AD NUMBER

AD387057

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; JAN 1968. Other requests shall be referred to Air Force Rocket Propulsion Lab., Edwards AFB, CA.

AUTHORITY

31 Jan 1980, DoDD 5200.10; AFRPL ltr, 5 Feb 1986

THIS PAGE IS UNCLASSIFIED

AD <u>387 057</u>

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE WHER DOD DIRECTIVE 5200.20 AND RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE. DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE! DISTRIBUTION UNLIMITED.

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts NUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

AFRPL-TR-68-2

(Title Unclassified)

THROTTLING AND SCALING STUDY

FOR

ADVANCED STORABLE ENGINE

Report 68-C-0008-F

Part 1 of Two Parts

S. R. Andrus H. L. Bishop R. E. Duckering J. A. Gibb A. W. Nelson

V. H. Ransom

AEROJET-GENERAL CORPORATION Advanced Storable Engine Program Division Liquid Rocket Operations Sacramento, California

Final Report AFRPL-TR-68-2, Part 1 January 1968

SPECIAL HANDLING REQUIRED

In addition to security requirements which must be met, this document is subject to special export controls, and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPFR/STINFO) Edwards, California 93523.

> AIR FORCE ROCKET PROPULSION LABORATORY Research and Technology Division Air Force Systems Command United States Air Force Edwards, California

GROUP 4 DOWNGRADED AT 3 YEAR INTERVALS; DECLASSIFIED AFTER 12 YEARS

* THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794 ITS TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

CORPORATION

1173

CONFIDENTIAL

SUBSIDIARY OF THE GENERAL TIRE & RUBBER COMPANY

A C R O J E T - G E N E R A L

Best Available Copy

12 -

LEGAL NOTICE

"When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto."

(Title Unclassified)

THROTTLING AND SCALING STUDY

FOR

ADVANCED STORABLE ENGINE

Report 68-C-0008-F

Part 1 of Two Parts

- S. R. Andrus
- H. L. Bishop
- R. E. Duckering
- J. A. Gibb
- A. W. Nelson
- V. H. Ransom

SPECIAL HANDLING REQUIRED

In addition to security requirements which must be met, this document is subject to special export controls, and each transmittal to foreign government or foreign nationals may be made only with prior approval of AFRPL (RPPR/STINFO) Edwards, California 93523.

3221T

CONFIDENTIAL

and a sum has a sum the second beaution to be a sum of the second beaution of the second beaution of the second

Report 68-C-0008-F, Part 1

FOREWORD

This is the final report documenting the technical accomplishments of the ARES (Advanced Rocket Engine Storable) Throttling-Scaling Design Study Program under Contract F04611-68-C-0008. Included also in this report are the results of an Aerojet-General Corporation-sponsored design of a throttlablerestartable 100K ARES engine which was used as the baseline engine for this design study. The period of performance covered by this report is from 10 July 1967 through 10 October 1967.

۲.

The throttling and scaling study was conducted by the Advanced Systems Division of the Liquid Rocket Operations, Aerojet-General Corporation, Sacramento, California under the direction of Mr. R. Beichel. Technical and managerial control was provided by Mr. J. A. Gibb. Mr. S. R. Andrus was the project engineer.

This report contains classified information extracted from the ARES Final Report, Phase I, AFRPL-TR-67-75 dated August 1967, Confidential, Group 4, Contract AF 04(611)-10830.

This report was prepared in two separate parts. Part 1 contains the technical accomplishments while Part 2 (Appendix I) contains ARES Thrust Scaling Data.

This technical report has been reviewed and is approved.

C. D. Penn Program Manager, Liquid Rocket Division, Air Force Rocket Propulsion Laboratory Edwards, California

ii (This page is Unclassified)

CONFIDENTIAL

Report 68-C-0008-F, Part 1

UNCLASSIFIED ABSTRACT

(U) This is the final report documenting the technical accomplishments of the ARES (Advanced Rocket Engine Storable) Throttling and Scaling Study Program inder Contract F04611-68-C-0008. Included also in this report are the results of an Aerojet-General Corporation-sponsored design of a throttlablerestartable 100K ARES engine which was used as the baseline engine for this design study.

(U) Throttlable, restartable ARES (Advanced Rocket Engine Storable) engine designs are presented at 25,000, 100,000, and 500,000 lb rated thrust levels. On the basis of these designs, engine thrust scaling parametric data are presented over a thrust range of 25,000 to 500,000 lb with nozzle expansion ratios of 50:1 and 150:1.

anatan Jaka

とうちょうち ちょうちょう

iii

Report 68-C-0008-F, Part 1

TABLE OF CONTENTS

Part 1

		Page
I.	Introduction	I-1
II.	Summary	II-1
III.	100K Throttlable-Restartable Base-lin	e Engine III-1
	A. General	III-1
	B. Description	III-1
	C. Engine Throttling Performance	III-10
	D. Weight Breakdown	III-12
IV.	Integrated Auxiliary Power Package (T	ask I) IV-1
	A. Objectives and Approach	IV-1
	B. Operational Requirements	IV-2
	C. Thrust Vector Control	IV-4
	D. Roll Control Design	IV-5
	E. Tank Pressurization Design	IV-8
	F. Integrated System	IV-11
v.	Low Frequency Analysis (Task II)	V-1
	A. Objectives and Approach	V-1
	B. Mathematical Model	V-1
	C. Stability Analysis	V-2
	D. Results	V-2
	E. Engine System Changes	V-3
VI.	25K Engine Design (Task III)	VI-1
	A. Objectives and Approach	VI-1
	B. Chamber Pressure Optimization	VI-1
	C. Description	VI-5
	D. Engine Throttling Performance	VI-7
	E. Weight Breakdown	VI- 8

iv

and the sum that the second se

¥

Report 68-C-0008-F, Part 1

TABLE OF CONTENTS (cont.)

			Page
VII.	500F	C Engine Design (Task IV)	VII-1
	A.	Objective and Approach	VII-1
	Β.	Description	VII-1
	с.	Engine Throttling Performance	VII-3
	D.	Weight Breakdown	VII-4
VIII.	Engi	ne Thrust Scaling (Task V)	VIII-1
	A.	Objective and Approach	VIII-1
	в.	Performance Scaling	VIII-1

Part 2

APPENDIX I

I.	Introduction	I-1
II.	ARES Engine Description	II-1
111.	Scaling Data	III-1

v

- And the second se

Allow an and

200

Report 68-C-0008-F, Part 1

TABLE LIST

<u>Part 1</u>

	Table
Engine Changes for Throttling Capability	III-I
Material List, Engine Module Assembly, 100K ARES	III-II
Throttling Performance, 100K ARES	111-111
Symbol List for Throttling Computer Study	III-IV
100K ARES Weight and Inertia Summary	III-V
100K Prototype Production ARES Weight and Inertia Summary	III-VI
IAPP Requirements, Current Operational Vehicles	IV-I
Throttling Performance, 25K ARES	VI-I
25K ARES Weight and Inertia Summary	VI-II
25K Prototype Production ARES Weight and Inertia Summary	VI-III
Throttling Performance, 500K ARES	VII-I
500K ARES Weight and Inertia Summary	VII-II
500K Prototype Production ARES Weight and Inertia Summary	VII-III
ARES Thrust Chamber Performance Summary	VIII-I

FIGURE LIST

Part 1

	Figure
ARES Engine, 100K, Fixed Thrust	I - 1
ARES Engine, 100K, Throttlable	111-1
HIPERTHIN Injector Throttling Characteristics	111-2
Secondary Combustor Injector	III-3
Nozzle Extension	111-4
Envelope 100K Throttlable ARES	111-5
ARES Throttlable Engine Schematic	111-6
ARES Start and Shutdown	III-7
Throttling Performance, 160K ARES	111-8
Typical Transpiration Coolant Flow During Throttling	III-9

vi

Report 68-C-0008-F, Part 1

FIGURE LIST (cont.)

ÿ,

	Figure
ARES External View with IAPP Specification	IV-1
IAPP System Using Engine Gas	IV-2
IAPP System Using Engine Liquids	IV-3
ARES Throttling Stability	V-1
Stabilizing Effects of Engine Changes	V-2
Performance Loss Summary for Different Design Pressures	VI-1
Vehicle Payload Loss for Different Design Pressures	. VI-2
Throttling Performance for Different Design Pressures	VI-3
ARES Engine, 25K, Throttlable	VI-4
Envelope 25K Throttlable ARES	VI-5
Throttling Performance, 25K ARES	VI-6
ARES Engine, 500K, Throttlable	VII-1
Envelope, 500K, Throttlable ARES	VII-2
Throttling Performance, 500K ARES	VII-3

vii

.

.

Report 68-C-0008-F, Part 1

I.

INTRODUCTION

(U) This report documents the technical accomplishments of the ARES (Advanced Rocket Engine Storable) Throttling-Scaling Design Study Program, Contract F04611-68-C-0008, from 10 July 1967 through 10 October 1967. A design for a 100K throttlable-restartable ARES prepared under an Aerojet-General-sponsored program was used as the base-line engine design for this design study. This throttlable engine design was evolved from the ARES fixed-thrust engine, designed under Contract AF 04(611)-10830, reported in Reference 1, and described at the end of this section.

(U) The program had five basic objectives (Tasks) as listed and described:

Task I--Integrated Auxiliary Power Package

(U) Prepare layout designs of an Integrated Auxiliary Power Package (IAPP). The IAPP shall include engine roll control, gimbal actuator for thrust vector control, and propellant tank pressurization systems for the base-line 100K ARES.

Task II--Low Frequency Analysis

いたちのかいのない いかいかいない そうれたちがい たちからのです ふいたいとうないちょうとう

, "F

大変のであった。

(U) Ascertain the suitability of the base-line 100K throttlable ARES to operate at discrete throttling points and identify system changes to establish satisfactory operation.

Task III--Design 25K Thrust Engine

(U) Establish the thrust chamber operating pressure value and prepare a layout design of a throttlable-restartable 25K engine based on the established thrust chamber pressure and on the 100K base-line engine cycle, component design, and control approaches.

> Page I-1 CONFIDENTIAL (This page is Unclassified)

Report 68-C-0008-F, Part 1

I, Introduction (cont.)

Task IV---Design 500K Thrust Engine

(U) Prepare a layout design of a throttlable-restartable 500K engine based on the 100K base-line engine cycle, component design, and control approaches.

Task V---Engine Thrust Scaling

(U) Establish engine thrust scaling parametric data over a thrust range of 25K to 500K using design data from the 100K base-line engine and from the 25K and 500K engine designs generated from Tasks III and IV.

(U) The fixed-thrust ARES engine from Contract AF 04(611)-10830, from which the throttlable base-line engine for this contract (F04611-68-C-0008) was derived, is described briefly below to properly orient the reader to the evolutionary process leading into this report.

(C) The fixed-thrust ARES engine is turbopump fed, using a staged combustion cycle, and operates at high thrust chamber pressure (2800 psia). In this staged combustion cycle, the turbopump turbine is driven by oxidizer-rich gas consisting of nearly all of the oxidizer (N_2O_4) and sufficient fuel (AeroZINE 50) to raise the temperature of the mixture to $1200^{\circ}r$. The turbine then exhausts through the secondary injector into the thrust chamber where this gas is used to burn the remaining engine fuel to create a maximum energy gas. Pump discharge pressures are approximately 6000 psia and the primary combustor operates at a pressure of 4700 psia.

(U) This engine, shown in Figure I-1, consists of a turbopump assembly, primary combustor assembly, secondary combustor (thrust chamber) assembly, suction valves, and engine control valves. The turbopump assembly houses the pumps, the turbine, and the primary combustor assembly and is the main structural component of the engine.

Page 1-2 CONFIDENTIAL

Report 68-C-0008-F, Part 1

I, Introduction (cont.)

(U) The turbopump is located on top of the thrust chamber; engine thrust is transmitted through the turbopump housing to the airframe. The single-stage turbine, oxidizer pump and fuel pump are all attached to a single shaft, which is oriented along the engine thrust axis and supported in the housing by propellant-lubricated bearings. Rotating speed is 30,000 rpm. Propellants enter the main pumps through inlets located on the side of the turbopump. Hydraulically driven boost pumps (not shown), driven by propellant recirculated from the main pump discharge, are attached to the bottom of the propellant tanks. Suction valves, which are used to isolate the engine from the propellants during storage, are attached to the inlets of the main pumps.

(U) The primary combustor, also located within the TPA housing, utilizes an annular 180-element pentad injector. The primary combustor fuel control valve is mounted at the inlet to the primary injector fuel manifold.

(U) The thrust chamber is regeneratively cooled with $N_2 0_4$ from the injector face to the design area ratio of 20:1. $N_2 0_4$ film cooling is used in the cylindrical and converging section of the thrust chamber to control the wall surface temperature.

(U) The secondary injector is sandwiched between the turbopump and the thrust chamber; the secondary combustor fuel control valve is located at the inlet to the secondary injector fuel manifold.

Report 68-C-0008-F

Report 68-C-0008-F, Part 1

II.

SUMMARY

(U) All objectives of the program were accomplished and are summarized in the following paragraphs of this section and are described in detail in their respective sections. In addition to specific contract objectives, improvements were made to the 100K base-line engine based on test results from ARES thrust chamber testing under Contract AF 04(611)-10830. The updated configuration of this 100K base-line engine is described in Section III.

Task I--Integrated Auxiliary Power Package (IAPP)

(U) Functional requirements of an IAPP including roll control, thrust vector control, and propellant tank pressurization were surveyed for Titan, Apollo Service Module, and Transtage engines. From these requirements, requirements were established for the 100K base-line engine. Approaches to achieving the required IAPP were evaluated and a system concept was selected which offered the greatest compatibility with an engine-vehicle system that has the requirement of being throttlable and restartable. The selected concept includes bipropellant small thrustors for roll control and propellant settling rockets, high pressure fuel-actuated (fuel from engine) gimbal actuators for thrust vector control, and main tank injection for tank pressurization. Detail description of the IAPP system and subsystems is presented in Section IV of this report.

Task II--Low Frequency Analysis

(U) The cycle stability of the ARES 100K base-line engine incorporating both turbulent and laminar injectors was analyzed. The results indicated a general destabilization as the engine is throttled and becoming unstable at thrust levels between 15 to 20% of full thrust. Cycle stability at the low

Page II-1

Report 68-C-0008-F, Part 1

II, Summary (cont.)

thrust level can be achieved by adjusting the slope of the oxidizer pump characteristics head-capacity curve and increasing.oxidizer injector pressure drop values. Detail description of the low frequency analysis is presented in Section V of this report.

Task III--Design 25K Thrust Engine

(U) Thrust chamber pressure value was established based on engine performance and payload considerations for a space vehicle. Results of this analysis indicated that the operating chamber pressure value of the base-line 100K engine is optimum for the 25K engine. On the basis of this established pressure, and the 100K base-line engine, a 25K engine design was prepared. The engine design included an engine layout, engine envelope, predicted performance and an estimated weight breakdown by major components. Detail description of the 25K engine design is presented in Section VI of this report.

Task IV--Design 500K Thrust Engine

(U) A 500K engine design was prepared on the basis of the 100K baseline engine which includes an engine layout, engine envelope, predicted performance and an estimated weight breakdown by major components. A detail description of the 500K engine is presented in Section VII of this report.

Task V--Engine Thrust Scaling

(U) Engine thrust scaling data were established over a thrust range of 25K to 500K. Scaling data were based on the calculated performance, envelope, and weight values generated from the 100K base-line engine and the 25K and 500K engines designed in this program. Estimated development and

Page II-2

Report 68-C-0008-F, Part 1

II, Summary (cont.)

Sector Sector

production cost data based on 1967 dollars are also given. The technical approach to compiling the thrust scaling data is presented in Section VIII of this report. Thrust scaling data are presented in Part 2 of this report as Appendix I.

Page II-3

Report 68-C-0008-F, Part 1

III.

100K THROTTLABLE-RESTARTABLE BASE-LINE ENGINE

A. GENERAL

(U) The throttlable and restartable ARES engine, which is the base-line engine for this throttling and scaling study, is described below. The changes, incorporated to convert the ARES fixed-thrust engine to this throttlablerestartable base-line engine, are also described.

B. DESCRIPTION

1. Performance Rating

(C) The throttlable-restartable ARES base-line engine utilizes the same staged combustion cycle with an oxidizer-rich primary combustor as did the fixed-thrust engine. The design performance ratings of the fixed-thrust and throttlable ARES engines are tabulated below.

	ARES Fixed-Thrus Engine, Contract AF 04(611)-10830	ARES Throttlable Engine					
	Sea Level	Vacuum	<u>Sea Level</u>				
Thrust, 1bf	100,000	111,066	95,500				
Specific impulse, predicted, sec	285	316.5	271.8				
Specific impulse, efficiency, %	91.7	91.7	91.7				
Nozzle area expansion (80% bell)	20:1	50:1	50:1				
Propellants		N ₂ O ₄ /AeroZINE 50					
Chamber pressure, psia		2800					
Mixture ratio, Injector		2.2					
NPSH, fuel, ft	20						
NPSH, oxidizer, ft	20						

Report 68-C-0008-F, Part 1

III, 1, Description (cont.)

(U) The basic change in performance rating of the throttlable engine compared to the original fixed-thrust engine resulted from the increased nozzle expansion ratio. The I efficiency (percent of theoretical) and chamber pressure remained the same. The engine basic flows were not changed, since the nominal chamber throat area (21.35 sq in.) was retained.

2. Throttling Design Changes

(U) The Phase I ARES engine undergoing component testing under Contract AF 04(611)-10830 was designed to achieve specified performance at full thrust. As designed, the engine could be throttled to 80% of full thrust while maintaining constant engine mixture ratio by adjusting the primary and secondary combustor fuel-control valves. As part of an Aerojet-General-sponsored design study effort, system changes were defined that would provide the engine with 10:1 throttling and restart capability. The engine system requirements to evolve throttlable-restartable engines and the physical and functional changes to accomplish these requirements are shown in Table III-I. It can be seen from this table that the major changes to make the fixed-thrust engine throttlable were the inclusion of throttlable thrust chamber components and the increase of the first-stage fuel pump discharge pressure. The first-stage fuel pump discharge pressure selected permits throttling at fixed-engine mixture ratio by use of the primary combustor fuel control valve only. A HIPERTHIN* primary injector was incorporated because 10:1 throttling has been demonstrated on this type of injector. The transpiration-cooled chamber was incorporated because this chamber was selected over the regeneratively cooled chamber in the ARES test program. The transpiration-cooled chamber is also better adaptable to throttling than the regeneratively cooled chamber. The suction valves were moved upstream of the boost pumps to provide more positive shutoff for space coast periods. All other desirable features of the fixed-thrust ARES were retained.

*Aeroje: General designation denoting High Performance Throttlable Injector.

Page III-2 **CONFIDENTIAL** (This page is Unclassified) *

Report 68-C-0008-F, Part 1

III, B, Description (cont.)

「おおおおお、「「おおいろのない」となっているのでは、「おおいろ」をなっていたので、「おおいろ」というできたが、「おおいろう」という、「こう」、

S. A. S. and .

ì

and the state of t

2.2

1

いった 着きるいの

3. Layout Design

(U) A layout design of the 100K throttlable ARES in shown in Figure III-1. The engine consists of a turbopump assembly, primary combustor assembly, secondary combustor (thrust chamber) assembly, fuel and oxidizer suction valves, and boost pumps. The turbopump assembly includes the main pumps, the turbine, the primary injector and combustor assembly, and the primary combustor fuel control valve, and forms the central structure of the module. The turbopump is mounted on top of the thrust chamber assembly, with thrust being transmitted through the turbopump housing to the gimbal and airframe. The thrust chamber assembly includes the combustion chamber, nozzle, secondary injector, and the secondary combustor fuel control valve. The entire engine is gimbaled from a gimbal assembly which is attached to the engine's thrust takeout pad.

(U) The turbine, oxidizer pump, and fuel pump are on a single shaft which is in line with the engine thrust axis and is supported in the housing by propellant-lubricated bearings. The single-stage turbine is on the lower end of the shaft and exhausts directly into the thrust chamber. The single-stage oxidizer pump is on the center of the shaft, with the two-stage fuel pump on the top end of the shaft. An interpropellant seal is located between the suction sides of the oxidizer pump and first-stage fuel pump to separate the propellants. The seal includes provisions for the introduction of an inert purge fluid if needed. Fuel and oxidizer enter the engine through vertical inlets on each side of the turbopump. In each suction inlet, a hydraulically driven boost pump is mounted with its shaft horizontal. A suction prevalve is integrated upstream of each boost pump.

(U) The primary combustor uses a radial inflow HIPERTHIN injector consisting of a stack of thin platelet washers, with fuel and oxidizer fed between and metered by atternate washers. HIPERTHIN injectors of radial inflow

> Page III-3 **CONFIDENTIAL** (This page is Unclassified)

Report 68-C-0008-F, Part 1

III, B, Description (cont.)

and axial flow configurations have been tested. The axial flow type has demonstrated high performance with low L* chamber (15 in.) and has been throttled at constant mixture ratio over a 10:1 thrust range. The results of a test series to evaluate throttlability of this injector are shown in Figure III-2.

(C) The platelet injector concept currently being tested on the ARES 100K program was selected for the secondary combustor and is shown in Figure III-3. The fuel is introduced through platelets fabricated from pairs of photoetched plates; the oxidizer-rich turbine exhaust gas passes between the platelets. Injector parameters for the 100K design are as follows:

w _F , lb/sec	84.1
Injector blade length, total, in.	240.0
\dot{w}_{μ} /blade length, lb/sec/in.	0.35
w injector, lb/sec	248.0
Net gas area, in. ²	42.5
Average gas flow, lb/sec/in. ²	5.84
Gross area, in. ²	72.5 (ref)
Blade area, total, in. ²	30.0 (ref)

(U) The secondary combustor, or thrust chamber, shown in Figure III-1, is transpiration-cooled to the throat and downstream to the point where static pressure is 30 psis; from that point an extension nozzle is cooled by the coolant-carryover boundary layer and radiation. The basis for selecting 30-psis pressure for the interface between the transpiration-cooled chamber and the nozzle extension is described in Section VI,B. The trar pirationcooled thrust chamber uses platelet washers for metering the required amounts of oxidizer into the thrust chamber wall. Experimental configurations of the platelet injector and the transpiration-cooled chamber are currently being tested at 100K thrust under ARES Contract AF 04(611)-10830. The no.zie extension is similar in design to the nozzle on the Apollo service module engine, which is shown in Figure III-4.

> Page III-4 CONFIDENTIAL

Report 68-C-0008-F, Part 1

III, B, Description (cont.)

(U) All of the engine's key load-carrying structural parts are cooled by the liquid propellants flowing through the structure. The warm internal components and hot gas (1200°F) are there .ly isolated from the structural portion of the housing by the high volume oxidizer flow. The fuel pump circuits are isolated from hot parts; this eliminates heat soak-back to these components on shutdown.

(U) An external envelope drawing of the engine is shown in Figure III-5. The integrated auxiliary power package (IAPP) shown in this figure is discussed in Section IV.

(U) A list showing the parts breakdown and materials considered for this engine design is shown in Table III-II. Included in this table are component environmental temperature values and the type of fluid exposure.

4. Cycle

A REAL PROPERTY AND A REAL

1

-Series parts

こころ 御御をとうとうないない ちょうちょう へんたいちょう

(C) The ARES engine staged-combustion cycle with its oxidizer-rich primary combustor can best be described with the use of the schematic in Figure III-6. Propellants enter the engine through the suction valves, and are pumped by the 8000-rpm boost pumps to a pressure of 85 psis and 160 psia, fuel and oxidizer, respectively, which is required for the 30,000-rpm main pumps. All of the oxidizer (N_2O_4) is then pumped to 4960 psia in the main oxidizer pump with most of it continuing to the primary combustor injector and the remainder flowing to three low-flow circuits. All of the fuel is pumped to 5050 psia in the first-stage fuel pump. Twenty percent of the engine fuel then enters the second-stage fuel pump where it is pumped to 5550 psia and passes through the primary combustor fuel control valve to the primary injector. The oxidizer and fuel enter the primary combustor where they combine hypergolically to form a 1185°F hot gas. This oxidizer-rich hot gas passes through the turbine, and then is exhausted into the thrust chember. The major portio

Report 68-C-0008-F, Part 1

III, B, Description (cont.)

of the fuel flow from the first-stage pump is ducted through the secondary combustor fuel control valve to the main injector where it is injected into the thrust chamber. This fuel burns with the oxidizer-rich turbine exhaust in the thrust chamber.

(U) In addition to the major flow circuits, the engine has several low-flow circuits. Each boost pump is hydraulically driven by approximately 87 of the propellant that is bled from the main pump discharge and ducted to the boost pump drive turbine, which then exhausts into the boost pump discharge. In the main turbopump, oxidizer for bearing coolant is bled from the pump discharge, passed through the oxidizer bearings, and discharged into the turbine inlet where it provides some turbine cooling. High pressure fuel from the first-stage pump is used to cool the rule pump bearings. Secondary combustor transpiration coolant flow (N_2O_4) is tepped from the oxidizer circuit at the primary injector.

(U) The engine's two fuel control values perform three functions: (1) propellant phasing is controlled during start and shutdown by sequencing both the primary and secondary fuel control values, (2) engine throttling is achieved by actuation of the primary combustor fuel control value (PCFCV) to obtain the desired thrust, and (3) engine mixture ratio is established by the preset open position of the secondary combustor fuel control value (SCFCV). No oxidizer control value is required.

5. Design Point Operation

(U) The predicted engine and component operating characteristics at design point and at various thrust points down to 10% are shown in Table III-III. Engine throttling performance is discussed in Section III, C. The parameter symbols listed at the left of the columns are defined in Table III-IV. This operating point is based on predicted component performances,

> Page III-6 CONFIDENTIAL

Report 68-C-0008-F, Part 1

III, B, Description (cont.)

Safe a Localda

-

"Alter wate & states

on allocated pressure drops or passage friction loss characteristics throughout the system, and on the required thrust chamber transpiration oxidizer coolant flow rate. A computerized steady-state mathematical model of the engine was used to calculate this operating point. The two fuel control valves are adjusted to their noted K₁ values to attain the operating point.

6. Engine Start and Shutdown

(U) The engine is started with propellant tank pressure, the predicted start and shutdown sequence being shown graphically in Figure III-7. Initially, all values are in the closed position. At the start command signal, the oxidizer and fuel suction values are sequenced open in that order to admit propellants to the engine and assure an oxidizer lead. The primary combustor fuel control value (PCFCV) is then opened to its 5% open position to admit fuel into the primary combustor. Primary combustor ignition occurs and the turbopump starts to accelerate. When first-stage fuel pump discharge pressure rises to 150 psi, it actuates the secondary combustor fuel control value (SCFCV) open and secondary ignition occurs. The primary combustor fuel control value is then sequenced further open to accelerate the engine, at a controlled rate, to steady-state operation at 10% thrust. The primary combustor fuel control value can then be opened to the position of desired thrust at a rapid, controlled rate such that maximum allowable turbopump acceleration is not exceeded.

(U) Steady-state mixture ratio is maintained by an adjustable stop on the secondary combustor fuel control valve, which is preset at engine acceptance testing. Thrust is set simply by the position of the primary combustor fuel control valve.

> Page III-7 UNCLASSIFIED

Report 68-C-0008-F, Part 1

III, B, Description (cont.)

(U) Engine shutdown is initiated by the shutdown command signal, which closes the primary combustor fuel control valve. When first-stage fuel pump discharge pressure drops below 150 psi, the secondary combustor fuel valve and both suction valves close.

7. Vacuum Start, Restart and Shutdown

(U) The throttlable-restartable ARES, as a space engine, is designed to start at sea level or in a vacuum, then to shutdown and coast for a few seconds or several weeks, and then to restart. It is assumed for vacuum restart that the vehicle will provide propellants to the engine by settling rockets or some other means. Vacuum starting and restarting of the engine have been studied for two systems of propellant tank pressurization as discussed in Section IV of this report. Engine starting sequence would be as shown in Figure III-7 for the case where sufficient tank pressure exists and vehicle settling rockets are used. The engine starting sequence for the main tank injection system involves the flowing of propellant from the vehicle-mounted accumulators to pressurize the propellant tanks and settle propellants prior to an otherwise typical start.

(U) It is anticipated that the vacuum engine overall start duration may be reduced as compared to the sea-level start plot shown because the downstream pressure in a vacuum is zero during fill. Since all propellants are gaseous before the development of back pressure, propellants will reach the primary combustor sooner and an earlier ignition can be expected. The pressure ratio across the turbopump turbine will be higher resulting in a relatively higher turbine torque, thus making greater utilization of the turbopump to accelerate the engine fill. The existence of vaporized oxidizer in the engine will result in oxidizer vapor entering the fuel manifolds prior to fuel fill. This condition exists in all engines started at altitude, including Apollo and Transtage engines which use the same propellants. Neither of these engines require altitude purging.

> Page III-8 UNCLASSIFIED

Repc 🐏 68-C-0008-F, Part 1

III, B, Description (cont.)

(U) Propellant freezing can occur if the propellant expande over a very large pressure ratio from a small opening. This occurs when the valves are first opened; however, experience has shown that the amount of frozen propellants formed during start are insignificant because the flow rate of propellant causes a rapid rise in back pressure. Ignition of propellants in the primary combustor at high mixture ratio will remove any frozen oxidizer from the secondary combustor (thrust chamber) injector and transpiration coolant washers prior to fuel flow to the secondary combustor.

(U) The vacuum shutdown of the engine will be essentially the same as the sea-level case shown in Figure III-7 except that the propellants will vaporize and leave the engine without requiring a purge. The high vapor pressure of the N_2O_4 will result in its dissipation first. This early dissipation due to vaporization will cool the warm turbine rotor and primary combustor walls, to minimize engine heat soak-back. For sea-level testing, the ARES thrust chamber utilizes a shutdown purge in the oxidizer system to clear the system of oxidizer followed by a purge of the fuel circuits. The vacuum shutdown procedure described above would be similar to the current sea-level test experience. The fuel will eventually leave the engine without re-opening the fuel control valves. This shutdown sequence is also consistent with a minimum tailoff impulse since most residual propellant leaves the engine without burning.

(U) Engine restarting after a short space coast period does not require the engine to be completely drained and cold at the time of restart; however, fuel must not be introduced against parts that are hot enough to cause spontaneous decomposition. The secondary injector is the only place where this can occur. The maximum temperature predicted for the secondary injector after shutdown is approximately 700°F if no cooling benefit is derived from the propellants expelled from the engine. Laboratory test experience at Aerojet-General has shown that a temperature in excess of 1400°F is required to initiate the decomposition of AeroZINE 50 under these conditions. Therefore, no problem is foreseen in fuel decomposition on restart.

> Page III-9 **CONFIDENTIAL** (This page is Unclassified)

Report 68-C-0008-F, Part 1

III, 100K Throttlable-Restartable Base-Line Engine (cont.)

C. ENGINE THROTTLING PERFORMANCE

(U) The actual mechanism by which the primary combustor fuel valve controls the thrust is as follows. Increasing the resistance in this valve reduces the fuel flow to the primary combustor. This in turn reduces turbine temperature because of the higher mixture ratio and, to a lesser extent, reduces the turbine mass flow; the reduction in turbine drive energy results in decreased turbopump speed, pump discharge pressures, propellant flow rate, and thrust. The engine maintains nearly constant engine mixture ratio during throttling, because the designed relationship between fuel and oxidizer pump heads almost exactly compensates for the other factors that influence engine mixture ratio.

(U) Some of the engine performance parameters are plotted over a 10:1 throttle range in Figure III-8. Vacuum specific impulse drops at the lower thrust levels mainly because of the increase in recombination (kinetic), friction and combustion losses. (A breakdown of these and other losses in the thrust chamber is included under Performance Scaling in Section VIII, B.) Thrust chamber pressure drops nearly linearly with thrust as the engine is throttled.

(U) A comprehensive tabulation of engine and component performance and operating parameters at rated thrust and several throttle points down to 10% thrust is shown in Table III-III. Symbols are defined in Table III-IV. Referring to Table III-III, some of the more important engine and component requirements and characteristics are explained in the following paragraphs.

(C) On Sheet 2 of Table III-III in the group of secondary combustor parameters, WOFC and WFC/WT indicate the oxidizer film coolant flow and its ratio to total flow. At rated thrust, the coolant flow value is 23.2 lb/sec, or 6.6% of the total engine flow. This value corresponds to an I performance loss of 13.7 sec for a conical chamber, and was selected to meet the specified engine performance level of 91.7% of theoretical (see Table VIII-I for the performance loss breakdown). This transpiration coolant flow value gives a

Page III-10 CONFIDENTIAL

Report 68-C-0008-F, Part 1

III, C, Engine Throttling Performance (cont.)

calculated wall temperature of 1625°F for the cylindrical chamber configuration now undergoing testing. The conical chamber was adopted to achieve better compatibility between the injector and the cooled chamber. The ratio of coolant flow to engine flow is kept constant during throttling and provides a slight reduction in wall temperature at throttled conditions, on the basis of preliminary heat analysis. The analytical means of holding this constant percentage in the computer was with the expedient of a variable valve to represent the turbulent/ laminar flow characteristic of the entire transpiration circuit. The equivalent flow factor for this circuit is shown as KWFCV (Sheet 1 of Table III.-III); it decreases approximately 50% and defines the criteria required to maintain a constant percentage of coolant during throttling.

(U) This variation in K_{W} can be designed into a transpiration chamber, without the aid of a valve, by proportioning the appropriate amount of laminarflow ΔP versus turbulent-flow ΔP . In fact, the fixed-thrust transpiration chambers with their 12 coolant flow compartments in the current ARES test program (Contract AF 04(611)-10830) have approximately the desired characteristic, even though they were not designed for a specific throttling characteristic. Predicted coolant flow characteristics are shown in Figure III-9 for the fixedthrust chamber when exposed to predicted engine pressure values over the throttling range, where the solid line in the figure represents a constant coolant to engine flow ratio. Each compartment flow and/or the total coolant flow could be adjusted by proper design criteria to provide the desired throttling characteristic.

(U) The ΔP 's assumed for the three liquid injector circuits in the engine are shown on Sheet 1 of Table III-III. (DPFJSC, DPOJPC, and DPFJPC). Each ΔP is relatively low to accommodate a laminar flow (low velocity), platelet injector design. The laminar flow characteristic enhances the throttlability of the engine by sustaining a reasonable ratio of ΔP injector to chamber pressure (see DP/PSF, DP/PPO, and DP/PPF on Sheet 2 of the table)

ż.

Page III-11 UNCLASSIFIED

Report 68-C-0008-F, Part 1

III, C, Engine Throttling Performance (cont.)

at low flow, throttled condition. If additional hardness is desired in the oxidizer circuit, substantial power margin is available in the turbine to accommodate future increase of the pump pressures.

(U) On Sheet 3 of Table III-III in the group of turbopump parameters, it can be seen that the pump flow parameter (Q/N) decreases to only 50% of design; this occurs at the low shaft speed of 7040 rpm which is 23% of design speed. Pump off-design operation has been limited to the negative slope portion of their H-Q curves.

(U) Turbine and pump efficiencies (see ETAT, ETAOM, ETAFM1 and ETAFM2 on Sheet 3 of the table) are well within Aerojet and industry demonstrated values for the conditions of turbine velocity ratio (U/C-GT on Sheet 3) and pump specific speeds and flows (NSO, NSF-1, NSF-2, QOSM, QFSM1, and QFSM2 on Sheet 3).

D. WEIGHT BREAKDOWN

(U) Calculated dry and wet weights and gimbal moment of inertia values for the 100K base-line engine are shown by component in Table III-V. Values for a lower-weight production prototype engine are shown in Table III-VI. The lower weight of this production prototype engine is achieved by utilizing two interface joints between the thrust chamber and the turbopump in place of the three joints shown in Figure III-1, which is a development engine design. Other weight reductions could also be achieved with a detailed weight reduction effort.

(U) The throttlable-restartable ARES engine is characteristically heavier than the fixed-thrust version described in Section I from Contract AF 04(611)-10830. This heavier weight results from the relatively higher fuel pump pressure

Page III-12 UNCLASSIFIED

Report 68-C-0008-F, Part I

III, D, Weight Breakdown (cont.)

required for deep throttling, the radial inflow HIPERTHIN primary combustor injector desirable for throttling, and the integrated suction valve boost/pump assembly which improves restart. The total additive weight from these items is 115 lb.

(U) Also included in this summary is the calculated weight for the four valve actuators, which adds 27 lb, and the gimbal, which adds 19 lb. The propellant inlets for this engine are oriented vertically and integrated with the suction valves, which adds 41 lb but reduces the vehicle interface requirements and the vehicle suction line weight. This arrangement also reduces the amount of propellant that is trapped in the engine at the end of each firing, reducing the shutdown impulse and the loss of propellants in a multiple restart mission. The total weight of these additive items is 87 lb. The total of all of the items above amounts to 202 lb, which is included in the weight summary of Table III-V.

(U) The difference between the weights of engines with 50:1 and 150:1 nozzle extensions at a given thrust is relatively small and amounts to only 14 lb for the 100K size. The reason for this is that the contours of the 80% bell and the RAO nozzle contour are considerably different immediately downstream of the throat in the transpiration-cooled region. The 50:1 bell nozzle has a smaller included angle and is much longer in the downstream portion up to the point where the static pressure is 30 lb/in.²; whereas the 150:1 RAO contour flares out more rapidly and obtains the required pressure ratio to get 30 psia in a shorter distance. Consequently, the transpiration-cooled section of the expansion nozzle is relatively light on the 150:1 nozzle and almost compensates for the larger overall size of the nozzle. Thus, the difference in area ratio between the 50:1 bell and the 150:1 RAO has little weight effect.

Page III.13

TABLE III-I

ENGINE CHANGES FOR THROTTLING CAPABILITY

ころうないない あいろう スマンドン 気をお見た

なるまで、「いいないない」であった。ここのためで、ようなな、またいの人がないないで、 ヤードア・フィックスのまで、「いいいない」、 マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

ころう 「「「「」」」」

るいろうちょうとないとうないとうなど、人にないないと

、日本の大大大学の大学

CHAMENER	Increase first-stage fuel pump discharge pressure	Adjust pump H-Q slope to system requirement	Utilize Hiperthin primary injector	Utilize transpiration TCA wall cooling	Adjust laminar-turbulent resist- ance of TCA transpiration system	Adjust turbine pressure ratio	Relocate engine suction valves upstream of boost pumps	Engine mounted integrated boost pump and poppet suction valves	Relocate PC injector to provide self drain through TPA turbine
								i	
Throttle range to 10:1	X		X						
Throttle engine at fixed mixture					v				
	<u> </u>	<u>X</u>			<u>^</u>				
Maintain engine stiffness	X	X	X			ļ			
Maintain combustor stability	x		x						
Maintain TCA wall compatibility				X	X				
Maintain turbine temperature under 1250 ⁰ F						x		x	
Limit pump operation to negative slope portion of H-Q curve		x							
Eliminate cneck valves from boost pump turbine drive line							x		
Minimize propellant wet volume downstream of engine start-stop valves				x				x	
Provide aft direction self drain of trapped engine propellant									х

Table III-1
Report 68-C-0008-F

TABLE III-II

MATERIAL LIST, ENGINE MODULE ASSEMBLY, 100K ARES

		Mater	ial Surf	ace	
		(Wall	Temp. OF	·)	Material
	Part	Fuel	Oxid	<u>Gas</u> (Alternates Shown in Pirentheses)
1.	Turbopump Housing	200°F	7 ,000	600°F	INCO 718
2.	Turbopump Shaft	770	600°	1000 ⁰	INCO 718 (AM 355)
3.	Turbine Nozzle	-	-	1200 ⁰	Haynes 25 (713 C)
4.	Turbine Rotor	-	600°	1200 ⁰	Forged Udimet 700 (Waspalloy)
5.	Turbine Shaft Labyrinth	-	500 ⁰	-	AM 355
6.	Turbine Disc Nut	-	-	1000 ⁰	AM 355
7 .	Turbine Exhaust Flow Distribution Plate	-	-	1200 ⁰	Udimet 700 (Waspalloy)
8.	Thrust Takeout Plate	77 ⁰	-	-	AM 355
9.	Fuel Pump, 1st Stage Impeller	77 ⁰	-	-	17-4PH Cast, IC-1 Flame Plated
10.	Fuel Pump, 1st Stage Backplate	7 7 °	-	-	AM 355, LC-1 Flame Plated Land
11.	Fuel Pump, 1st Stage Inducer	77°	-	-	Titanium 6Al-4Va
12.	Fuel Pumr, 1st Stage Inducer Hsg	77 ⁰	-	-	SS 347, LC-l Flame Plated Land
13.	Fuel Pump, 2nd Stage Impeller	100 ⁰	-	-	AM 355
14.	Fuel Pump, 2nd Stage Backplate & Retaining Nut	100°	-	-	AM 355
15.	Fuel Pump Labyrinth Inserts	100 ⁰	-	-	Pressure Relieved Kynar
16.	Fuel Pump Radial Bearing	200 ⁰	- `	-	SS 440C Rollers & Races, Glass Filled Teflon Cages
17.	Fuel Pump Thrust Bearing Sleeve, Retainers, and Bol	100 ⁰ t	-	-	AM 355
18.	Fucl Pump Thrust Bearings	200°	-	-	SS 440C Races, K5H Balls, Glass Filled Teflon Cages

Table III-II, Page 1 of 4

ŝ.

į.

Report 68-C-0008-F

TABLE III-II (cont.)

	-	Mater Env	rial Sur	face t	. Motoriol
	Part	(wall Fuel	Oxid	Gas	(Alternates Shown in Parentheses)
19.	Fuel Bearing Shaft Re- taining Nut	770	-	-	AM 355
20.	Interpropellant Seal	7 7 °	77°	-	Carbon Stationary Ring, IC-1 Flame Plated, 440C Rotating Ring
21.	Oxid Pump Impeller	-	200°	-	17-4 PH Cast, LC-1 Flame Plated Land
22.	Oxid Pump Impeller Hydro- static Seal	-	77°	-	LC-1 Flame Plated SS347
23.	Oxidizer Pump Inducer	-	77 ⁰	-	AM 355
24.	Oxidizer Pump Inducer Nut	-	770	-	AM 355
25.	Oxid Fump Rauial Bearing	-	200°	-	SS 440C Rollers & Races, Glass Filled Teflon Cages
26.	Oxid Pump Radial Bearing Retaining Nut	-	500°	-	AM 355
27.	Oxid Pump Inducer Insert	-	77°	-	Graphite Filled Vespo SP-21
28.	Fuel Boost Pumy Inlet Housing	77 ⁰	-	-	SS 347
29.	Fuel Boost Pump Discharge Housing	77 ⁰	-	-	Al A356 Cast
30.	Fuel Boost Pum, impeller	77 ⁰	-	-	A1 7075-173
31.	Fuel Boost Pump Impeller Nut	77°	-	-	Al 7075-T6
32.	Fuel Boost Fump Shaft	77°	-	-	NM 355
33•	Fuel Boost Pump Bearing Housing	77°	-	-	AM 355
34.	Fuel Boost Pump Bearing	200°	-	-	SS 440C Rolling Elements & Races, Glass Filled Teflon Cages
35.	Fuel Boost Pump Bearing Retaining Nuts	7 7 °	-	-	SS :,47
36.	Fuel Boost Pump Turbine Rotor	77°	-	-	AM 355
37.	Fuel Boost Pump Turbine Stators	77 ⁰	-	-	AM 355

Table III-II, Page 2 of 4

Report 68-C-0008-F

TABLE III-II (cont.)

ŧ

ţ

		Mate En	vironne	rface nt	Motori ol
	Part	[wall Fuel	Oxid	Gas	(Alternates Shown in Parentheses)
38.	Oxidizer Boost Pump		77°	-	Same materials as Fuel Boost Pump (Items 28-37)
39.	Fuel Suction Valve Body	77°	-	-	SS-17-4PH
40.	Fuel Suction Valve Poppet	77°	-	-	SS-17-4PH (AM 350)
41.	Fuel Suction Valve Springs	77°	-	-	SS-17-7PH
42.	Fuel Suction Valve Poppet	77 ⁰	-	-	Teflon
43.	Fuel Suction Valve Static Seals	77°	-	-	Teflon
44.	Fuel Suction Valve Shear Seal (Optional, Long Term Storage)	77°	-	-	SS304L
45.	Oxid Suction Valve	-	77 ⁰	-	Same materials as Fuel Suction Valve (Items 39-44)
46.	Primary Fuel Valve Body	100 ⁰	-	-	Integral part of primary injector
47.	Primary Fuel Valve Shaft	100 ⁰	-	-	AM 350 (17-4PH)
48.	Primary Fuel Valve Sleeve	100 ⁰	-	-	SS-17-4PH (AM 350)
49.	Primary Fuel Valve Bearings	100 <u>0</u>	-	-	440C
50.	Primary Fuel Valve Dyn. Seals	100 ⁰	-	-	Teflon
51.	Primary Fuel Valve Static Statics	100 ⁰	-	-	AS 4004 (Butyl)
52.	Secondary Fuel Valve	200°	-	-	Same materials as Primary Fuel Valve except: valve body is integral part of Secondary Injector
5 3 .	Primary Fuel Feed Line	100 ⁰	-	-	Mil-T-6845 304
54.	Secondary Fuel Feed Line	100 ⁰	-	-	Mil-T-6845 304
55.	Fuel Boost Pump Turbine Feed Line	100 ⁰	-	-	M11-T-6845 304
56.	Oxid Boost Pamp Turbine Feed Line	100 ⁰	-	-	M11-T-6845 304
57.	Primary Injector	200°	200 ⁰	1200 ⁰	SS 347

Table III-II, Page 3 of 4

CONFIDENTIAL

Report 68-C-0008-F

TABLE III-II (cont.)

	_	Mater Env	ial Surf ironment	ace	
	Part	(Wal Fuel	l Temp. <u>Oxid</u>	of) Gas	Material (Alternates Shown in Parentheses)
58.	Adapter, Turbopump/Combusto	rs-	-	1200°	INCO 718 (Hast X)
59.	Primary Combustor Liner	-	-	.1200°	Hast X (René 62, INCO 718)
60.	Secondary Injector	600 ⁰	-	1200°	SS 347
61.	Secondary Combustor Washers	-	1625 ⁰	-	SS 347 (Nickel)
62.	Secondary Combustor Housing	-	300 ⁰ Soak- back	-	Maraging Steel - 18% Nickel (Titanium)
63.	Nozzle Extension, First Section	-	.	2200°	Columbium (10 HF, 1 Ti)
64.	Nozzle Extension, Second Section	-	-	1100 ⁰	Titanium (5 Al, 2.5 Sn)

Table III-II, Page 4 of 4

CONFIDENTIAL

(This page is Unclassified)

TABLE III-III

THROTTLING PERFORMANCE, 100K ARES (u)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									•	
Matrix Matrix<	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CASE I	CASE 2	CASE 3	CASE 4	CASE 5	CASE 6	CASE 7	CASE 0	
CLC 2740-0001 210.02.2501 100.02.2501 100.02.2501 24.0103	Cite 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:0000 2:00:00000 2:00:0000 2:0:0000 2:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0000 2:0:0:0:0000 2:0:0:0:0000 2:0:0:0:000<	ىڭ يە	Alwayses -	Tarty water and			27817-09640	22237_34961	1 4440-48550	11 100.00330	
mercine 2.44076 3.44176 3.44016 <t< td=""><td>me-rise 2.43713 2.43713 2.44213 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.4441143 2.4441143 2.4441144444444</td><td>ocsc</td><td>2799.99997</td><td>2100.24261</td><td>1401.40048</td><td>1051.63223</td><td>703.91291</td><td>564.23190</td><td>424.66772</td><td>284.63477</td></t<>	me-rise 2.43713 2.43713 2.44213 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444107 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.444113 2.4441143 2.4441143 2.4441144444444	ocsc	2799.99997	2100.24261	1401.40048	1051.63223	703.91291	564.23190	424.66772	284.63477	
Image: Section state Image: Section state Image: Section state Image: Section state Section sta	16. 10.00216 315.0021 315.0013	H-ENG	2.42686	2.43726	2.43379	2.42136	2.40423	2.39706	2.42689	2.57159	
Else Second 133-64373 133-64373 65-4773 71-7716 56-40773 56-47793 5	File Material 177-0130 177-1710 177-0130 177-1710 177-0130 177-1710 177-0130 177-0130 177-0130 177-0130 177-0130 177-0130 177-0130 177-0130 177-0130 177-0130 <th< td=""><td>s</td><td>316.20216</td><td>315.00113</td><td>313.52773</td><td>312.50895</td><td>310.67545</td><td>309.82823</td><td>307.92638</td><td>302.78642</td></th<>	s	316.20216	315.00113	313.52773	312.50895	310.67545	309.82823	307.92638	302.78642	
OT Match and the state and the s	OIT Material Try (100) Try (100) <thtry (100)<="" th=""> <thtry (10<="" td=""><td></td><td></td><td>264.71243</td><td>177.51246</td><td>90000000000000000000000000000000000000</td><td>89.47974</td><td>71.77316</td><td>54.20379</td><td>36.77511</td></thtry></thtry>			264.71243	177.51246	90000000000000000000000000000000000000	89.47974	71.77316	54.20379	36.77511	
III Modeling Trolow stress Trolow stress <thtrolow stress<="" th=""> Trolow stress</thtrolow>	T Machine Mathine Mathine <th mathine<="" th=""> Mathine Mat</th>	Mathine Mat	101		1999-191	125-2052	94446993	63.21524	50.65951	38.38612	26.47999
III 20000 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F T	19	500 10-11	20402-15	31.0.1529	26,29338	21.13405	15.81699	11703-01	
TITT T1137036 773.6573 73.4573 613.1103 1.17103 943.06699 1.171613 104.0033 1.19019 1.17103 11.19019 1.17103 11.19019 1.17103 11.19019 1.17103 11.19019 1.17103 11.19019 1.17103 11.19019 1.17103 <th1.11103< th=""> 1.17103 1.17103</th1.11103<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		29999.98584	24509.11841	1 8648.90576	15488.41687	12059-48218	10545.11145	8906.09119	7040-03552	
Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>	IT 1-5000 1-5101 1.27107 1.27009 1.19119 1.17118 ODNI 999:17313 3479:350 1.31177 3.27702 3.277010 1.120010 1.120010 ODNI 999:17313 7.31177 3.27701 3.277012 3.120030 1.120010 <th1.120010< th=""> <th1.120010<< td=""><td>ГТ Т</td><td>1183.79366</td><td>973. 95750</td><td>744.58759</td><td>619+14153</td><td>40409°084</td><td>454.86489</td><td>421.68653</td><td>368.60951</td></th1.120010<<></th1.120010<>	ГТ Т	1183.79366	973. 95750	744.58759	619+14153	40409°084	454.86489	421.68653	368.60951	
COUNT 4995.77515 3479.4510 2100-3400 147.20073 375.4507 210.0400 375.4504 375.4704 351.2504 375.4704 351.2504 375.4704 351.2504 375.4704 351.2504 375.4704 351.2504 375.4704 351.25046 351.2504 351.2504	ODIN 4956-77515 3479-77015 256-0740 1477-2607 247-0205 257-72010 11-20079	Let	1.50000	1.40963	1.31917	1.27107	1.22009	1.19819	1.17518	1.14933	
DEMI 99.97999 24.6953 12.50513 7.31377 3.277412 2.10066 1.20036 1.20036 3.77839 2.310076 1.20036 1.20037 3.77839 3.217412 3.217076 1.20037 3.77839 3.31023 3.37333 3.30036 3.7383 3.31023 3.31223 3.31223 3.31223 3.31223 3.31223 3.31223 3.31223 3.31223 3.31223 3.312333 3.31233 3.31233	DEMIL 01.0 (010) </td <td>P00 TM</td> <td>4959, 77515</td> <td>3479.75107</td> <td>2150+36809</td> <td>1547-26973</td> <td>989.19426</td> <td>776-96892</td> <td>572.72616</td> <td>375-85087</td>	P00 TM	4959, 77515	3479.75107	2150+36809	1547-26973	989.19426	776-96892	572.72616	375-85087	
Condition Condition <thcondition< th=""> Condition <thcondition< th=""> Condition <thcondit< th=""> Condition Cond</thcondit<></thcondition<></thcondition<>	Droited 64.0001 24.0001 1.2003 7.31377 3.27412 2.10002 1.20033 3.31322 2 Droited 50.00017 3.26701 1.21001 3.27707 2.10002 1.20033 3.331223 Droited 159.0111 3.27707 100.0017 3.27707 3.301702 3.331223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311223 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233 3.311233<	DPOHL	49.97809	26+68552	12.96173	と可能には、	3-27855	2-10456	1.20676	6728.	
NONLZ 50.00647 Ze.69070 112.69518 7.1091 3.27267 2.10002 1.2073 3.3.3123 2.07363 NOLL 196.1164 155.13737 100.65999 9.0.65999 5.07363 3.3.3.3123 2.07363 3.3.3.3123 2.07363 NOLL 106.17930 135.37377 200.65993 10.0.65993 9.0.65939 5.07473 3.3.3.3123 2.07436 9.10003 3.3.3.3123 2.07436 9.10016 7.0746 9.10025 1.12641 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01461 9.10016 7.01614 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 9.10016 <td>D. DUKZ 50.00647 Z. S0070 12.2035618 7.10091 3.2.7267 2.10002 1.2.0479 3.3 D. DUKZ 50.00647 Z. S0070 125.03701 125.03701 125.03701 3.2.7267 2.10002 1.2.2049 3.3 D. DUKZ %410.27730 3.2.7647 Z. S004.62193 90.4016 93.5 93.5,79903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903</td> <td>970RG</td> <td>49.99976</td> <td>28. 69434</td> <td>12-96033</td> <td>77515.7</td> <td>3.27412</td> <td>2.10095</td> <td>1+20535</td> <td>57390</td>	D. DUKZ 50.00647 Z. S0070 12.2035618 7.10091 3.2.7267 2.10002 1.2.0479 3.3 D. DUKZ 50.00647 Z. S0070 125.03701 125.03701 125.03701 3.2.7267 2.10002 1.2.2049 3.3 D. DUKZ %410.27730 3.2.7647 Z. S004.62193 90.4016 93.5 93.5,79903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903 93.5,19903	970RG	49.99976	28. 69434	12-96033	77515.7	3.27412	2.10095	1+20535	57390	
XYOLNC 109-51154 1155-31307 105-6179 1155-31307 105-6179 313.1223 233.1223 233.1223 233.1223 233.1223 233.1223 233.126903 235.1364 235.1666 235.1364 235.1666	Def CV 199-51154 155-31307 106-66791 00-65690 54-55013 43-61763 33-3123 33 Def CV 144010-27733 2234.2547 2164.3071 2004.6273 231-259 33 33-1123 33 Def CV 164.0677 223.5643 31-18293 211-14095 75.53923 33-15393 <td< td=""><td>DH2</td><td>50.00647</td><td>28.69070</td><td>12.95618</td><td>7.31091</td><td>3.27267</td><td>2.10002</td><td>1.20479</td><td>-5736</td></td<>	DH2	50.00647	28.69070	12.95618	7.31091	3.27267	2.10002	1.20479	-5736	
CCC *4410.27930 1234.3474 2004.42135 1444.4076 924.81800 757.77446 535.79033 535.79033 331.00000 PFSCV1 165.9130 30.274.72647 2156.29071 117.63795 117.63795 13.5041 352.45037 351.69033 351.00037 351.69033 351.65093 </td <td>CCC *4416.27930 3234.3474 2004.4213 1444.46706 924.41800 756.4453 335.79903 335 PFDTHI ### ##10.27730 31234.3474 2004.4213 345.472647 215.4593 335.77846 552.40907 35 PFSCV1 104.0677 62.5933 30.27496 17.67152 34.4511 55.53125 3.115995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995</td> <td>Deronac</td> <td>199.51154</td> <td>155.33307</td> <td>106.68791</td> <td>80.85899</td> <td>54.55013</td> <td>53.61763</td> <td>33.31223</td> <td>23.07445</td>	CCC *4416.27930 3234.3474 2004.4213 1444.46706 924.41800 756.4453 335.79903 335 PFDTHI ### ##10.27730 31234.3474 2004.4213 345.472647 215.4593 335.77846 552.40907 35 PFSCV1 104.0677 62.5933 30.27496 17.67152 34.4511 55.53125 3.115995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995 3.315995	Deronac	199.51154	155.33307	106.68791	80.85899	54.55013	53.61763	33.31223	23.07445	
PFOTHI MEXA-72047 R154_2901 IAMAD0183 971 + 1095 577-774AB 552,0000 31539 1.30041 PFSCVI 105 - 06677 02 - 05030 30 - 18233 17,81739 5 - 1839 1,30041 PFSCVI 105 - 05677 02 - 0730 17,81713 5 - 1833 5 - 1839 1,30041 PFSCV 105 - 17430 02 - 0730 17,81713 5 - 133,15479 5 - 13495 1,30061 PFSCV 105 - 17430 17,877197 31 - 152013 31 - 15493 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 100709 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 100709 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 15003 31 - 150033 31 - 150033 31 - 15	PFD1HI MASA 67313 373, 774, 45 55325 531335 53141 531335 <th< td=""><td>PC *C</td><td>4410-27930</td><td>3234°34744</td><td>2004-82195</td><td>1444.46768</td><td>924.81880</td><td>726.84553</td><td>535+79903</td><td>351 •06506</td></th<>	PC *C	4410-27930	3234°34744	2004-82195	1444.46768	924.81880	726.84553	535+79903	351 •06506	
DPSCVI 104.06677 62.56630 30.18263 17.63333 17.6311 5.53162 3.15394 1.35641 DPFCV 105.17400 91.90726 47.63733 30.17271 21.52015 49.5134 31.5395 1.30641 DPFCV 105.17400 91.90726 47.63733 30.27496 17.6175 36.45230 55.5134 31.5495 1.30640 DPFCV 105.17400 243.24665 17.60793 17.6175 95.63367 78.03667 78.03667 39.12992 39.10709 DPFCV 105.1740 21.64407 30.27496 17.607564 1134.2567 78.03667 78.03667 39.12679 39.10709 DPFCV 490.99901 21.64407 351.6807 134.25677 1134.25677 120.55981 10.03553 39.10709 DPFCV 490.999901 21.64407 31.556429 134.6567 78.036673 32.16.0779 20.16.0709 39.10696 13.7251 20.16.0709 39.106967 10.02.2739 29.16.0709 29.16.0709 29.16.0709 29.11.20.2596	DFSCVI 105.06677 62.56630 30.18263 17.03939 6.44511 5.53823 3.1539 2 DFSCV 105.1740 02.90720 476.37932 20.182015 13.1539 9.73956 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.73936 9.737356 9.73936 9.737356 9.737356 9.737356 9.737356 9.737356 9.77156 9.77156 9.77156 9.77126 9.71257 9.712512 9.712512 9.71626 7.751047 9.712512 9.71626 7.71099 9.712512 9.71626 7.71099 9.712512 9.71626 7.710497 7.71446 7.71446 7.71446	PFOTM1	E1659, 9694	3624, 72647	2156,53021	1536.09183	971.16956	757.77448	552.69997	356 - 64542	
NFSCV 1055-91500 991-90726 476-9732 201-27496 17-57930 5-57933 5-57933 5-57933 21-52963 0975-000 2164-00000 2164-017 2164-20000 2164-017 2164-20000 2164-017 2164-20000 2164-017 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000 2164-20000	PFECV 1055-91560 991-90726 476-37932 281-52015 133-15479 95-54134 3-5,70336 2 DPF-SCV 1051-17450 62-90425 31-27496 17-27931 5.54134 3-170336 3 DPF-SC 2498-60600 2164-00000 2164-0000 2164-0000 1443-9436 3-77036 3-57031 5.54134 3-170356 3 PFDTMZ 5555-56755 4007-07770 2493-67054 1789-93076 1134-25977 365-52103 646-18475 41 PFDTMZ 5555-5675 407-07770 2493-67054 1789-93076 1134-25977 361-36961 43-755942 50 PFDTCV 499-9901 2164-00000 1443-09565 256-29875 1404-1867 2447266 1 DPFCV 499-9901 315-34964 400-19752 31-07166 10-255961 12-755961 12-7751 5 DPFCV 2999-6617 310-10202 1105-315497 30-07164 10-07503 2447266 1 DFCVC 2991-5764 2	DPSCVI	104.06677	62.58630	30.18283	17.83939	8.44511	5-53825	3.1539	1.36641	
D95C V0 105-17450 02-90425 30-27406 17.697152 8.45230 5.54134 3.15405 1.30600 DFFACE 2493-24606 1775-645009 1372.29173 95-63679 725-26170 95-13003 95-13003 95-110709 PFFACE 2495-00000 243-24666 1775-645009 1372.29173 78-03063 96-110703 40-110779 95-130037 40-11272 293-130037 40-11272 293-12500 30-110709 PFFACE 2495-09000 216-4007 749-59913 106-5073 95-12613 046-11475 293-1251 90-1285 PFFCV 499-99913 510-4007 778-3469 1-02622 256-793 31-1251 50-1284 90-1285 DPFCV 499-99918 21-64077 5-13693 3-073645 1-02622 256-7933 31-1251 50-1285 293-12867 10-05635 3-4-47266 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 14-16-7566 2	DPSC V0 105.17450 62.90425 30.27496 17.67152 8.45230 5.54134 3.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.15495 5.1546 5.1752809 5.54134 5.154903 5.512809 5.512819 5.512819 5.512819 5.512819 5.512819 5.5128199 5.5128199 5.5128199 </td <td>DPF SC V</td> <td>1655.91580</td> <td>991.90726</td> <td>476-87932</td> <td>261.52615</td> <td>133.15479</td> <td>67.29803</td> <td>49.70358</td> <td>21.52985</td>	DPF SC V	1655.91580	991.90726	476-87932	261.52615	133.15479	67.29803	49.70358	21.52985	
DFF JSC 299.635679 137.2307 99.635679 78.03646 59.12000 39.10709 PFDTWZ 29955-59765 1007.0707 78.036479 78.036479 78.03646 59.136073 39.10709 PFDTWZ 299555675 715.26173 10.037546 1134.25877 365.57163 646.16475 293.27947 293.27947 PFDTWZ 39555056 10.07.01770 2493.65073 159.65073 120.65981 63.77251 50.12529 PFDTWZ 3955540 725.26073 159.65073 120.655981 646.16475 14.657565 14.55756 14.557565	DFF JSC 299.035679 99.033677 99.033677 79.03648 59.12000 3 PFDTWZ 2555.56765 4007.07770 2493.6509 137.55679 725.28170 561.3603 437.55942 29 PFDTWZ 5555.56765 4007.07770 2493.65091 1033.55679 725.28173 046.16475 437.55942 29 PFDTWZ 5555.56765 4007.07770 2493.650941 1063.6751 126.25991 045.161 041.151 437.55942 24.47266 1 DPFCVD 499.09921 2104.07 5.03555 76.03835 34.9911 05.22193 14.64.2303 33.71251 5 21.64.7541 5 24.47265 1 24.47265 1 24.47265 34.9913 33.71251 24.47265 34.4903 23.71251 24.47265 34.4963 34.931 1019.41182 726.04353 33.47266 23.647266 24.47265 24.47265 24.47265 24.47265 24.47265 24.47265 24.47265 24.47266 24.47266 24.47266 24.47266 24	DPSC VO	105-17450	62+98425	30.27496	17.87152	8.45230	5.54134	3+15495	1.36660	
PCALCE 2885-58765 4007-07770 2493-65034 1083-52617 685-52163 646.18475 416.67546 PFDTWZ 5555-58765 4007-07770 2493-65034 1789-93076 1134.25877 885-52163 646.18475 416.67546 PFDTWZ 5555-58765 4007-07770 2493-65034 1789-93076 1134.25877 885-52163 646.18475 416.67546 416.67546 PFDTWZ 5555-58765 4007-07770 2493-65095 1789-93076 1134.25877 885-52163 646.18475 416.67546 416.67536 416.675457 416.67546	PCFACE 2865-09000 2164-00000 1443-94301 1083-35679 725-28170 585-57153 437-55942 29 PFDTWZ 5555-38765 4007-07770 2493-62054 1789-93076 1134-25877 885-57153 646.18475 41 DFFCV 499-09921 502-22971 351.65965 256.20373 1120-55961 63.71231 5 DFFCV 499-09921 502-22971 351.65965 256.20373 120-55961 63.71231 5 DFFCV 499-09931 519.63064 110.02023 3.07364 10.02023 33.71231 5 DFFC 295.30540 1150.41760 92.01807 7 5.90419 244.7266 1 DFF 209041 1190.41182 7 10.02093 335.7993 334 7 201313 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.7393 2312.739 2312.7396 2312.739 <	DPF JSC	299.86605	243. 24 866	175.65009	137,29797	95.83567	78.03648	59.12809	39.10709	
FFDTMZ 555-58765 4007.07770 2493-62054 1789.93076 1134.25877 865-52163 646.18475 416.67546 DFFCV 499.99921 502.29871 351.85965 256.29875 156.65073 120.55981 63.71251 50.12529 DFFCV 499.99903 51.04077 351.85965 256.29875 156.65073 120.55981 63.71251 50.12529 DFFCV 295.30548 196.07544 3.01.02753 3.01.02753 3.01.2555 2.41264 0.01554 DFFCV 295.30548 196.07543 3.01.02628 3.070628 3.071261 6.01.2559 0.00554 DFFCV 295.30548 116.07540 9.07144 9.09163 351.06506 14.31907 707.09430 351.06506 347.6871 296.3306 341.06506 14.66.23033 351.06506 249.6607 249.6607 249.6607 249.6607 249.6607 249.6607 249.6607 249.6607 249.6606 249.6666 249.6666 249.6666 249.6666 249.6666 249.6666 249.6666 249.6666 249.6666 249.6666 249.6666 249.66667 241.6672	PFDTMIZ 955-536765 4007.07770 2493-62054 1789-93076 1134.25877 865-53163 646.18475 41 OPFCV 499.09921 502.29071 351.65965 256.29075 1156.65073 120.65091 63.71231 5 OPFCV 499.09904 51.64407 351.65965 256.29013 150.55091 63.71231 5 OPFCV 499.09904 5164.07 351.63905 3.07364 1.026529 358773 281.721 5 OPFCV 499.09904 1196.4107 31.95.4407 7 3.07364 1.0.26335 34.7266 1 PFC 295.30540 115.61867 924.81887 959.61971 244.7266 1 PFC 299.37921 1195.41967 73.43931 109.541192 726.44726 3312.7293 3312.7293 331.77 2314.23728 331.77 231.437373 231.437373 231.437373 231.437376 231.437376 231.437376 231.437376 231.437376 231.437376 231.4373766 231.4373766 231.437476 231.437476 231.437476 231.437476 231.4374677 231.437776 231.43	PCFACE	2885.00000	2164.00000	10646*6441	1063.55679	725.26170	581.36037	437.55942	293.27547	
DFFCV 499.99921 502.29871 351.85665 256.59875 156.65073 120.55981 63.71251 50.12523 DFF_PC 295.30548 21.64070 5.105665 3.07364 1.02628 5.90161 4.09554 DFF_PC 295.30548 16.02628 3.07364 1.02628 5.91101 0.01554 DFF_PC 295.30548 196.02733 7.8.36839 46.038335 3.4.97619 2.4.7766 14.35954 PFF 295.30548 115.01560 726.38335 3.4.9711 2.9.35793 3.31.00506 14.35954 3.005666 7.26.48553 3.31.00566 14.35956 3.0.05666 7.26.48533 3.51.28578 3.51.06566 14.35956 2.4.59716 4.4.6.2.3333 2.9.3.30696 2.4.596366 2.4.59763 3.51.006566 2.4.59763 3.51.006566 2.4.5666 7.7.6.4.59763 3.51.006566 2.4.56666 7.7.56.4.5786 3.4.56757 2.5.6.646773 2.4.566733 3.51.006566 2.4.56666 2.4.56666 2.4.56666 2.4.56666 2.4.567673 2.9.5.3069 2.4.567677	DFFCV 499.99921 502.29071 351.65965 256.65073 120.55961 63.71251 6 DFFPC 49.99901 21.64071 351.65965 3.07364 1.02025 3.56473 2.51151 3 DFFPC 295.30548 198.61027 115.03273 3.507364 1.02025 3.56473 2.51121 3.51121 3 PCFC 295.30548 198.61027 115.03273 78.34839 40.03333 3.47266 1 PCFC 295.30548 199.47761 210.44708 924.61867 726.44726 244.7266 1 PCF 299.37921 115.61160 725.40197 721.220 335.7993 34 PCFACE 2845.3474 2000.41182 725.40174 591.2607 440.4010 221.23728 34 PCFACE 2845.3474 1099.41182 725.40174 591.2607 410.401 231.23728 329 PCFACE 2845.407 2.11467 2.1142 725.40171 591.4067 211.454.372928 34	PFDTM2	5555+56765	4007.07770	2493-62054	1789-93076	1134.25877	885.52163	646.18475	416.67546	
DPPCV0 99008 21.64407 6.63225 3.07364 1.02628 6.53473 2.20181 0.09554 DFC 295.30548 198.81027 115.03273 78.34639 46.03335 335.09566 14.33952 DFC 4010.27930 3338.34744 2004.42195 14.44.4758 94.60333 335.09503 351.09506 14.33952 PFC 4010.27931 3338.34744 2004.42195 14.44.4758 94.6.03335 351.00506 345.6553 335.09503 351.00506 345.6556 PGJT 3039.07071 2240.27323 1444.4758 1105.41360 726.43971 521.43503 351.03609 PGJT 3039.07071 2240.23259 1444.4758 449.7367 726.43971 521.4467 294.5470 PGJT 3039.07071 214467 2.14467 732.26170 531.26393 291.30077 291.300077 PGJT 200900 2144.57 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 <td< td=""><td>OPPCV0 99:0000 21.66407 6.03225 3.07364 1.02628 0.59473 0.20181 DFF_MC 29:0500 21.66407 1.062373 3.07364 1.02628 0.59473 0.20181 DFF_MC 295.3754 115.03273 78.34699 46.03335 3.4.49736 2.4.47266 1.026435 3.4.49619 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.2.4.47266 1.0000 2.2.4.47266 1.0000 2.2.4.4766 2.2.4.47266 2.2.4.47266 2.2.4.47266 2.2.4.4766 2.2.4.47266 2.2.4.47266 2.2.4.4766 2.2.4.4766 2.2.4.4766 2.2.4.4766 2.2.1.4467 2.2.1.4467 2.2.1.4467 2.1.4.467 2.2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467</td><td>DPFPC V</td><td>499.99921</td><td>502+29871</td><td>351,85965</td><td>256.29875</td><td>158.65073</td><td>120-55981</td><td>63.71251</td><td>50.12529</td></td<>	OPPCV0 99:0000 21.66407 6.03225 3.07364 1.02628 0.59473 0.20181 DFF_MC 29:0500 21.66407 1.062373 3.07364 1.02628 0.59473 0.20181 DFF_MC 295.3754 115.03273 78.34699 46.03335 3.4.49736 2.4.47266 1.026435 3.4.49619 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.4.47266 1.0000 2.2.4.47266 1.0000 2.2.4.47266 1.0000 2.2.4.4766 2.2.4.47266 2.2.4.47266 2.2.4.47266 2.2.4.4766 2.2.4.47266 2.2.4.47266 2.2.4.4766 2.2.4.4766 2.2.4.4766 2.2.4.4766 2.2.1.4467 2.2.1.4467 2.2.1.4467 2.1.4.467 2.2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467 2.1.4467	DPFPC V	499.99921	502+29871	351,85965	256.29875	158.65073	120-55981	63.71251	50.12529	
DFF.#PC 295-30948 196-61027 115-61273 76.08895 34.09419 254.47666 14.38956 PTT 400.027930 3120.4774 2004.62793 312.04766 924.61080 734.09419 254.47666 14.38952 PTT 4010.27930 3120.44791 2004.62793 312.04503 314.04606 924.61080 735.4903 313.04060 345.4585 <	OFF-JPC 295-309540 196-61027 115-03273 76.0889 46.03835 34.09419 24.47266 1 PFET 4010-27930 3330-34741 2004-82195 1444.46760 924.61800 24.47265 335.77903 335 PFET 4019-0100 2144.467 809-66707 770-09430 5315.37923 335 PFET 3039-37921 2240.29531 1494.467 809-66707 707-09430 5315.3793 335 PFET 3039-37921 2240.29531 1995.34310 1115.01560 742.9714 594.21120 446.23633 335 PGE 2885.00000 2164.00000 1443.393107 1109.41182 733.43971 591.646010 29 PGE 2885.00000 2164.00000 1443.39457 21162 733.43971 591.646010 29 PGE 2885.00000 2144.00000 1444.457 214657 214467 214467 214467 214467 214467 214467 217075 214467 217075 20.07429 26.07429	DPPCVO	49.99908	21.64407	6.83258	3.07364	1.02628	.58473	.28161	•09564	
PECC ##10.27930 3238.3474 2004.42195 1444.46768 924.81880 726.4653 335.79903 335.79903 331.06966 PTET 3039.37921 3190.40791 1190.41182 740.51372 345.4781 294.1120 446.23533 294.53578 345.45578 345.45578 345.45578 345.45586 345.45586 345.45586 345.45586 345.45586 345.45586 346.45586 346.45586 346.45686 324.4661 294.1200 446.46010 297.42913 294.30109 297.25913 294.30109 297.25913 294.30109 297.25913 294.30109 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.3010 297.25913 294.25913 294.25913 294.25942 297.25942 297.25942 297.25942 297.25942 293.27647 297.25942 293.27647 297.25942 293.27647 297.25942 293.27647 294.2677 294.467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.1	PCIC ##10.27930 3239.3474 2004.42195 1444.46768 924.81880 726.46553 335.7903 335 PTET 4490.37930 3139.34911 1999.34311 1405.21817 999.65797 319.34910 313.7903 335 PTET 3099.37921 2390.37921 1899.34311 1405.313167 1115.01360 725.466730 521.83728 34 PEJT 3099.07071 2240.29231 1494.33107 11192 1132 742.49713 294.5120 440.23633 29 PGJT 3099.07071 2240.29231 1494.33107 1109.41182 725.43971 594.51120 440.23633 29 PGTACE 2885.00000 2164.00000 1443.94301 1083.45679 725.43971 591.46070 214.467 2170.459 204.46467 217.469 204	DPFJPC	295.00548	196.81027	115-03273	78.34889	46.03835	34.99419	24.47266	14.35954	
PTIT Associogoge 21140 1996,3491 1995,3431 1405,3431 1405,3431 201,3202 341,3303 341,3437 PG-JT 3099,0701 2240,2921 1494,33107 1115,6160 742,97144 594,21120 440,23013 299,0607 PG-JT 3099,07071 2240,29313 1109,41185 742,97144 591,64670 414,48010 291,0403 PG-TACE 2885,00000 2164,00000 1484,39101 1109,41182 732,51170 591,64670 414,48010 291,29019 PG-TACE 2885,00000 2164,00000 1484,394301 1083,45679 735,28170 591,54677 431,565942 291,36077 431,565942 293,27547 KWPCV 2<14467	PTIT Aver-10909 7150-34991 1950-3431 1405-3131 1405-3131 231 <td>PCPC</td> <td>4410-27930</td> <td>44240"0426</td> <td>2004.82195</td> <td>1444.45768</td> <td>924.81880</td> <td>726.84553</td> <td>535.79903</td> <td>351.06506</td>	PCPC	4410-27930	44240"0426	2004.82195	1444.45768	924.81880	726.84553	535.79903	351.06506	
PTET 3039-37921 2240-3721 1494-30356 1115.01560 742.97144 594.31120 446.23013 299.30609 PCFACE 2809.00701 2241.31439 1494.33107 1109.41182 739.43971 591.46670 441.46010 297.29919 PCFACE 2809.00701 2241.31439 1404.343301 1109.41182 739.43971 591.46670 441.46010 297.29919 PCFACE 2809.007071 2241.31439 1404.43301 1003.55577 739.43971 591.46677 411.46012 293.27547 PCFACE 2809.49 2.14467 2.	PTET 3039-37921 2240.29551 1494.30356 1115.61560 742.97144 594.21120 446.23633 29 PG-MCE 2885.00000 2241.31439 1484.33107 1109.41182 739.43971 591.64870 441.48010 29 PG-MCE 2885.00000 214.40000 1443.94301 1083.55579 725.28170 591.40870 437.4594201 29 PG-MCE 2885.00000 214.40000 1443.94301 1083.55579 725.28170 591.46677 437.55942 29 PG-MCV 2.814667 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.14467 2.17075 2.04459 2.14467	PTIT	90000-Seve	160 vc -0616	11546-0561	1405+21507	899 • 68787	707.09430	521.23926	345.526	
PGJT 3009-07071 2241.31439 1404.43107 1109.41182 730.43971 591.64870 441.48010 297.2919 PCFACE 2885.00000 2164.00000 1443.494301 1083.55679 721.28170 581.30077 437.55942 293.27547 KWFSCV 2.14467 <td>PG-JT 3009-07071 2241.314.39 1464.33107 1109.41182 739.43971 591.64070 441.46010 29 PCFACE 2885.00000 2164.00000 1443.94301 1083.55679 725.28170 581.36077 437.45010 29 KWFSCV 2.14467 2.17075 2.</td> <td>PTET</td> <td>3039.37921</td> <td>2260.29251</td> <td>1494.30356</td> <td>1115,81560</td> <td>742-97144</td> <td>594.21120</td> <td>446.23633</td> <td>298.30809</td>	PG-JT 3009-07071 2241.314.39 1464.33107 1109.41182 739.43971 591.64070 441.46010 29 PCFACE 2885.00000 2164.00000 1443.94301 1083.55679 725.28170 581.36077 437.45010 29 KWFSCV 2.14467 2.17075 2.	PTET	3039.37921	2260.29251	1494.30356	1115,81560	742-97144	594.21120	446.23633	298.30809	
PCFACE 2885-0000 2164-0000 1443-94301 1083-55679 725-28170 581-36077 437-55942 293-27547 KWFSCV 2-14467	PCFACE 2885-00000 2164-00000 1443-94301 1083-55679 725-28170 581-36077 437-55942 29 KWFSCV 2-14467	PGJT	3009+07071	2241.31439	1464.33507	1109.41152	739.43971	591.64870	441.48010	297.29919	
KWFSCV Z.14467 Z.14467 <th< td=""><td>KWFSCV Z-14467 <thz-1467< th=""> <thz-1467< th=""> <thz-14< td=""><td>PCFACE</td><td>2885.00000</td><td>2164. 00000</td><td>10246*2441</td><td>1083+55679</td><td>725.28170</td><td>581.36037</td><td>437.55942</td><td>293.27547</td></thz-14<></thz-1467<></thz-1467<></td></th<>	KWFSCV Z-14467 Z-14467 <thz-1467< th=""> <thz-1467< th=""> <thz-14< td=""><td>PCFACE</td><td>2885.00000</td><td>2164. 00000</td><td>10246*2441</td><td>1083+55679</td><td>725.28170</td><td>581.36037</td><td>437.55942</td><td>293.27547</td></thz-14<></thz-1467<></thz-1467<>	PCFACE	2885.00000	2164. 00000	10246*2441	1083+55679	725.28170	581.36037	437.55942	293.27547	
KWPCV 26.07429 26.07	KWPCV 26.01429 26.014	K ME SC V	2.14467	2.14467	2.14467	2.14467	2.14467	2.14467	2.14467	2.14467	
KUDIECV 26.07429 26	KWOPCV 26.07429 26.07429 26.07429 26.07429 26.07429 26.07429 26.07429 2 KWFCV -42246 -39824 -36165 -33383 -29459 -27342 -24720 2 KWEV	KIEPCV	SHOED.	101 005	1005	7325	23669	-20495	.17075	*12240	
KWFCV «42286 «39024 «35165 «33383 «29459 «27342 «24720 ₉ 21356 KWFV	KWFCV «42286 «39824 «36165 «33333 «29459 «27342 «24720 KW6V	K BOPC V	26.07429	26.07429	26 .074 29	26.07429	26.07429	26.07429	26.07429	26.07429	
		KINTOV	.42286	• 3962 •	.36165	• 33383	.29459	.27342	.24720	P21356	
		K INGV	•								

Table III-III, Page 1 of 4

CONFIDENTIAL

CONFIDENTIAL

Report 68-C-0008-F

NOTE: Values less than unity have their decimal location noted by prefix. Example: "-5" indicates decimal point is 5 places to the left of first digit. We prefix and no decimal point indicate decimal precedes first digit. •

•

.

10% F	CASE .	550 11135-00336	13335 .13335	217 .06573	568 .04090	772 284.63477	012 2.33529	2000 50.0000	587 .95550	221 .92532	749 5316.63549	1001 1.63233	007 24-90782	1594 9.43479	1711 2.43449	618 .06620	23-66367	39.10709	368 90-65226	·535 •57390	0000 . 00000	439 56.07640	041 89.45314	647 89.5587		19590 *57 100	106 .66232	711 69.5269r	325 56.073 .		000 37-14000	000 17.51000	065 19.45076	986 14.71156	765 31-96481
<u>15% F</u>	CASE 7	1 16690-88	E1.	80°	ы • 0 •	0 \$24.66	8 2.20	0 20.00	2 .95	5 . 93	7 5361.73	1.84	6 36.28	6 14.33	5 3.58	.06	1E-4E E	6 59.12	5 146.85	B 1.20	•••	6 56.07	6 89.47	1 89-63		10.00	9 1.48		2 56.07		0 37.1A	17.51	3 19.36	0 14.60	2 38.86
200	CA Se 6	22237.3496	24E1.	.0602	1840.	564.2319	2.1720	50.000	.9563	.9366	5400.0592	1.8459	48.0410	19.0005	4.7519	•0662	4812 484	78.0364	210.6324	2.1009	0000 *	56.0754	89.4857	89.72 34	8162°12	****	2-1334	89.6710	56.0748		37.1400	17.5100	19.2331	14.4748	45, 6915
25% F	CASE 5	27817-05640	+13E1 ·	.05898		703-91291	2.17868	50.000	.95671	S1950.	5403.77332	1+85095	60.11693	23.46671	5-92497	•06622	56+60737	95.83567	282.00280	3.27412		56.07095	89.51030	89.82781	 21070*07	15100-00	2.82667	E9.76192	56.07829		37.14000	17.51000	19.06631	14.30894	52.43550
<u>31-56 P</u>	CASE 4	AL766, 49219	.12671	.05598		1051-03223	2.19499	50.00000	.95766	.94449	5412+56562	1.85765	90.52572	34.12257	8.83691	.06621	64.72623	137.29797	486.31912	7.31377	.00000	56.05596	89.54214	90*08944	12/12.12	62921 **0	4.89272	80686"68	56-08906		37-14000	17-51900	18,49127	8455451	58-70475
50¢ F	CASE 3	32655-08545	.12165	.05322	•02230	1401-40048	2.20674	50.0000	.95864	.94715	54 22 . 95062	1-86014	× 121-37972	44.40720	11-75395	.06621	112.96678	175-65009	736.02588	12-96033	• • • • •	56 - 0 30 26	69.55243	90.37414		112+90075	7.29682	90.23610	54+10477		37-14000	17+51300	17-66499	12+99186	64-69921
1351	CAR 2	THE IT	14211.	.04797	. 06139	2100.24261	2-20976	50.0000	. 96 352	996 16 "	5456.01959	1.85960	163.16362	64.01555	17.52699	. 06621	168.64908	243.24866	1350. 822 M	28.69434	• 00 00 •	55.94488	69.4783.	99*97688	 01110-21	105 04 203	12.99530	9C. 7681 1	5641499		37-14000	17-51000	15.42207	1 C. 85374	114-89201
<u>a \$001</u>	CASE 1	19821-12861	46501 .	.04328	.06405	2799.99957	2.20000	50-0000	.96247	+0154*	5480-4446		245.07470	82.64199	23, 23307	.06620	10000.522	299-86606	50464 °6018	49.99976	-0000	55.81637	05 . 281 49	91.60972		14065 . 622	55492*61	40120.10	56.22080		37.14000	17.51000	12,32624	7.87835	140.32569
		ĸ	154/40	044/40	Do/per	PCSC	MRSC	AE/AT	ETAC	ETAN	C+SC	5	NGJSC	IF JSC	WOF C	MFC/ NT	KONG	DEFUSC	DPOFC	OPORG	DTONG	Derusc	Dedec	040R1				047040	DeFJPC		POT		MPSP08	NPSPFB	NOISAN

Table III-III, Page 2 of 4

CONFIDENTIAL

TABLE III-III (cont.)

Report 68-C-0008-F

~	
cont.	
) 111-	
TABLE	

Nith Nith <th< th=""><th></th><th>1001</th><th>154 1</th><th>504 F</th><th><u>37.54 F</u></th><th>254 F</th><th>20% F</th><th><u>15% F</u></th><th>10% F</th></th<>		1001	154 1	504 F	<u>37.54 F</u>	254 F	20% F	<u>15% F</u>	10% F
RVMT State State <ths< th=""><th></th><th></th><th>CASE 2</th><th>CASE 3</th><th>CASE 4</th><th>CASE 5</th><th></th><th>CASE 7</th><th>CASE 8</th></ths<>			CASE 2	CASE 3	CASE 4	CASE 5		CASE 7	CASE 8
ZA3.10561		International Contents	100 LL	55655.04645	41700.49219	27817-05640	22237 34961	16690. 88550	11135-00330
Z43.10545 101.64430 120.25700 09.62005 59.43473 1 0787.5684 5187.64731 1215.62530 55.43473 1 0784.7884 5187.64731 1215.4500 511.4750 511.4750 1 0494.77815 5187.64731 1215.4500 231.4750 231.4750 231.4500 231.4750 1 150.00020 133.45005 133.45005 133.45005 133.45005 133.45005 231.4750 231.47505 231.47705 231.47505 231.47505 231.47505 231.47505 231.47505 231.47107 231.47107 231.47107 <th></th> <td>.75251</td> <td>- 75483</td> <td>.75544</td> <td>.75306</td> <td>.74457</td> <td>.73672</td> <td>.72401</td> <td>- 70465</td>		.75251	- 75483	.75544	.75306	.74457	.73672	.72401	- 70465
11 -557/66 -527/56 -507/11 -507/11 -5167.053 -51677.053 -51677.053 -51677.053<		243.16545	151-64438	120.26360	89.62095	50 * F 4 4 0 9	47.45292	35.791 37	24.52620
Fits Sits Sits <th< td=""><th></th><td>-57064</td><td>• 55468</td><td>.52786</td><td>.50711</td><td>.47545</td><td>. 45675</td><td>04014.</td><td>.40510</td></th<>		-57064	• 55468	.52786	.50711	.47545	. 45675	04014.	.40510
0 0		1978, 34844	5167.92456	2196.07315	1219-26901	551.34734	360.87043	211.82208	100.61366
(1) 4034,61107 2136,03829 965,71306 504,40001 226,0087 70,5151 1 159,219666 133,45965 133,07315 103,01003 96,0087 70,51531 1 159,219666 133,45965 133,07315 506,0087 70,51531 1 1599,21966 133,45965 133,0103 96,0087 70,51531 1 1380,85736 59975633 704,4910 2351,11426 14778,92296 1 1380,85736 59756330 704,4910 535,33563 704,4910 1 1381,60643 1774,35 596,01835 966,0733 653306 1 1381,606412 134,0064875 196,1033 653,00233 653,0133 1 137,64706 134,00641033 65,01303 66,03064 66,01407 1 1381,0064104 131,07 656,01803 66,03064 66,01407 1 1381,0064104 134,006487 96,04194 96,041917 65,01303 1 111,17,04733 137,044706 <		2000.7000	2974.89731	1257.41791	698 - 36266	315.55230	205.97629	120-54671	57.47976
150.0002013.4185313.97315 16.42054 8.16700 159.19056133.45965103.01003 65.90067 70.51531 159.19056539.45965103.01003 55.90067 70.51536 139.4505539.45965 596.90067 70.51536 139.4505539.45965 706.28910 2351.11426 107500 139.51115539.45953 594.6750 2351.11426 1016224 139.5115539.5356 594.7736 599.5306 1766.2026 595.6700 139.45065 59776 597265306 597265306 595.6700 67700 139.45176 5996.5306 11370.66700 65700 67700 18974 112407.66700 69004750 605.10536 974.7739 18974 112407.66700 89.42247 996.990419 677.106 18974 11270.4670 5224.72647 2156.93021 971.116936 18974 971.12635 966.910376 971.116936 18974 971.12635 966.910376 971.116936 18976 962.20024 5224.72647 2156.93021 18976 972.21128 692.20123 971.110936 18976 971.1262 971.12636 971.1106235 18976 962.20024 526.20024 549.20033 18976 972.1224 971.12626 971.1106236 18976 972.1224 971.21025 971.1066236 18976 972.2128 971.21026 972.21023 1997 114179966 <t< td=""><th>11</th><td>10610-1001</td><td>2136,63929</td><td>905.73206</td><td>504 . 4900 1</td><td>228.96583</td><td>149.84857</td><td>87-67490</td><td>41.47088</td></t<>	11	10610-1001	2136,63929	905.73206	504 . 4900 1	228.96583	149.84857	87-67490	41.47088
I I	2	150.06828	83.41859	33*97315	18.42054	8.18700	5.36830	3.17991	1.55791
No $6996 \cdot 77315$ $3779 \cdot 75107$ $2150 \cdot 3060$ $1547 \cdot 26973$ $909 \cdot 198226$ N2 $1790 \cdot 1015 \cdot 5385 \cdot 3160$ $107 \cdot 2913 \cdot 11426$ $107 \cdot 69229$ N2 $-5 \cdot 900 \cdot 7500$ $-5 \cdot 900 \cdot 7500$ $-6 \cdot 101 \cdot 69234$ N2 $-5 \cdot 900 \cdot 7500$ $-5 \cdot 900 \cdot 7500$ $-6 \cdot 700$ 1000 \cdot 100 \cdot 100 \cdot 000 \cdot 500 \cdot 500 \cdot 500 \cdot 100 \cdot 500 \cdot 100 \cdot 500 \cdot 100 \cdot 500 \cdot 770 \cdot 500 \cdot 770 \cdot 500 \cdot 5	z	159. 19666	133.45985	103-01003	86+90087	70.51531	63-72723	56.84384	49.86876
C 7735.1815 5396.08479 3296.1870 2351.11426 1476.9220 N2 -5 869.6350 5 977.735 5 960.7500 -10162234 N2 -5 869.6350 5 977.735 5 960.7500 -11016234 N2 -5 869.635 5 977.735 -553067 -0737 -0737 N3 100603 -07937 -07937 -05305 -05305 -05739 N3 974.177 15720.36536 1137.64706 054.3247 954.4107 N3 -07377 15720.36536 12400.46672 326.07434 34.97106 N3 -060037 12400.46075 $1250.600.41313$ 976.43247 90.4107 N4 92.221120 560.22024 $52.006.41336$ 10166.36525 34.97106 N1 92.221120 560.22024 $52.006.41336$ 10167.34234 34.97104 N1 92.221120 560.22113 52.320924 240.303	=	SISTT.0504	3479.75107	2150-38809	1547.26973	989.19426	776.96892	572.72616	375.85967
1300-961901035-03783704.24910935-33562 365.0700 10000535-59776530-590007580-4016923410000535-5977735-590007580-6733505131211-67970 579533 112107-65305966.9033051313119742115720.5633611210706695053365966.90333119743115720.56336121070669505355966.9033319743.19727879.4010489.42400599.4324799.4107197.33467789.4312269.4324734.971041920.2112869.4260299.44593343.5343434.97104192.2112869.2002422.0064343.5343434.97104192.2112869.2002422.0064343.5343434.97104192.2112869.2002422.0064343.5343434.97104192.01133524.726472156.990211533.00316367111192.012313524.726472156.990211533.003163671111192.012313524.726472156.990211533.003163671111192.012313524.726472155.990211533.003163671111192.012313524.726472155.990211533.0031636511111191.012591.012611939.272694.01631694.01631631770.01677061113051163 <t< td=""><th>U</th><td>2102,18181</td><td>01440-0400</td><td>3296.18570</td><td>2351.11426</td><td>1478-92296</td><td>1146.21532</td><td>50 0 ° 52 935</td><td>524.73406</td></t<>	U	2102,18181	01440-0400	3296.18570	2351.11426	1478-92296	1146.21532	50 0 ° 52 935	524.73406
N2 -5 05246336 -5 047735 -5 047735 -5 0407580 -6 10169234 -67305 -67305 -67107 -67305 -67107 -67305 -67107 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67117 -67111	ļ	1380.55190	1035.63263	704.24910	535,33562	365.67800	296.86575	228-85661	161.65018
0.0 1.00003 $.039376$ $.03937$ $.766770$ $.07339$ 1.301.60035 1.5720.36539 1.137.64705 $.065035$ 0.663035 0.65136 0.65136 0.65136 0.67316 0.57310 0.57310 0.57310 0.57310 0.57310 0.57310 0.57310 0.57316 0.51315 0.55316 0.660335 0.51316 0.500.41516 0.50131 0.5131 0.53316 0.560321 0.53316 0.563136 0.57311 0.57313 0.51312 0.55316 0.66.09315 0.5131 0.53316 0.56.09321 0.51313 0.534.77 0.53316 0.56.09321 0.51312 0.53312 0.53316 0.56.09321 0.51312 0.533126 0.56.09321 0.51312 0.53316 0.56.09321 0.51312 0.53316 0.51312 0.51412 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.51111 0.510133 </td <th>N 2</th> <td>-5 85946536</td> <td>-5 89726530</td> <td>-5 94777436</td> <td>-5 98007580</td> <td>-4 10169234</td> <td>-4 10325735</td> <td>-4 10471198</td> <td>-4 10567405</td>	N 2	-5 85946536	-5 89726530	-5 94777436	-5 98007580	-4 10169234	-4 10325735	-4 10471198	-4 10567405
(6797) (6795) (6695) (65306 (6531) (6731) 11972 15720-3633 112400 166613555 966-99335 966-99335 11974 15720-3633 12400 19506-10535 966-99315 966-99315 11 02.21128 68-2002 52.00643 43,53434 34.97104 11 92.21128 68-20024 52.00643 43,53434 34.97104 11 92.21128 68-20024 52.00643 43,53434 34.97104 12 141 92.21128 68-20024 52.00643 43,53434 34.97104 11 92.21128 68-20024 5166.93023 91999841 -41652393 11 770.006779 691.23248 630.0763 631.2023 545.2003 11 770.006779 639.27903 631.232 -413999941 -675.3013 12 -411779 -610.133 2057.3092 632.2262 545.33003 11 770.006779 639.27603 639.07469 59.076163	8	1.00663	. 93976	.8965.	. 76870	e7439	.62611	.57150	-51067
1201.001.005 1203.0033 1197.6470 106.01.055 966.90335 1207.007 1572.0.3653 1197.6470 1061.36525 966.90335 92.4107 10 10.22112 1572.0.3653 123.00.44175 93.4371 13.5343 34.97104 11 02.2112 66.2024 52.00643 43.5343 34.97104 11 507.02113 3524.7704 2156.99021 34.97104 97.4107 12 1791.0104 97.43003 43.5334 34.97104 97.4107 12 1791.0104 352.00641 22.00641 34.97104 97.110930 12 1771.0104 34.0074 35.0044 34.97105 34.97104 11 740.06779 610113 59.72058 63.01717 60113 50.77395 50.01731 11 740.06779 631.771 601633 59.623.3395 56.7733 575383 56.7733 11 740.06779 591.6733 592.65363 594.5373 594.5373 594.5373 11 <th></th> <td>.67970</td> <td>.67959</td> <td>.66695</td> <td>.65306</td> <td>.62107</td> <td>. 59969</td> <td>.57136</td> <td>00400.</td>		.67970	.67959	.66695	.65306	.62107	. 59969	.57136	00400.
19976.1977 15720.36336 12400.4695 10506.10535 8200.41516 99.43247 89.44107 11 92.21126 66.26024 52.00643 43.53434 34.97104 11 92.21126 66.260224 52.00643 43.53434 34.97104 11 92.21126 66.260224 52.00643 43.53434 34.97104 12 9173.34677 665.99121 54.04.4659 34.97104 34.97104 11 91377 665.91604 454.453913 346.09841 2403.039307 12 077.34677 665.91604 454.453912 346.09841 2403.039307 12 077.34677 645.4173 -41613 34.60163 -57433 11 -03030 -61613 60161 -76036 662.33001 11 -03031 -65216 6315310072 616123 557.33003 11 -03031 -65216 631613 -77616 6612.2322 54.233003 11 -03040 661613 601613 55		1341-60854	1253.85834	1137.64780	1061.36525	966.98335	921.11479	670.84895	816.41048
M 99-30476 69-42004 99-432406 99-43107 99-44107 H1 92-21126 69-20024 52-00643 43-53434 34-97104 H1 92-21126 69-20024 52-00643 43-53434 34-97104 H1 92-21126 69-20024 52-00643 43-53434 34-97104 H1 920-2113 3524-72647 2156-93021 1539-02183 40-91833 H1 977-34677 695-61604 94-46552 540-09841 240.3033937 H2 -4 14779355 -4 1399822 -4 19998419 -4 16523959 H2 -4 14779355 -4 1339922 -4 16523959 -67117 H2 -4 147793 04113 -61613 -601633 -67531013 -6753103 -67117 H2 -4 165-21248 630-77905 631233 -5753262 -645-31033 -67531033 -67531033 -67531033 -6753263 -645-31333333 -616133 -616134		19974.19727	15720-36536	12400.44875	10506.10535	8280-41516	7233.66083	6056+24298	4659.19165
H1 02.21128 60.28024 52.00643 43.53434 34.97104 H1 900.02313 3524.72647 2156.93021 1536.09183 971.10936 1 977.34677 665.91024 526.93021 1536.09183 971.10936 1 977.34677 665.91024 566.93021 1536.09183 240.093407 240.30330 376.996419 -61711 N2 -4 14179606 -401379 -605.91013 -61376 -613763 -617171 -605.91013 -613763 -617171 N2 -4 147799 -611376 -611379 -61163 -675316 -617317 N2 -61330 -61133 -611633 -611633 -6123248 -601633 -617317 N1 -65.0779 639.077605 639.07769 -612333356 -602.21282 -6016336 -6016336 -6016336 -6016336 -6016336 -6016336 -601.62768 -601.62768 -601.62768 -601.62768 -601.62768 -601.62768 -601.62768 -601.62768 -601.627		89.3687 8	20°40104	89.42406	89.43247	89.44107	89.44396	89.44948	89.45718
NI 90500.02313 3524.72647 2156.93021 1536.09183 071.10936 1 877.34677 655.91064 565.93021 346.09841 240.03303033037 NZ -4 1477.92864 240.03103 971.10936 NZ -4 147792646 545.53013 346.09841 240.03303033037 NZ -4 14779366 615.3 545.53013 567.6793 567.171 NZ -4 1478733 -4 1333922 -4 16523864 240.033003 1 745.69303 691.6733 561.0786 563.07363 565.23826 567.30013 1 740.06779 691.23240 630.77605 592.65286 560.022013 565.03201 1 740.06770 135.6216 1091.27969 $178.6.21825$ 946.65786 560.02847 NR2 4700.27709 3229.44113 2007.0770 2493.6207 1134.22947 560.02867 NR2 4700.27993 1776.219993 400.6911 722.2284 240.4911 320.4807		82.21128	68-28024	52.08643	48469*84	34+97104	31. 44855	27.89168	24 - 30368
CI 12741.00112 0002.02042 5404.46532 3637.92564 2403.03337 N2 477.34077 465.91604 455.5336 2403.03337 240.03441 240.03467 N2 -4 14179446 -6 14177335 -4 1333922 4 19652356 267.03503555 67171 N1 -6 141779466 -6 1513 340.0441 240.035041 67171 N1 -6 13030 -6 1613 3610.13 355.63162 67171 1 740.06779 6 31.27902 -6 1613 592.63282 -6 7171 1 -6 00300 -6 1613 -6 1613 592.63282 -6 7171 1 -6 0300 -6 1613 -6 1613 592.63282 -6 7171 1 -6 0500 -6 1623 592.63282 6 630.77905 662.6173 567.30013 1 -6 0500 -6 1633 -6 1633 -6 1633 592.63282 567.30013 1 -6 060 -6 1633 -6 1633 -6 1633 560.0766 560.023 567.30013 1 -6 060 -6 1633 -6 1633 560.07766 170.1999 <	a H	5050-02313	3524.72647	2156.93021	1538.09183	971.16956	757.77448	552.69997	356.64542
1 077-34677 665-91604 456-53913 346.09841 240.03567 71 017.34677 655-91604 456.53913 346.09841 240.05563 71 01377 01377 01613 01613 01613 016133 01613 01613 016133 016153 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 01623363 016323 016323633 01632363 01632363 016323633 016323633 0163263 016323633 013366 0160666 0160666 0166666 0166666 0166666 01666666 0166666 0166666	10	12741.05132	6662.82642	5404.46552	3837.92564	2403.03937	1862.58856	1347.71507	653.08259
12 -4 14/17935 -4 15339 -4 153399 -4 1652355 1 -93357 -91379 -91379 -91379 -61074 -75508 -6711 1 -93357 -91379 -61074 -75508 -67533 -67536 -6711 1 -60030 691-23248 630-77505 592-63262 545.30013 -6711 1 -600379 691-23248 630-77505 592-63262 545.30033 -6713 1 36.076536 56.07846 56.07846 56.07846 56.07866 56.02213 1 36.076536 1091-27969 1093-27162 1946.21824 946.6724 2 5706.1953 2067.3077 2493-62076 1134.22977 946.401 2 51500.14523 1770 2493-62076 1134.22977 32.54867 2 556.07849 51378156 536.19993 400.56784 32.54867 2 1600.14523 1770 2493.5679 536.4867 32.54867 2 556.07849 51378156 536.49973 32.5486	-	817.34677	402 01 00 4	454-53913	346*09841	240.85467	177111-791	151+66007	104.55582
(1) -90357 -91379 -61974 -75588 -67171 11 740.06779 -61913 -61013 -60163 -57483 11 740.06779 691.232486 6530.77505 592.63282 545.30013 11 740.06779 691.237486 6530.77505 592.63282 545.30013 11 56.0779 691.2324 10533.09285 566.07446 56.07866 6623.33093 11 56.07740 10533.09285 566.07746 56.07746 56.02291 12 4708.27094 3329.4413 2067.30072 1486.21825 946.637284 12 4708.25057 579.2865 5007665 540.65784 56.07744 12 5160.14523 1731.2361 10712 2137815 530.4372 530.4335 13 560.16326 530.1993 -490.5491 32.54433 540.56014 2 580.16326 530.1393 -530.4335 540.56014 550.4435 2 580.16326 530.1393 -530.4335	27	-4 14179648	-4 14787535	-4 13539622	6198661 4-	-4 16523556	-4 16749991	-4 16991190	-4 17212397
11 -601030 -62016 -61613 -60163 -57433 1 740.06779 691.23246 -601.7505 -60163 -545.30013 1 14447.024979 591.23246 590.77505 6622.43303 545.30013 1 56.07346 56.07346 56.07366 6622.43303 545.30013 1 56.07346 56.07346 56.07366 56.37303 545.30013 1 56.07346 56.07346 56.07366 56.07309 56.37303 1 5555.5576 56.07746 56.07346 56.07264 542.32704 1 5555.5576 567.30072 1466.21825 946.67214 576.52704 1 5555.5576 5077 579.2216 570.52051 570.52704 1 560.16256 560.16256 530.44335 530.44335 540.56014 2 560.16316 51378156 530.44335 540.560164 540.560164 2 560.016316 530.4391162 530.44335 540.560164 540.560164 2 560.016316 530.443135 540.560164 540.56016451	1.	-96357	61E16 ·	.81974	. 75588	.67171	•62868	-9949	49951
1 740.00579 691.23246 630.77505 592.63262 545.3001 14447 56.46492 1530.77505 592.63262 545.3001 1 56.46492 135.3.3023 1633.5.3025 545.301 56.07846 56.07846 56.0781 56.0781 56.07845 56.07845 56.07845 56.07821 56.07845 56.07845 56.07845 56.07845 56.07845 56.07845 56.07845 56.07845 56.07845 56.07845 56.07845 56.07821 56.07845 56.07845 56.07844 56.07845 56.07824 56.07824 56.07845 56.07845 56.07844 56.07844 56.07824 56.07824 56.07824 56.07824 56.07824 56.078447 56.086.0284 56.078447 <th>1</th> <td>. 63030</td> <td>.62816</td> <td>•61613</td> <td>•60163</td> <td>57433</td> <td>.55670</td> <td>04085</td> <td>.45573</td>	1	. 63030	.62816	•61613	•60163	57433	.55670	04085	.45573
14467.05493 13543.36230 10533.09265 6620.7203 6623.33093 NI 56.6754 55.07446 56.07466 56.07264 56.07291 56.0221 NI 56.6554 55.07746 56.07466 56.07264 56.0221 56.0221 NI 4708.27094 3329.44113 2067.30072 1486.21825 946.6776 56.0224 NI 4708.27094 3329.44113 2067.30072 1486.21825 946.57284 56.02391 NI 2160.14223 1731.12361 10913.6206 53.58767 50.56744 56.04931 56.57284 NI -5 2301.231 10913.7483 -5 32.58687 40.56491 32.586861 NI -6 50.16326 -6 50.16326 -60.56461 -60.56461 -60.56461 -60.56461 -60.56746 -60.56746 -60.567461 -60.567461 -70.5636163 -60.567461 -60.567461 -60.567461 -60.567461 -60.567461 -60.567461 -60.567461 -60.567461 -60.567461 -60.56761	-	740.06779	691-23248	630+77505	592.63282	545.30013	522.18737	493.41282	456.04945
NI 36.07442 56.07445 56.07445 56.07465 50.0221 NZ 4708.27094 3329.44113 2067.30972 1466.21825 946.67284 NZ 5555.56765 407.07770 2493.62054 1789.93076 1134.25877 NZ 5555.56755 407.07770 2493.62054 1789.93076 1134.25877 NZ 5556.014536 600.10526 5134.25877 330.44335 Z 106.004950 -5 31378156 -5 330.44335 NZ -6 213.78156 -5 330.44335 406.607441 Z 106.004950 -5 31378156 -5 330.44335 406.604135 NZ -6 26.0055 465.0055 47.103 40.560145 40.560145 NZ -55012 910.9005 -5.52910 910.90.91162 736.21435 403.600606 Z 1222.0005 910.9102 736.21435 403.600606 400.6060606 Z 925012 910.90.91162 736.21435 4		14467-05493	13543.36230	1 0533.09265	6629.72058	6823.33093	5686.67365	4816-50684	3546.73975
N2 4708.27094 3329.44113 2067.30072 1466.21825 946.617284 N2 5555.58765 407.07770 2493.62054 1799.93076 1134.23877 N2 5555.58765 1007.07770 2493.62054 1799.93076 1134.23877 N2 166.04950 1731.12361 1007.07770 269.1626 32.639467 N2 -5 2815567 -5 31378156 -5 33044335 N2 -6 269.1636 -5 32.63937 -5 33044335 N2 -6 269.1636 -5 3304335 -69.1636 -5 33044335 N2 -6 28815587 -5 31378156 -5 33044335 -646695 N2 -6 265055 -69.16366 -43505 -43508 -43508 N2 -5 30746335 -69.04639 -69.046395 -43508 -43508 N2 -5 28005 670.66095 -69.6219 -41183 -43508 N2 -5 972.222910 810.93182 736.21435 670.6608064 <th>ī</th> <th>56. 65492</th> <th>56. (5536</th> <th>56.07446</th> <th>56.07868</th> <th>56.08291</th> <th>56= 08478</th> <th>56.08627</th> <th>56.08826</th>	ī	56. 65492	56. (5536	56.07446	56.07868	56.08291	56= 08478	56.08627	56.08826
N2 5555-56765 4007.07770 2493.62054 1702.99776 134.23077 2 2160.41423 1731.12361 1091.2740 778.19993 400.55074 2 166.644950 113.37555 69.16326 49.04911 32.536467 12 -5 21376156 -5 31376156 -5 33.646335 12 -5 31376156 -5 32.639772 -5 33.044335 12 -5 31376156 -5 32.639073 -6.646335 -6.646335 12 -5 31376156 -5 32.639722 -5 33.044335 12 -5 5701333 -6.95013 -6.95013 -6.95014 -6.95014 2 12 -5 37.045015 -5 37.046335 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.956016 -6.9566016 -6.956016 -6.956016	И2	4708.27094	3329.44113	2067.30972	1486.21825	946,87284	741.72217	543*36437	352,37083
21600.14233 1731.12361 1091.27469 776.1993 400.5074 2 166.44450 113.3375 06.16356 52.5160 32.5160 N2 -5 2400401 -5 337156 65.0431 32.5160 N2 -5 240400 -5 317136 -5 3304335 N2 -5 24000 -5 3173156 -5 3304313 -443135 N2 -5 31033 -65500 -65500 -65500 -47135 -44503 2 -553749 -649165 -63749 -649135 -45503 -47135 2 -55379 619.9182 736.21435 670.60804 -43508 2 1222.292910 910.93182 736.21435 670.60804 -43508	N	5555.56765	4007.07770	2493.62054	1789.93076	1134.25877	885.52163	646.18475	416.67546
2 106.04450 113.33755 68.16526 49.04911 32.55467 N2 -5 24001636 -5 2081597 -5 31378156 -5 328.3972 -5 3304433 52 •99808 •83033 •65605 •54827 •4861 H2 •55012 •53749 •49916 •4183 •47808 2 1222.9859 972.22910 010.93182 736.21435 670.68864		2160.14523	1731-12361	1091-27469	778.19993	450.56744	368.90047	263.86979	165.06884
N2 -5 24001636 -5 2031597 -5 31370156 -5 32639722 -5 33044335 N2 -99000 -5 203033 -55009 -5 456127 -5 33044335 -404016 -57409 -49916 -49103 -47103 -47103 -472-22910 -610-93192 736-21435 670-68804	N	166.84950	113-33755	60-16526	11640*64	32.58467	27-05426	21.8439	16.89987
F2 •99888 •83033 •65605 •56827 •48481 #2 \$55012 \$53749 \$49916 \$47183 \$43508 2 1222.99569 972.22910 810.93182 736.21435 \$706.68864	NX	00010042 0-	-5 20815587	-5 31376156	-5 32439722	00000000 0-	-5 33174688	-5 33267134	1949088F 8-
42 656012 63749 649916 647183 643608 2 1222-99569 972-22910 810-93182 736-21435 670-68864	2	-9986	- 83033	-65605		48481	.46030	.44008	14064.
2 1222.99569 972.22910 810.93182 736.21435 5"0.68864	Ş	.55012	. 53749	* 49916	.47183	43508	.42274	.41204	.40693
	N	1222.98569	972.22910	810+93182	736.21435	6"0.68864	151-60906	61101°5E9	628.44570
29999.98584 24509.11841 18648.90576 15488.41687 12099.48218		29999.98584	24509.11841	1 8648.90576	15488.41687	12059.48215	10545+11145	8905.09119	7040.03552

Table III-III, Page 3 of 4

CONFIDENTIAL

CONFIDENTIAL

Report 68-C-0008-F

(cont.)
111-111
TABLE

. . .

The Second Section of the Second S Second S Second Se

Table III-III, Page 4 of 4

CONFIDENTIAL

CONFIDENTIAL

Report 68-C-0008-F, Part 1

TABLE III-IV

SYMBOL LIST FOR THROTTLING COMPUTER STUDY

1 1 1

AE/AT	-	Area Exit/Area Throat
CF	-	Nozzle Coefficient
C*SC	-	Throat VelocitySecondary Combustor
D*FJPC	-	Density Fuel Injector Primary Combustor
D*FJSC	-	Density Fuel Injector Secondary Combustor
D*FSM 1	-	Density Fuel Suction Main Pump First Stage
D*FSM2	-	Density Fuel Suction Main Pump Second Stage
D*OFC	-	Density Oxidizer Transpiration or Film Cooling
D*OJPC	-	Density Oxidizer Injector Primary Combustor
D*ORG	-	Density Oxidizer Regenerative Coolant Exit
D*OSM	-	Density Oxidizer Suction Main Pump
DPFJPC	-	ΔP Fuel Injector Primary Combustor
DPFJSC	-	ΔP Fuel Injector Secondary Combustor
DPFPCV	-	ΔP Fuel Primary Combustor Valve
DPFPCP	-	ΔP Fuel Primary Combustor Pilot System
DPFSC	-	ΔP Fuel Secondary Combustor Valve
DPFSCP		ΔP Fuel Secondary Combustor Pilot System
DPOFC	-	ΔP Oxidizer Transpiration or Film Coolant System
DPOH ₁	-	ΔP Oxidizer Housing First Passage
DPOH ₂	-	∆P Oxidizer Housing Second Passage
DPOJPC	-	ΔP Oxidizer Injector Primary Combustor
DPOPCP	-	ΔP Oxidizer Primary Combustor Pilot System
DPORG	-	ΔP Oxidizer Regenerative Coolant Coolant Circuit (or Oxidizer Housing Orifice)
DPPCVO	-	ΔP Primary Combustor Valve Outlet
DPSCVI	-	ΔP Secondary Combustor Valve Inlet
DPSCVO	**	ΔP Secondary Combustor Valve Outlet
DPTOB		ΔP Turbine Oxidizer Boost Pump

Table III-IV Sheet 1 of 6

CONFIDENTIAL

1011 No. 10

(This page is Unclassified)

Report 68-C-0008-F, Part 1

TABLE III-IV (cont.)

DP/PPF	-	AP Fuel Injector + Pressure Primary Combustor
DP/PPO	-	ΔP Oxidizer Injector + Pressure Primary Combustor
DP/PSF	-	ΔP Fuel Injector + Pressure Secondary Combustor
DTORG	-	Temperature Regenerative Coolant Circuit
ETAC	-	Efficiency Secondary Combustor Combustion
ETAFB	-	Efficiency Fuel Boost Pump
ETAFM	-	Efficiency Fuel Main Pump First Stage
ETAFM_2	-	Efficiency Fuel Main Pump Second Stage
ETAN	-	Efficiency Secondary Combustor Nozzle
ETAOB		Efficiency Oxidizer Boost Pump
ETAOM	-	Efficiency Oxidizer Main Pump
ETAT	-	Efficiency Turbine
ETATFB	-	Efficiency Turbine Fuel Boost
ETATOB	-	Efficiency Turbine Oxidizer Boost Pump
F	-	Thrust
HFBNC	-	Head Fuel Boost Pump, Noncavitating
HFB/N2	-	Head Fuel Boost Pump + (Speed) ²
HFM ₂	-	Head Fuel Main Pump Second Stage
HF ₂ /N2	-	Head Fuel Main Pump Second Stage + (Speed) ²
HFMNC ₁		Head Fuel Main Pump First Stage, Noncavitating
HF_1/N^2	-	Head Fuel Main Pump First Stage, Noncavitating + (Speed) ²
HOBNC	-	Head Oxidizer Boost Pump, Noncavitating
HOB/N2		Head Oxidizer Boost Pump, Noncavitating
HOMNC	-	Head Oxidizer Main Pump, Noncavitating
HOM/N2	-	Head Oxidizer Main Pump, Noncavitating + (Speed) ²
I		Specific Impulse

.

Table III-IV Sheet 2 of 6

Report 68-C-0008-F, Part 1

TABLE III-IV (cont.)

KwFCV	-	Film Coolant Valve Flow Admittance Factor
KwFPCV	-	Fuel Primary Combustor Valve Flow Admittance Factor
KwFSCV	-	Fuel Secondary Combustor Valve Flow Admittance Factor
KwOPCV	-	Oxidizer Primary Combustor Valve Flow Admittance Factor
KwRGV	-	Regenerative Coolant Valve Flow Admittance Factor
NT	-	Turbine Speed
NTFB	-	Turbine Speed Fuel Boost Pump
NTOB	-	Turbine Speed Oxidizer Boost Pump
MRENG	-	Engine Mixture Ratio
MRPC	-	Primary Combustor Mixture Ratio
MRSC	-	Secondary Combustor Mixture Ratio
NPSPFB	-	Net Positive Suction Pressure Fuel Boost Pump
NPSPFM	-	Net Positive Suction Pressure Fuel Main Pump
NPSPOB	-	Net Positive Suction Pressure Oxidizer Boost Pump
NPSPOM		Net Positive Suction Pressure Oxidizer Main Pump
NSF-1		Specific Speed Fuel Pump First Stage
NSF-2		Specific Speed Fuel Pump Second Stage
NSO	-	Specific Speed Oxidizer Pump
PA		Ambient Pressure
PCFACE	-	Primary Combustor Injector Face Pressure
PCPC	-	Primary Combustor Chamber Pressure
PCSC		Secondary Combustor Chamber Pressure
FFDTB	-	Pressure Fuel Discharge (total) Boost Pump
PFDTM ₁	-	Pressure Fuel Discharge (total) Main Pump First Stage
PFDTM ₂	-	Pressure Fuel Discharge (total) Main Pump Second Stage
PFSTB	-	Pressure Fuel Suction (total) Fuel Boost Pump
PFSTM ₁		Pressure Fuel Suction (total) Fuel Main Pump First Stage
PFSTM2	-	Pressure Fuel Suction (total) Fuel Main Pump Second Stage

Table III-IV Sheet 3 of 6

Report 68-C-0008-F, Part 1

TABLE III-IV (cont.)

PFT	-	Pressure Fuel Tank (Bottom)
PGJT	-	Pressure Gas Injector Total (Inlet)
PODTM	-	Pressure Oxidizer Discharge (Total) Main Pump
PODTB	-	Pressure Oxidizer Discharge (Total) Bount Pump
PORGDT	-	Pressure Oxidizer Regen. Coolant Discharg: Total
POSTB	-	Pressure Oxidizer Suction (Total) Boost Pump
POSTM	-	Pressure Oxidizer Suction (Total) Main Pump
POT	-	Pressure Oxidizer Tank (Bottom)
PTET	-	Pressure Turbine Exit Total
PTIT	-	Pressure Turbine Inlet (Total)
PTITFB	-	Pressure Turbine Inlet (Total) Fuel Boost Pump
PTITOB	-	Pressure Turbine Inlet (Total) Oxidizer Boost Pump
QFSB	-	Volume Flow Fuel Suction Boost Pump
QFSM ₁	-	Volume Flow Fuel Suction Main Pump First Stage
QFSM2	-	Volume Flow Fuel Suction Main Pump Second Stage
QOSB		Volume Flow Oxidizer Boost Pump
QOSM	-	Volume Flow Oxidizer Main Pump
Q/QDF ₁		Flow Parameter Ratio Fuel Pump First Stage*
Q/QDF ₂	-	Flow Parameter Ratio Fuel Pump Second Stage*
Q/QDFB	-	Flow Parameter Ratio Fuel Boost Pump*
Q/QDOB	-	Flow Parameter Oxidizer Boost Pump*
Q/QDOM	-	Flow Parameter Oxidizer Main Pump*
RPT	-	Pressure Ratio Turbine
SFB	-	Suction Specific Speed Fuel Boost Pump
SFM	-	Suction Specific Speed Fuel Main Pump First Stage
SHPFB	-	Shaft Horsepower Fuel Boost Pump

*Q/QD represents (Q/N) Actual/(Q/N)Design

Table III-IV Sheet 4 of 6

Report 68-C-0008-F, Part 1

TABLE III-IV (cont.)

SHPFM ₁	-	Shaft Horsepower Fuel Main Pump First Stage
SHPFM ₂	-	Shaft Horsepower Fuel Main Pump Second Stage
SHPOB		Shaft Horsepower Oxidizer Boost Pump
Shpom	-	Shaft Horsepower Oxidizer Main Pump
SHPT	-	Shaft Horsepower Turbine
SOB	-	Suction Specific Speed Oxidizer Boost Pump
SOM	-	Suction Specific Speed Oxidizer Main Pump
TFSB	-	Temperature Fuel Suction Boost Pump
TOSB	-	Temperature Oxidizer Suction Boost Fump
TTIT	-	Temperature Turbine Inlet (Toïal)
TTITFB		Temperature Turbine Inlet (Total) Fuel Boost Pump
TTITOB	-	Temperature Turbine Inlet (Total) Oxidizer Boost Pump
U/C-GT	-	Tip Velocity + Spouting Velocity Gas Turbine
W-ENG	-	Weight Flow Total Engine
WFBOS	-	Weight Flow Fuel Burn-Off Seal
WFC/WT	-	Ratio Weight Flow Film Coolant*/Weight Flow Total Engine Propellant
WFJPC	-	Weight Fuel Primary Combustor
WFJSC	-	Weight Flow Fuel Secondary Combustor
WFPCP	-	Weight Flow Fuel Primary Combustor Pilot
WFRTS	-	Weight Flow Fuel Pump Return to Suction
WFSB		Weight Flow Fuel Suction Boost Pump
WFT	-	Weight Flow Fuel Total (Engine)
WFSCP		Weight Flow Fuel Secondary Combustor Pilot
WGJSC	-	Weight Flow Gas Injector Secondary Combustor
WOBOS	-	Weight Flow Oxidizer Burn-Off Seal
WOFC	-	Weight Flow Oxidizer Transpiration or Film Coolant

1

\$

*

*Film Coolant and/or Transpiration Coolant

Table III-IV Sheet 5 of 6

Report 68-C-0008-F, Part 1

TABLE III-IV (cont.)

WOJPC	-	Weight Flo	w Oxidizer	Injector Primary Combustor
WOPCP	-	Weight Flo	w Oxidizer	Primary Combustor Pilot
WORG	-	Weight Flo	w Oxidizer	Regenerative Coolant
WOSB	-	Weight Flo	w Oxidizer	Suction Boost Pump
WOT	-	Weight Flo	w Oxidizer	Total (Engine)
WOTS	-	Weight Flo	w Oxidizer	Turbine Seal
WTFB	-	Weight Flo	w Turbine	Fuel Boost Pump
WTOB	-	Weight Flo	w Turbine	Oxidizer Boost Pump
WTI ·	-	Weight Flo	w Turbine	Inlet

.

Ŧ

日本市場のない 日本のようななななるという

とうかままであった こうごうちのまたまたい イ

andronen bi makin

State and Antonio

and a

-

-

.

Table III-IV Sheet 6 of 6

UNCLASSIFIED

محاصفة بترانيا ومصورة

يود م

.

Report 68-C-0008-F

TABLE III-V

100K ARES WEIGHT AND INERTIA SUMMARY

	Weight	Moment of Inertia About Gimbal
	Pouna	SLUG FT-
TURBOPUMP - INCL. PRIM. COMB & PCFCV ESG ADAPTER & LINE (W/O GIMBAL)	337.1	17.75
SECONDARY INJECT. SUB-ASS'Y & SCFCV	85.6	10.04
TPA JUB-TOTAL	422.7	27.79
ϵ = 150 THRUST CHAMBER ASSEMBLY AND NOZZLE EXTENSION	345.9	211.37
E = 50 TERUST CHAMBER ASSEMPLY AND NOZZLE EXTENSION	332.2	137.64
SUB-TOTAL BASIC ENGINE	768.6	239.16
SUB-TOTAL BASIC ENGINE	754.9	165.43
BOOST PUMES (2)	36.0	1.705
PROPELIANT IN ET HOUSINGS (2)	62.0	4.030
SUCTION VALVES & ACTUATORS (2)	40.0	4.280
GIMBAL	19.5	.001
PCFCV ACTUATOR	4.0	.301
SCFCV ACTUATOR	3.0	•399
ADDITIONAL ITEMS SUB-TOTAL	164.5	10.716
GRAND TOTAL -		
€= 150 DRY ENGINE ASSEMBLY	993.1	249.876
E 50 JRY ENGINE ASSEMBLY	919.4	176.146
€ - 150 WET ENGINE ASS+MBLY	996.1	254.236
ϵ = 50 wet engine assembly	983.4	180.376

Table III-V

AMARWOOLICD

Report 68-C-0008-F

TABLE III-VI

the state of the second second

[]

i.

Γ.

100K PROTOTYPE PRODUCTION ARES WEIGHT AND INERTIA SUMMARY

	Nozzle Expansion Ratio E	Weight Pound	Moment of Inertia About Gimbal Slug Ft ²
DRY ENGINE	150:1	883.	246.
	50:1	869.	172.
ADDITIVE EFFECT	150:1	63.	4.36
OF PROPELIANTS	50:1	64.	4.23
WET ENGINE	150:1	946.	250.36
	50:1	933.	176.23

Table III-VI

1

, **-**

an ann ann ann an ann

CONFIDENTIAL

Report 68-C-0008-F

ARES Engine, 100K, Throttlable (u)

Figure III-1

CONFIDENTIAL

HIPERTHIN Injector Throttling Characteristics

Figure III-2

CONFIDENTIAL (This page is Unclassified)

CONFIDENTIAL

Report 68-C-0008-F

Survey of the state of the stat

CONFIDENTIAL

Report 68-C-0008-F

Figure III-3

CONFIDENTIAL

فلأخط المكريم

Construction of the second second second

the set of the set of

and rechested to the

- 12

Ave Salaria.

- Annya - china -

21

Report 68-C-0008-F

Apollo Nozzle Extension

Figure III-4

Report 68-C-0008-F

UUNTIVER HAL

Report 68-C-0008-F

ARES Throttlable Engine Schematic

Figure III-6

CONFIDENTIAL

Report 68-C-0008-F

ARES Start and Shutdown (u)

Figure III-7

CONFIDENTIAL

CUNTIVENTIAL

Report 68-C-0008-F

-

1

- 1: -

Throttling Performance, 100K ARES (u)

Figure III-8

CONFIDENTIAL

CONFIDENTIAL

Report 68-C-0008-F

Typical Transpiration Coolant Flow During Throttling

Figure III-9

CONFIDENTIAL

(This page is Unclassified)

2

Report 68-C-0008-F, Part 1

IV.

INTEGRATED AUXILIARY POWER PACKAGE (TASK I)

A. OBJECTIVES AND APPROACH

1

(U) The objectives of Task I of the work statement were to establish design requirements and a layout design of an Integrated Auxiliary Power Package (IAPP) for use with the throttlable-restartable 100K ARES engine. The IAPP includes roll control, thrust vector control (TVC), and propellant tank-pressurization systems.

(U) Typical functional requirements for the IAPP were established primarily on the basis of the Titan Stage II requirements because of the size similarity. Additional requirements were defined to permit operation of the IAPP prior to engine restart and during engine-throttled conditions.

(U) Using this typical set of functional requirements, a vehicle/ engine IAPP system design was established. The engine-supplied system was designed to provide the vehicle with complete attitude control as well as roll control, with adequate thrust vector control, and with quick-response propellant tank pressurization. Through the use of propellant accumulators the system was designed for operation during vehicle coast periods and prior to engine restart, providing vehicle orientation, tank settling and pressurization, and engine gimbal orientation. The system was also designed to provide adequate pressure and flow regulation during engine throttling down to 10% thrust.

(U) The vehicle-located components of the IAPP system are defined in this report by means of a conceptual flow diagram and a table of predicted pressures and flows. The engine-located components are integrated physically and functionally to the basic 100K ARES engine and are defined in this report by means of an external engine drawing and tables of dimensions, weights, and flow requirements.

Page IV-1 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, A, Objectives and Approach (cont.)

(U) The functional requirements and conceptual design of the IAPP were then scaled and incorporated into the 25K and 500K thrust engines, as part of Tasks III and IV.

B. OPERATIONAL REQUIREMENTS

1. Titan, Apollo and Transtage IAPP Requirements

(U) Table IV-I lists the IAPP requirements and some of the operating parameters for the first- and second-stage engines of three Titan vehicles (Titan II, Gemini, and Titan IIIC) and for the upper-stage Apollo and Transtage engines.

(U) The Titan engines are pump-fed, with fixed thrust, and use solid start cartridges for their single start at altitude. The Apollo and Transtage engines are tank-fed, with fixed thrust, and have restart capability by means of their vehicle-supplied helium tank-pressurization systems.

2. Typical IAPP Requirements for 100K ARES

(U) The following basic IAPP requirements were established for the 100K ARES in a typical single-engine application.

100K ARES LAPP Requirements

TVC

Gimbal control angle	<u>+</u> 5	deg
Maximum gimbal velocity	25	deg/sec
Maximum acceleration	18	rad/sec

Page IV-2 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, B, Operational Requirements (ccnt.)

ROLL CONTROL

Ę

· SALANA

14-1-1

Tanal the Streets

;

ž

たちこうちょうちょう ちょうないない あまであ たちまままし ちょう

14-5-54

Moment

TANK PRESSURIZATION

	Oxidizer Tank	Fuel Tank	
Propellant	^N 2 ⁰ 4	AeroZINE 50	
Engine NPSH, min	20 ft	20 ft	
Tank top pressure	40 <u>+</u> 10 psia	30 <u>+</u> 10 psia	

1600 ft-1b

3. General Requirements

(U) Engine throttling and restart requirements: The IAPP, including TVC, roll control, and tank-pressurization systems, shall also be operable at reduced rates, pressures, and flows, while supplied from the engine at any reduced-thrust condition down to and including 10% thrust. Also, with the engine shutdown, the IAPP shall be operable at reduced rates, pressures, and flows, while supplied from a separate pressure source, such as enginesupplied accumulators.

(U) The tank pressure requirements were selected to provide a minimum NPSH of 20 ft to the engine boost pumps during the worst condition;
 i.e., assuming full-thrust operation with empty tanks and relatively short suction lines, as in Titan Stage II. Selection criteria were as follows:

100% Thrust Conditions	<u>Oxidizer</u>	Fuel	
Minimum tank dome pressure requirement, psia	28	13	
Gravity head (3 g's, empty tanks), psi	+12	+1	
Line loss, psi	<u>- 7</u>	<u>-3</u>	
Minimum total pressure, engine suction, psia	33	11	
Vapor pressure (at 80°F), psia	-20	<u>-3</u>	
Minimum net positive suction pressure, psi (Equivalent to NPSH = 20 ft)	+13	+8	

Page IV-3 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, B, Operational Requirements (cont.)

(U) Nominal oxidizer and fuel tank dome pressures were selected at 40 and 30 psia, respectively, to assure operation exceeding the above-noted minimums, allowing for pressure regulation and system response.

C. THRUST VECTOR CONTROL DESIGN

(U) The TVC gimbaling requirements specified above for ARES permitted the selection of a conventional, hydraulic, gimbal actuator similar to the flight-qualified actuators used on the Titan Stage II engine.

(U) The selected 100% ARES gimbal actuator is servo-controlled with an actuation pressure of 3000 pci, weighs less than 15 lb, and is 18 in. in length. It has a maximum piston force of 7500 lb, a nominal stroke of 1.8 in. and a flow demand of 10 in.³/sec at the maximum stroke velocity of 4 in./sec.

(U) Dimensions and layout of the TVC are shown in an external view of the ARES engine in Figure IV-1. The two actuators have been integrated as part of the engine rather than as part of the vehicle to use the high fluid pressure generated by the engine pumps. Engine fuel was selected as the actuating medium, because the conversion of seal materials from use with hydraulic oil to the use of AeroZINE 50 is less extensive than if N_2O_4 were used. A maximum momentary flow of 5 gpm or 0.6 lb/sec of engine fuel will be required during movement of both actuators. The source of fuel to the actuator is a tap-off from the engine's first-stage fuel pump discharge. The source pressure is dropped to 3000 psi at the actuator inlet by means of a continuous-flow bleed system described in Section IV,F as part of the overall IAPP system.

(U) The 100K ARES requires a smaller gimbal force than did the Titan because of the reduced weight and moment of inertia. However, since the ARES requires gimbaling at a 10% thrust condition and during vehicle coast periods, the piston area criteria of 2.55 sq in. used in the Titan actuator was retained for the ARES. This will provide high response at the 100% thrust, high pressure

Page IV-4

Report 68-C-0008-F, Part 1

IV, C, Thrust Vector Control Design (cont.)

conditions and permit moderate response at the low pressure conditions (150 to 350 psia) available at 10% thrust or from the accumlator during coast periods.

D. ROLL CONTROL DESIGN

(U) The typical roll control requirement specified for ARES is 1600 ft-lb, again based on Titan Stage II. Two roll control systems were examined: (1) a system of hot-gas nozzles mounted on the engine, using turbine exhaust gas and therefore operable only during engine operation, and (2) a system of bipropellant rockets mounted on the vehicle skirt, using propellants supplied from the engine during engine operation, and from a pair of propellant accumulators in the vehicle between engine firings.

1. Engine-Mounted Roll Control System

(U) For booster applications where stage roll control is required during engine operation only, a pair of opposing nozzles can be mounted on an outboard structural portion of the ARES engine and supplied with hot gas bled from the turbine exhaust through a duct and a three-way valve.

(U) The schematic in Figure IV-2 shows such a system with redundant values and nozzles on each side of the engine to provide reliability and to eliminate pitch and yaw moments. A practical location for the nozzles on the engine structure to provide the greatest moment arm is the mounting of a nozzle and value assembly outboard of each boost pump; this results in a moment arm of 2 ft measured from the engine/vehicle centerline. Thus, a total thrust of 800 lb is required to produce the specified moment of 1600 ft-lb, or with two nozzles operating, a thrust of 400 lb in each nozzle. At a chamber pressure of 2700 psia, the nozzles will require a maximum weight flow from the engine of 7 lb/sec, on an intermittent (on-off) basis. As the

Page IV-5 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, D, Roll Control Design (cont.)

main engine is throttled to 10% thrust, the roll control thrust will drop to less than 10%, which is a disadvantage of this system.

2. Vehicle-Mounted Roll Control System

(U) A more versatile system, particularly for upper-stage applications, is shown schematically in Figure IV-3, and utilizes small rockets mounted on the vehicle skirt. During engine operation, these rockets receive bipropellants bled from the main engine pumps. While the engine is shut down the rockets receive propellants from low-pressure (150 to 350 psi) storage accumulators that are recharged during engine firings.

(U) A pair of opposing rockets is mounted on each of two sides of the vehicle stage, at a moment arm of approximately 5 ft (typical). For the specified moment of 1600 ft-1b, a total thrust of 320 lb is required, or 160 lb each for two-rocket operation. (Standard 100-1b rockets could be used by using three pair instead of two.) A nominal chamber pressure of 100 psia was selected for the following reasons:

ŧ

a. It is the standard pressure for most of the control rockets of this type either already developed or being developed.

b. Chamber and nozzle cooling requirements are less critical at low pressure.

c. If maximum available pressures were used in the rockets, they would be tapped directly off the main engine pumps, and the pressure would consequently decrease greatly, by a ratio of 5000/350 psi, during engine throttling; however, the low-pressure bleed system, described in Section IV,F, permits better pressure regulation. The chamber pressure of the roll control rockets will vary less than 50% with the latter system.

Page IV-6 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, D, Roll Control Design (cont.)

d. Low-pressure rockets permit use of relatively lowpressure accumulators as their source of propellant between engine firings; the low pressure permits accumulator recharge capability even at 10% thrust operation of the engine.

(U) From the discussion above, it is evident that a throttlable type of control rocket is required. Its control values are on-off, but since the supply pressures will decrease at times, the injector and chamber must be capable of operating at reduced thrust and flow rates. A throttlable control rocket meeting these requirements is being developed by Aerojet under Contract NAS8-20795. By use of the Aerojet HIPERTHIN injector concept, the 100-1b-thrust rockets are throttlable 4:1, weigh 7.5 1b without values, and deliver an I_s vac of 290 to 300 sec at a mixture ratio of 1.6. The long life (25 hr) chamber is cooled by fuel-film cooling in combination with bimetallic regenerative conduction (Inconel lining, clad with copper). The nozzle has an expansion ratio of 50:1 and is radiation cooled. The controls are Moog bipropellant solenoid-operated values.

(U) With adequate capacity in the propellant storage accumulators, additional rockets of the same type as above can be used for complete attitude control and as settling rockets prior to starting the ARES engine in space. These rockets are included in the ARES IAPP system shown in the flow diagram in Figure IV-3.

(U) A mixture ratio of 1.6 was selected for the control rockets in the ARES system. This permits a reasonable excursion of mixture ratio during changes in the supply pressures, without leaving the fuel-rich region of operation; this is desirable because of the fuel-film cooling. By proper design of the system pressure regulation, any large changes of the mixture ratio of the control rockets will only be momentary and confined to transient changes during engine starting and throttling; the heat-sink capability of the above-described rockets can absorb a momentary increase in gas temperature.

Page IV-7 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, Integrated Auxiliary Power Package (Task I) (cont.)

E. TANK PRESSURIZATION DESIGN

(U) Two systems were examined for pressurizing the propellant tanks from the engine: (1) an autogenous system, and (2) main tank injection.

1. Autogenous Pressurization System

(U) The autogenous pressurization system uses oxidizer-rich gas bled from the engine turbine exhaust for oxidizer tank pressurization, and uses fuel-rich gas from a small auxiliary gas generator for fuel tank pressurization. A schematic of this system is shown in Figure IV-2.

(U) A monopropellant rather than bipropellant gas generator was considered for the fuel pressurant, but a major disadvantage is that AeroZINE 50 is a poor monopropellant. Decomposition could be initiated with the proper catalyst but coking of the catalyst bed would be a problem, particularly at reduced operating pressures.

l

ł

(U) Pressurant gases are cooled to approximately 300°F by means of heat exchangers in the engine propellant lines, as shown in the schematic. As an alternate, the oxidizer gas can be cooled by injecting liquid N_2O_4 directly into the gas. This system as shown can be designed to operate under engine throttling conditions.

(U) The major disadvantage of this autogenous system is that pressurization between engine firings requires a separate gas make-up system on the vehicle.

Page IV-8

Report 68-C-0008-F, Part 1

IV, D, Roll Control Design (cont.)

1

d. Low-pressure rockets peinit use of relatively lowpressure accumulators as their source of propellant between angine firings; the low pressure permits accumulator recharge capability even at 10% thrust operation of the engine.

(U) From the discussion above, it is evident that a throttlable type of control rocket is required. Its control values are on-off, but since the supply pressures will decrease at times, the injector and chamber must be capable of operating at reduced thrust and flow rates. A throttlable control rocket meeting these requirements is being developed by Aerojet under Contract NAS8-20795. By use of the Aerojet HIPERTHIN injector concept, the 100-1b-thrust rockets are throttlable 4:1, weigh 7.5 lb without values, and deliver an I_g vac of 290 to 300 sec at a mixture ratio of 1.6. The long life (25 hr) chamber is cooled by fuel-film cooling in combination with bimetallic regenerative conduction (Inconel lining, clad with copper). The nozzle has an expansion ratio of 50:1 and is radiation cooled. The controls are Moog bipropellant solenoid-operated values.

(U) With adequate capacity in the propellant storage accumulators, additional rockets of the same type as above can be used for complete attitude control and as settling rockets prior to starting the ARES engine in space. These rockets are included in the ARES IAPP system shown in the flow diagram in Figure IV-3.

(U) A mixture ratio of 1.6 was selected for the control rockets in the ARES system. This permits a reasonable excursion of mixture ratio during changes in the supply pressures, without leaving the fuel-rich region of operation; this is desirable because of the fuel-film cooling. By proper design of the system pressure regulation, any large changes of the mixture ratio of the control rockets will only be momentary and confined to transient changes during engine starting and throttling; the heat-sink capability of the above-described rockets can absorb a momentary increase in gas temperature.

Page IV-7 UNCLASSIFIED
Report 68-C-0008-F, Part 1

IV, Integrated Auxiliary Power Package (Task I) (cont.)

E. TANK PRESSURIZATION DESIGN

(U) Two systems were examined for pressurizing the propellant tanks from the engine: (1) an autogenous system, and (2) main tank injection.

1. Autogenous Pressurization System

(U) The autogenous pressurization system uses oxidizer-rich gas bled from the engine turbine exhaust for oxidizer tank pressurization, and uses fuel-rich gas from a small auxiliary gas generator for fuel tank pressurization. A schematic of this system is shown in Figure IV-2.

(U) A monopropellant rather than bipropellant gas generator was considered for the fuel pressurant, but a major disadvantage is that AeroZINE 50 is a poor monopropellant. Decomposition could be initiated with the proper catalyst but coking of the catalyst bed would be a problem, particularly at reduced operating pressures.

(U) Pressurant gases are cooled to approximately 300°F by means of heat exchangers in the engine propellant lines, as shown in the schematic. As an alternate, the oxidizer gas can be cooled by injecting liquid N_2O_4 directly into the gas. This system as shown can be designed to operate under engine throttling conditions.

(U) The major disadvantage of this autogenous system is that pressurization between engine firings requires a separate gas make-up system on the vehicle.

> Page IV-8 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, E, Tank Pressurization Design (cont.)

2. Main Tark injection

(U) This syste uses propellants injected directly into the propellant tanks—fuel into the oxidizer tank and oxidizer into the fuel tank. The system shown in Figure IV-3 uses propellants supplied from the propellant accumulators for tank pressurization. Therefore, the system can operate when the engine is off. This system was selected for the IAPP because it can operate when the engine is off, it is light in weight, it has fast response and it can operate with low supply pressures.

(U) Two safe methods of injector are available: Aerojet-General Corporation under a company-sponsored program has demonstrated a subsurface injection method, and The Martin Company has demonstrated a solid stream, surface injection method (Reference 2). The latter method was selected because it was conducted with both small- and large-scale equipment, including full size, flight-weight, Titan Stage II tankage, and thereby providing quantitative design data that can be directly applied to the 100K ARES system.

(U) The selected MTI system is shown schematically in Figure IV-3. During engine firings, an almost continuous flow of the liquid pressurants from the engine will be required, with the approximate values as indicated on the schematic for the 100 and 10% thrust conditions. Between engine firings, and prior to restart, a flow of liquid pressurants from rechargeable accumulators located in the vehicle will be required to make up the loss in tank pressure as the gases cool down and partially condense. Most of the tank gases generated by the MTI system are products of combustion and noncondensable; however, a small percentage of condensable vapors will also be formed and these will tend to condense as the gas cools. In sizing the system, it was assumed that the tank pressure will decay by 50% during coast periods, and require corresponding make-up from the accumulators.

> Page IV-9 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, E, Tank Fressurization Design (cont.)

(U) Several potential problems in the MTI system were investigated and resolved in The Martin Company program. The temperature of the tank gas increased during the pressurization process, but the use of solid stream injection, as opposed to a spray, kept this rise to a safe minimum and well within the capabilities (300°F maximum wall temperature) of the thin aluminum tankage used in the tests. Also, effects on the main propellant caused by soluble inerts, entrained vapors, moisture, and temperature increase were investigated and found to be well within allowable limits.

(U) Tank pressure control within a 3% variation was attained in the full-scale, 150-sec duration tests, including start, restart, and throttling simulations. This precise pressure control was obtained with a pulse-mode injection system that varies the frequency of the pulses to control the flow rate of liquid pressurant. A pulse system of this type was also selected for the ARES system, because a wide range of flow variation required for throttling can be accomplished without seriously changing the ΔP across the pressurant injector. This will improve the performance of the system and simplify the injector design requirements.

(U) An unknown area that was not tested was the operation of the system during a zero-gravity condition, with the possible hazard and change in performance characteristics. Until tests are conducted and possibly unique equipment is developed for zero-gravity injection, it is necessary to assume the tank propellant will be properly oriented just prior to and during MTI operation. Propellant can be oriented with the small settling rockets shown on the schematic in Figure IV-3, and the tanks repressurized in approximately 5 sec preceding the engine start or restart.

> Page IV-10 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, Integrated Auxiliary Power Package (Task I) (cont.)

F. INTEGRATED SYSTEM

(U) The functional IAPP system for the 100K ARES is shown in Figure IV-3, along with values for the predicted pressures and flows of each subsystem at 100 and 10% thrust conditions. In the figure, those components shown below the vehicle/engine interface line will be engine-mounted hardware; their physical integration with the 100K ARES is shown in the engine external view in Figure IV-1. These engine-mounted components include the two gimbal actuators with their high-pressure fuel supply lines and low-pressure return lines. The remainder of the engine-mounted IAPP components are the two pump discharge bleed lines (one fuel and one oxidizer) with check valves, orifices, and vehicle interface connections to supply propellants to the vehicle Attitude Control System (ACS) and Main Tank Injection (MTI) System, and to recharge the IAPP accumulators. The engine-mounted tubing and fitting sizes are tabulated in Figure IV-1.

(U) The attitude control and tank pressurization systems are located on the vehicle and are supplied with propellants directly from the engine or from the fuel and oxidizer accumulators located on the vehicle. In the schematic in Figure IV-3, a simple system of check valves are added to semiregulate the IAPP system pressures and to minimize variations in the total flows bled from the engine. The fuel and oxidizer accumulators provide propellants during coast periods. The overall system operation and typical design parameters are described briefly in the following paragraphs.

(U) A major portion (about 75%) of the design flow in each supply line is not expended in the IAPP system, but is used for pressure and flow regulation and returns to the suction lines through a bypass check valve. Proper regulation requires that this check valve be designed to be full open at 500 psia, and full closed at 400 psia. By this means, as the system pressure drops below 400 psia, either because the accumulator is charging or the

Page IV-11 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, F, Integrated System (cont.)

engine is throttled below full thrust, the bypass flow ceases and is diverted into the system where it is needed.

(U) An isolation value is located at each accumulator and will be closed only during long coast periods. Upstream of this value is a relief check value that bypasses to the suction line and is set at 900 psia cracking pressure; its purpose is two-fold: (1) to limit the accumulator pressure during lock-up, and (2) to provide a back-up system for pressure regulation at a higher but safe level should the 500-psi bypass check value fail to open. The 900-psia relief value will remain closed under normal operation and can be designed with minimum leakage, or it can be preceded by a burst diaphragm if zero leakage is required.

(U) Selection of final accumulator sizes should follow establishment of vehicle and mission requirements, and a detailed analysis of recharging times as a function of the mission thrust schedule. A preliminary analysis indicates thet oxidizer and fuel accumulators of 2.0 ft³ each (1.15 ft³ liquid volume) will p. vide IAPP requirements for 300 sec during a coast period, equivalent to a total impulse of 48,000 lb-sec in the ACS, which is the subsystem that determines most of the IAPP requirements. From the empty condition this size of accumulator will fully recharge in 40 sec at full thrust engine operation, or half-recharge in 100 sec at 10% thrust.

(U) Pressure regulation in the system will be sufficient to maintain the following supply pressures in psia, to each of the IAPP subsystems:

Vehicle Subsystems	100% Thrust	10% Thrust	Coast <u>Periods</u>
Attitude control system (2 nozzles creting)	200 to 500	200 to 350	200 to 350
Tank prescurization system	200 to 800*	200 to 350	200 to 350
Engine Subsystem			
TVC-gimbal actuators	2500 to 3000	200 to 350	200 to 350
*800 psia can occur in the vehicle syste accumulators are fully charged.	m when the ACS	is not open	rating and the

Page IV-12 UNCLASSIFIED

Report 68-C-0008-F, Part 1

IV, F, Integrated System (cont.)

(U) The nominal flow of approximately 3 lb/sec required by the IAPP system from the fuel and oxidizer circuits in the engine will require an initial control valve adjustment on the engine to maintain rated thrust and mixture ratio. This adjustment can be made during engine acceptance testing, and it will result in a turbine temperature increase of approximately 20°F, with minor changes in pump discharge pressures.

(U) The predicted variation in IAPP flow from the nominal would be ± 0.5 lb/sec at the 100% thrust condition, with negligible effect (less than 0.5%) on engine thrust and mixture ratio.

Page IV-13 UNCLASSIFIED TABLE IV-I

. . .

LAPP REQUIREMENTS, CURRENT OPERATIONAL VEHICLES

		Titan	H	Geni	ni	Titan	IIIC		
		lst Stg	2nd Stg	lst Stg	2nd Stg	lst Stg	2nd Stg	Apollo	Transtage
Engine 'rhrust Nozzle Expansion Ratio	Тр	LR87AJ-5 430,000 8:1	LR91AJ-5 100,000 49:1	LR87A.J-7 l430,000 8: 1	LR91AJ-7 100,000 49:1	lr87aJ-9 430,000 8:1	LR91AJ-9 100,000 49:1	AJI0-137 20,000 60:1	AJI0-138 16,000 40:1
TYC (all are gimbal type) Total Angle Control Angle Angular Arceleration Angular Velocity	deg d∋g rad/sec deg/sec	30 22 +1-25 +1-55 +1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	30 25 1+ 1+ 25 25 25 25 25 25 25 25 25 25 25 25 25	25 21 21 21 21 21 21 21 21 21 21 21 21 21	302 21 21 21 21 21 21 21 21 21 21 21 21 21	55 25 25 25 25 25 25 25 25 25 25 25 25 2	-164 -164 -164 -164 -164 -164 -164 -164	5002 5005
Roll Control Method		Gimbal	Swivel Nozile	Gimial	Swivel Nozzle	Gimbal	Swivel Nozźle	Fixed Thrusters	Fixed Thrusters
Source of Thrust		Main Engines	Turbine Exhaust	Main Engines	Turbine Exhaust	Main Engines	Turbine Exhaust	N ₂ 0µ/A-50 Rockets	Hydrazine Rockets
Roll Thrust Moment Arm Moment	lb in. ft-lb	33,800 29.2 82,000	11,612 1,612	33,800 29.2 82,000	440 44 1 , 612	33,800 29.2 82,000	440 44 1 , 612	400 80 2,670	50 250 250

Table IV-I, Page 1 of 2

UNCLASSIFIED

a - no var om die werdenskappenenen fange

Report 68-C-0008-F

TABLE IV-I (cont.)

		Tita lst Stg	n II 2nd Stg	Gemi Ist Stg	ni 2nd Stg	Titan Ist Stg	IIIC 2nd Stg	Apollo	Transtage
Tank Pressurization - Fuel Nethod		Autogen- ous	Autogen- ous	Autogen- ous	Autogen- ous	Autogen- ous	Autogen- ous	Bl.ow down	Blow down
Gas Source		Turbine Inlet	Turbine Inlet	Turbine Inlet	Turbine Inlet	Turbine Inlet	Turbine Inlet	Bottle	Bottle
Gas		Fuel Rich A-50/N ₂ 04	Fuel Rich A-50/N ₂ 0 ₄	Fuel Rich A-50/N ₂ 04	Fuel Rich A-50/N ₂ 0 ₄	Fuel Rich A-50/N ₂ 04	Fuel Rich A-50/N ₂ 0 ₄	Helium	Helium
Gas Flow Rate	1b/sec	.681	.299	.650	.291	.717	•333	N/A	N/A
das/fropertant nauto, w(gas)/w(fuel) Gas Temp. Press. To Sonic Orifice	or psia	. X0120 215 270	.00259 220 1400	.00115 216 250	.00254 220 390	.00126 230 345	.00291 220 390	N/A N/A N/A	N/A N/A N/A
Tank Top Pressure	psia	26-23	45-50	26-23	45-50	27-24	51-56	N/A	N/A
Tank Pressurization - Oxidi Method	zer	Autogen- ous	Blow down	Autogen- ous	Blow down	Autogen- ous	Autogen- cus	Blow down	Blow
Gas Source		Ox . Pump	Bottle	Ox. Pump	Bottle	Ox.Punp	Ox.Pump	Bottle	Bottle
Gas		N204 Vapor	Helium	N204 Vapor	Helium	N204 Vapor	N204 Vapor	Helium	Helium
Gas Flow Rate	1b/sec	1.712	N/A	2.099	N/A	3.233	.923	N/A	N/A
us, rropellant naulo, %(gas)/%(oxid.) Gas Temp. Fress. To Orifice,	ор psia	.00156 376 450	N/A N/A N/A	-00191 N/A N/A	N/A N/A N/A	.00295 350 600	.00443 350 450	N/A N/A N/A	N/A N/A N/A
Tank Top Pressure	psia	27-18	55-10	27-18	55-10	31-19	46-48	N/A	N/N

Table IV-I, Page 2 of 2

UNCLASSIFIED

UNCLASSIFIED

Report 68-C-0008-F

· · · ·

Report 68-C-0008-F

ß

Thrust 1bf		<u>25K</u>	100K	<u>500K</u>
Engine gimbal moment of inertia	, ,		_	
wet	slug ft	13.9	176	4531
Max. gimbal accel.,	rad/sec ²	18	18	18
Max. gimbal velocity,	deg/sec	25	25	25
Gimbal control angle,	deg	± 8	* 5	±5
Gimbal moment arm,	in	5	10	24
Actuation pressure,	psia	3000	3000	3000
Actuator piston area, net,	in^2	0.4	2.55	14.2
Actuator control stroke,	in	1.4	1.8	4.2
Actuator max. stroke including				
snubbing,	in	1.6	2.2	5.0
Actuator length,	in	12	18	36
Weight, actuators (2)	lb	16	30	230
Weight, total engine IAPP				
lines & fittings	lb	3	5	30
Tubing & fitting size:				
Actuator lines	in	1/4	1/4	1/2
Vehicle IAPP supply lines	in	1/4	3/8	1
Actuator max. momentary				
flow demand, fuel:				
One actuator	lb/sec	•03	.4	5.0
Both actuators.	lb/sec	•04	.6	7.0
Vehicle IAPP interface, max.	,			
Fuel	lh/sec	1.2	2.6	28.5
Ovidizer	lb/sec	1.0	5.0	22.5
UNLUL DOI	10,000	2.07	/	

- - -

hand.

ve netterada de

ARES External View with IAPP Specification

Figure IV-1

Report 68-C-0008-F

「「「「「「「「」」」」というとなっていた。

1111

. .

IAPP System Using Engine Gas

Figure IV-2

UNCLASSIFIED

IAPP System Using Engine Liquids

Report 68-C-0008-F, Part 1

V.

LOW FREQUENCY ANALYSIS (TASK 11)

A. OBJECTIVES AND APPROACH

きない ちゃくしてき ちょう

(U) A lumped-parameter low frequency stability analysis was conducted for the 100K ARES throttlable-restartable engine at eight throttle ratios for the turbulent injector configurations and at four throttle ratios for the laminar flow injector configurations. The analysis was conducted using the basic dynamic model and low frequency analysis computer program which was developed during the ARES Phase I effort on Contract AF 04(611)-10830. A new computer program was written for calculation of the coefficients of the system of ordinary differential equations which are used to represent the dynamic behavior of the engine system. This program takes as input the pressure and flow schedules for the engine and other characterizing parameters such as pump head curves, efficiencies and pump rotor moments of inertia, and as output, it punches the cards to be used with the stability analysis program.

B. MATHEMATICAL MODEL

(U) A lumped-parameter mathematical model was used to describe the engine system. The system components are closely coupled and distributed characteristics, such as hydraulic line transmission delay, are assumed to be adequately approximated by lumped-parameter models for the frequency range of 0 to 500 cycles per second. Lumped-parameter elements are described mathematically by systems of ordinary differential equations. The general differential equations are nonlinear; however, the nonlinearities are removed by application of perturbation methods, resulting in a system of simultaneous linear differential equations with constant coefficients.

(U) The component arrangement is simulated by means of 75 simultaneous equations (32 differential equations and 42 algebraic relations). These equations represent the dynamic characteristics of the pumps, lines, valves, injectors, and combustors.

Page V-1

Report 68-C-0008-F, Part 1

V, Low Frequency Analysis (Task IT) (cont.)

C. STABILITY ANALYSIS

The system of equations which represent the ARES engine are solved (U) by Laplace transformation of the equations and subsequent use of Matrix methods, programed for digital computer, to obtain the "solution" in terms of the Laplace operator. Stability or instability of the system is easily determined at this point. The solution has the form of a ratio of two real and factored polynomials in the Laplace .perator. The real-time solution, which can be obtained by inverse Laplace transformation for known input parameters, will be in the form of a sum of exponential terms formed from the roots of the denominator polynomial. The roots of the real polynomial are either real or appear as complex conjugate pairs. The real roots yield exponential terms in the transient while the complex conjugates produce sine and cosine terms multiplied by exponential decaying factors. The exponential factors in both cases will only decay if the real part of the roots of the denominator polynomial have negative real part. Hence, the stability criterion reduces to requiring that all roots of the denominator polynomial have a negative real part which is readily determined by inspection of the stability program output.

D. RESULTS

(U) Stability analyses were made for the engine with turbulent injectors at eight throttle points: 100, 75, 50, 37.5, 25, 20, 15, and 10%, and for the laminar injector system at four throttle points: 100, 37.5, 20, and 10% of full thrust. Both engines were found to be stable at the design thrust; however, the turbulent injector system was found to be unstable at 15 and 10% of design thrust and the laminar injector system was found to be unstable at 10% of design thrust. The laminar injector system was only slightly more stable (compared to turbulent); the laminar system was estimated to become unstable at 15% of full thrust while the turbulent injector system was estimated to become unstable at 18% of full thrust.

Page V-2

Report 68-C-0008-F, Part 1

V, Low Frequency Analysis (Task II) (cont.)

E. ENGINE SYSTEM CHANGES

I Ben VALIDIAN - -

à

Adden Market

(U) Several engine parameters were varied in attempts to obtain a stable configuration at the 10% thrust point. The following modifications were tried: increased hydraulic resistances in boost pump drive lines, primary fuel and oxidizer injectors, and secondary fuel and oxidizer injectors; increased boost pump and main pump rotor moments of inertia; eliminated the volume of turbine exhaust duct; eliminated unburned propellant storage terms in primary and secondary combustors; and increased the negative slopes of pump characteristics for the first-stage main fuel pump, second-stage fuel pump, and oxidizer main stage. The only changes that had a significant stabilizing effect were increasing the primary combustor oxidizer injector pressure drop and increasing the oxidizer pump characteristic slope. Doubling of the primary combustor oxidizer injector pressure drop was not sufficient to stabilize the engine. The oxidizer pump characteristic slope at the 10% thrust point was steepened from the design value of 0.0 to -0.1, -0.44, and -0.73. The change to -0.73 was sufficient to stabilize the system while the changes to -0.1 and -0.44 were not. It should be noted that the variation of this slope was from -0.65 at full thrust to -0.33 at 20% thrust to 0.0 at 10% originally. Thus, the change from 0.0 to -0.73 at the 10% thrust point is substantial and would probably be difficult to achieve physically. A better solution would be to increase pressure drops throughout the system in addition to changes to the pump characteristic. The necessary change in pump characteristic slope could be achieved by a bypase or recirculation arrangement for the oxidizer pump such that the operating point at low thrust is shifted to higher flow rate.

(U) The real and imaginary parts of the root that produced the instability are plotted in Figure V-1 as a function of the operating thrust level. The point at which the real part of the root becomes positive can be clearly determined.

Page V-3

- A number of a

Report 68-C-0008-F, Part 1

V, E, Engine System Changes (cont.)

(U) The results of the various changes which were made at the 10% thrust point for the turbulent injector configuration are shown in Figure V-2. The arrows indicate the effect which the identified change had on the real and imaginary parts of the offending denominator root. Each change also produced effects in other roots, but in all cases the real parts of all other roots remained negative so that stability was not affected. Some of the changes produced destabilizing effects while the change in the oxidizer pump head curve had the most significant effect and was the only change which resulted in a stable system.

Fage V-4

Report 68-C-0008-F

A Laste

··· ··· ··· ···

ARES Throttling Stability

「「「ない」とうないとうとうなるとき

FASSON FASS

NAMES AND ADDRESS OF A DO

ÿ

2000

- Andrie

and deve

UNCLASSIFIED

Figure V-2

Report 68-C-0008-F, Part 1

VI.

25K ENGINE DESIGN (TASK III)

A. OBJECTIVES AND APPROACH

いたいない ないとう いろう ちょうちょう

(U) The objectives of Task III were to establish the thrust chamber pressure and establish an engine design based on the established pressure for a throttlable, restartable engine having a throttle range of 10:1 and a vacuum thrust of 25,000 lbf using a nozzle with a 150:1 area expansion ratio.

(U) The approach to accomplishing these objectives was to (1) analyze the heat transfer, performance and payload effects of thrust chamber pressure to establish the chamber pressure; (2) use the established pressure and establish design criteria and operating characteristics over the throttling range; and (3) prepare a 25K thrust (vacuum) engine design on the basis of these criteria, and similar to the 100K base-line design. The results of this task are described in the following paragraphs.

B. CHAMBER PRESSURE OPTIMIZATION

(U) To maximize the performance potential of a 25K engine design it was desirable to consider a range of chamber pressures, particularly because of the inherent increase in cooling requirements associated with the smaller chamber geometry. In recognition of the relative importance of performance factors other than cooling losses, such as energy release and recombination or kinetic losses, the study took into account the variation of all performance factors with chamber pressure and geometry. Additionally, the effects of chamber length and weight on vehicle payload were considered.

Page VI-1

Report 68-C-0008-F, Part 1

VI, B, Chamber Pressure Optimization (cont.)

(C) The analysis was performed at each of three chamber pressures: 500, 1600, and 2800 psia. The basic chamber design approach adhered to at all pressures was to determine the throat diameter for an estimated performance level and then establish a family of cylindrical chambers of various contraction ratios (A_{inj}/A_{throat}) , each with varying cylindrical length, and blend radii equal to the throat diameter connected by a 30-degree convergence angle.

(U) Minimum-length RAO nozzle contours were similar for each pressure and were established at an expansion ratio of 150:1 by Aerojet computer program 1025. Nozzle geometrical efficiencies were also determined with this same program.

(U) Cooling requirements for each chamber were computed using a onedimensional fin conduction model in association with the Stollery & El-Ehwany boundary layer mixing model for film cooling (Reference 3). This is the same technique presently used on all transpiration cooling analyses on the ARES chambers. All remaining chamber design and analysis followed the same ground rules as does the ARES chamber, including the use of 0.021-in. platelets at area ratios (chamber and nozzle) greater than 2.3, and 0.011-in. platelets at all other points. Because of the variation in chamber pressure and, hence, the nozzle cooling requirements, each nozzle was assumed to be cooled to a point where the gas pressure was 30 psia. Consequently, each chamber has a different cooled length. The selection of this nozzle extension attachment point is based on experience with the Transtage nozzle and the ARES transpiration-cooled chamber. The ARES nozzle extension is similar in design to the nozzle on the Apollo service module engine, which is shown in Figure III-4. The upper portion of the Apollo nozzle is columbium alloy C-103 with a ceramic-aluminide coating to inhibit oxidation. This upper portion of

Page VI-2

Report 68-C-0008-F, Part 1

VI, B, Chamber Pressure Optimization (cont.)

the nozzle operates with a wall temperature of 1950°F at a static pressure of . 2.4 psia. A similar nozzle configuration for the Transtage engine has demonstrated an accumulative duration of 4397 sec with 205 restarts without failure at a wall temperature of 2200°F and static pressure of 2.2 psia.

(U) The ARES nozzle extension is film cooled by the carry-over from the transpiration-cooled chamber and nozzle. Testing experience on the ARES program has shown that this coolant carry-over significantly lowers the extension nozzle temperature. This permits attachment of the nozzle extension at a higher static pressure. The value of static pressure where the nozzle extension can be attached must be determined experimentally. For this study, it was assumed that the nozzle extension could be attached at a static pressure of 30 psia.

(U) The boundary layer losses were calculated by Aerojet computer program E-25202 and include the effects of shear drag, heat transfer, and displacement thickness.

(U) The energy release loss calculation for each injector/chamber combination assumed that injector and propellant conditions could be achieved which equal those of the ARES chamber. These conditions include injection density, propellant atomization characteristics, and transport properties. With all of these effects constant, the energy release loss becomes only a function of changes in chamber geometry and chamber pressure.

(U) The kinetic or finite rate performance losses were calculated using the Kushida sudden freezing criteria (Reference 4) and were only a function of chamber pressure with the mozzles and gas condition peing similar.

Page VI-3

CONFIDENTIAL (This page is Unclassified)

CUNTIDERIIAL

Report 68-C-0008-F, Part 1

VI, B, Chamber Pressure Optimization (cont.)

(C) The effect on weight of changes in chamber geometry was also considered in the optimization as the basic performance of the thrust chamber is only important to the extent that it contributes to the overall vehicle performance. Changes in weight from a nominal chamber used in previous scaling studies were calculated assuming 1-in.-thick chamber walls of stainless steel. The nominal chamber at each pressure was a 40L* cylindrical chamber with a 30-degree convergent section and a cylindrical length such that a chamber L/D (length-to-throat/chamber diameter) of 1.5 was achieved. Weight changes were converted to equivalent I_s using 30 1b of payload per second of I sechange ratio. Nozzle length was converted to payload at the rate of 1 1b/in. These numbers are representative of a synchronous equatorial orbit with a pump-fed engine powered Transtage.

(U) The analysis at each chamber pressure was carried out in the following manner. Three values of chamber contraction ratio were selected and the sum of cooling, energy release, and weight losses determined as a function of cylindrical length. Examination of this result together with the optimum cylindrical length versus contraction ratio and the sum of the losses at the optimum length versus contraction ratio led to the selection of a large contraction ratio, zero cylindrical length chamber at each chamber pressure. It must be recognized that for physical reasons, these chamber configurations would not be the ones selected for actual design. For the purpose of optimizing chamber pressure, however, while not evaluating absolute performance level, any group of chambers consistant with each other is adequate.

(C) The individual losses and the resulting delivered specific impulses are shown in Figure VI-1 as a function of thrust chamber pressure. This figure shows an optimum pressure at some point between 1500 and 2000 psia. The advantage, however, is sufficiently small that other factors must be considered. For this reason, the overall engine weight and length were taken

Page VI-4

Report 68-C-0008-F, Part 1

VI, B, Chamber Pressure Optimization (cont.)

into account to determine the effect of chamber pressure on vehicle payload. The changes in weight and length for the selected geometries were based on the same nominal design described above and used the engine lengths and weights from the engine scaling studies. Again, the validity of those weights and lengths is not critical to the optimization. Length and weight were converted to payload on the basis of one-pound-payload/pound-engine and one-poundpayload/inch-engine (interstage structure). The results of this study are shown in Figure VI-2, which shows an advantage for the higher chamber pressures. The advantage is 47 lb of payload over the 1600-psia chamber pressure while the nominal payload for the aforementioned mission is approximately 3700 lb.

(C) Evaluation of the effect of throttling on engine performance is represented by Figure VI-3 which shows that delivered specific impulse is reduced as the engine is throttlea; however, the magnitude of this reduction is less for the engine designed to operate at 2800 psia.

(C) On the basis of this study, the engine was designed to operate with a 2800-psia chamber pressure, since this resulted in the highest payload, minimum throttling performance degradation, and near maximum delivered specific impulse.

C. DESCRIPTION

1. Performance Rating

(C)

Production of the second

The 25K engine operating parameters are tabulated below.

Thrust, vacuum, 1bf	25,000
Specific impulse, predicted, sec	324.6
Specific impulse efficiency, %	90.5

Page VI-5

Report 68-C-0008-F, Part 1

VI, C, Description (cont.)

Nozzle area expansion ratio (RAO)	150:1
Propellants	N ₂ 0 ₄ /AeroZINE 50
Chamber pressure, psia	2800
Mixture ratio, injector	2.2
NPSH, fuel,ft	20
NPSH, oxidizer, ft	20

(U) The specific impulse efficiency (percent of theoretical) of the 25K engine is less than that of the 100K engine, for a given development level because the losses in the smaller nozzle are higher and a higher proportion of coolant is required to maintain the same wall temperature in the smaller chamber.

2. Layout Design

(C) A layout design of the 25K thrust engine with a 150:1 area ratio RAO contour nozzle is shown in Figure VI-4.

(U) Engine and component design criteria were established such that critical design parameters would reflect a similar degree of conservatism as in the 100K base-line engine design; e.g., similar values for primary combustor gas temperature, bearing seal velocity, shaft stress, and chamber wall temperatures were used. The 25K engine functional operation and its start and shutdown sequence are identical to those of the 100K base-line engine.

(C) The platelet injector concept currently being tested in the ARES program, and already described in Section III., B, 3 and Figure III-3, was selected for the 25K engine. Injector parameters for the 25K design are as follows:

Page VI-6

Report 68-C-0008-F, Part 1

VI, C, Description (cont.)

ŵ _r , 1b/sec	84.1
Injector blade length, total, in.	240.0
ŵ _r /blade length, lb/sec/in.	0.35
w _{gas} injector, lb/sec	248.
Net gas area, in. ²	42.5
Average gas flow, lb/sec/in. ²	5.84
Gross area, in. ²	72.5 (ref)
Blade area, total, in. ²	30.0 (ref)

(U) An external envelope drawing of the engine is shown in Figure VI-5. The engine portion of the IAPP for the 25K design is defined in Figure IV-1, in which the dimensions for the gimbal actuators, etc., were scaled from the 100K design.

D. ENGINE THROTTLING PERFORMANCE

(U) Engine thrust is controlled in the same manner as the 100K baseline engine. Some of the engine and component performance parameters are plotted in Figure VI-6, with a major list of the operating parameters shown in Table VI-I. The format of Table VI-I is the same as for the 100K engine, with the symbols defined in Table III-IV.

(U) The throttling characteristics of the 25K thrust engine are also similar to those already described for the 100K engine. As in the 100K engine, the laminar flow characteristics designed into the transpiration film coolant circuit maintain the coolant flow at a constant percentage of total flow during throttling. Also, the injector ΔP 's stay at a reasonable percentage of chamber pressure, due to laminar flow design of the injectors.

Page VI-7

Report 68-C-0008-F, Part 1

VI, D, Engine Throttling Performance (cont.)

(U) The pump design efficiencies are six points lower, and the turbine efficiency three points lower, than those of the 100K baseline ARES, due to the smaller size and flows of the 25K engine. The turbine operating temperature was maintained at the 100K engine range (1200°F) by increasing the turbine pressure ratio and the pump discharge pressures.

E. WEIGHT BREAKDOWN

(U) Calculated dry weight and gimbal moment of inertia values for the 25K engine are shown by component in Table VI-II. Wet weight and inertia values are also shown. Estimated weight and gimbal moment of inertia values for a lower weight production prototype engine are shown in Table VI-III. The lower weight of this production prototype engine, as in the 100K engine, is achieved by using two interface joints between the thrust chamber and turbopump in place of the three as showr. in Figure VI-4.

Page VI-8

CONFIDENTIAL (This page is Unclassified)

TABLE VI-I

THROTTLING PERFORMANCE, 25K ARES (u)

-,

.

,

•,

R

178469 1,28 24 26 1 1,4 48408
2-48732
121 .38039
34°47 € #3
27.79567
20471.11
12.32471
30.65012
1.42288
25759-30
13.22468
12.72664
12.69124
09.20441
57.5 29 7
1275A-25
33.74326
136.74269
33.51860
82-42276
44.00080
67.69813
167-04153
£0455°S
20302.02
11-54.947
186 .52507
りゅのゅつ。りゅう
44.00000
5.72140

Table VI-I, Page 1 of 4

CONFIDENTIAL

CONFIDENTIAL

Report 68-C-0008-F

NOT:: Values less than unity have their decimal location noted by prefix. Example: '-5' indicates decimal point is 5 places to the left of first digit. No prefix and no decimal point indicate decimal precedes first digit.

TABLE VI-I (cont.)

106 F		1900 1900 1900 1900 1900 1900 1900 1900		2000/10/2000 1700/2010 1700/2010 1700/2010 10/2000 10/2000 10/2000 10/2000 10/2000 10/2000 10/2000 10/2000 10/
15% F	84849°4848 91941° 82190°	10000 1000 1000 1000 1000 1000 1000 10		1444 1444 1444 1444 1444 1444 1444 144
20% F	5612. 6905 . 141 65 . 0594 8 . 04767	844 84 1000000	1. 20.000 1. 20.0000 1. 20.00000 1. 20.00000 1. 20.00000 1. 20.00000 1. 20.0000 1. 20.0000 1	1000 1000 1000 1000 1000 1000 1000 100
25% <u>*</u> Cåst g	6401 - 1900 9400 - 1 9400 - 1 9400 - 1 9400 - 1 9010 - 1	95865,864 8469,8 9469,8 9489,8 928,9 8 8 1198,8 1198,1 8 8 1199,1 1	200170 1.000170 1.000170 1.000113 1.000113 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000000 1.00000000 1.0000000000	000 4 7 4 7 7 7 7 4 0 0 0 0 0 0 0 0 0 0
37.5% F	* 20 21, 40⁷1 0 • 13264 • 05407 • 0531 9	11 31, 96179 8, 81, 89 150, 00 000 150, 00 000 9, 94 007 9, 94 007 1, 96 0, 96 007 1, 96 00000000000000000000000000000000000	7. 39412 2.24008 2.24008 14357848 14357848 14357848 14357911 7.19711 55.59057 55.59057 16.43491 1.003391 1.003391	10025-74 00012-74 00012-74 00012-74 00012-001 10025-004 10025-004
50% F	1 21 2 0 4 0 7 1 0 • 1 2 6 3 3 • 0 5 0 6 • 0 5 5 0	1401,40580 2,42096 2,42096 150,000 9515,4 2,4439 1,4458 1,4458	2.07795 2.07795 2.07795 2.07795 2.07795 2.00000 2.00000 2.07725 2.00000 2.09952 2.019525 2.019525 2.019525 2.019525 2.019525 2.019525 2.019525 2.019525	1E1 85.64
<u>756 F</u>		457 00 - 10 - 10 - 10 - 10 - 10 - 10 - 10	113.67375 4.43654 4.43654 4.436641 4.436641 4.436641 2.64764 5.6476 5.6476 5.64767 1.350676 1.3507577 1.3507577 1.35075777 1.350757777 1.350757777777777777777777777777777777777	
A 100.7	44444444444444444444444444444444444444	110 1000 1000 1000 1000 1000 1000 1000	17.92542 0.16500 0.16500 0.16500 0.16500 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.175000 0.1750000 0.1750000 0.1750000 0.17500000000 0.17500000000000000000000000000000000000	
	F 0 P/P SF 0 <i>P</i> /PPC 0 <i>P</i> /PPC	PCSC MRJC AE/AT AE/AT ETAC ETAN Cesc Cesc Cesc	WFLSC WFC/WV WFC/WV NORG DPFJSC DPORG DPOR	POT PFT NPSPQB NPSPQB NPSPQM NPSPQM

Table VI-I, Page 2 of 4

CONFIDENTIAL

CONFIDENTIAL

Report 68-C-0008-F

TABLE VI-I (cont.)

.

	100%	1.441	100	37-5% 1	256.1	2	1 2 1	
:	CANE T		CASE 3	came •	CASE \$	CAME +	CA88 7	CANC .
Ĩ	and the second second	24444. TA. 444	1.424.407.10	• 163. 60010	4241.75000	5012.48085	3767.64678	104.63174
•			.722.11	11212.	.70468	.4950	.67969	. 65541
		10.40610	26-10672	10.46840	12.92915	74480-01	7.77157	5.29841
				48160	.45078	11004.	. 40485	. 38008
}		Third, and by		511-72626	140-23905	91.70989	63 - 555 - 69	15643-33
					11-66267	53- 27 002	07440 * 15	14.80223
					56.47811	30.90978	21-61047	10.24245
; 	45.54796	25.05564	10.075.29	5.41075	2+39484	1.56513	.92408	19194 .
			01 010 10		88 T 1 8 8 8	61.95520	55-60124	40.10312
	0/101-581						404 - 504	
		31921-1498	10410° 0000					
		224.13076	45N 16*88 1					
I N	TEECOBOS 8.	-5 21641994	-5 22805818	-6 23535604		-5 24802277	0/06/162 0-	
	06666"	. 93606	.840 26	.77161	.67925	.63264	.57604	.5131
	-62000	.61947	-609.96	. 59613	-26804	59645*	6 N N N N N	11684 .
•	THE ADDRESS OF THE OWNER	OFFAT SAL	1070-79860	1001.e512h	81478 414	472.50921	77023°23877	てきたちゃ。ロトト
*		52144 - 44 183	1 2505 -949 22	30 856. 20740	19092-0109	ンガヨウラ・ワイイト	84K4 [" 19 14	9797"" 70L4
F,	連続に	197.45.49	21965.00	10404.68	84 • 4 20 75	88.42736	84 7 7 7 7 8	
		11011-04	42.785 to		35.01152	31.47621	27.91660	24. 32261
-					41009-100	777-69170	567.70531	366.39335
					4471 48161	1415-30910	1000.15134	678. 11916 ²
					64 - 6 7 6 G			
ł	No. of the second se						71436492 B-	-1 40083874
, 				P6977.	01500	- 64987	.59773	. 52672
				40040	.52675	. 51182	.49080	. 45640
_			A08.06150	372.65065	527-84110	505.47300	82220.024	444.50902
*			1 0305-22030	6715-04504	6740.64806	81844 - 5189	4776.23466	
•		E 1940 . 94	56.06139	54.06414	66.07550	11940.98	89 · 9 81 83	1000 - 96
i i		T 474 - 64.007	2142-5410	1613,52670	073,30561	761.56163	558.21326	361.98236
				1905-74225	1202-02121	936-90424	083.46577	440.28284
	17.07+0770 FLEFE VENE			954.45477	545-638 8 0	00000-044	321.52092	201.03004
				16.44.47		6.72106		
								- 91301007
•** 			451.60	1242	40048	. 45434	1626.	48144
1		47.659		.41820	.36572	19515*	3009C *	. 35.60 6
	CARE. SPAS		678-4488	41 4 - 78660	140.44749			522.27174

Table VI-I, Page 3 of 4

CONFIDENTIAL

Report 68-C-0008-T

(cont.)
I-IV
TABLE

LOG F	2000-03174					40341.04	- VED+++61	29.27086	-5 10304253	. 42777		12401	1774.25449	361.59288	81400-050	79.90439	- 28499	0 × 1 0 4 .	4561-41662	2.25246	77.0000	17.42112	84192.42	17.81485	10.09954	00010000 el	+0140 ·	. 3266 .		1218.2542		329.36840	79.41399			1	1111 0 0 ·	. 0000	. 0000	. 27000
15% F	81844.181N						19411-00	42.61194	-5 10129762	. 49610	4900F.	1-10-14	3000 N	89142.188	527.29974	60.66133	1.61662	00104.	8471 7548	3.44532	77.00000	17.31871	27.99809	27 . 4 12 92	27. 24274	-0 91556581	. 47673	.38621	*****	18450+0481	1999-9491	520+01332	80.26596	.49617	nneen.	•	111781	.00000	.00000	+27000
CABE		07/#1*//FD		17.0000		62 - 0 9 955	40.44055	56.46619	-6 99932463	. 36213	00054*	1.49189	34143。2335	22515*582	729.45794	61.72102	1.40232	. 4669	6403-91677	4.57073	77.00000	17-10527	07118-10	11.00000	21950.50	-6 204606		. 42649	. 72156	2873,56549	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	719.19554	61.12515	. 56357			14148.	• 00000	. 0000	- 27800
254 F	4241 . 75000			00000-11		66.401.87	51 +0 + 4 4 5	70.22204	-6 96619752	.61967	.46923	2.76977	8000°****	1006.53512	941.51119	82.52931	2.16235	.46649	7220.72101	5.66753	77.00000	17+01815	38-212-82	46,70362	45.5000	13211203 9 ·	01368.	.45748	1 + 9 5 5 7 0	3248.91980		928.21423	41.66144	.66306	10104.		10291*	00000"	00000*	+27000
37.55 F	01009"5926	01.00.1404	11248403			80710 · 48	77,07724	104.76498	-6 94283712	.73661	+ 52 4 69	6.68013	7262.84657	1560.51791	1504.02256	64.08819	19954-2	+1994.	1069.22313	8.42804	77.00000	16.40156	96590*44	70,05055	\$1924245 ·	00000.00 01	× 70213	.10970	2+13004	868×11=17=11	XC: 20°-775	1406-00710	84.14728	- 63 9 6 2	128921		399 12 .	10000	00000	. 27000
CASE 3	1 2524 407 10	2401/*20/01			AFF 17.07	99 * 5 # 12 9 0	n20++n01	1149-461	-6 89436000	-82 295		9438499	10246.99540	2211.03592	2124 .76129	66.98736	3 • 25 7 98	10404.	1 07 80 +2+ 085	11-17493	77 -00000	15.69479	日本と中ロッカロ	94,00809	59 40 LOI	-6 42611604	.76321	414457	70780°7	7349-56917		21 05 +68 1 21	16052-98	94656*	11830.		212	00000	00000"	+27 000
754 E	18.77 9- 78 80 9				A		155-93249	207-67070	-6 79709741	. 94549	. 55659	1 9-47953	10224-8CM	361.4.05054	19402 ° 4 190	92.49846	4.20370	.46721	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	16.67092	77.00000	13.53293	りゅうりゅくりん		Set La Car	-6 75187552	. 90 21 1	- 28007	7, 56041	A 1229. 46753		3486.20126	91.00148	1.26753	136702		0.7 OR *	• 00 00 •		
100% F	24446.40 ARE						249-87407	274.58344	-6 71133687	1.02542		きまずほん そうり	24766.501442	5209-73175	6105.28162	99.06723			CITES STATES	22,21140	77.00000	10.50599			THE PARTY OF	- 6 67667937	.98720	-58692	12.22			1011-14104	48,20616	1.0000		- 1 <u>5</u>		00700*		.27000
	LTOP			DOSTR		BLODA	HOBINC	00 SB	H08/N2	0/00/0	E TAOB	SHP08	508	PT1 T08	0PT08	111108	#T 08	E TA 108	NTFB	WE SB	TF S8	PF STB	PF0 T8	HEBNC .	QF SB	15-B/N2	Q/QDFB	ETAFB	SHPFB	848	21114	OP 1FB	TT1 TF8	VTF8	ETATFB	EALS/	M07S	20802	WF80S	#F# TS

Table VI-I, Page 4 of 4

× .

CONFIDENTIAL

JUNFILLN HAL

Report 68-C-0008-F

TABLE VI-II

25K ARES WEIGHT AND INERTIA SUMMARY

	Weight	Moment of Inertia About Gimbal
COMPONENT ASSEMBLY	Pound	Slug Ft ²
TURBOPUMP - INCL. PRIM. COMB & PCFCV HSG ADAPTER & LINE (W/O GIMBAL)	73.62	1.153
SECONDARY INJECT. SUB-ASS'Y & SCFCV	31.27	•931
TPA SUB-TOTAL	104.89	2.084
€ = 150 THRUST CHAMBER ASSEMBLY AND NOZZLE EXTENSION	92.45	13.770
$\epsilon = 50$ THRUST CHAMBER ASSEMBLY AND NOZZLE EXTENSION	90.05	9.958
SUB-TOTAL BASIC ENGLIE E= 150	197.34	15.854
SUB-TOTAL BASIC ENGINE \in = 50	194.94	12.042
BOOST FUMPS (2)	5.0	•0575
PROPELIANT INLET HOUSINGS (2)	8.0	.1465
SUCTION VALVES & ACI-JATORS (2)	6.0	.1585
GIMBAL	2.54	.0003
PCFCV ACTUATOR	1.30	.0261
SCFCV ACTUATOR	1.00	.0394
ADDITIONAL ITEMS SUB-TOTAL	23.84	.4283
GRAND TOTAL -	in an	
€ - 150 DRY ENGINE ASSEMBLY	221.18	16.2823
€ ■ 50 DRY ENGINE ASSEMBLY	218.78	12.4703
€ • 150 WET ENGINE ASSEMBLY	229.58	16.4693
E = 50 WET ENGINE ASSEMBLY	227.28	12.6483

Table VI-II

ب بر بور بور بارد. بر بر بر بر بر ا

haur - i

UNCLASSIFIED

ina sing , adagan sadili

Report 68-C-0008-F

TABLE VI-III

25K PROTOTYPE PRODUCTION ARES WEIGHT AND INERTIA SUMMARY

	Nozzle Expansion Ratio E	Weight Pound	Moment of Inertia About Gimbal ₂ Slug Ft ²
DRY ENGINE	150:1	209.	13.7
	50:1	207.	9.9
ADDITIVE EFFECT	150 : 1	8.4	.187
OF PROPELLANTS	50:1	8.5	.178
WET ENGINE	150:1	217.4	13.887
	50 : 1	215.5	10.078

Table VI-III

Report 68-C-0008-F

4

5

1

4 **..**

;

ł,

وراد و

「ない」、「「「「「「ない」」」をいったいたいです。

-1 + 13

figure VI-1

CONFIDENTIAL

JUNFIDEN HAL

Report 68-C-0008-F

Vehicle Payload Loss for Different Design Pressures

ઉ

Figure VI-2

Report 68-C-0008-F

Figure VI-3

Report 68-C-0008-F

- هو بداره

Figure VI-4

CUNFIDENIIAL

Report 68-C-0008-F

San Alleria and an

all the second by the second state second to a

No. of Concession, Name

ş

۰ به

n × • •

Envelope 25K Throttlable ARES

Figure VI-5

CONFIDENTIAL

(This page is Unclassified)

Report 68-C-0008-F

Throttling Performance, 25K ARES (u)

Figure VI-6

Report 68-C-0008-F, Part 1

VII.

500K ENGINE DESIGN (TASK IV)

A. OBJECTIVE AND APPROACH

(U) The objective of Task IV was to establish an engine design for a throttlable, restartable engine having a throttle range of 5:1 and a thrust of 500,000 lbf using a nozzle with a 50:1 area expansion ratio.

(U) The approach to accomplishing this objective was to (1) establish design criteria and operating characteristics over the throttling range; and
 (2) prepare a 500K thrust engine design that was based on these criteria.
 The 500K engine design (Task IV) was completed, and the results are described in the following paragraphs.

B. DESCRIPTION

1. Performance Rating

(C)

States of the states and the states and

Į,

The 500K engine operating parameters are as follows:

	Sea Level	Vacuum
Thrust, vacuum, 1bf	500,000	582,200
Specific impulse, predicted, sec	271.8	316.5
Specific impulse efficiency, %	91.7	91.7
Nozzle area expansion ratio (RAO)	50:1	50:1
Propellants	N204/	AeroZINE 50
Chamber pressure, psia	2800	
Mixture ratio, injector	2.2	
NPSH, fuel, ft	20	
NPSH, oxidizer, ft	20	

Page VII-1

UUNTIDENTIAL

Report 68-C-0008-F, Part 1

VII, B, Description (cont.)

(U) Specific impulse efficiency for the 500K engine was assumed to be equal to that of the 100K engine. This is a conservative assumption in that the specific impulse efficiency for the 500K engine would be slightly higher than for the 100K engine for a given development level (i.e., maintain chamber wall temperature of 1625°F), because of the reduced cooled area per unit propellant flow.

2. Layout Design

(U) A layout design of the 500K thrust engine with a 50:1 area ratio 80% bell contour nozzle is shown in Figure VII-1.

Engine and component design criteria were established so that critical design parameters would reflect a similar degree of conservatism as in the 100K base-line engine design; e.g., similar values for primary combustor gas temperature bearing DN, seal velocity, shaft stress and chamber wall temperatures were used. The 500K engine functional operation and its start and shutdown sequence are identical to those of the 100K base-line engine.

(C) The platelet injector concept currently being tested in the ARES program, and already described in Section III, B, 3 and Figure III-3, was selected for the 500K engine. Injector parameters for the 500K design are as follows:

w _F , lb/sec	447.7											
Injector blade length, total, in.	950.0											
w _F /blade length, lb/sec/in. 0.4												
w _{gas} injector, 1b/sec 1297.												
Net gas area, in. ²	164.3											
Average gas flow, 1b/sec/in. ²	7.9											
Gross area, in. ² 283.0												
Blade area, total, in. ²	118.7 (ref)											

Page VII-2

Report 68-C-0008-F, Part 1

VII, B, Description (cont.)

An external envelope drawing of the engine is shown in
 Figure VII-2. The engine portion of the IAPP for the 500K design is shown
 in Figure IV-1. The dimensions for the gimbal actuators were scaled from the
 100K design.

C. ENGINE THROTTLING PERFORMANCE

(U) Engine thrust is controlled as in the 100K base-line engine by means of the primary combustor fuel control valve. Some of the engine and component performance parameters are plotted in Figure VII-3 with a major list of the operating parameters shown in Table VII-I. The format of the table is the same as described for the 100K engine and shows predicted throttle performance up to 10:1 which is greater than the specified value of 5:1. Symbols are defined in Table III-IV.

(U) The throttling characteristics of the 500K thrust engine are also similar to those already described for the 100K engine. As in the 100K thrust engine, the laminar flow characteristics designed into the transpiration film coolant circuit maintain the coolant flow at a constant percentage of total flow during throttling. Also, the injector ΔP 's stay at a reasonable percentage of chamber pressure, due to laminar flow design of the injectors.

(U) The pump and the turbine design efficiencies are three percentage points higher than those of the 100K base-line ARES, due to the larger size and flow of the 500K engine.

Page VII-3

Report 68-C-0008-F, Part 1

VII, 500K Engine Design (Task IV) (cont.)

D. WEIGHT BREAKDOWN

(U) Calculated dry weight and gimbal moment of inertia values for the 500K engine are shown by component in Table VII-II. Wet weight and inertia values are also shown. Estimated weight and gimbal moment of inertia values for a lower weight production prototype engine are shown in Table VII-III. The lower weight of this production prototype engine, as in the 100K engine, is achieved by using two interface joints between the thrust chamber and turbopump in place of the three as shown in Figure VII-1

Page VII-4

.

.

the sensester

TABLE VII-I

THROTTLING PERFORMANCE, 500K ARES (u)

CASE 8 104 F 59228.16405	283.80345	2.60470	301.91265	192.86425	139.38197	53 . 51163	3086.47961	137.11308	1.14790	374.22039	•59309	-56473	\$57357	23,29794	349.19107	353.59954	1.40235	19.51979	1.38877	38.86982	292.41891	421.75500	57.89022	.08313	14.08244	349.19107	339.70218	297.20539	296.01189	292.41891	11.82109	.55355	135.41774	1.12576
CASE 7 156 F 97454-32031	424.1247B	2.42816	307.93599	284.00162	201.22631	82.87178	3907.74713	395.79627	1.17280	571.52953	1.23904	1.17577	1.19418	33. 4 71 73	534.44881	548.39295	3.28084	45.67428	3.24961	59.18822	437.00000	654 . 95000	93 . 56789	.26402	24.90013	5 34.44881	519,92575	445.27525	443,20989	437.00000	11.82109	.77592	138.41774	1.29732
CASE 6 205 F 116733,65699	564+36742	2.40679	309.73687	376.88012	266.33807	110.66133	4628.41663	430.89723	1.19658	776.19733	2.17314	2.06170	2.09761	44.16512	725.70417	750.75097	5.74174	79.95016	5.68934	77.87074	581.50000	896.84180	130.50314	.56664	36+22704	725.70417	705-13396	593.90454	590,80270	E81.5000	11.82109	.96251	139.41774	1.43810
CASE 5 256 F 145703.50000	702.68279	2.40918	310-90572	468.79285	331.34175	137.53282	5283.97412	458.39038	1.21315	985.90945	3.36472	3.19181	3.24188	54.77515	321,33598	958.48397	8.73154	121 +61027	8.65256	95.47537	724.01424	1144.71716	170.63549	1.00756	47.91116	921.33588	896,29959	741.04685	736.80888	724.01424	11.82109	1.12244	138.41774	1.54902
CASE 4 37.5% F 218724.27930	1051-15350	2.42334	312.48079	699.96073	495 . 56134	204.49549	6789.44916	554.19474	1.20909	1544.6005	7.52068	7.13927	7.25162	81.23877	1441.44972	1516.91713	19.01525	259.44547	19.46344	137.28944	1043.06352	1906.69343	273,92432	2.97223	80.40164	1441.44972	1402.27991	1114.33362	1106.56026	1083.06352	11.82199	1.52154	138.41774	1.75425
CASE 3 506 F 291303-36719	1398.10683	2.43554	313.49121	929.22338	658.83408	270.50883	8162.47955	673.60403	1.31679	2141.72131	13.25617	12.53998	12.79910	106+93620	1996.11995	2117.51849	31.45087	438.87842	31.23039	175.40739	1440.55142	2506.31531	370.27890	6.60452	118.36900	1 396.11995	1941.87758	1489.29012	1477.19843	1440.55142	11.82109	1-95075	138.41774	1.89927
CASE 2 756 F 436393.41 016	2095.02441	2.43866	3: 4. 97744	1365.47511	982. 51 686	402-89266	10718-14661	891-87547	1.40884	3461.58109	29-33545	27. 69004	22.32620	155-58401	3220.45538	3449.48401	65.53540	417-13364	55.27618	242.91541	2158,52338	4014-14615	524.26910	26.91409	203+13034	3220.45538	3132,94305	2251.78281	2228.72607	2158.62338	11.82109	7 57 19 2	138-41774	2.09056
CASE 1 100% F 582175•71975	2799.9997	2.42687	315.20212	1841.15057	1303-86412	537-27044	04000-051E1	1056-86763	1.5000	4960.00867	51-30066	48-74561	19952-94	200-14465	4610.27930	4949-95093	ACTLO. OUT		109-95136	300-01028	2585.00000	5560-38672	499-11737	48-74609	300 - 974 66	4610.27930	44.85.00000	3035-20193	2998.15693	2885.00000	11-82109	4-56421	1 38 . A 1 7 7 A	2.21685
ų	PCSC	MR-ENG	15	5 N H - M	LU1			1111	RPT	PODTW	THURD	Deneg	CPOH2	Del. Ier	P CPC	DEDIMI		DDE SCV	DPSCVD	DPFJSC	PCFACE	PEDTM2	DEPCV	OPPCVO	DPFJPC	PCPC	PTIT	PTET	PGJT	PCFACE				KWFCV

とち キモケマ

۱ ۲

ł

AND LONG THE R

S APR 1

・シオステクリ

a wat

NOTE: Values less than unity have their decimal location moted by prefix. Example: "-5" indicates decimal point is 5 places to the left of first digit. No prefix and no decimal point indicate decimal precedes first digit.

Table VII-I, Page 1 of 4

CONFIDENTIAL

CONFIDENTIAL

\sim
ă
2
3
71
비
1-1
9

CASE 8 106 F 58228-16406 •13293 •06672 •04033	283.80345 2.36594 50.0000 695550 695550 5302.89453	1.0241/0 130.59899 49.51881 12.77551	000004 124.65461 38.85462 49.85473 • 00000	56.08277 59.46956 99.57135 31.21216 124.62481	89.55412 56.07864	37.14000 17.51000 19.45100 14.71500 31.73501 21.84070 21.84070
CASE 7 15 <u>5 F</u> 87454.32031 .13544 .06263	42, 12478 2 20150 50,00000 95597 93220 5381,70495	1.84.097 189.55.226 75.75590 18.75590	•00014 179-907'7 59-18522 146-16571 1.17577 •00000	56.08768 89.65495 25.28251 17.11588	89, 61542 55,08153	37.14000 17.51000 19.36339 14.60816 38.56002 25.49043
CASE 6 208 P 116733.66699 .13391 .06085	564.36742 2.18141 50.00000 .95634 .93665 53965	1.000 251.82322 100.23557 24.923557 24.95062 206618	238,34072 238,34072 77,67074 77,67078 209,65078 2,06130 2,06130	56.08872 89.51778 89.75438 89.75438 22.86075 238.34072 10.42576	89. 70161 56. 08863	37.14000 17.51000 19.23620 19.47217 45.30461 29.28052
CASE 5 254 F 257 03 50000 • 1 3187 • 0 5945 • 0 5200	702 '8279 	1.001/2 314.20258 123.62755 31.06238 31.062322	296.75581 95.47537 279.86194 3.19181 3.19181	56.08430 89.54492 89.85905 21.34444 296.75591 13.90419	89.79294 56.09104	37.14000 17.51000 19.07387 14.30586 51.85063 32.858053
CASE 4 37.5 <u>5 F.</u> 218724.27930 .12670 .05606	1051.15350 2.19690 50.00000 .95756 .94448 5411.27734	1000710 473.10936 160.60997 46.33802	.00000 444.52381 137.28944 495.92837 7.13927 7.13927 7.13927	56.08322 89.59944 90.14410 18.61060 444.52381 23.88552	90.04339 56.10970	37,14000 17,51000 18,50652 13,74256 57,91281 41,70399
CASF 3 505 F 291303.36719 .12176 .05357	1.988.10883 2.20830 50.00000 95862 95862 94713 542.104713	.00001 632,93587 234,93168 21545 21545 251545	02020 591.652771 175.340739 730.346739 12.53968 12.459888 12.459888	50,05870 89.62940 90.44482 16.60792 591.52771 35.61721	90°30871 56°13473	37.44000 17.51000 17.71904 12.47925 63.43994 50.33577
CASE 2 75 <u>4 7</u> 436393.41016 • 11253 • 04831	2095.02441 2.21147 50.00000 .96053 .94986 5449.25854	23460 10 954 33784 335 46437 91 40732	2420012 883.01973 242.9154 1337.22122 27.89004 27.89004	56,00396 85,60197 91,08536 83,01973 83,41973 634,829	9Cs 87681 56s 19021	37,14000 17,51000 15,49935 10,82617 112,89127 66,91592
CASE 1 1004 P 582175.71875 01339 01339	Z799.99997 2.2000 50.0000 96247 5480.95104 5480.4446	1278,94670 440,32151 121,88640 121,988640	1172-04927 300-01928 2108-70804 2108-70804	55.00041 845516 81.78193 91.78193 1172.08935 1172.04993 96.94893	91 • 49957 56 • 28949	37.14000 17.51000 12.42943 7.79128 139.42462 81.25537
6 00/05F 00/000 00/000	PCSC ARSC AFAC FTAC FSAN CFSAN CFSAN	KGJSC WFJSC WFC	UDFJSC DPFJSC DP0RG DT0RG	04FJSC 040FC 040RG 40JPC 40JPC	De FJPC De FJPC	POT PFT NPSPOB NPSPOM NPSPOM

Table VII-I, Page 2 of 4

CONFIDENTIAL

CONFIDENTIAL

CABE 0	5 0 2 2 1 - 1 0 4 0 6	. 181.2	128-61765	1 0274 ·	078-0-5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09818-846	202.12405		49.5928 2	01000 U	04076.245	9090 . UUE		01808.				5 5 7 7 7 7 7	24.5769J	*****	45877 * * * 8	8614.145		. 50251	20C10.		********	14.08945	14004.445	421.75500		00103-05	1949496		NB-N4 .	19290-292	1064
CAN 7	12.00 2.20 2.00 2.1	. 76633	1 N7.02326	11094.	12520.0451	600. JOJE6	440.93741	16.60270	86.48148	うちゅう ちゅうしん じ	129.51 755	1174.25801	81418545 4-	10095 .	.59004	807. ALS 80	6045. 481 45	2454°68	24-37004	ビタ おや つって せい	1334.34163	74091-004		.54071	. 35452	494.1724		4200 0 ° 9 £ 4	46 740.47 5	00054 - 590	297.26497	104.88340	-4 14458073		10824.	800° 84000	3404° × 4713
	110/33-60499	*****	24 7. 7554 G	00564 *	1748. 59769	1027.45412		25.054.65	63.26947	- 1240	1147.40547	00113.6251	53554109	26116.	.62132	02224.710	1455-9451		200 20 °20	790570075	52501°4411	1028.10345	-4 84087785	~~~~	80185.	せからせつ。トルド	381 J. 02795	46. CA677	734.75762	895.84100	415.727Jo	135-29910	19401345		. 45006		59114.8264
CASE 5 Ded P	145703-50100	. 76350	310.45402	e1104.	2721.20715	1505 10290	1110.67703	4 1.16621	86 * Y * 7 8 3 8	577-00-530	3947 4°4741	1517.01118	100000 el	N0410.		544.5142	50766°0105	89 . 4 5 3 4 0	35.40548	056-4330	2 309 .27271	1255.26131	ワトールのロイド イー	NBC10 .	4150V.	451 .2742 2	6725.47121	54 ° 0 85 13	12526.469	1144.71716	うれんきょうひつぎ	1.4.03240	-+ 19320575 		160	97146.705	519797412
1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	218724.27910	00421.0	47804°\$04	. 53230	5034 . 54650	3472.4066H	41478°6542	94. 42753	46.00857	1544.60005	2347.82974	2771.54606	57745305 4-	.73939	.67916	1059.73129	10571.96716	89.440 9	44.46239	1516 91713	3780.40592	1.1.4.37242	-4 82010500			600 .5126 5	8647.62646	40.0A201	1445.12433	1.001.64040	14500°470	242.50753	14973806	.57218	. 49916	657.26989	0104500200
1 A 5 E 3 دروالا ت	29125205105	.73366	677.14444	80755.	10807.84692	6224 . 85284	4407.94061	177.62588	101.64463	2141.72131	01178°5420	3043.80243	-4 49287178	440EK.	4いしつじ"	11.35.53598	12480.77307	99.44477	44451.55	2117.51649	5301 . 18945	2370.85172	-4 745602AU	.83206		6 39 . Y 2658	10360.53845	56.07872	2074.35455	2506.31531	1222.91722	135.69543	18354935	54949°	.52721	723.19170	8162*42618
CASE 2 75% F	01010-565954	- 77977 .	946. 44 A05	01010°	2551 F. 50406	14697.93246	10390.11340		131.24146	3461.58109	5 362. 3731 7	5364.72314	-4 46673580	. 93112	. 70912	1 252. 78238	15354.12417	85. 4 3027	44.70434	10484.5445	8676.57049	3474.22467	-4 7552R195	. 92 A5 7	.65404	702.72819	1331 0. 58215	54.07125	3255. 22385	4014.14415	1937. 56052	555. 87757	-4 16866147	. 83142	. 56695	365.30741	10718.14001
CASE 1	82175.71475	7.47.	1268.99825	-59520	4 E4 3 R. 8 E 3 7 7	27897.45386	15743.55786	786.37576	157.06396	4960.00867	7735.72900	7069.18433	-4 44735272	1.00005	.71000	1340.40951	19161.11133	84.40007	84.06952	4949 .9 5093	12458.40942	4590.47052	-4 72277513	1.00001	. 56000	753.72581	16225.95105	20.06273	4608.19171	5560.34572	2425.39522	820.14299	-4 14025850	1.00019	.58011	1089.64 111	12150.00349

TABLE VII-I (cont.)

Table VII-I, Page 3 of 4

.

「アントーのない ちん

with the survey of the

CONFIDENTIAL

ABLE VII-I (cont.	1
ABLE VII-I (con	ائد
ABLE VII-I (cc	ĝ
ABLE VII-I (8
ABLE VII-I	4
ABLE VII	님
ABLE VI	÷1
ABLE	
ABLE	-
ABI	띡
\triangleleft	臣
	≤I

CASE A	106 7	224.16405		77-00000	17.05903	******	20.22470	598.93230	24405573	11214.	00007 -	12.97526	819.08997	14080.000	19925.415	21290.97	20-10202	.52449	411.64976	54115.55	77.00000	17.42469	24.61222	15-44940	428.09624	22199636	. 37696	1400D.	19809.4	236.23518	345.19727	321.08073	78.85933	7.65306	14024.	1.96135	.0000	• • • • •	0.0000.0
CA56 7	15% F	ED 10080*40445		77.00000	35.97124	10°00000	10015-10	1009.05256	-4 24017374 -4	76	80444×	21.94812	2759.52490	10815.455	4 96.96279	79. 77087	30 + 0 9 - 0 F	- 52947	1145.70647	62.6717A	77.00000	17.32080	04007 • CN	28.42979	66?. 97957	-4 21656430	. 46452	. 4 3640	9.81596	1946.80848	535° 1 04 14	507-80700	79. 31 975	9. 62535	.43062	2.53600	• 00000	. 0000	6. 50000
CASE H	200	116737.66099		77.0000	36.844.37	61.40710	44.72976	1334.53854	-4 23695575	. 53504	へのひにす。	ウトショウ・ベイ	1747.03395	0ートビガ・202	10020.198	00°00°01	34.60419	.52940	アルベロト・1 47 1	110.66133	77.0000	17.13485	17.15132	30.42209	84402-548	-4 21342562	- 25 6 2 5 -		15.94726	2653.20417	514 26 * 254	702 . 11 132	74.85102	11.3.128	4802Y *	3.0567.	.00,00	• 00000	6.5000
CASE 5	25 差 F	145731.57000		77.00000	36.64245	40 °0 ° 0 4	53.70360	1001.5/010	-4 23450752	•2115.		61.55060	47 31.24114	995.29849	00344400	50 . 3 7 A 6 5	AELE 9.44	46725.	1510.74144	137.03292	77.03000	17.01460	02647.25	48.20%U7	1100.27741	VENO2115 4-	. 53404	.52125	23.12504	3359.4 2410	934.55103	901 .9 3805	40704.05	12.5 406	.42463	1.54357	•0000	.0000	e.50000
● 出げるし	37.5% F	21A724.27930	01450°6461	77.0000	36.11651	3C-43775	20*96*CR	24650.02942	-4 2254GIRD	. 7067 .	.58942	123.66301	7+11.35016	1495.7.349	1414.53569	99050a99	54.84997	.2900	1991.27490	204-49549	77.90000	10.45546		72.92410	1615.99552	-+ 20387397	. 59439	.58331	40.48269	5285.04301	1479.22105		4394L • 10	16.22819	. 42687	4.70002	• 00000	• • • • • •	e.50000
CASE J	206 5	61776.001165	2240.40137	77 - 00000	35.43099	102.42947	107.95020	01508.5012	-4 21504593	05467.	.6 3217	204.57047	104 17.64334	2073.37610	1943.6 1573	83.37176	67.36715	.52904	2237.02579	270.53944	77.00000	15.0124	53.8396.	97.91739	2164.10962	-4 19566710	.77654	.62419	77.15441	7504.64520	2064.62189	2021.34455	A3.15490	11 .23520	. * 2669	5.79093	• • • • • •	•00000	6.5 1000
CASE 2	75% 2	436393.41016	2 3 7 3 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	77.00000	13.11683	132.89723	16C.69383	4927.08H56	- 1 19332235	. 92109	.67208	426.73929	14134.72333	349.77283	J245, 09190	R6.53133	96.48032	. 52936	2 HAI . 93 CHA	402.89255	77.00000	1.4.53495	71.17560	147.94633	3222.24051	-4 17313000	54748 .	.66751	162.35846	1351 6. 431 88	3362.74323	3314.63574	80.52395	24.66287	• • 5 8 1 •	7.88979	• • • • •	• 00000	6.5000
CASE 1	100% F	5421 - 5 - 7 875	595555°55555	77.00000	30.05457	159.80940	211.79222	65 34 .924 26	-4 17289162	1.00655	. €7065	138.38632	29426.94019	4798.4752d	4584.30713	96404096	104.37793	•52960	34 54 99985	537.27044	77.00000	10.50599	86.63424	196.55954	4299.37427	-4 16045678	.98587	•67619	282.31924	24263.85915	4824.89333	4778.95319	90 . 39258	29.65510	- 4 3062	9-94947	• 00000	.0000	6.50200
		1 1		TOSO	POSTE	POUT 8	HUBNC	CUSA	H08/N2	0/00B	ETADE	SHPOB	503	PT [T U G	307UB	111108	ATCH.	ETATOR	NTFR	WFSC	TFSR	PFS16	PFDTE	HFRNC	QFSB	HFB/N2	Q/QUFB	ETAFE	SHPFE	SFB	PTIT48	0P1F6	TT1TF9	WTFU	ETATED	#JTS	XOBOS	#F9US	WFRTS

Table VII-I, Page 4 of 4

:

CONFIDENTIAL

nupraggilien

Report 68-C-0008-F

TABLE VII-II

500K ARES WEIGHT AND INERTIA	SUMMARY	Moment of
COMPONENT ASSEMBLY	Weight Pound	Inertia About Gimbal Slug Ft ²
TURBOPUMP - INCL. PRIM. COMB & PCFCV HSG ADAPTER & LINE (W/O GIMBAL)	2614.0	603.8
SECONDARY INJECT. SUB-ASS'Y & SCFCV	578.0	382.6
TPA SUB-TOTAL	3192.0	986.4
€ = 150 THRUST CHAMBER ASSEMBLY AND NOZZLE EXTENSION	1681.0	4984.5
$\epsilon = 50$ THRUST CHAMBER ASSEMBLY AND NOZZLE EXTENSION	1662.0	2955.1
SUB-TOTAL BASIC ENGINE	4873.0	5970.9
$\xi = 150$ SUB-TOTAL BASIC ENGINE $\xi = 50$	4854.0	3941.5
BOOST PUMPS (2)	390.0	96.0
PROPELLANT INLET HOUSINGS (2)	670.0	224.0
SUCTION VALVES & ACTUATORS (2)	320.0	185.5
GIMBAL	211.0	•57
PCFCV ACTUATOR	12.0	4.30
SCFCV ACTUATOR	9.0	5.17
ADDITIONAL ITEMS SUB-TOTAL	1612.0	515.54
GRAND TOTAL -		
€ = 150 DRY ENGINE ASSEMBLY	6485.0	6486.44
 50 DRY ENGINE ASSEMBLY 	6466.0	4457.04
E . 150 WET ENGINE ASSEMBLY	7183.0	6708.44
✓ ■ 50 WET ENGINE ASSEMBLY	7167.0	4676.04

Table VII-II

--

10

Report 68-C-0008-F

TABLE VII-III

500K PROTOTYPE PRODUCTION ARES WEIGHT AND INERTIA SUMMARY

	Nozzle Expansion Ratio	Weight Pound	Moment of Inertia About Gimbal Slug Ft ²
DRY ENGINE	150:1	6130.	6341.
	50: 1	.0119	4312 .
ADDITIVE EFFECT	150:1	698.	222.
OF PROPELLANTIS	50:1	.701.	-219.
MET ENGINE	150:1	6828.	6563.
	50: 1	.1189	4531.

Table VII-III

UNCLASSIFIED

ويعتقوهموني والم

そう

Report 68-C-0008-F

ARES Engine, 500K, Throttlable (u)

Figure VII-1

1

the manufacture of the transform of the second second second second second

Enve

「「「「「「「」」」

the Locant

Report 68-C-0008-F

Throttling Performance, 500K ARES (u)

Figure VII-3

Report 68-C-0008-F, Part 1

VIII.

ENGINE THRUST SCALING (TASK V)

A. OBJECTIVE AND APPROACH

Alter and the state of the state of

(U) The objective of Task V was to establish engine thrust scaling data for ARES cycle engines over a range of design point thrust values of 25,000 to 500,000 lbf. The scaling data are presented in Appendix I and include engine weight, length, diameter, specific impulse, development and production costs. Data for this thrust scaling task were obtained from the 100K, 25K and 500K engine designs described in Sections III, VI, and VII, respectively. The technical approach to defining performance of these engines with various area ratio nozzles and under throttled conditions is described in Section VIII, B. Engine weight figures are based on the estimated values for the production prototype ARES configuration. Engine development and production cost figures have been estimated for a man-rated ARES with cost figures in terms of the 1967 dollar. Cost figures are based on estimated component costs for experimental production quantities. These component cost figures are used in the development program cost estimate where the development program was assumed to be of four years duration involving three years through PFRT and one year for qualification. Production cost figures were established from experimental component costs by applying cost adjustment factors obtained from Aerojet-General Corporation experience on Titan programs. The man-rated engine cost is priced a factor of 1.6 higher than an unmanned utilization, this factor being based on cost data firom Titan IIIB and Gemini engine production deliveries. Fee is not included in the cost estimate.

B. PERFORMANCE SCALING

All engine performance scaling starts from the basic contract
 AF 04(611)-10830 ARES engine with an 80% bell nozzle and an expansion ratio of
 20:1. The target performance of this engine is 91.7% of theoretical sea-level

Page VIII-1

Report 68-C-0008-F, Part 1

VIII, B, Performance Scaling (cont.)

specific impulse. The performance loss breakdown of this engine together with the rather detailed analysis conducted on the 25K design as part of Task III (see Section VI,B) provide the design information necessary to scale the individual losses to the various area ratios and thrust levels.

(U) Performance of the 500K engine is defined as being equal to that of the 100K; therefore, the performance curves compiled are based on 25K and 100K each with RAO nozzles of 20, 50, 150, and 300:1 area ratios and 80% bell nozzles of 20 and 50:1 area ratios. The performance breakdown of the base-line engine differs from that of the ARES engine in that the cooling losses are consistent with the conical chamber design, and the nozzle is transpiration cooled to the 30-psia point in the nozzle. Similarly, the energy release loss has been calculated for the conical chamber and the remaining combustion loss attributed to mixture ratio distribution.

(U) The individual performance losses were calculated in the same manner as described in Section VI,B. Conversion of the 80% ball nozzle at 20:1 area ratio to a RAO nozzle of the same area ratio required only determination of the new nozzle friction and geometry losses. Conversion of either of these, then, to larger area ratios involves referencing the percents of energy release and mixture ratio distribution losses to the higher theoretical I s values. This is an approximation necessitated by the fact that the exact nature of the injector which determines this loss is unknown. The nozzle friction or boundary layer and geometry losses can be calculated for changes in area ratio. Scaling of this loss was done on the basis of the data presented in Reference (5). Cooling losses are assumed to be constant with changes in area ratio. Kinetic or finite rate losses were scaled with the use of Reference (5).

Page VIII-2

Report 68-C-0008-F, Part 1

VIII, B, Performance Scaling (cont.)

(U) Scaling for changes in thrust was done in the following manner. Mixture ratio distribution, nozzle geometry, and kinetic losses were all taken to be constant with changes in thrust. Cooling and energy release losses were calculated for the particular chamber geometry, and boundary layer losses were scaled using Reference (5).

(U) The results of this performance scaling effort can be seen in Figure III-2 in Appendix I which shows the vacuum and sea-level delivered specific impulse as a function of area ratio for two thrust levels, 25K lb and 100K lb. Table VIII-I shows the loss breakdown summary for the 100K engine at three area ratios and the 25K at two area ratios. The 500K delivered impulse is shown equal to the 100K; consequently, no loss breakdown is shown. Finally, Figure III-3 in Appendix I shows the vacuum performance of both 150:1 and 300:1 RAO nozzle engines during throttling. Also shown is the performance of the 100K and 500K thrust engine with a 50:1 bell nozzle. To arrive at these curves the individual performance loss changes with thrust and chamber pressure were handled as follows: mixture ratio distribution was assumed constant; energy release loss was calculated for changes in P₂; boundary layer and kinetic losses were scaled with P_c; geometry losses are constant; and the cooling loss was taken to be constant on the basis of studies previously performed on the ARES engine Contract AF 04(611)-10830.

Page VIII-3

Report 68-C-0008-F, Part 1

REFERENCES

- Advanced Rocket Engine--Storable (U), Phase I Interim Final Report, Volume III Appendix, Section 9, "Backup Turbopump Assembly," AFRPL-TR-67-75, Contract AF 04(611)-10830, Aerojet-General Corporation, August 1967, Confidential.
- 2. Kenny, R. M., Freedman, P., Lane, A. P., and Bingham, P., <u>Development</u> and <u>Demonstration of Main Tank Injection (MTI) Pressurization System</u>, <u>Final Report</u>, Technical Documentary Report No. RTD-TDR-63-1123, December 1963; prepared for Air Force Flight Test Center, Edwards AFB, California, under Contract AF 04(611)-8198, by The Martin Company, Denver Division.
- 3. Stollery, J. L., and El-Ehwany, A. A. M., "A Note on the Use of a Boundary-Layer Hodel for Correlating Film Cooling Data"; <u>Int. Journal</u> of Heat-Mass Transfer, Vol. 8, pp 55-65, 1965.
- 4. Kushida, R., "Nonequilibrium Chemical Recombination Effects in Exhaust Nozzle Flow, an Approximate Method," Liquid Rockets and Propellants, Vol. 18, July 1960.
- 5. Performance Evaluation Methods for Liquid Propellant Rocket Thrust Chambers, Chemical Propulsion Information Agency Publication No. 132, November 1966.

Page VIII-4

	ARES THR	UST CHAMBER	PERFORMA	NCE SUMMARY	(n)		
Engine Rating, 1bf	JOOK	TOOK	LOOK	25K	25K	500K	500K
Area Ratio	20: 1	50:1	150:1	50: 1	150: J	50: 1	150:1
Nozzle Contour	80% Bell	80% Bell	RAO	80% Bell	RAO	80% Bell	RAO
Loss Breakdown, sec (for conical chamber)							
Mixture Ratio Dist.	5.2	5.5	5.7	5.5	5.7		
Combustion	1.0	1.1	1.1	1.1	т . т		
Nozzle Friction	3.1	ተ• ተ	5.8	3.6	6.8		
Nozzle Geometry	2.9	3.1	3.5	3.1	3.5		
Transpiration Cooling	13.7	13.7	13.7	16.5	16.5		
Kinetic (Recombination)	0.0	0.9	1.4	0.9	7.4		
Total Losses	25.9	28.7	31.2	30.7	35.0		
Sea Level Performance							
Thrust, lbf	100,000*	94,760		20,625		500,000*	
Is theo, sec	310.9	298.7		298.7		298.7	
Is act., sec	285.0	270.0		268.0		8.17S	
$\mathcal{P}_{ ext{fs(sl)}}, eq$	91.67	4.09		89.7		91.0	
Vacuum Performance							
Thrust, lbf	106, 550	390 , 111	115,250	24,200	25,000#	582,200	601, 100
Is theo, sec	329.5	345.2	359.6	345.2	359.6	345.2	359.6
Is act, sec NIS(vac), %	303.6 92.0	316.5 91. í	328.4 91.2	314.5 51	324.6 90.3	316.5 91.7	328.4 91.2

TABLE VIII-I

CHAMBER PERFORMANCE SIMMARY (...) E U F Ē

Table VIII-I

CONFIDENTIAL

*Rated Thrust

CONFIDENTIAL

Report 68-C-0008-F

•

Report 68-C-0008-F, Part 1

Unclassified											
DOCUMENT CO	NTROL DATA - R&	D]								
(Security closesfication of title, body of obstract and index TOR GINATING ACTIVITY (Comparene suffice) Propulation Division, Sacramento P.O. Box 15847 Sacramento, California 95813	n <u>a anneverion musi be ar</u> Facility	Za REPOR	no overall report is classified) nt security classification IDENTIAL								
Throttling and Scaling Study for Final Report AFRPL-TR-68-2, Part	r Advanced St ts 1 and 2	orable	Engine,								
 DESCRIPTIVE NOTES (Type of report and Inclusive dense) Final Report 											
S AUTHON(S) (Less name. tire: name. mitiel) Andrus, Stanley R., H. L. Bishoj J. A. Gibb, A. W. Nelson, V. H.	p, R. E. Duck Ransom	cering,									
6 REPORT DATE	TA TOTAL NO OF P	AGES	78 NO OF REFS								
SA CONTRACT OR GRANT NO	S. ORIGINATOR'S RI	EPORT NUM	 BER(\$)								
F04611-68-C-0008	Report 68-	-C-0008	-F								
c .	SE OTHER REPORT	NO(\$) (Any	ether numbers that may be assigned								
d 10 AVAILABILITY/LIMITATION NOTICES	1										
11 SUPPLEMENTARY NOTES	12 SPONSORING MILI AFRPL	TARY ACTI	WITY								
13 ABSTRACT	I										
This is the final report do ments of the ARES (Advanced Rock Scaling Study Program under Com in this report are the results sponsored design of a throttlab was used as the baseline engine	ocumenting th ket Engine St tract F04611- of an Aerojet le-restartabl for this des	ne tech corable -68-C-C C-Gener Le 100K sign st	nical accomplish-) Throttling and 0008. Included also cal Corporation- C ARES engine which cudy.								
was used as the baseline engine for this design study. Throttlable, restartable ARES (Advanced Rocket Engine Storable) engine designs are presented at 25,000, 100,000, and 500,000 lb rated thrust levels. On the basis of these designs, engine thrust scaling parametric data are presented over a thrust range of 25,000 to 500,000 lb with nozzle expansion ratios of 50:1 and 150:1.											
DD 15486 1473			Unclassified								
		Se	curity Classification								

UNCLASSIFIED

15.44 pa.35

Report 68-C-0008-F, Part 1

Unclassified Security Classification							
14		LIN	K A	LIN	KØ	LIN	KC
KET WUND		ROLE	WT.	ROLE	WT	ROLE	WT .
Staged Combustion Storable Propellants High Chamber Pressure Throttlable Engine Restartable Engine Thrust Scaling Data Transpiration Cooling Gas-Liquid Injection Platelet Injector Integrated Turbopumps Propellant Lubricated Bearing							
INSTRUCTIONS							
 ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be it. accord- ance with appropriate security regulations. GROUP. Automatic downgrading is specified in DoD Di- rective 5200.10 and Armed Forces Industrial Manual. Enter the group number Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the titls. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S). Enter the name(s) of author(s) as shown on or in the report. Enter its name, furst name, middle initial. If military, show rank and branch of service. The name of the principal - ithor is an absolute minimum requirement. REPORT DATE. Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. 76 NUMBER OF REFERENCES. Enter the total number of references cited in the report. 84 CONTRACT OR GRANT NUMBER. If appropriate, enter the applicable number of the contract or grant under which the report was written. 85 & & d. PROJECT NUMBER'. Finter the appropriate military department identification, such as project number subproject number, system numbers, task number, etc. 96 OTHER REFEORT NUMBER(S): Enter the offi- cial report h	imposed by such as: (1)	y security Qualified sport from Foreign is sport by I. U. S. Gon is report is sers shal 'U. S. mil sport dire hall requi- tive the second of the social sport dire sifted DDC '''''''''''''''''''''''''''''''''''	v classifi request DDC." innounce: DDC is me vernment directly from est throug bution of users sh itary age citly from est throug bution of users sh is been fu s been	cation, us rs may ol ment and st authors: agencies from DDC through ncies may DDC. Of ph i this repo ail request rrushed to merce, if b YES: Us ty ACTIV ice or lab velopment abstract i dicative o is active o security represents as the ab graph of th security represents is are tect terize a ri- the repor- of the security represents is are tect terize a ri- the repor- tic locative of assistic del design is locative o in the lan, a from 15 dis are tect terize a ri- the repor- terize a ri- the repor- of the security represents a locative o is are tect terize a ri- the repor- of assistic del design ks, rules,	ting stan tein cop dissemin red." may obta . Other . Other . Other . Other . Other quali- . Includ . Incl	derd state ies of this ation of the in copies gualified copies of the in copies gualified copies of the fied user trolled. Con- trolled. Con- tr	ments in of DDC
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim- stations on further dissemination of the report, other than those							n dinan di successi di

Unclassified Security Classification ŧ

معمودة خماية العرق