_{0}-t_{1}\right)\right]-g_{1}\left[t+(k+m)\left(t_{0}-t_{1}\right)-\left(t_{0}+\Delta\right)\right\}\right.$
$+n_{m+k+1}\left\{t-(m+k) t_{1} \mid-n_{m+k}\left(t-(m+k) t_{1}+\Delta\right]\right\}$

It follows that

$$
\begin{align*}
& R_{V_{A}} i \tau j=R_{V_{B}}(\tau)=S \sum_{k=1}^{M-1} \sum_{\lambda=1}^{M-1}\left\{2 \rho_{S}\left[\tau+(k-\hat{\ell})\left(t-t_{1}\right)\right]-\rho_{s}\left[\tau+(k-\ell)\left(t_{0}-t_{1}\right)+\left(t_{0}-Q\right)\right]\right. \\
& \left.-\rho_{4}\left[t+(k-l)\left(t_{0}-t_{1}\right)-\left(t_{0}-t\right)\right]\right\} \\
& +N\left\{2(M-1) \rho_{N}(T)-(H-2) \rho_{N}\left[\tau+\left(t_{1}-\Delta\right)\right]-(M-2) \rho_{N}\left[T-\left(t_{1}-\Delta\right)\right]\right\} \tag{79}
\end{align*}
$$

Fourier transforming:

$$
\begin{align*}
& G_{V_{A}}(\omega)=G_{v_{B}}(\omega)=S g_{S}(\omega) \sum_{k-1}^{M-1} \sum_{\ell=1}^{M-1}\left\{2 e^{j \omega(k-\ell)\left(t_{0}-t_{1}\right)}-e^{j \omega\left[(k-\ell)\left(t_{0}-t_{1}\right)+\left(t_{0}-\Delta\right)\right]}-e^{\left.j \omega(k-\ell)\left(t_{0}-t_{1}\right)-\left(t_{0}-\Delta\right)\right]}\right. \\
& \quad+N g_{N}(\omega)\left\{2(\therefore i-1)-(\therefore-2) e^{j \omega\left(t_{1}-\Delta\right)}-(M-2) e^{-j \omega\left(L_{1}-\Delta\right)}\right\}
\end{align*}
$$

$$
\begin{align*}
& \text { Furthermore, } \\
& \left.R_{v_{A} v_{B}}(\tau)=S \sum_{k=1}^{M-1} \sum_{\ell=1}^{M-1}\right)^{-2} 2 \rho_{S}\left[\tau+(M+k-\ell)\left(t_{0}-t_{1}\right)\right] \\
& \left.-\rho_{s}\left[\tau+(M+k-\ell)\left(t_{0}-t_{1}\right)+\left(t_{0}-\Delta\right)\right]-\rho_{s}\left[\tau+(M+k-\ell)\left(t_{0}-t_{1}\right)-\left(t_{0}-\Delta\right)\right]\right\} \tag{81}
\end{align*}
$$

Hence
$G_{v_{A} v_{B}}(\omega)=S g_{s}(\omega) \sum_{k=1}^{i=1} \sum_{\ell=1}^{M-1}\left\{2 e^{j \omega(M+k-\ell)\left(t_{0}-t_{1}\right)}-e^{j \omega\left[(M+k-\ell)\left(t_{0}-t_{1}\right)+\left(t_{0}-\Delta\right)\right]}\right.$

$$
\begin{equation*}
\left.-e^{j \omega\left[(M+k-\ell)\left(t_{0}-t_{1}\right)-\left(t_{0}-\Delta\right)\right]}\right\} \tag{82}
\end{equation*}
$$

As in the case of the conventional tracker, it is clear from Equations (19), (27), (80) and (82) that multiplication of $H_{A}(j \omega)$ and $H_{B}(j \omega)$ by $E(j \omega)$ is entirely equivalent to multiplication of $g_{S}(\omega)$ and $g_{N}(\omega)$ by $|H(j \omega)|^{2}$.

Substituting Equation (82) into Equation (30) one obtains the expression for the average tracker output

$$
\begin{align*}
& \bar{z}=2 S \sum_{k=1}^{M-1} \sum_{l=1}^{M-1} \int_{0}^{\infty} d_{\omega} \omega g_{s}(\omega)\left\{_{2} \sin \omega(M+k-\ell)\left(t_{0}-t_{1}\right)\right. \\
& \left.-\sin \omega\left[(M+k-2)\left(t_{0}-t_{1}\right)+\left(t_{0}-\Delta\right)\right]-\sin \omega\left[(M+k-l)\left(t_{0}-t_{1}\right)-\left(t_{0}-\Delta\right)\right]\right\} \tag{83}
\end{align*}
$$

with the change of index $k-\ell=r$ this becomes

$$
\bar{z}=2 S \sum_{r=-(M-2)}^{M-2} \int_{0}^{\infty} d \omega g_{s}(\omega)\left\{2 \sin \left[\omega(r+M)\left(t_{0}-t_{1}\right)\right]\right.
$$

$\left.-\sin \omega\left[(x+M)\left(t_{0}-t_{1}\right)+\left(t_{0}-\Delta\right)\right]-\sin \omega\left[(r+M)\left(t_{0}-t_{1}\right)-\left(t_{0}-\Delta\right)\right]\right\}(M-1-|r|)$

The corresponding expression for the output variance is obtained formally by substituting Equations (80) and (82) into Equa:ion (31). However, in the cases of primary interest here the signal power will be small compared with the ambient noise so that one can ignore the signal contribution to
the output fluctuation. ${ }^{1}$ Then the variance of z becomes

$$
\begin{array}{r}
\sigma_{z}^{2}=\frac{2 \pi N^{2}}{T} \int_{-\infty}^{\infty} d \omega q_{\Sigma}^{2}(\omega)\left\{2(M-1)-(M-2) e^{j \omega\left(t_{1}-\Delta\right)}\right. \tag{85}\\
\left.-(M-2) i^{-j \omega\left(t_{1}-\Delta\right)}\right\}^{2}
\end{array}
$$

Equations (84) and (85) must now be evaluated for the various spuctral functions under study.
B. Average Tracker Output

Consider first the white spectrum specified by Equation (35). Integration of Equation (84) ylelds afeer some algeirafc simpiffication

x_{1} and y_{1} are defined in Equation (38a).
The equivalent expression for the algebraic spectrum Equation (43) 15

$$
\begin{align*}
\bar{z}=\frac{\pi}{2} S & \stackrel{M-2}{M}=-(M-2)
\end{align*}\left\{2(M+r) x_{2} e^{-\left|(M+r) x_{2}\right|}-\left|(M+r) x_{2}-y_{2}\right| e^{-\left|(M+r) x_{2}-y_{2}\right|}\right\}
$$

x_{2} and y_{2} are defined in Equation (47).
Plots of Equations (86) and (87) for selected parameter values are given ir Figures (21) and (22) respectively. Only the neighoorhood of the target is shown, bccause the average output elsewhere is too small L. 1 te significant on the scales of the two graplis. The most important

[^9]

aspect of the curves is the complete absence of any offset in the null (systematic error), a conclusion also apparent from the equations upon secting $x_{1}=0$ in (86) and $x_{2}=0$ in (87). In comparing Figures (21) and (22) one must, of course, keep in mind that $y_{2}=\left(\frac{\pi}{8}\right) y_{1}$ for equal detection index, so that $y_{2}=-2$ corresponds very nearly to $y_{1}=-5$.

C. Output Fluctuations

Substitution of the white noise spectrum $[$ Equation (57)] into Equation (85) yields after algebraic simplification

$$
\begin{align*}
\sigma_{z}^{2}=\frac{4 \pi N^{2}}{T \omega_{0}}\left\{(M-1)^{2}+\frac{1}{2}(M-2)^{2}\right. & -2(M-1)(M-2) \frac{\sin \left(x_{1}+y_{1}\right)}{\left(x_{1}+y_{1}\right)} \\
& \left.+\frac{1}{2}^{2}(M-2)^{2} \frac{\sin 2\left(x_{1}+y_{1}\right)}{2\left(x_{1}+y_{1}\right)}\right\} \tag{88}
\end{align*}
$$

The equivalent expression for the algebraic spectrum is

$$
\begin{align*}
\sigma_{z}^{2}=\frac{\pi^{2} N^{2}}{2 T \omega_{a}}\left\{(M-1)^{2}+\frac{1}{2}(M-2)^{2}-2(M-1)\right. & (M-2) e^{-\left|x_{2}+y_{2}\right|} \\
& {\left[1+\left|x_{2}+y_{2}\right|-\frac{1}{3}\left|x_{2}+y_{2}\right|^{3}\right] }
\end{aligned}+\frac{1, \frac{1}{2}(M-2)^{2} e^{-2\left|x_{2}+y_{2}\right|}\left[1+2\left|x_{2}+y_{2}\right|\right.}{} \begin{aligned}
& \left.\left.-\frac{8}{3}\left|x_{2}+y_{2}\right|^{3}\right]\right\}
\end{align*}
$$

Figures (23) and (24) show the standard deviation σ_{Z} plotted in normalized form as a function of $\left(x_{1}+y_{1}\right)$ and $\left(x_{2}+y_{2}\right)$ respectively. $\left(x_{1}+y_{1}\right)$ and $\left(x_{2}+y_{2}\right)$ are, of course, measures of steering angle relative to the interference bearing.

D. Random Bearing Error

The sensitivity of the tracker is obtained by differentiating Equations (86) and (87) with respect to θ and evaluating the derivatives at the target bearing. The result is;

Form FEE- 12 dunham laboratory, yale university

For the white spectrum

$$
\begin{equation*}
\left.\frac{\partial_{z}}{\partial_{0}}\right|_{0}=\omega_{0} S \frac{d}{c} \cos \theta_{0}\left[1-2 \frac{\sin y_{1}}{y_{1}}+2 \frac{1-\cos y_{1}}{y_{1}^{2}}\right] M(M-1)^{2} \tag{90}
\end{equation*}
$$

For the algebraic spectrum

$$
\begin{equation*}
\left.\frac{\partial z}{\partial_{\theta}}\right|_{0}=\pi \omega_{a} S \frac{d}{c} \cos \theta_{0}\left[1-\left(1-\left|y_{2}\right|\right) e^{-\left|y_{2}\right|}\right] M(M-1)^{2} \tag{91}
\end{equation*}
$$

For remote interference and $\omega_{a}=(\pi / 8) \omega_{0}$ (the basis of comparison used before) Equations (90) and (91) are related by

$$
\begin{equation*}
\left.\frac{\partial \bar{z}}{\partial}\right|_{\theta \theta}=\left.\left.\frac{\pi}{8} \frac{\partial-}{\partial}\right|_{\text {algeb } .}\right|_{\text {white }} \tag{92}
\end{equation*}
$$

exactly as in the case of the conventional tracker. For bearings remote from the interference and $\omega_{a}=(\pi / 8) \omega_{0}, \sigma_{z}$ approaches the same value for both types of spectra [see Equations (88) and (89)]. Hence the asymptotic ratio of fluctuation errors is

$$
\begin{equation*}
\frac{\text { rms error with algebraic spectrum }}{\text { rms error with white spectrum }}=\frac{8}{\pi^{2}} \text { for remote interference } \tag{93}
\end{equation*}
$$

Plots of normalized rms error versus interference bearing relative to target bearing (measured by y_{1} and y_{2}) are given in Figures 25 and 26. The qualitative differences between the two sets of curves is due in large measure to the very rapid approach to the asymptotic value of the sensitivity for algebraic spectra. In other words, once the interference is separated from the target by more than a small minimum ongle, the sensitivity at the target bearing is almost independent of the interference bearing (for algebraic spectra). This is, of course, precisely the lack of influence of the interference on average response which

motivated the investigation of algebralc spectra in the first place.
As a final point of interest, it may be useful to compare the rms error of the conventional tracker with that of the nulling tracker. Erom Equations (59), (65), (88) and (90) (whit spectra) or (63), (66), (89) and (91) (alzebraic spectra) one ubtains for renote intorference $\frac{\text { rms error of nulling tracker }}{\text { mo error of conventiont iracker }}=$

$$
\begin{equation*}
\left.-\frac{\sqrt{3}}{2} N \frac{M^{2}}{(M-1)^{2}}\right] / \frac{(1-1)^{2}+\frac{1}{2}\left(2 r^{2}+1\right)+\frac{3}{2} \frac{N}{I} M^{2}+\frac{3}{4}(i)}{1} M^{2} \tag{94}
\end{equation*}
$$

With $M P 1$ this reduces to

$$
\begin{equation*}
\frac{\text { rms error of nulling tracker }}{\text { rms error of convent ional tracker }}=\sqrt{\frac{9}{8}} \frac{1}{\sqrt{M+\frac{3}{2}+\frac{3}{4}\left(\frac{N}{1}\right)^{2}}} \tag{45}
\end{equation*}
$$

In the limiting cascs ambicat notse Jurinat and attrefence dominated environments one obtains [f111:

It is interesting that the supcriority (if any) of the nuling trackir over the conventional tracker is tmeasured by $M^{-\frac{1}{2}} \frac{\mathrm{~N}}{\mathrm{I}}$. the parameter which also measures directly the extent to which the envfonment is interference dominated. Only in a stronply fnterferenc. domfated environment is there a significant reduction in mas eron ius to nulling. The slight inferiority of the nulling tracker in an anblut nolse dominated environment is, of course, due to the subiral nature of the primitive interference nulling scheme employed in the postulated inst rumentation.

IV. Concluding Remarks

The repori has analyzed the performance of split beam (phase) trackers with and without provisions for null steering in an environment composed of plane wave interference as well as isntrof!c ambient noise. Two types of error can arise,

1) Syotematic error. This is a displacement in the ri:11 of the average tracker output from the true target bearing. It is caused by she asymmetry in the noise fisld due to the interference.
2) Random error. This is the rms fluctuation of the instantaneous tracker output about its average value. Its cause 19 the inability of a filter with findte smooting time to eliminate fluctuations completely.

In the conventional tracker the interference coitributes to both types of error. In the nulling tracker it contributes to nctther, because the null steering feature totally eliminatus (at least in principle) the interference at the very beganning of the date processing procedure. This duai effect of nulling tends to obscure questions of cructal finportance to the ultimate decision whether the benefits of null ateering are sufficitnt to Justify the added system complexity. ?o clarify this point, consider the following conclustons from the ronventional tracker analysis:

1) The interfereace cantributes significantly to the random error onity if the environment is interference dominated $\left[N / L \ll \sqrt{\frac{4}{3}} \|\right]$
2) If the environment is interference dominated, the systematic error exceeds the random error undur most reanonable operating conditions, often by a very substantial amount.

According to 1) the use ar nulling to reduce random error car be justified only if eperation in a strongly interference dominated environment
is a common occurrence. If this is not the case one is interusted primarily In elfoinating the syse atic error. Since the latter depends only on interference bearing anc such avirage properties as interference power (but not on the derafled interference time function) one can envision much simpler schemes than nulling to achi ve the nucessary correction.

Even when the enviroment is incerference dominated one mi:y be concerned primarily with the simpler problem of systematic error correction. According to 2) the largest error componerit is likely to be systematic and failure to track may well be du largely to this componert. Elimfation of the systematic error alone may then result in satisfactory operation, even though random error reduction through nulling or related schemes might achieve further improvements in accuracy. In view of the inherent conplexity of all schemes dusigned to eliminate time functions of interfurence or other spatially coheront components of the nois field, it appears desirable to study further whether simpl modifications of the conventionil tracker, utilizing only statistical information about the interference, may not achieve satisfactory performancu.

The besic difference between systemetic and randon error compensati n appears in a somewhat different guise in the detection problem. The ave:age bearing response of a conventional detector opurating in the presunce of interference might assume the form sketched in Figure 27. The proximity

of the interferenct imposes a sloping background on the target peak. Depending on the method chosen to display the information this may or may not affect the ability of an operator to detect the target. Ignoring such display problems, however, a fundamental difficulty arises only when the rmo fluctuation becomes comparable with the target peak, i.e., when the "on target" signal-to-noise ratio at the detector output falls to the nefghborhood of unity. If the interference-free output signal-to-noise ratio is well In excess of unity, then the introduction of an interference separated from the target by more than a beamwidth can achieve reduction of the output signal-to-noise ratio to a level of unity only if the interference is strong enough to dominate the environment. In such cases nuiiing can clearly be beneficial. Otherwise the problem is primarily one cf display, and while this counterpart of the systematic error problem is clearly resolvad as a by-product of any nulling procedure, one should recogrize that sippler techniques may be avallable to compersate for the average effect of the interference.

CONFIDENTIAL

THE EFFECT OF MULTIPLE OR DISTRIBUTED INTERFERENCES ON THE PERFORMANCE OF A CONVENTIONAL PASSIVE SONAR DETECTOR
by

Verne H. McDonald

Progress Report No. 30
General Dynamics/Electric Boat Research
(8050-31-55001)

January 1967

DEPARTMENT OF ENGINEERING
 AND APPLIED SCIENCE

YALE UNIVERSITY CONFIDENTIAL

CONFIDENTIAL

Summary
A straightforward extension of che methods of Report No. 17 is employed to obtain general expressions for the index of performance of a conventional detector when multiple independent point source interferences are present. As in Report No. 17, autocorrelation functions of the form $e^{-\omega_{0}|\tau|}$ are assumed for the noise and interference processes, and the index of performance is derived for cases where all interferences differ at least several degrees In bearing from the target.

An interference distributed over an arc of severai degrees is represented as a limiting cast of a large number of closely spaced point interferences. Computer calculations relevant to determination of the index of performance in cases of multiple or distributed interferences are presented.

If the total interference power substantially exceds the ambient nuise power, the magnitude of the cotal interference fower determines the order of magnitude of the index of performance. If a fixed value of total interference power I is considered, the case of a single point interference of power I may be compared with the cases of distributed or multiple interferences of total power I. Assuming the average bearings of interferences to be comparable, one finds that the index of performance is sonewhat higher for multiple or distributed interferences than for a single point source of interference. The factor by which the index of perfermance with multiple or distributed interferences may exceed that for one point interference is found to have a hynothetical maximum of approximately $\sqrt{2 M / 3}$, wherc M is the number of hydrophones. The computed results indicate, however, that the improvement factor in most realistic situations is no greater than 2 or 3 for multiple point source interferences and between 1 and 2 for a distributed interference.

Finally the report points out the omission of a term in the basic expression in Report No. 17 for the variance of the output of a standard detector

COMriulivial

in the presence of ambient noise and a point source interference. The term In question involves the product $I N$ of interference power and ambient noise power. Calculations are performed which indicate that the error introduced in the output signal-to-ioise ratio (index of performance) by neglecting this term is at most a sew percent for the values of N / I and number of hydrophones M consicered in Report No. 17 . The effect of the term is found to decrease as either M or I / N increases.

I. Introduction

The present report is essentially an amendment and extension to the portion of Report NG. 17 which trea:s the conventional detector. The expression in that report for the variance of the detector output is modified, and the rase of a single interference is extended to consider any umber of interferences.

This report considers only a linear array of M equally spaced omntdirectional hydrophones. Processing consists of summing the outputs of the hydrophones, squaring the sum, and $10-\operatorname{pass}$ \&iltering the square. The target signal, the ambient noise, and the one or many interferences are taken to be mutually independent random processes.

The amblent noise components frim different hydrophones are assumed to be independent. We shall also assume signal and interference wavefronts to be plane. Consequently, at any given time the signal and interference components of the M hydrophone outputs represent samples of these random processes at Il different points in time. If the array is stecred on target, the M signal components are identicel at any time. The sjgnal, ambiunt noise, and interference compenents of voltage at each hydrophone are all assumed to be zeromean Gaussian variablus. The average power of ary of these distinct processes is assumed not to vary from hydrophone to hydrophone.

The nomenclature of the present report is adopted from Report. No.. .7 , and where specific assum; tions are made regarding magnitude or functional form of variables, the assumptions are those of that report. The case of an interference very close in bearing to the target is not discussed in detail. II. Output Variance with Ambient Noise and a Single Interference Fresent

It is desired to calculate the output variance D^{2} (output) for the situation depicted in Figure 1. The variables ${ }_{i}(t)$ and $n_{j}(t)$ represent the Interference and noise components, respectively, of the jth hydrophone output. B-1
CONFIDENTIAL

CONFIDENTIAL

This report follows the procedure established in Report No. 3, section IV.
Under the assumption that the array is steered on target but that signal power is negligible compared with ambient noise or interference power, the autocorrelation function of the output is

$$
\begin{align*}
& R_{z}(\tau)=E\left\{\left[\sum_{h=1}^{M} i_{h}(t)+n_{h}(t)\right] \quad\left[\sum_{j=1}^{M} i_{j}(t)+n_{j}(t)\right] x\right. \\
& \left.\sum_{k=1}^{M} i_{k}(t+\tau)+n_{k}(t+\tau)\right] \quad\left[\sum_{\ell=1}^{M} i_{l}(t+\tau)+n_{k}(t+\tau)\right]= \\
& \sum_{h=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{\ell=1}^{M} \sum_{i=1}^{M}\left\{\left[i_{h}(t)+n_{h}(t)\right] \quad\left[i_{j}(t)+n_{j}(t)\right] \quad\left[i_{k}(t+\tau)+n_{k}(t+\tau)\right] \times\right. \\
& \left.\left[i_{\ell}(t+\tau)+n_{\ell}(t+\tau)\right]\right\} \tag{1}
\end{align*}
$$

Since all variables are Gaussian, the products may be grouped as foliows:

$$
\begin{align*}
& R_{z}(\tau)=\sum_{h=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{\ell=1}^{M}\left\{\left\langle\left[i_{h}(t)+n_{h}(t)\right] \quad\left[i_{j}(t)+n_{j}(t)\right]\right\rangle x\right. \\
& \left\langle\left[1_{k}(t+\tau)+n_{k}(t+\tau)\right] \quad\left[1_{l}(t+\tau)+n_{l}(t+\tau)\right]\right\rangle+ \\
& \left\langle\left[i_{h}(t)+n_{h}(t)\right] \quad\left[i_{k}(t+\tau)+n_{k}(t+\tau)\right]\right\rangle\left\langle\left[i_{j}(t)+n_{j}(t)\right] \quad\left[i_{\ell}(t+\tau)+n_{\ell}(t+\tau)\right]\right\rangle+ \\
& \left.\left\langle\left[i_{h}(t)+n_{h}(t)\right]\left[i_{\ell}(t+\tau)+n_{l}(t+\tau)\right]\right\rangle\left\langle\left[1_{j}(t)+n_{j}(t)\right]\left[1_{k}(t+\tau)+n_{k}(t+\tau)\right]\right\rangle\right\} \tag{2}
\end{align*}
$$

Fig. 1
B-2

CONFIDENTIAL

CONFIDENTIAL

The last two of the three expressions in brackets above are identical except for indexing. Since noise and interference are independent, the cutocorrelation function may be written

$$
\begin{align*}
& R_{z}(\tau)=\begin{array}{cccc}
M & M & : & M \\
\sum_{h=1} & \sum & \sum_{j=1} & \sum_{k=1}
\end{array} \quad\left[\langle \langle i _ { h } (t) i _ { j } (t) \rangle + \langle n _ { h } (t) n _ { j } (t) \rangle] \left[\left\langle i_{k}(t+\tau) i_{\ell}(t+\tau)\right\rangle\right.\right. \\
& \left.+\left\langle n_{k}(t+\tau) n_{\ell}(t+\tau)\right\rangle\right]+2\left[\left\langle i_{h}(t) i_{k}(t+\tau)\right\rangle+\left\langle n_{h}(t) n_{k}(t+\tau)\right\rangle\right] \\
& {\left[\left\langle 1_{j}(t) 1_{\ell}(t+\tau)\right\rangle+\left\langle n_{j}(t) n_{\ell}(t+\tau)\right\rangle\right]_{j}^{\}}} \tag{3}
\end{align*}
$$

One may define the following normalized correlation functions with N the average noist power at any hydrophone and I the average hiterference power.

$$
\begin{equation*}
I q_{h j}^{i}(\tau)=E\left[i_{h}(t) i_{j}(+\tau)\right] ; N q_{h j}^{n}(\tau)=E\left[n_{h}(t) n_{j}(t+\tau)\right] \tag{4}
\end{equation*}
$$

In terms of the q function, the autocorrelation function is

$$
\begin{align*}
R_{z}(\tau)= & \begin{array}{cccc}
M & M & M & M \\
\sum_{h=1} & \sum & \sum_{j=1} & \sum \\
k=1 & \sum=1
\end{array}\left\{\left[I q_{h j}^{1}(0)+N q_{h j}^{n}(0)\right]\left[I q_{k \ell}^{i}(i)+N q_{k \ell}^{n}(0)\right]\right. \\
& \left.+2\left[I q_{h k}^{i}(\tau)+N q_{h k}^{n}(\tau)\right]\left[I q_{j \ell}^{i}(\tau)+\sum_{j \ell}^{n}(\tau)\right]\right\} \tag{5}
\end{align*}
$$

The q terms with zero argument represent $D C$ power. Define
$R_{z}{ }^{\prime}(T)$ as $\left[R_{z}(T)-(D C\right.$ terms $\left.)\right]:$

$$
\left.\begin{array}{rl}
R_{z}^{\prime}(\tau)= & \sum_{h=1}^{M} \\
\sum & \sum=1 \tag{6}\\
j=1 & \sum=1 \\
i=1 & \sum \\
& +4 I_{i N}^{M} q_{h k}^{i}(\tau) q_{h k}^{1}(\tau) q_{j \ell}^{1}(\tau)
\end{array}\right\}
$$

From Eqs. (39) and (40) of Report No. 3, we obtain the following formula for the variance of the output.

CONFIDENTIAL

Now let $\rho_{n}(\tau)$ and $\rho_{1}(\tau)$ represent the normalized autocorrelation function of the ambient noise and inte: rence components of hydrophone output, respectively. Since the noise components of different hydrophones are assumed to be independent, the following relation results:

$$
q_{h j}^{n}(\tau)=\varepsilon_{r_{j}} \rho_{n}(\tau) \quad \delta_{h j}= \begin{cases}1 & h=j \tag{8}\\ 0 & h \neq j\end{cases}
$$

At a given instant, the interference components at hydrophones h and j respectively represent samples of the same random process taken at an interval of ${ }^{\mathbf{l}}{ }_{h j}$ seconds apart, where ${ }^{T}$ hy is the delay from hydrophone h to hydrophone k. It is therefore true that

$$
\begin{equation*}
q_{h j}^{i}(\tau) \quad \rho_{i}\left(\tau_{h j}+\tau\right) \tag{9}
\end{equation*}
$$

By Eq. (6) through Eq. (9),
$D^{2}(z)=\frac{2 I^{2}}{T} \sum_{h=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{\ell=1}^{M} \int_{-\infty}^{\infty} \rho_{1}\left(\tau_{h k}+\tau\right) D_{i}\left(\tau{ }_{j l}+\tau\right) d \tau$

$$
\begin{equation*}
+\frac{2 N^{2}}{T} n^{2} \mathcal{L}_{\infty}^{\infty} \mu_{n}^{2}(\tau) d \tau+\frac{4 I N}{T} \sum_{h=1}^{M} \sum_{j=1}^{M} \int_{-\infty}^{\infty} \rho_{1}\left(\tau_{h_{i j} j}+\tau\right) M \rho_{n}(\tau) d \tau \tag{10}
\end{equation*}
$$

The term above containing the product $I N$ does not appear in Eq. (2) of Report No. 17 For situations where the ratio I / N is substantially greater than unity, this term does not signfficantly affect the valuc of $D^{2}(z)$. Even with I / N near or less than unity, the term has little effect for sufficiently large M. Some calculations appear in Table 1 of Section III which indicate the relative magnitude of terms in the expression for $D^{2}(z)$ when exponential of functions are assumed. III. Detector Performance with Ambient Nolse and Two Interferences

If two uncorrelated interferences of power I_{1} and I_{2} are present at different bearings, one way infer the expression for $D^{2}(z)$ from Eq. (10).
b-1 CONFIDEINIIAL

CONFIDENTIAL

Amblent noise power $1 s$ assumed small in comparison with both I_{1} and I_{2}.

$$
\begin{align*}
& D^{2}(z)=\frac{2 I_{1}^{2}}{T} \sum_{h=1}^{M} \underset{j=1}{M} \underset{k=1}{M} \underset{\sum=1}{M} \int_{-\infty}^{\infty} j_{1}\left(\tau_{h k}^{(1)}+\tau\right) \rho_{1}(\tau \underset{j l}{(1)}+\tau) d \tau \\
& \left.+\frac{2 I_{2}^{2}}{T} \sum_{h=1}^{M} \sum_{j=1}^{M} \underset{K=l}{M} \sum_{\ell=1}^{M} \int_{-\infty}^{\infty} \rho_{2}\left(\tau_{h k}^{(2)}+\tau\right) \rho_{2}{ }_{j l}^{(2)}+\tau\right) d \tau+\frac{2 N^{2}}{T} M^{2} \int_{-\infty}^{\infty} \rho_{n}^{2}(\tau) d \tau \\
& +\frac{4 I_{1} i_{2}}{T} \underset{h=1}{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \underset{\sum=1}{N} \int_{i=1}^{\infty} \rho_{1}\left(i_{h k}^{(1)}+r\right) \rho_{2}(\tau \underset{j l}{(2)}+\tau) d \tau \\
& +\frac{4 I_{1} N}{T} \sum_{h=1}^{M} \underset{j=1}{\sum} \int_{-\infty}^{\infty} p_{1}\left(T_{h j}^{(1)}+\tau\right) M p_{n}(\tau) d \tau+\frac{4 I_{2} N}{T} \sum_{h=1}^{M} \sum_{j=1}^{M} \\
& \int_{-\infty}^{\infty} \rho_{2}\left(\tau_{h j}^{(2)}+\tau\right) M_{n}(\tau) d \tau \tag{11}
\end{align*}
$$

In general terms, $\rho_{\mu}\left(\tau_{h y}^{(\mu)}+\tau\right)$ refers to the normalized autocorreiation of the uth interference.

The procedure of Report No. 17 will now be followed to obtain speciffic
 autucorrelation functions are assuraed:
$\rho_{1}(\tau)=e^{-\omega_{1}|\tau|} \quad \rho_{2}(\tau)=e^{-\omega_{2}|\tau|} \quad \rho_{n}(\tau)=e^{-\omega_{0}|\tau|}$
As explatned in Report No. 17, for the cases of interest, the frequencies $\omega_{0}, \omega_{1}, \omega_{2}$ are comparable. Because the array is linear and the iuterference wivefronts piane,
$\tau_{h k}^{(1)}=(h-k) T_{1}$
${ }_{\text {hk }}^{(2)}=(h-k){ }_{2}$
$(13)^{1}$

[^10]
$13-5$
 CONFIDENTIAL

CONFIDENTIAL

For convenience, dofinc the coefficionts

$$
\begin{equation*}
C_{h-j, k-l}^{u v}=\int_{-\infty}^{\infty} \rho_{u}\left(\tau \frac{(u)}{h j}+\tau\right) o_{v}\left(\tau_{k \ell}^{(v)}+\tau\right) d \tau \tag{14}
\end{equation*}
$$

The fact that autocorielation functions are even functions leads to the results

$$
\begin{equation*}
C_{r s}^{u u}=C_{s r}^{u u}=C_{-r,-s}^{\mathrm{Uu}} \quad C_{r s}^{11 v}=C_{s r}^{v u}=C_{-r,-s}^{U v} \tag{15}
\end{equation*}
$$

Consideration of Eq. (7) through $[q .(10)$ in Report No. 17 and the above Eq. (15) leads to the result

$$
\begin{align*}
\sum_{h=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} \sum_{\ell=1}^{M} C_{h-j, k-\ell}^{u v}= & M^{2} C_{o 0}^{u v}+2 M_{s=1}^{M-1}(M-s) C_{o s}^{u v}+2 M \sum_{r=1}^{!!-1}(M-r) C_{i o}^{u v} \\
& +\underset{r=1}{M-1} \sum_{0=1}^{M-1}(M \cdot r)(M-6)\left[C_{r s}^{u v}+C_{-r E}^{u v}\right] \tag{16}
\end{align*}
$$

By analogy with $\mathbf{i q}$. (14), define the coefficients

$$
\begin{equation*}
D_{h-j}^{u}=\int_{-\infty}^{\infty}{ }_{p} u \quad\left(\tau{ }_{h j}^{(u)}+\tau\right) \rho_{n}(\tau) d \tau \tag{17}
\end{equation*}
$$

Using the fact that $D_{r}^{u}=D_{-r}^{u}$, one may show that

$$
\begin{equation*}
\sum_{h=1}^{M} \sum_{j=1}^{M} D_{h-j}^{u}=M D_{0}^{u}+2 \sum_{r=1}^{M-1}(M-r) D_{r}^{u} \tag{18}
\end{equation*}
$$

The coerficients are calculated From Eq. (1.2) through Eq. (í). Details of the calculation appcir in Appendix A.

$$
\begin{align*}
& C_{r s}^{u v}=\int_{-\infty}^{\infty} \epsilon\left[-{ }_{u}{ }^{\left.-\omega\left|\tau+r \tau_{u}\right|-\omega_{v}\left|\tau+s \tau_{v}\right|\right]=}\right. \\
& \frac{e^{-\omega_{u} \Delta}+e^{-\omega_{v} \Delta}}{\omega_{u}+\omega_{v}}+\frac{e^{-\omega_{u} \Delta}-e^{-\omega^{\omega}} v^{\Delta}}{u_{v}-\omega_{u}} \tag{19}
\end{align*}
$$

where, by definition,

$$
\begin{equation*}
\Delta=\left|r \tau_{u}-\Delta \tau_{v}\right| \tag{20}
\end{equation*}
$$

B-i CONFIDENTIAL

COMFIDENTIAL

If $\omega_{u}=\omega_{v}$, the coefficient takes a simpler form,
$\left.C_{r B}^{U V}=\frac{1}{\omega_{u}}\left(1+\omega_{u}\left|r \tau_{u}-s \tau_{v}\right|\right) e^{-\omega_{u} \mid r \tau} u{ }^{-8 T} \right\rvert\, \quad\left(\omega_{u}=\omega_{v}\right)$

Erom Eq. (14) of Report No. 17,
$C_{r s}^{u u}=\frac{1}{\omega_{u}}\left(1+|r-s| \omega_{U_{1}{ }^{\top}}\right) e^{-|r-s| \omega_{L}{ }^{\top} u} \quad \quad(u=v)$

By setting ${ }^{\tau} v$ equal to zeto in Eq. (19) one may infer the value of the D coefficients, defined in Eq. (17) .

$$
\begin{equation*}
\left.D_{r}^{u}=\frac{e^{-\omega_{u} \mid r \tau} u \mid}{\omega_{u}+\omega_{0}} e^{-\omega_{0} \mid r \tau} u \right\rvert\, \frac{e^{-\omega_{u} \mid r \tau} u \mid}{\omega_{0}-\omega_{u}} \tag{23}
\end{equation*}
$$

If $u_{u}=w_{0}$, the result simplifies.

$$
\begin{equation*}
D_{r}^{u}=\frac{1}{\omega_{u}}\left(1+\omega_{u}\left|r_{u}\right|\right) e^{-{ }_{u} \mid r \tau} u \tag{24}
\end{equation*}
$$

The following gentral expression for outpet variance in terms of the C and D coefficients reprosents a combination of Eqs. (11), (14), (16), (17), and (18):

$$
\begin{aligned}
& D^{2}(z)=\frac{2 I_{1}^{2}}{T}\left\{M^{2} C_{00}^{11}+4 \sum_{s=1}^{M-1}(M-B) C_{0 \theta}^{11}+2 \sum_{r=1}^{M-1} \sum_{s=1}^{M-1}(M-r)(M-s)\left[C_{r s}^{11}+C_{-r s}^{11}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 N^{2}}{T} M^{2} \int_{-\infty}^{\infty} \rho_{n}^{2}(\tau) d \tau+\frac{4 I_{1} I_{2}}{T}\left\{M^{2} C_{o o}^{12}+\underset{q=1}{\ddot{\prime \prime} \sum_{0}^{1}(M-q)}\left[C_{o q}^{12}+C_{q 0}^{12}\right]\right. \\
& \left.+2 \underset{r=1}{M-1} \sum_{s=1}^{M-1}(M-r)(M-s)\left[C_{r s}^{12}+C_{-r s}^{12}\right]\right\}+\frac{4 I^{N}}{T}\left\{M^{2} D_{0}^{1}+2 M \sum_{r=1}^{N-1}(M-r) D_{r}^{1}\right\} \\
& +\frac{4 I_{2} N}{T}\left\{M^{2} D_{0}^{2}+2 \sum_{r=1}^{M-1}(M-r) D_{r}^{2}\right]^{2} \\
& \text { B-7 }
\end{aligned}
$$

CONFIDENTIAL

For the assumed exponential autccorrclation functions; by Eqs. (19) and (22) through (25),

$$
\left.+\frac{2 I_{2}{ }^{2}}{T} \text { \{terms like those for } I_{1} \text {, with } \omega_{1} \tau_{1} \text { replaced by } \omega_{2}{ }_{2}\right\}+
$$

$$
\frac{2 \mathrm{~N}^{2}}{T}\left\{\frac{M^{2}}{\omega_{0}}\right\}
$$

$$
+\frac{4 I_{1} I_{2}}{\tau}\left\{\frac{2 M^{2}}{\omega_{1}+\omega_{2}}+2 n \sum_{s=1}^{I-1}(!1-s) \frac{e^{-\omega_{1} s \tau_{2}}+e^{-\omega_{2} s \tau} 2}{\omega_{1}+\omega_{2}}+\frac{e^{-\omega s 1^{\omega}} 2^{-e^{-\omega} 2^{s \tau} 2}}{\omega_{2}-e_{1}}\right\}
$$

$$
+2 M \sum_{r=1}^{M-1}(M-r)\left[\frac{e^{-\omega_{1} r_{\tau} 1}+e^{-\omega_{2} r_{\tau}} 1}{\omega_{1}+\omega_{2}}+\frac{\left.\left.e^{-\omega_{1} r_{\tau_{1}}}-\frac{e^{-\omega_{2} r_{\tau}}}{\omega_{2}-\omega_{1}}\right] \mid\right] \mid}{+}\right.
$$

$$
+\sum_{r=1}^{n-1 ~ M-1} \sum_{s=1}^{n}(M-r)(M-s)\left[\frac{e^{-\omega_{1} \Delta}+e^{-\omega_{2} \Delta}}{1^{+\omega^{\omega}}}+\frac{e^{-\omega_{1} \Delta}-e^{-\omega_{2} \Delta}}{2^{-\omega_{1}} 1}\right.
$$

$$
\left.+\frac{e^{-\omega \Sigma} 1^{-e^{-\omega} 2^{\Sigma}}}{1^{+\omega} 2}+\frac{e^{-\omega \Sigma} 1^{\omega}-e^{-\omega 2^{\Sigma}}}{2^{-\omega} 1}\right]
$$

$$
+\frac{4 I_{1} N}{T}-\frac{2 M^{2}}{\omega_{1}+\omega_{0}}+2 M \sum_{r=1}^{M 1-1}(M-r)\left[\frac{e^{-\omega_{1} r_{\tau}} 1}{+e^{-\omega_{0} r_{T}}} \omega_{1}+\omega_{0} \quad e^{-\omega_{1} r_{\tau}}-\frac{e^{-\omega_{0} r_{\tau_{0}}}}{\omega_{0}-\omega_{1}}\right]
$$

$$
+\frac{4 I_{2}{ }^{n}}{T}\left\{\text { terms like those fur } I_{1} \text {, with } \omega_{1} T_{1}\right. \text { replaced }
$$

In the above expression, Δ and Σ are defined as

$$
\mathrm{F}-8
$$

$$
\begin{aligned}
& D^{2}(z)=\frac{2 I_{1}^{2}}{T}\left\{\frac{M^{2}}{\omega_{1}}+4 M \sum_{S=1}^{M-1} \frac{(M-s)}{\omega_{1}}\left(1+s \omega_{1} \tau_{1}\right) e^{-s \omega_{1} \tau_{1}}+\right. \\
& \sum_{r=1}^{i:-1 M-1} \sum_{s=1}^{\sum}(M-r) \frac{(M-s)}{\omega_{1}}\left[\left(\left|+|r-s| \omega_{1}{ }^{\top}\right) e^{-|r-s| \omega_{1}{ }^{\top} 1}+\right.\right. \\
& \left.\left.\left(1+|r+s| \omega_{1} \tau_{1}\right) e^{-(r+s) \omega_{1} \tau_{1}}\right]\right\}
\end{aligned}
$$

CONFIDENTIAL

$$
\begin{equation*}
\Delta=\left|r \tau_{1}-s \tau_{2}\right| \quad \Sigma=r \tau_{1}+\mathrm{s} \tau_{2} \tag{27}
\end{equation*}
$$

If nether interference is near the signal in bearing, ${ }^{1}$ the products $\omega_{1}{ }^{\top} 1$ and $\omega_{2} \tau_{2}$ are much greater than unity, and most of the terms in Eq. (26) may be neglected.

$$
\begin{align*}
D^{2}(z)= & \frac{2 Y_{1}^{2}}{T}\left[\frac{M^{2}}{\omega_{1}}+\frac{1}{\omega_{1}}\left(\frac{2}{3} M^{3}-M^{2}+\frac{1}{3} M^{1}\right)\right]+\frac{2 I_{2}^{2}}{T}\left[\frac{M^{2}}{\omega_{2}}+\frac{1}{\omega_{2}}\left(\frac{2}{3} M^{3}-M^{2}+\frac{1}{3} M\right)\right] \\
& +\frac{2 N^{2}}{T}\left[\frac{M^{2}}{\omega_{0}}\right]+\frac{4 I_{1} I_{2}}{T\left(\omega_{1}+\omega_{2}\right)}\left[2 M^{2}+\left(\frac{2}{3} M^{3}-M^{2}+\frac{1}{3} M\right) X_{12}\right] \\
& +\frac{4 I_{1} N}{T\left(\omega_{1}+\omega_{0}\right)}\left[2 M^{2}\right]+\frac{4 I_{2} N}{T\left(\omega_{2}+\omega_{0}\right)}\left[2 M^{2}\right] \quad\left(\omega_{1} T_{1}, \omega_{2} T_{2} \gg 1\right) \tag{28}
\end{align*}
$$

The "Interaction factor" X_{12} measures the effect on output variance of the intermodulation of the two interference processes which results from the squaring operation in the standard detector. If both interferences are =emote in bearing from the target, the factor X_{12} has a maximum value of 2 . This value is reached when both interferences have the same bearing. The factor is discussed in detail at the end of this section.

The effect of a signal having power S when the array is steered on target is demonstrated in Eq. (33) of Report No. 3. That effect is

$$
\begin{equation*}
\Delta(D C \text { output })=M^{2} S \tag{29}
\end{equation*}
$$

From Eqs. (28) and (29), one may calculate the following figure of merit

[^11]\[

$$
\begin{align*}
& \frac{\Delta(D C \text { output })}{D \text { (output) }}= \\
& \sqrt{\frac{T}{2} M S\left\{\left(\frac{I_{1}}{\omega_{1}}+\frac{I_{2}^{2}}{\omega_{2}}\right)\left[\frac{2}{3} M+\frac{1}{3 M}\right]+\frac{N^{2}}{\omega_{0}}+\frac{I_{1} I_{2}}{I_{2}\left(\omega_{1}+\omega_{2}\right)}\left[2+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) X_{12}\right]\right.} \\
& \quad+\left[\frac{I_{1} N}{I_{2}\left(\omega_{1}+\omega_{0}\right)}+\frac{I_{2} N}{I_{2}\left(\omega_{2}+\omega_{0}\right)}\right][2]
\end{align*}
$$
\]

The above equation may be rewritten as

$$
\begin{align*}
& \frac{\Delta(D C \text { output })}{D(\text { output })}= \\
& \sqrt{\frac{T}{2} M S}\left\{\left[\frac{I_{1}^{2}}{\omega_{1}}+\frac{I_{2}^{2}}{\omega_{2}}\right] A+\left[\frac{I_{1} I_{2}}{\frac{T}{2}^{2}\left(\omega_{1}+\omega_{2}\right)}\right] B+\left[\frac{I_{1} N}{\left.\left.\frac{L_{2}\left(\omega_{1}+\omega\right)}{\omega}+\frac{I_{2} N}{I_{1}\left(\omega_{2}+\omega_{0}\right)}\right] C+\frac{N^{2}}{\omega_{0}}\right\}^{-\frac{1}{2}}}\right.\right. \tag{31}
\end{align*}
$$

Where the following definitions are implied:

$$
\begin{equation*}
A=\frac{2}{3} M+\frac{1}{3 M} \quad B=2+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) X_{12} \quad C=2 \tag{32}
\end{equation*}
$$

The factors A, B, and C measure the relative contributions of different intermodulation effects to the magnitude of the output variance $D^{2}(z)$. Specifically, A measures the importance of intennodulation of an interference process with itself; B pertains to the intermodulation of the two interferences, and C determines the contributions of interferencenoise intermodulation. If it happens that ${ }^{\top}{ }_{1}$ and ${ }^{T_{2}}$ are roughly equal, then B is approximately 2 A for large M; otherwise B is smaller. Properties of X_{12}

From Eqs. (26) and (28), X_{12} is implicitly defined as follows:

$$
\begin{equation*}
\frac{1}{\omega_{1}+\omega_{2}}\left[\frac{2}{3} M^{3}-M^{2}+\frac{1}{3} M\right] X_{12} \text {, where } \tag{33}
\end{equation*}
$$

CONFIDENTIAL

For simplicity, assut.. $u_{1}=w_{2}=0$. then Cq . (2l) indicates a simplification in the form of the terns involving Δ.
$\left.2 \sum_{r=1}^{M-1} \sum_{s=1}^{M-1}(M-r)(M-s) \underset{\omega_{0}}{\frac{1}{\omega_{0}}}\left(1+\omega_{0} \Delta\right) e^{-\omega_{0} \Delta}=\frac{1}{2 \omega_{0}} \frac{2}{3} M^{3}-H^{2}+\frac{1}{3} n\right] X_{12}$

Assume that $\tau_{2}=k \tau_{1}$, where $k>1$. The double sumation may be written

$$
\begin{equation*}
\sum_{r=1}^{\operatorname{iin} 1} \sum_{s=1}^{Y-1}(M-\because)(11-s) \frac{1}{\omega_{0}}\left(1+\omega_{0}^{\top} 1|r-k s|\right) e^{-\omega_{0}^{\top} 1}|r-k s| \tag{36}
\end{equation*}
$$

Consistent with the assumption that $c^{-\omega)^{\top} 1} \cong e^{-\omega_{0}{ }^{\top} 2} \approx 0$, one may neglect terr.; in the sumation except thoce for which $|r-k s| \ll \mid$. For concretcness, one riay require $|\mathrm{r}-\mathrm{ks}|<1 / 2$ as the condition for a term to be significant. ${ }^{1}$ For a particular integer s^{\prime}, suppose that the integer r^{\prime} satisftes the relation $r^{\prime}-k s^{\prime} \quad 1 / 2$. Then $\left(r^{\prime}-1\right)-k s^{\prime}=$ $-1 / 2$. In this case, for each s there are two values of r such that $|r-k s| \leq 1 / 2$. Except for a discrete set of values of k, no r will be found for whict. $r-k s=1 / 2$ exactly. Howcver, as long as $k<(M-1)$, sone one value of r can be found fur sufficiently small values of s suct that $|r-k s|<1 i 2$. Fence, in seneral, a reasonable assuiption is that for each value of s, only one value of r need be considered.

Note that by definftion $\tau=(d \sin \theta) / c$, where d is hydrophone spacing and c is sound velocity. Hence, $k={ }^{T}{ }_{2} / \tau_{1}=\sin \theta_{2} / \sin 0_{1}$. since the basic assumption $e^{\left.-\omega_{0}{ }^{\top}\right]} \equiv 0$ is poor for anples jess than about

[^12]
CONFIDENTIAL

$15^{\circ}, 1$ the minimum value of $\sin \theta_{1}$ for which the analysis is valid is about .25 . Hence, k is not nore than $1 / .25=4$.

In the expression (36), s values greater thin $(M-1) / k$ find no corresponding r satisfying the requirement $|r-k s|<1 / 2$. Hence, the maximum value of s which is significant is the integer nearest $(M-1) / k$ (or M / k for simplicity). The value of r corresponding to each s is the integer nearest $k s$. The expression (36) is then roughly

$$
\begin{equation*}
2 \underset{\sum_{s=1}^{[m / k]}(M-k s)(M-s) \frac{i}{\omega_{0}}\left(\left|+\omega_{0}^{\tau} 1\right| r-k s \mid\right) e^{-\omega)_{0}^{\tau} 1}|r-k s|}{ } \tag{37}
\end{equation*}
$$

where $\lceil M / k\rceil$ denotes the largest integer smaller than $i i / k$. Investigation reveals that for a given s, the value of $|r-k s|$ is the difference between $s d$ and the nearest integer, where d is the fractional part of k. In general, the above expression cannot be significantly simplified. The expression has local mexina with respect to is when k is a multiplc of $1 / 2$; local minima occur approxipetely where the fractional part of k is $1 / 4$ or $3 / 4$.

A rough estimate of the sumation may be obtained for the cases where k is an integer. For all values of s yfelding significant torms in the sumriation, $|r-k s|=0$. Hence, by (37) the sumation ruduces to
$\sum_{s=1}^{[n / k]}(M-k s)(M-s) \frac{1}{\omega_{0}} \tilde{m}_{\omega_{0}}^{\frac{2}{\omega_{0}} f_{1}^{m / k}(M-k s)(M-s) d s=+\quad .}$ $\stackrel{2}{\omega_{0}} j_{1}^{n / k}\left[A^{2}-M(k+1) s+k \varepsilon^{2}\right] d s=\frac{2}{\omega_{0}}\left[N^{2} s-\frac{M}{2}(k+1) s^{2}+\frac{k}{3} s^{3}\right]_{1}^{n / k}$
${ }^{1}$ For the product $\omega_{0} d$ on the order of $4 \pi \times 5000$.

CONFIDENTML

$$
\begin{align*}
& =\frac{2}{\omega_{0}}\left[\frac{M^{3}}{k}-M^{2}-\frac{M^{3}}{2 k^{2}}+\frac{k+1)}{2}(k+1)+\frac{M^{3} k}{3 k^{3}}-\frac{k}{3}\right] \equiv \\
& \frac{2}{\omega_{0}}\left[M^{3}\left(\frac{1}{k}-\frac{k+1}{2 k^{2}}+\frac{1}{3 k^{2}}\right)-M^{2}\right]=\frac{2}{\omega_{0}}\left[\frac{1^{3}}{k^{2}}\left(k-\frac{1}{2}(k+1)+\frac{1}{3}\right)\right] \\
& =\frac{2}{\omega_{0}} \frac{M^{3}}{k^{2}}\left(\frac{k}{2}-\frac{1}{6}\right) \tag{38}
\end{align*}
$$

For large M, the above expression, where powers of M less than the third power are ignored, should be reasonably accurate. Peferring to (B3), and assuming $\mathrm{H}^{2} \ll \mathrm{H}^{3}$, one obtains an approximation for X_{12}.

$$
\begin{equation*}
x_{12} \cong \sigma\left(\frac{k / 2-1 / 6}{k^{2}}\right)=\frac{3 k-1}{k^{2}} \quad\left(k=\frac{\tau_{2}}{\tau_{1}}=\text { integer }\right) \tag{39}
\end{equation*}
$$

It appears imposisible to obtain a simple analytical expression for the factor X_{12} in terms of the bearings θ_{1} and θ_{2} and the parameters of the system. For this reason, extensive computer calculations have been performed. For the calculations, it is assumed that both processes have the seme bandwidth. The precise form of the expression for X_{12}, derived from Eq. (35) is:

$$
\begin{align*}
X_{12} & =\frac{12}{2 M^{3}-3 M^{2}+M} \sum_{r=1}^{M-1} \sum_{s=1}^{M-1}(M-r)(M-2)\left(1+\omega_{0}\left|r \tau_{1}-s \tau_{2}\right|\right) e^{-\omega_{0}\left|r \tau_{1}-s \tau_{2}\right|} \\
& =\frac{12}{2 M^{3}-3 M^{2}+M} \sum_{r=1}^{M-1} \sum_{s=1}^{M-1}(M-r)(M-s)\left(1+\frac{\omega_{0}^{d}}{c}\left|r \sin O_{1}-s \sin \theta_{2}\right|\right) x \\
& -\frac{\omega_{0}^{d}}{c}\left|r \sin O_{1}-s \sin U_{2}\right| \tag{40}
\end{align*}
$$

where M is the number of hydrophones, d is hydrophone spacing, and $=$ sound velocity. For calculation, ω_{0} was taken to be $2 \pi \times 5000$, d two feet, c 5000 feet per second. Results were obtained for $M=40$ and $M=20$.

CONFHLHETA

CONFIDENTIAL

In Figure 2 curves of X_{12} versus 0 , the arithmetic mean of the bearings of two point source interferences relative to the target, are plotted for different constant values of $\Delta \theta$, the difference in bearing between the interferences; for these curves M is taken to Le 40 hydrophones. In Figure 3 curves of X_{12} versus breadth $\Delta \theta$, for fixed values of center angle 0 , are ploted for both $M=40$ and $M=20$ to permit comparison of the results for different values of M.

In Figure 4 contours of constant delay-time ratios are plotted on the $0_{1}-\theta_{2}$ plane.

A striking feature of the $X_{12}-v e r s u s-0$ curves (Figure 2) is that for a given value of 0 in the range of about 25° to $65^{\circ}, X_{12}$ is nearly independent of the breadth (anguiar separation) $\Delta \theta$ for values of $\Delta 0$ between about 5° and 40° (. 1 radian to . 7 radian). Exceptions to this statement do occur in sertal, ranges where one or more curves have sharp relative minima or maxima with respe:t to θ. The limited calculations for $\Delta 0$ on the order of one radian indicate t at X_{12} does dip nearly to zero for at least one range of 0 .

The curves may actually be somewhat more irregular than the plots indicate, since the points picked for calculation did not include all the combinations of angles yielding delay-time ratios which correspond to relative maxima or minima of X_{12}. It seems reasonable to conclude, however, that unless 0 is fairly near 90° or $\Delta 0$ is on the order of a radian or greater, detector performance is relatively insensitive to the value of $\Delta 0$. It must be noted that for M set equal to 20 , the curves separate appreciably at a smaller value of 0 than for M equal to 40 . Evidently a larger number of hydrophones increases the range of 0 over which performance is insensitive to $\Delta 0$

The comparative flatness of the curves of X_{12} versus $\Delta 0$ (Figure 3) illustrates the above remarks.

CONFIDENTIAL

(

Form EE-12
品:

Fig. ? 1.0 +horn do Centar

CONFIDENTIAL

IV. Amendmerits 1.2 Renort Number 17

CONFIDEmtial

On the basis of the jerivations in the previous section, it will now be indicated where in feport fo. 17 terms need to be added to expressions. For direct comparison with the resulte of the earlier report, it must be assuned that the intcrference "cutoff" frequency w_{1} is the same as m_{o}. By Eqs. (11), (17), (18), (24), and (25), Eq. (16) of Report No. 17 is amended as :0.10ws:

```
\Delta(DC output)
```


$\left.+I N\left\{2+\frac{4}{M} \sum_{r=1}^{M \cdot-]}(M-r)\left(1+r \omega_{0} T_{0}\right) e^{-r_{0} \omega_{0}{ }_{0}}\right\}\right]^{\frac{1}{2}}$
According 1 y, Eq. (17) of Repori No. 17 is amended to

$$
\begin{equation*}
\frac{E(D C \text { output })}{D(\text { output })}=\sqrt{\frac{T_{\omega_{0}}}{2}} \frac{\text { MS }}{\sqrt{N^{2}+I^{2}\left[1+\frac{2}{M}_{M^{2}}^{M=1}(M-s)^{2}\right]+2 I N}} \tag{42}
\end{equation*}
$$

Eq. (18) of Report No. 17 becomes

$$
\begin{equation*}
\frac{\Delta(D C \text { output })}{D(\text { outpul })}=\sqrt{\frac{T_{\omega_{0}}}{2} \frac{M S}{\sqrt{N^{2}+\frac{I^{2}}{3}\left(2 M+\frac{1}{M}\right)+2 I N}}} \tag{43}
\end{equation*}
$$

In terms of the factors defined in Eq. (32), the above equation reads

$$
\begin{equation*}
\frac{\Delta(D C \text { output })}{D(\text { output })}=\sqrt{\frac{T_{\omega}}{2}} \frac{M S}{\sqrt{N^{2}+A I^{2}+2 I N}} \tag{44}
\end{equation*}
$$

F.q. (43) reveals that the term $2 I N$ is relatively unimportant unless N and I are comparable and M is not large. To determine precisely the effect of this term, one may assume $I=A$ and, using Eq. (44), calculate a correction factor as a function of 3 which will convert Eq. (18) of Report 17 to agree with Eq. (43) above.

CONFIDENTMAL

Table $1 \quad(N=T 2$

M	Correction factor
10	.89
20	.94
30	.96
40	.97
50	.97

Since some of the curves in Report No. 17 take M as 40 and allow N/I to vary, a correction factor as a function of N / I may be useful.

Table $2(M=40)$

N/I	Correction factor
.1	.99
1	.97
4	.92

V. Detector Performance with Ambient Noise and Several Interferences

Without further derivation, one can infer the expressions for output variance and figure of merit for k interferences from Eqs. (25), (28), and (30). Using the C and D coefficients defined in Eqs. (14) and (17), the general expression for output variance is

$$
\begin{align*}
& D^{2}(z)= \\
& \frac{2}{T} \sum_{u=1}^{k} I_{u}^{2}\left\{M^{2} C_{o 0}^{u u}+4 i \sum_{s=1}^{M-1}(M-s) C_{o s}^{u u}+2 \sum_{r=1}^{M-1} \sum_{s=1}^{M-1}(M-r)(M-s)\left[c_{r s}^{u u}+C_{-r s}^{u u}\right]\right\} \\
& +\frac{4}{T_{u=1}^{k}} \sum_{v=u+1}^{k} I_{u} I_{v}\left\{M^{2} C_{o 0}^{u v}+2 M \underset{q=1}{M-1}(M-q)\left[C_{o q}^{u v}+C_{q 0}^{u v}\right]+2 \sum_{r=1}^{M-1} \sum_{s=1}^{M-1}(M-r)(M-s)\left[C_{r s}^{u v}+C_{r s}^{u v}\right]\right\} \\
& +\frac{4 I N}{T} \sum_{u=1}^{k}\left\{M^{2} D_{0}^{u}+2 M \sum_{r=1}^{M-1}(M-r) D_{r}^{u}\right\}+\frac{2}{T} N^{2}\left\{M^{2} \int_{-\infty}^{\infty} \rho_{n}^{2}(\tau) d \tau\right\} \tag{45}
\end{align*}
$$

CONFIDENTIAL

If autocorrelation functions are assumed to be exponential functions of the form $e^{-\omega_{u}|\tau|}$ the index of performance becomes

Δ (DC output) D(output)

$\sqrt{\frac{T}{2}} \mathrm{MS}$
$\left\{\left(\frac{2}{3} M+\frac{1}{3 M}\right)_{u=1}^{k} \sum_{u}{ }^{2} \omega_{u}+\sum_{u=1}^{k} \sum_{v=u+1}^{k} \frac{I_{u} I_{v}}{\omega_{1}\left(\omega_{u}+\omega_{v}\right)}\left[2+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) X_{u v}\right]+2 N \sum_{u=1}^{k} \frac{I_{u}}{1_{2}\left(\omega_{0}+\omega_{u}\right)}+\frac{N^{2}}{\omega_{0}}\right\}^{\frac{1}{2}}$
where $X_{u v}$ is the same function as X_{12} of Section III, involving the uth and vth interierences.

It seems instructive to compare detector performance in the presence of several independent point source interferences with the performances In the presence of a single interference yielding the same average power as all the independent interferences together. If I represents the total average interference power in both situations,

$$
\begin{equation*}
I=\sum_{u=1}^{k} I_{u} \tag{47}
\end{equation*}
$$

In Eq. (46) the coefficient of the $I_{u}{ }^{2}$ ierms is the factor A defined in Eq. (32), and the coefficients of the $I_{u} I_{v}$ terms arc like B of Eq. (32). B ranges from 2 to 2 A as X_{12} varies from 0 to 2.1 In the limiting case where angular displacements between interferences are small (or bandwidths are narrow), the B factors in Eq. (46) approximately cqual 2 A . If all the ω_{u} 's roughly equal ω_{0}, Eq. (46) then becomes
${ }^{1}$ Note that 2.0 is the maximum value of X_{12} for interferences remote in bearing from the target. For less remote interferences X_{12} exceeds 2 . Wherever the assumption $e^{-\omega_{0} \tau} \cong 0$ is valid, $X_{12}\left(\theta_{1}, \theta_{1}\right) \cong 2.0$.

This result is the same as that obtained in Eq. (44) for a single interference of power 1 . It seems reasonable that if multiple interferences span only a small arc, on the order of the beamwidth of two adjacent hydrophones, the effect on the detector is scarcely distinguishable from that of a single point source interference.

The opposite limiting case occurs in the very improbable event that the interferences are all located at critical bearings which make ail the $X_{u v}$ approximately zero. In this situation, the B factors roughly
equal 2 . Now Eq. (46) yields
$\frac{\Delta(D C \text { output })}{D(\text { output })} \cong \frac{\sqrt{\frac{T \omega}{2} M S}}{\int_{u=1}^{k} \sum_{u}^{2}+2 \sum_{u=1}^{k} \sum_{v=u+1}^{k} I_{u} I_{v}+2 N \sum_{u=1}^{k} I_{u}+N^{2}}$
The best performance $[$ smallest D (output) $]$ occurs if all the I_{u} are equal to I/k. I Iu this event,

[^13]\[

$$
\begin{align*}
& \frac{\Delta(D C \text { output })}{D(\text { output })}=\frac{\sqrt{\frac{T \omega_{o}}{2} M S}}{\sqrt{A k \frac{1}{k j}^{2}+2 \frac{k(k-1)}{2}\left(\frac{1}{k}\right)^{2}+2 N I+H^{2}}} \\
& \sqrt{\frac{T \omega_{O}}{2} \frac{M S}{\sqrt{I^{2}\left(\frac{A}{k}+1-\frac{1}{k}+2 N I+N^{2}\right.}}}=\sqrt{\frac{T \omega_{O}}{2}} \frac{M S}{\sqrt{I^{2}\left(\frac{A}{k}+1\right)+2 N I+N^{2}}}
\end{align*}
$$
\]

For a ratio $N / I \gg$, this result is, of course, about the same as that for a single interferenct. If $I \gg N$, however, the figure of merit in this case is greater than that for a sing!e interference by a factor of about $\sqrt{A k-k}$. If $k=10$ and $M=40$, for instance, ihis factor is roughly 3. In practice this performance would virtually never be achieved, since it depends on a freak distribution of the interferences 1n spact.

A crude but hopefully more meaningful estimate of the hest performance for a flxed lotal interference powe: is obtained by assuming that all the $X_{u v}$ in Eq. (46) take on the min!mum calculaced values for X_{12} (page 17) with $\Delta 0$ in the range of about 5° to 40°. This minimum value, for $M=40$ or $M=20$, is about 6 . From Eq. (46),
$\frac{\Delta(D C \text { outpur })}{D(\text { output })}=$

$\sqrt{\frac{T \omega_{c}}{2}}-\frac{M S}{\sqrt{I^{2}\left(\frac{\Lambda}{k}+3 A\right)+2 N I+N^{2}}}$

$$
\begin{equation*}
\left(X_{u v}=.6, \text { all } u, v\right) \tag{51}
\end{equation*}
$$

With large I / N, this figure of merit is greater than that for a single interference by a factor $\sqrt{\frac{k}{1+.3 k}}$. For $k=10$, this figure is about 1.6 ; for large k, it is about 1.8 .

CONFIDENTIAL

A crude estimate of average performance is obtained by letting all the $X_{u v}$ in Eq. (46) take on the average calculated value of X_{12} for $\Delta \theta$ in the range of 5° to 40°. The average is close to 1 .

$$
\begin{equation*}
\frac{\Delta(D C \text { output })}{D(\text { output })} \cong \frac{\sqrt{\frac{T \omega_{o}}{2}} M S}{\sqrt{I^{2}\left(\frac{A}{x}+\frac{A}{2}\right)+2 N I+N^{2}}} \quad\left(X_{u v}=1 .,\right. \text { all u,v)} \tag{52}
\end{equation*}
$$

The improvement factor here is $\sqrt{\frac{k}{1+.5 k}}$, which is about 1.2 for $k=10$, and about $\sqrt{2}$ for large k.
VI. Detector Performance with Ambient Noise and a Distributed Interference

An interference distributed conifnuously over a finite arc may be treated as a limiting case of the multiple interference problem. The distributed interference: is represented as an infinite number of alemental point source inturferences spaced an infinftesimal angular distance apart throughout the arc. The derivation in the previous sections of this report have assumed the several interference processes to be statistically independent, and the results to be derivtd here will not reflect dependencles among different points along the are of the distributed interfe:ence. These dependencies may be expected to degrade priormance somewhat more than the subscquent results of ihiz section will indicate. The assumption of exponcatial autocoryelation functions for interference and nodse is inherent in these derivations, and the "cutofif" frequincies for interfertnce and noise are assumed cqual.

Angular power density functions may be defined as folle we to correspond to the terms of Eq. (46):

$$
\begin{equation*}
I\left(\theta_{u}\right) d \theta_{u}=I_{u} \quad I\left(\theta_{v}\right) d \theta_{v}=I_{v} \tag{53}
\end{equation*}
$$

CONFIDENTIAR

The first two expressions in the denominator of Eq. (38) may be combined in one double sum. With all ω_{u} set squal to ω_{o}, by Eq. (46),

$$
\begin{align*}
& \frac{\Delta(D C \text { output })}{D \text { (output) }}= \\
& \sqrt{\frac{T \omega_{0}}{2} M S}\left\{\begin{array}{l}
\theta_{\max } \theta_{\max } \sum_{i=} I\left(\theta_{u}\right) d \theta_{u} I\left(\theta_{v}\right) d \theta_{v}\left[2+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) X\left(\theta_{u}, \theta_{v}\right)\right]+ \\
\theta_{u} \theta_{v}= \\
\theta_{\min } \theta_{u}
\end{array}\right. \\
& \left.2 N \sum_{\theta_{u}=\theta_{m i n}}^{\theta_{\max }} I\left(\theta_{u}\right) d \theta_{u}+N^{2}\right\}^{-\frac{1}{2}} . \tag{54}
\end{align*}
$$

$\theta_{m i n}$ and $\theta_{\max }$ define the extent of the interference, and $\left.X i \theta_{u}, \theta_{v}\right)$
is X_{12} of Section III with $\theta_{1}=\theta_{u}$ and $\theta_{2}=\theta_{v}$.
In the 11 mit as $d \theta_{u}$ and $d \theta_{v}$ approach zero, the equation reads

$$
\frac{\Delta \text { DC output) }}{D(\text { output }}=
$$

If $I\left(0_{u}\right)$ is fairly constant over the arc of the interference, the following approximation is useful:

$$
\begin{align*}
& \int_{\theta_{\min }}^{\theta_{d} \max _{u} \int_{\theta_{u}}^{\theta} \max _{d} \theta_{v} I\left(\theta_{u}\right) I\left(\theta_{v}\right)\left[2+\left(\frac{2}{3} M-1+\frac{1}{3 M}: X\left(\theta_{u}, \theta_{v}\right)\right] \cong\right.} \\
& \frac{I^{2}}{2}\left[2+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) \bar{X}\left(\theta_{\min }, \theta_{\text {may }}\right)\right], \tag{57}
\end{align*}
$$

where $\quad I=\int_{\theta_{\min }}^{\max I\left(\theta_{u}\right) d \theta} \mathbf{u}$

CONFIDENTIAL

and

Now Eq. (46) is approximatel ${ }_{j}$

$$
\begin{equation*}
\frac{\Delta(D C \text { output })}{D(\text { output })} \cdot \frac{\sqrt{\frac{T \omega_{0}}{2} M S}}{\sqrt{I^{2}\left[1+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) \frac{\bar{X}\left(\theta_{\mathrm{mIn}}, \theta_{\max }\right)}{2}\right]+2 N I+N^{2}}} \tag{60}
\end{equation*}
$$

The factor \bar{X} may be calculated numerically, but analytic approximation does not appear feasible. Computer calculations have been perforned, using the parameter values $\omega_{0}=2 \pi \times 5000, d=2 \mathrm{ft}$, and both $M=40$ and $M=20 .^{1}$ The results are shown graphically in Figures 5 and 6 in the same format usad earlier for X_{12}. The curves of \bar{X} resemble those of X_{12}, except that the \bar{X} curves show no significant irregularities, and \vec{X} does not approach 0 even for large values of the parameter $\Delta \theta$ (full angular spread of the interference). It must be cmphasized that the factor \bar{X} and the corresponding detector performance are quite insensitive to the bruadth of the interference if tne center of the interference is closer to the target than about 50°.

The results are not drastically different for the two values of M, the number of hydrophones. For a fixed center angle θ, the $\overline{\mathrm{X}}$ curves for $M=20$ lie above those for $M=40$ at small values of $\Delta \theta$ anc then appronch the curves for $M=40$ at larger values of $\Delta \theta$. The difference In results for the different values f M is seen to be more pronounced

[^14]Form EE-12

CONFIDENTIAL

Form EE-12

DUNHAM LABORATORY, YALE UNIVERSITY

CONFIDENTIAL

for iarge values of breadth $\Delta \theta$. The implication of these results is that an increase in the number of hydrophones effects a small improvement in relative performance as measured by the figure of merit. For the smaller number of hydrophones, as conpared with the larger number, performance is degraded more seriously by angularly narrow interferences than by broad interferences.

As in the previous section, one may compare performance in the presence of a distributed interference of total power I with that obtained for a point source interference of the same power. For the case where $I / N \gg 1$, comparison of Eqs. (44) and (60) indicates that the "Improvement factor" for a distributed interference is roughly $\sqrt{2 A / \bar{B}}$, where, by analogy with Eq. (32),

$$
\begin{equation*}
A=\frac{2}{3} M+\frac{1}{3 M} \quad \bar{B}=2+\left(\frac{2}{3} M-1+\frac{1}{3 M}\right) \bar{X} \tag{61}
\end{equation*}
$$

Table 3 below displays sample results for 40 hydrophones.

Table 3 (distributed interfcrence)

Center Angle 8	Breadth $\Delta \theta$	$\bar{\chi}$	$\bar{B} / 2$	-	Improvernent Factor $\sqrt{2 A / B}$
(degrces)	$\frac{(d-g r e s)}{}$				
25	5.7	1.60	22.4	26.7	1.09
	11.4	1.58	22.1		1.10
	22.9	1.58	22.1		1.10
	40.0	1.58	22.1		1.10
50	5.7	1.18	16.8		1.26
	11.4	1.02	14.6		1.35
	22.9	. 95	13.7		1.40
	40.0	. 95	13.7		1.40
75	5.7	1.51	21.2		1.13
	11.4	1.21	17.2		1.25
	22.9	1.00	14.4		1.36
	40.0	. 97	14.0		1.38

CONFDENTIAL

The "improvement factors" indicated in Table 3 do not reflect a great difference in performance between the two cases of a point source interference and a distributed interference. Yet a $: 3 \mathrm{an}^{\prime}$ נr of 1.3 or 1.4 is not entirely trivial, because of the fact that even if $\overline{\mathrm{X}}$ approached zerc, \bar{B} could be no smaller than 2 , and hence the improvement factor muld t no larger than \sqrt{A}, which in this casc is 5.2 . The meaning i Lhe hypulhe:fcal improvement factor \sqrt{A} becomes clear when one considers Eq_{f}. ($1 / 4$) : ihe single interference case, which reads,

$$
\begin{equation*}
\frac{\triangle(D C \text { output })}{D(\text { output })}=\sqrt{\frac{T \omega_{C}}{2}} \frac{M S}{\sqrt{N^{2}+A I^{2}+2 I N}} \tag{62}
\end{equation*}
$$

The improvement factor was defined by the fact that in the distributed interference case, the coefficient of I^{2} in an equation of the above form is divided by the square of the improvement factor. As the improvement factor approacheds $\pm A$, therefore, the coefficient of I^{2} approaches unity in the above equation. The denominator then becomes $V N^{2}+I^{2}+2 N^{2}$ $=\sqrt{(N+1)^{2}}$. The term I enters into the equation in the same manner as N, because the distributed inierference is now so widely distributed that it has become simply ambient noise. The hypothetical maximum improvement factor for the case of multiple interferences is also \sqrt{A}, as indicated by the discussion following E?. (50) The ealculations reported here, however, indicate that even a very broad interference causes a degradation in perfomsnce far more severe than that caused by ambient noise independent from hydtophone to hydrophone. Note that the smallest calculated value of $\overline{\mathrm{X}}$ is .87 , for which the improvement factor is only about 1.5 . The fact that all of the curve in Figure 5 approach their asymptotic values for relative y smai! suggests thai the equivalent of isotropic mise distribution has actually been reached. The

discrepancy between 1.5 and \sqrt{A} would then have to be attributed to the phone to phone noise coherence which exists even in the isotropic case with the numerical parameters considered.
VII. Cicncluding Remarks

Althcugh calculations of $\frac{L(D i \text { output) }}{D \text { (output) }}$ for multiple cr distributed inLerferences may become quite complicated, the upper and lower bounds may always be quickly determined if the total interference power 1 is known. The upper and lower bounds corregpond respectively to treating I as 'sotropic ambient noice independent from hydrophone to hydrophone and as a pitni source. The following inequality must be satisfied.

$$
\begin{equation*}
\sqrt{\frac{T_{\omega_{0}}}{2}} \frac{M S}{\sqrt{N^{2}+\frac{I^{2}}{3}\left(i M+\frac{1}{M}\right)+2 I N}}<\frac{\Delta(D C \text { output })}{D(\text { output })} * \sqrt{\frac{T \omega_{o}}{2}} \frac{M S}{I+N} \tag{63}
\end{equation*}
$$

The numeidcal results oi chis report indtcate that in most reallstic situations the index of performance will be much closer to its lower bound then to its upper bouid.

The major failing of the treatment given in this report is that the results are inaccurate for interferences near the target in bearing. Approximate computations and the results of Report No. 17 suggest that the error will be small if all intexferences are separated from the target by appreciably more than the beimwidth of the atray.

COMFLLINIAL

CONFIDENTIAL

Apyendix A: Calculation of C Coefficients

Initially one may assume r g greater than $s!v$, both r ard s are positive. Now Eq. (19) may de expressed

$$
\begin{aligned}
& +\int_{-r \tau_{u}}^{-s \tau_{v}} e^{-\omega_{u}\left(\tau+r \tau_{u}\right)+\omega_{v}\left(\tau+s \tau_{v}\right)} d \tau+\int_{-S T_{v}}^{\infty} e^{-\omega_{u}\left(\tau+r \tau_{u}\right)-\omega_{v}\left(\tau+s \tau_{v}\right)} d T=
\end{aligned}
$$

$$
\begin{aligned}
& +e^{-\omega_{u} r T} u^{-u_{v} s t} v \int_{-s, v}^{2} e^{-\left(\omega_{u}+(\omega)\right.} v^{i} d v=
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{e^{-\omega} u^{T \top} u^{-\omega} v^{S \top} v}{-\omega^{-\omega} v}\left|-e^{\left(\omega_{u}+\omega\right.} v^{\prime-\omega \tau} v\right|= \\
& \frac{e^{\omega_{v}\left(s:_{v}-r \tau_{u}\right)}}{\omega_{u}+_{v}}+\frac{e^{\omega_{u}\left(-r \tau_{u}+s \tau_{v}\right)}-e^{\omega_{v}\left(s v_{v}-r \tau_{u}\right)}}{\omega_{v}{ }^{-\omega_{u}}}+\frac{e^{u^{(-r \tau} u^{\left.+s \tau_{v}\right)}}}{\omega_{u}+\omega_{v}}=
\end{aligned}
$$

This result generalizes to

CUIWHENTIAL

Appendix B: Computation of X_{12} and \bar{X}
The computer program mployed to calculate X and \bar{X} embodies a sub-routine which calculates X_{12} as a function of θ_{1} and θ_{2} according to Eq. (40), with the minor exception that the term M is neglected in the constant factor.

The factor \bar{X} is a two-dimensional integral over a square in $\theta_{a} \theta_{b}$ space with θ_{a} and θ_{b} running from θ_{1} to θ_{2}. The main program portions the square region into one hundred small squares of equal size. The value of X_{12} at the center of each small square, calculated by the subroutine, is used as the value of X_{12} over the whole square. The approxImation to \bar{X} is then just a Riemann sum based on one hundred squares.

This method of approximation yields results which one expected to be slightly larger than the correct value of $\overline{\mathrm{X}}$ because of the fact that at the center point of ten of the one hundred squares, $\theta_{a}=\theta_{b}$. When $\theta_{a}=\theta_{b}, X_{12}\left(\theta_{a}, \theta_{b}\right)$ has a value of at least 2.0 . For small differences $\left(\theta_{a}-\theta_{b}\right) X_{12}$ falls fairly rapidly from its value of 2.0 or greater. Hence, the approximation to \bar{X} is too large on these ten squares. In fact the result of the approximation to \bar{X} cannot be less than $.1(2.0)=.2$. All of the calculated results cited in this report are substantially greater than .2 , and it is believed that the error in approximating \bar{X} is at most a few percent. Spot checks were made using a higher precision method which partitioned the $\theta_{a}-\theta_{b}$ space into squares . 01 radian on a side. The results obtained in this way were lower by about five percent. Since the higher precision calculation required a long execution time, only a few calculations were made with it.

General Dynamics Corporation/Electric Boat division PROCESSING OF DATA FROM SONAR SYSTFMS (U), VOL. V Technical Report C417-68-078 1 July 1966 to 1 July 1967 John H. Chang, Verne H. McDonald, Peter M. Schultheiss, Franz B. Tuteur 117 Pages Volume V , and its supplement, further pursues the general subject of passive sonars operating in an anisotropic noise environment, and has taken two new directions. Environments containing not one but several point sources of interference or a spatially distributed interference are studied. Conventional as well as optimal detectors were analyzed. The second direction was an examination of the effect of single plane wave interference on tracking accuracy. This volume also continues the study of active sonar systems initiated in Volume IV, and initiates an effort to deal with the signal detection and extraction problern in a noise environment whose statistical properties are largely or wholly unknown.	General Dynamics Corporation/Electric Boat division PROCESSING OF DATA FROM SONAR SYSTEMS (U), VOL. V Technical Report C417-68-078 1 July 1966 to 1 July 1967 John H. Chang, Verne H. McDonald, Peter M. Schultheiss, Franz B. Tuteur 117 Pages Volume V, and its supplement, further pursues the general subject of passive sonars operating in an anisotropic noise environment, and has taken two new directions. Environments containing not one but several sources of interference or a spatially distributed interference are studied. Conventional as well as optimal detectors were analyzed. The second direction was an examination of the effect of single plane wave interference on tracking accuracy. This volume also continues the study of active sonar systems initiated in Volume IV, and initiates an effort to deal with the signal detection and extraction problem in a noise environment whose statistical properties are largely or wholly unknown.	-
General Dynamics Corporation/Electric Boat division PROCESSING OF DATA FROM SONAR SYSTEMS (U), VOL. V Technical Report C417-68-078 1 July 1966 to 1 July 1967 John H. Chang, Verne H. McDonald, Peter M. Schultheiss, Franz B. Tuteur 117 Pages Volume V, and its supplement, further pursues the general subject of passive sonars operating in an anisotropic noise environment, and has taken two new directions. Environments containing not one but several point sources of interference or a spatially distributed interference are studied. Conventional as well as optimal detectors were analyzed. The second direction was an examination of the effect of single plane wave interference on tracking accuracy. This volume also continues the study of active sonar systems initiated in Volume IV, and initiates an effort to deal with the signal detection and extraction problem in a noise environment whose statistical properties are largely or wholly unknown.	General Dynamics Corporation/Electric Boat division PROCESSING OF DATA FROM SONAR SYSTEMS (U), VOL. V Technical Report C417-68-078 1 July 1966 to 1 July 1967 John H. Chang, Verne H. McDonald, Peter M. Schultheiss, Franz B. Tuteur 117 Pages Volume V , and its supplement, further pursues the general subject of passive sonars operating in an anisotropic noise environment, and has taken two new directions. Environments containing not one but several point sources of interference or a spatially distributed interference are studied. Conventional as well as optimal detectors were analyzed. The second direction was an examination of the effect of single plane wave interference on tracking accuracy. This volume also continues the study of active sonar systems initiated in Volume IV, and initiates an effort to deal with the signal detection and extraction problem in a noise environment whose statistical properties are largely or wholly unknown.	

DOCUMENT CONTROL DATA - R \& D

(Security clasaification of filte, body of abstract and indesing annotation must be entored when the overall report is clasaified)

4. DESCRIPTIVE NOTES (Type of report end inclusive dates)

Annual Report, 1 July 1966 to 1 July 1967
5. AUTHOR(S) (First name, middle initial, lant name)

John H. Chang, Verne H. McDonald, Peter M. Schultheiss, and Franz B. Tuteur

10. distribution statement

In addition to security requirements which apply to this document and must be met, each transmittal outside the agencies of the U.S. Government must have prior approval of the Office of Naval Research.

11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Office of Naval Research Washington, D.C.
Volume V, and its operating in an ani Environments cont spatially distribute detectors were ana single plane wave the study of active deal with the signa statistical properti	the general subject of passive sonars and has taken two new directions. oint sources of interference or a Conventional as well as optimal n was an examination of the effect of curacy. This volume also continues Volume IV, and initiates an effort to roblem in a noise environment whose known

[^0]: *These reports are unclassified and are issued as a Supplement to Volume V.

[^1]: For a detalled statement of the required condtions, sce M. Rosenblatt, "Some Comments on Narrow Band-Pass Filters," Ouarterjy of Applied Math., 15, No. 4, January 1961.

[^2]: ${ }^{1}$ The argument has been conducted for the finite interval $0 \leq z \leq 0_{2}$ To derive from it the point-wise condition required for the simplification of Eq . (5a) one necd only postulate linearity of $\bar{z}(\theta)$ and $\sigma_{z}(\theta)$ in th. neighborhood of ${ }^{\theta}{ }_{0}$.

[^3]: $1_{\text {Repart No. } 10 \text {, Eq. (9) }}$

[^4]: $l_{\text {The curve on the right gires the complete pattern, while that on the }}$ left shows the neighborhood of che origin in expanded form (target response).

[^5]: ${ }^{1}$ Note that this spectral function falls to zero at $\omega=0$, a feature generally present in practical systems.

[^6]: ${ }^{1}$ Note, however, that the curves for exponenticl spectra consistently terminate at smaller I / S than those for the other spectral types.

[^7]: ${ }^{1}$ The approximation is poorest for very small $x_{1}+y_{1}$. This is the condition of steering angle very close to interference bearing, where no satisfactory tracking performance would be expected in any case.

[^8]: Liote $N / I=\therefore, \quad \because=10$ is fairly close io the bordierline of mbinent nojs domination, hence the deviation is great. st itt this case. A-31

[^9]: ${ }^{1}$ With $S \geqslant N$ there is presumably very littlc difficuity in tracking once the interferunce has been eliminatud.

[^10]: ${ }^{1}$ hssuming the delays T, and T, to be positive numbers proves convenlent in writing many subsequent expressions, even though Eq. (13) actually permits negative τ 's. In all expressions derived, no error is incurred by assuning the t's positive, even if Eq. (13) indicates that one or both are negative for the geometry and indexing of a perticular situation.

[^11]: $l_{\text {For the assumed values }} \omega_{1}=2 \pi: 5000$ and hydrophone spacing $d=2$ feet, calculations st. ow chat the term $e^{-\omega_{1}{ }^{\top} I}$ is less than .1 for bear'gs greater than about 10° relative to the target.

[^12]: 1 The assumption being nade is that $1+\omega_{0} T_{1}(1 / 2) j e^{-\omega_{0}{ }^{\top} 1}(1 / 2)$ is $<: 1$, on the order of .01 , for instance. ".is condition $1 s$ truc for $\omega_{0}{ }^{i} 1 \geq 3.5$ for $\omega_{0}=2 \pi \times 5000, d=2 \mathrm{ft}$, the incquality holds for any relative bearing greater than about 15°.

[^13]: ${ }^{1}$ This conclusion results from minimizing the denominator of. Eq. (49) 1. Ath the constraint $\sum I_{v}=I$.

[^14]: ${ }^{1}$ Detalls of the program in Appendix B.

