UNCLASSIFIED

AD NUMBER

AD384415

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; OCT 1967. Other requests shall be referred to Army Missile Command, Redstone Arsenal, AL.

AUTHORITY

31 Dec 1973 per doc markings; MICOM per DTIC form 55

THIS PAGE IS UNCLASSIFIED

> BY Defense Documentation Center Defense Supply Agency Cameron Station Alexandria, Virginia 22314

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

> BEST AVAILABLE COPY

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the helder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

街

-

~: ~

AD384

A. D.

Technical Report S-148

COMPARATIVE TESTS OF PROPELLANTS BY PEAK SIDE-ON OVERPRESSURE AND SIDE-ON IMPULSE(U)

by

T. H. Pratt

October 1967

U. S. ARMY MISSILE COMMAND Redstone Arsenal, Alabama 35809

Contract DAAH01-67-C-0655

ROHM AND HAAS COMPANY REDSTONE RESEARCH LABORAFORIES HUNTSVILLE, ALABAMA 35807

This document contains information affecting the U) national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revealed by law.

DISTRIBUTION LIMITED SEE INSIDE FRONT COVER

訪

AD38441

A. D.

Technical Report S-148

CONFIDENTIAL

COMPARATIVE TESTS OF PROPELLANTS BY PEAK SIDE-ON OVERPRESSURE AND SIDE-ON IMPULSE(U)

by

T. H. Pratt

October 1967

U. S. ARMY MISSILE COMMAND Redstone Arsenal, Alabama 35809

Contract DAAH01-67-C-0655

ROHM AND HAAS COMPANY REDSTONE RESEARCH LABORATORIES

HUNTSVILLE, ALABAMA 35807

This document contains information affecting the U/ national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the reveal elation of its contents in any manner to an unauthorized person is prohibited by law.

> DISTRIBUTION LIMITED SEE INSIDE FRONT COVER

DISTRIBUTION LIMITATION

Initial distribution of this report has been made in accordance with contractual agreements and approved supplements received from our Contracting Officer. Qualified users may obtain this report from the Defense Documentation Ceater, Cameron Station, Building 5, Alexandria, Virginia 22314.

To addition to security requirements which must be met, this document is subject to special evolution of the security and each transmittal to foreign governments or foreign nationals may be made only with prior approval of:

Department of Army Headquarters, U. S. Army Missile Command Redstone Arsenal, Alabama 35809

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

DISPOSITION INSTRUCTIONS

When this report is no longer needed, Department of the Army organizations will destroy it in accordance with the procedures given in AR SS0-5. Navy and Air Force elements will destroy it in accordance with applicable directions. Department of Defense contractors will destroy the report according to the requirements of the Ludustrial Security Manual for Safeguarding Classified Information. All others will return the report to:

> BOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS.

Department of Army Headquarters, U. S. Army Missile Command Redstone Arsenal, Alabazia 35809 ATTN: AMSMI-INC

October 1967

Technical Report S-148

COMPARATIVE TESTS OF PROPELLANTS BY PEAK SIDE-ON OVERPRESSURE AND SIDE-ON IMPULSE(U)

by

T. H. Pratt

U. S. ARMY MISSILE COMMAND Redstone Arsenal, Alabama 35809

Contract DAAH01-67-C-0655

Distributio:, Limited

Suin in U. LILED

be made only with prior ROHM AND HAAS COMPANY

> REDSTONE RESEARCH LABORATORIES HUNTSVILLE, ALABAMA 35807

CONFIDENTIAL

and the second second

and the second se

FOREWORD

This work was performed under contract DAAH01-67-C-0655 for exploratory development of propellants for missiles and rockets. Six of the propellant samples were left over from a previous study¹ performed under contract DA-01-021 ORD-12341(Z) for comparative tests of Sprint candidate propellants. Both contracts are under the cognizance of the Army Propulsion Laboratory and Center, Research and Development Directorate, U. S. Army Missile Command.

¹Rohm and Haas Co., Huntsville, Alabama, COMPARATIVE TESTS OF SPRINT CANDIDATE PROPELLANTS(U), Ballistics Staff, 12 Feb. 1965, Report S-56, U. S. Army Missile Command, Redstone Arsenal, Alabama, Contract DA-01-021 ORD-12341(Z) (Confidential). AD-357 343.

ABSTRACT

Peak side-on overpressure and side-on impulse as a function of distance have been determined for 17 propellant formulations in a series of 31 shots. TNT equivalents based on overpressure and TNT equivalents based on impulse have been assigned the formulations examined. Blast overpressures and impulses were generated by 100-lbm propellant charges initiated with 25 lbm of high explosive and measured at distances from 40 to 80 feet from ground zero. It has been found that, depending on formulation, non-detonable propellants exhibit a TNT equivalent of 55 to 85 and that detonable propellants exhibit a TNT equivalent of 100 to 140. These TNT equivalents should be used in hazards classification only when stimuli are comparable.

CONTENTS

Page

1. V. O. V.

\$

FOREWORD		iii
ABSTRACT		iv
Section I.	INTRODUCTION	1
Section II.	DATA ACQUISITION	2
Section III.	SHOOTING PROCEDURE	3
Section IV.	RESULTS	4
Section V.	CONCLUSIONS	7
Section VI.	RECOMMENDATIONS FOR FUTURE WORK	8
REFERENC	ES	77

v

(U) Section I. INTRODUCTION

Unlike reactive-binder systems, inert-binder composite propellants are usually not capable of undergoing stable, high-velocity detonations. However, when subjected to shocks from high explosives, they do generate blast waves of appreciable force. The magnitude and shape of the blast waves generated by propellants greatly influence the degree and nature of interaction with structures. Damage can be more extensive than with the same mass of high explosive, even though the latter may have a higher peak pressure. It is the purpose of this study to examine the air-blast characteristics of reactive- and inertbinder propellants as compared to each other and with those of conventional high explosive.

The 8-inch-diameter test specified in "Explosives Hazard Classification Procedure", Department of the Army Technical Bulletin TB 700-2, 31 July 1962, has been performed on 17 propellant formulations. Peak side-on overpressure and side-on impulse as a function of distance have been determined and related to that of an equivalent amount of TNT.

(U) Section II. DATA ACQUISITION

Peak side-on overpressure and side-on impulse are measured at a maximum of 10 locations per shot. Gauge stations are arranged in 3 radial arrays 120° apart at distances from 40 to 80 feet, in 5-foot increments, from ground zero (Figures 1 and 2). Pressure and impulse are measured with Kistler² 603A quartz pressure transducers in conjunction with Kistler 553B charge amplifiers. The outputs of these gauges are passed through preamplifiers and recorded on a 14channel Honeywell³ 7700 magnetic tape recorder. The data as recorded on the magnetic tape are retrieved with the use of a Consolidated Electrodynamics⁴ 5-124 oscillograph. Overpressure is determined by the ratio of the linear measure of the amplitude of the resulting oscillograph trace of the pressure gauge response to the linear measure of the amplitude of the trace generated by a known voltage. The tape recorder is run continuously during the time the calibration voltages are applied and the shot is fired. One direct record channel is used to monitor the timing of the event. A zero time pulse is recorded as voltage is applied to the firing circuit, and the subsequent time increments are used in the determination of time of arrival and impulse of the blast wave. Impulse is determined by measuring pressures at convenient equal time increments and integrating by the trapezodial method. The mathematical manipulations are performed by computer. A more detailed account of the data acquisition procedure is given in Reference 1. Photographic coverage of each event is provided by a Fairchild⁵ camera at a framing rate of approximately 3000 f/s; a time-mark generator is used to place timing marks on the film.

²Kistler Instrument Corp., 8989 Sheridan Dr., Clarence, N. Y.
³Honeywell, Denver Division, 4800 Dry Creek Rd., Denver, Colo.
⁴Consolidated Electrodynamics Corp., 360 Sierra Madre Villa,
Pasadena, Calif.

⁵Fairchild Camera and Instrument Corp., 88-06 Van Wyck Expressway, Jamaica, N. Y.

(U) Section III. SHOOTING PROCEDURE

Photographs are taken of all charges, appropriate labels, and resulting witness plates during the setup and firing of the shot; typical examples are shown in Figures 3, 4, 5, and 6. These photographs are useful in record keeping since the labels are photographed at the time the shot is fired and the "menu board" serves as an unambiguous standard to connect the shot number with the labels and the resulting witness plate. As can be seen in Figures 4 and 5, the 8-inch-diameter by 32-inch-long propellant charge is fired in the vertical position. An 8-inch-diameter by 24-inch-long conical pentolite donor (FSN 1375-991-8893) is placed in contact with the upper propellant surface and fired with an Engineer Special Electric Blasting Cap. A $1 \times 12 \times 12$ inch witness plate is placed in contact with the lower propellant surface to determine if the propellant charge undergoes detonation; 'he punching of a clean hole in the witness plate, as in Figure 6, is taken as evidence of a detonation. The test item is supported 18 inches above the firing pad by an open ended wood stand; the vermiculite used to pack the donor charge is poured into the wood stand to a depth of 12-14 inches in an effort to minimize damage to the steel firing pad. In retrospect, the use of the vermiculite seems futile since the firing pad was destroyed during the series of shots reported herein.

The pressure gauges are placed in the appropriate locations. Ideally each gauge should be placed in a location which will result in an almost full-scale deflection of the oscillograph galvanometer; however, care must be taken not to saturate the channel, else the pressure cannot be determined. One must therefore estimate the overpressure at each gauge location so that the recording of the pressures can be optimized. Usually nine channels of data are taken per shot with 5 gauges placed in one leg and 2 each in the other 2 legs.

Impadiately after each shot the witness plate is examined to determine if the propellant charge detonated. The temperature and barometric pressure are recorded at the time each shot is performed.

(U) Section IV. RESULTS

Blast-wave data have been obtained on 1; propellant formulations. TNT, and pentolite donors on dummy charges, Table I. All of the propellant charges were 8-inch diameter by 32-inches long and were initiated with 8 inch diameter pentolite donors. The non-detonable propellant charges were steel confined; the detonable propellants were confined only by $\frac{3}{16}$ -inch cellulose acetate or cardboard casting cans. The 100-lbm TNT charge consisted of a stack of 1-lbm demolition charges with overall dimensions of $7.5 \times 9.5 \times 35.5$ in. A standard 8-inch-diameter pentolite charge was used to initiate the TNT, (124 lbm total). Dummy charges were made by filling two 8-inch-diameter by 32-inch-long Schedule 40 water pipe with sand; these charges were initiated in the usual manner. The overpressure and impulse data for TNT, Table II and Figures 7 and 8, and pentolite donors, Table III and Figures 9 and 10, can then be used as baseline data. The former is taken to be a 100% TNT acceptor and the latter is taken to be a 0%TNT acceptor. An overpressure vs. reduced distance (2) plot was made for the 100-lbm TNT and dummy shots with the result that the TNT equivalent, based on overpressure, of pentolite is 100, Table III and Figure 11. It is interesting to note the damage to the pipe and witness plate for the case of the dummy acceptor; the pipe is "banana peeled" and the witness plate is dented, Figures 12 and 13. Perhaps the extent of denting of the witness plate is accentuated in this event since an 8-inch-diameter pipe was used for a stand (rather than a wood box), making a sort of punch and die arrangement.

The manufacturer's designations for the propellant compositions fired during the present shot series are given in Table IV. All of the propellant charges were 1600 cu. inches. (8-inch diameter by 32 inch long; a nominal propellant density of 0.063 lb/cu. inch is taken which results in an active propellant mass of 100 lb for each rou.d. This approximation is well within the experimental scatter of the overpressure and impulse data observed; the overpressure is a function of the cube root of the mass (2); therefore an error of 10% in the mass results in an error of less than 4% in the cube root of the mass. Furthermore, by considering each round to be 100 lbm the data reduction is straightforward. Each resulting overpressure vs. distance curve for each propellant round is compared directly with the corresponding curve for TNT. A curve is drawn through the points by visual inspection, and this average curve is compared with a similar

one taken from the corresponding TNT data. A TNT equivalent is then calculated from the average values at distances at 40, 50, 60, 70, and 80 feet based on overpressure and impulse.

Points which obviously fall outside reasonable statistical limits are discarded, and on occasions when points fall consistently low, or high, on successive shots from the same pressure gauge they are also discarded, (e.g. gauge station A40 in shots 126, 127, 128, and 129). The discarded data points are so noted in the tables.

In the calculation of impulse a pressure-time trace is divided into equal time increments such that 30-50 points are obtained for the computer input. A comparison was made on one pressure-time trace (shot 117, gauge station B45) where it was found that 50 μ sec time increments, 211 points, resulted in an impulse of 67.4 psi-msec while 500 μ sec time increments, 22 points, resulted in an impulse of 70.5 psi-msec. It was therefore concluded that 30-50 points were adequate for the present impulse data reduction.

The peak side-on overpressures and side-on impulses are given in Tables V-XXI and Figures 14-47, for the propellant compositions given in Table IV.

The TNT equivalents reported in Tables V-XXI are not on as firm a footing as one would like since they are based on only one unconfined detonation of a TNT charge. But since all the propellants reported herein are related to the same TNT calibration, any comparison made between propellants is valid. It must be remembered, however, that the range in which the data were taken is relatively small and should not be extrapolated to long or short distances. It may be that the curves could converge, diverge, or cross at longer reduced distances than those observed here. It is felt that more shots, and thus more data points, for each propellant would not alter the conclusions to any significant degree. It is nevertheless felt that one shot per formulation is not sufficient. As an example, shots 136 and 137 would have had a different TNT equivalent if they had been analyzed separately even though the rounds were made from the same batch of RH-P-112 propellant. In a case such as this additional rounds are warranted.

A calculation of overpressure by time of arrival data (2) does not show any significant improvement over the present method. The arrival times have nevertheless been recorded in the tables and are useful in confirming that the pressure traces have not become confused during the rather complicated recording and read out procedures, e.g. shot 138.

(U) Section V. CONCLUSIONS

į۲ ۱

<u>}</u>,

Equivalence based on TNT is not a straightforward concept. The TNT equivalent of a propellant formulation may vary with distance, charge size, and stimulus. In the present study it has been found that the TNT equivalent of non-detonable propellants varies from 55 to 85 and that of detonable propellants varies from 100 to 140 depending upon the formulation. The TNT equivalent appears to be a function of distance, but with the present data the experimental scatter somewhat obscures this point. The TNT equivalent based on peak side-on overpressure is in general the same as the TNT equivalent based on side-on impulse, but again the experimental scatter precludes a definite conclusion.

In regard to the use of data obtained by the method employed in the present study or by similar methods, one must remember that the stimulus given to the propellant acceptor does not apply to probable stimuli given to end items as they are used. The TNT equivalent determined by having a large high-explosive donor in contact with the propellant is an extreme case rather than a realistic one. (U) Section VI. RECOMMENDATIONS FOR FUTURE WORK

There are several areas where future work should be directed, as follows:

1. Shoot future shots from bottom up rather than top down. This will most probably prolong the life of the firing pad.

2. Obtain more data on TNT, confined as well as unconfined, so that a proper datum line can be drawn.

もなけ

3. Obtain data \cap n high explosives such as Composition C-4 in a similar geometry.

4. Examine TNT equivalent as a function of input stimulus.

5. Examine TNT equivalent as a function of formulation, burning rate, specific impulse, density, density impulse, and other ballistic parameters.

く ち ち ひ む む ひ く

And States a

FIGURE 2. DETAIL OF INSTRUMENTATION ARRAYS

فيعلن والأنام فحافظتهم والمراكلين

FIGURE 3. TYPICAL PHOTOGRAPH OF PROPELLANT ROUND AND LABELS BEFORE FIRING

11

FIGURE 4. TYPICAL PHOTOGRAPH OF PROPELLANT ROUND AND DONOR BEFORE FIRING

FIGURE 6. TYPICAL PHOTOGRAPH OF WITNESS PLATE SHOWING DETONATION OF PROPELLANT CHARGE

14

Shot	Acceptor Designation	Confinement	Temp. °F	Witness Plate
105	Dummy	Steel pipe		no
108	TP-H-7022	$\frac{3}{4}$ in. steel	74	no
109	ANP-3196	⁵ ∕ ₁₆ in. steel	74	no
110	ANP-3146	⁵ / ₁₆ in. steel	78	no
115	Dummy	Steel pipe		no
117	DQV	$\frac{3}{16}$ in. cellulose acetate	74	go
118	FAE	$\frac{3}{16}$ in. cellulose acetate	78	gა
119	EJD	$\frac{3}{16}$ in. cellulose acetate	80	go
120	DGV	$\frac{3}{16}$ in. cellulose acetate	81	go
121	ARP	$\frac{3}{16}$ in. cellulose acetate	78	gọ
122	ANP-2969	$\frac{5}{16}$ in. steel	78	no
123	C-129	$\frac{5}{16}$ in. steel	76	no
124	TP-H-7020	$\frac{3}{4}$ in steel	77	ņo
125	ANP-3066	$\frac{3}{4}$ in. steel	78	no
126	TP-H-7028	$\frac{3}{4}$ in. steel	78	no
127	ANB-3119	$\frac{3}{4}$ in. steel	78	no
128	ANB-3123	$\frac{3}{4}$ in. steel	80	no
129	ANB-3127	$\frac{3}{4}$ in, steel	82	no
131	DQV	$\frac{3}{16}$ in. cellulose acetate	68	go
132	FAE	$\frac{3}{16}$ in. cellulose acetate	73	go
133	ARP	$\frac{3}{16}$ in. cellulose acetate	74	go.
134	EJD	$\frac{3}{16}$ in. cellulose acetate	58	go
135	DGV	$\frac{3}{16}$ in. cellulose acetate	61	go
136	RH-P-112	Cardboard	60	go
137	RH-P-112	Cardboard	60	go
138	ANP-3146	⁵ / ₁₆ in. steel	66	no
139	ANP-3066	$\frac{5}{16}$ in. steel	58	no
1 40	ANP-2969	$\frac{5}{16}$ in. steel	64	no
141	ANF-3196	5/16 in. steel	67	no
142	C-129	$\frac{5}{16}$ in. steel	58	no
143	TNT	Stacked 1 lbm tins	69	go

ţ

Ň

R

15

CONFIDENTIAL

بیست میں پر بی ا

7

And an and the

Tabl	e II. – Blas	st Wave Data	for TNT						
Leg	r	p	i	t					
B	40	20.0	47.6	13.4	•				
в	50	8.7	37.5	19.7					
B	60	6.1	28.2	27.0					
В	70	4.5	30.5	34.6					
в	80	3,0	24.0	42.7					
A	50	15.2	51.4	21.9					
A	80	5.6	16.3	43.7					
С	50	12.9	36.4	22.0					
С	80	6.2	27.4	36.4					
T					T				
	r	Р	i						
	40	22.0	47.5	· t					
	50	12.3	37.0						
	60	8.3	30.0						
}	70	5.8	26.0						
	80	4.1	23.5						
·					4				
Definit	ition of Par	ameters wit	h Units:						
r	radial dist	ance, feet							
p	p peak side-on overpressure, psig								
i	side-on in	npulse, psi-r	nsec						
t	arrival tin	ne, msec			t arrival time, msec				

CONFIDENTIAL

ł

<u>د:</u>

ć

ţ,

the second

Table III. Blast Wave Data for Pentolite Donors on Dummy Acceptors									
					_				
Leg	r	p	1	<u>د</u>	Leg	<u> </u>	p	i	t
A	25	15.9	28.7	11.5	A	25	17.7	27.6	11.7
A	30	12.5	25.6	14.8	A	30	11.1	24.8	15.0
A	40	7.0	18.4	21.9	A	40	6.4	18.0	22.2
A	70	1.9	9.5	45.5	A	70	1.9	9.8	46.0
A	80	1.8	8.3	53.7	A	80	1.6	8.6	54.2
В	30	11.4	27.6	14.6	B	30	12.4	25,5	14.4
Б	40	6.8	20.8	21.7	В	40	6.1	18.2	21.5
С	30	13.4	25,9	15.0	С	30	12.0	25.7	14.7
С	40	7.0	18.1	21.0	С	40	7.8	19.0	21.8

	Pentolit	e	אידי	T + Pent	tolity	
r	a	λ	r	p	λ	
25	16.8	8.6	40	22.0	<u></u>	
30	12.1	10.4	50	12.3	10.0	
40	6.7	13.9	60	8.3	12.0	
70	1.9	24.3	70	5.8	14.0	
80	1.7	27.8	80	4.1	16.0	
r radial distance, feet p peak side-on overpressure, psig i side-on impulse, psig-msec t arrival time, msec $\frac{1}{3}$ λ reduced distance, r/w ³ , feet/(lbs) ³						

19

CONFIDENTIAL

16. To

'n

13

ŝ

\$,

1,

FIGURE 9. COMPARISON OF PEAK SIDE-ON OVERPRESSURES GENERATED BY 100% AND 0% ACCEPTOR CHARGES

22

CONFIDENTIAL

-

•

Ş.

۶.

:

FIGURE 12. PENTOLITE DONOR ON DUMMY CHARGE BEFORE FIRING

1. MT

FIGURE 13. WITNESS PLATE AND PIPE RESULTING FROM PENTOLITE DONOR ON DUMMY CHARGE

1

and in the second se

ち

-

• • • •

Tab	le IV. Manufacturers' Designations of Propellants		
Propellant	Manufacturer's Designation		
	Hercules Incorporated		
ARP	Grain No. EX-25177, Base grain-middle		
DGV	Grain No. EX 27173-2, Base grain ZI 65 Bl Grain No. EX 25171 2 Base grain middle		
DQV	Grain No. EX-25171-2, Base grain-indule Grain No. EX-25268, Base grain 2312D.28B		
EJD	Grain No. EX-25209, Base grain 2512D.28B, initiale Grain No. EX-25175, Base grain ZI_221 Grain No. EX-25174-2. Base grain ZI_221		
FAE	Grain No. EX-25227, Base grain ZI-257 Grain No. EX-25225, Base grain ZI-257		
	Aerojet General Corporation		
ANB-3119	63-4160 #101, 8703-07-101		
ANB-3123	63-4162 #102, 8708-07-101		
ANB-3127	63-4163 #103		
ANP-2969	Batch CM-1334 Pot 59, Polaris		
	Batch CM-133Y-59, Polaris		
ANP-3066 9-3066-DW-M-2, Grain No. 8, Minuteman			
	9-3066-DW-M-2, Grain No. 9, Minuteman		
ANP-3146	55D-B-007, HIP Booster		
	55D-B-007, HIP Booster		
ANP-3196	55D-S-006, HIP Sustainer		
	55D-S-006, Grain No. 4, HIP Sustainer		
C-129	First ² / ₃ , cast w/bayonet from C-129, Top, 41		
	Batch No. C-129, Grain No. C, 1500		
	Thiokol Chemical Corporation		
TP-H-7020	2-K-702		
	440-28-15		
TP-H-7022	2J-2658		
	375-22-16		
TP-H-7028	1-J-2669		
	365-21-28		
	Rohm and Haas Company		
RH-P-112	Batch 2002		
	Batch 2002		

25

CONFIDENTIAL

1

15 %

۰.
Table V Blast-Wave Data for ARP Propellant												
		Shot 12	21					Shot 13	3			
Leg	r	Р	i	•	t	Leg	r	р	i	.t		
А	40	21.4	54.8	14	1. 2	В	40	22.7	48.2	14.8		
А	45	14.6	47.4	1	7.2	В	50	11.3	29.8 ^a	21.1		
А	60	8.0	35.2	2	7.4	В	60	7.8	31.6	28.1		
A	70	6.3	27.4	34.7		B	70	6.0	27.5	35.5		
А	80	5.0	25.0	42.3		В	80	4.0	23.8	43.3		
B	45	16.9	45.6	17	7.1	A	50	13.8	51.2	21.3		
B	60	8.1	35.4	21	73	С	50	12.6	39.2	21.0		
C 45 16.0 46.1 17.4 C 70 5.6 26.8 3 C 60 8.2 36.6 27.6												
T										<u> </u>		
	ARP Avg. INI Avg. INI Equivalent											
	r	p	i			p i Ep E				Ei		
	40	22.0	53.0)	2	2.0	4.7.5	5 100) 1	12		
	50	12.3	41.	5	12	2.3	37.0	0 100) 1	12		
	60	8.3	33.5	5	1	8.3	30.0) 100) 1	12		
	70	5.8	27.9	5	!	5.8	26.0	0 100) 1	3.0		
	80	4.1	24.5	5		4.1	23,5	5 100) 1	05		
Dei	finitio	n of Para	meters	wi	ł. Ur	nits:						
	r	radial di	stance,	fee	t							
	p	peak side	e-on ove	erpi	ress	ure, ps	ig					
	i	side-on i	impulse	, p	si-m	sec				ļ		
	t	arrival t	ime, m	sec	-							
Ep TNT equivalent based on overpressure, per cent												
E1 INI equivalent based on impulse, per cent												
Footnotes: ^a Discarded points.												

:;;

e,

ţ

ية. م

· · ·

4

ì

',

28 F

26

24

2.2

20

80

60

40 50 Distance, feet

30

20

2

27

Peak Sida-On Overpreseure, psi

Ĭ

% ,

. .

21 7

13

1

، اب

فكمستم متأكر يستع

CONFIDENTIAL

28

L. S. W. Marrie W

Star She

;

2

. • ,

AK. ..

÷,

· C. TON I AND CONTRACTOR

HAR AND SO SECTION STORES AND SECTION

		Table N	71.	B1	last- Pr	Wave D opellar	ata fo nt	r DGV		
		Shot 12	0					Shot 135		
Leg	r	р	i	•	t	Leg	r	р	i	t
A	40	26.3	66.5	1	2.8	В	40	25.8	54.9	13.4
А	45	17.6	62.4	1	5.7	в	50	20.1	59.3	19.6
А	60	9.0	40.1	2	5.7	В	60	9.6	27.5 ^a	26.2
А	70	6.8	40.1	3	2.9	В	70	7.8	32.5	33.4
А	08	5.1	29.1	4	0.4	В	80	3.4	20.6	41.1
В	45	24.8	58.3	1	5.4	A	50	15.6	56.2	19.4
в	60	9.4	42.1	2	5.3	A	80	5.2	22.2	41.0
						С	50	5.5 ^a	27.8 ^a	19.4
						С	70	7.1	36.2	33.5
		D	GV A	vg.		TNT A	vg.	TNT	Equiv	alent
	r	р	i			p	i	Ep		Ei
4	.0	27.5	64.	5	2	2.0	4.7.5	125		136
5	0	15.9	54.0	0	1	2.3	37.0	129		146
6	0	10.6	43.	0		8.3	30.0	127		143
7	0	6.6	33.	5		5.8	26.0	114		129
8	0	4.8	25.0	0		4.1	23.5	117		107
Defi	nitior	of Para	meters	wi	th Ur	nits:				
l r		radial di	stance,	iee	35					
	ן י	peak side	-on ove	=rp:		ure, ps	ig			
	1	arrival +	ime ~	, p	51-11	Sec				
L	"n	TNT ACU	ivelent	aeu hae	ed o		TA001	70 no n	ant	ľ
	-P Ci '	TNT equ	ivalent	bas hae	ed o	n immil	lee n	re, per (er cent	.5116	•
		equ.			<u> </u>					
Foo	tnotes	::								
a	Disca	urded poi	nts.							

29

۴,

a the second and a straighter

:

FIGURE 16. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR DGV PROPELLANT AND TNT

i

ي. ي

4

1

ر. ب

Ś

11.

2

ł.

	Table VII. Blast-Wave Data for DQV Propellant											
		Shot 11	7					SI	not 131			
I	eg r	р	i	•	t	Leg	r		р	i	. t	
A	40	23.3	80.3	13	3.1	В	40	1	7.2 ^a	61.4 ^a	13.0	
А	45	20.8	59.6	10	6.0	В	50	1	6.5	42.5	19.2	
A	60	9.5	40.1	2	5.8	В	60	¢	9.3	37.4	25.9	
А	70	6.8	34.4	32	2.9	В	70	ł	8.0	36.8	33.2	
A	80	5.1	27.8	4(0.5	В	80		3.5	19.7	40.9	
В	45	17.1	70.5	15	5.9	A	50	2	5.2 ^a	87.5ª	19.1	
B	60	9.0	44.2	2!	5.8	A	80		3.2	15.9	40.8	
С	45	23,5	55.1	1	5.6	C	50	1	3.7	47.6	19.1	
С	60	9.1	43.9	2	5.5	С –	70	•	7.0	33.1	33.3	
		DQV	· A	vg.		TNT A	Avg.		TNT	Equiv	alent	
	r	р	i			р	i		Ep		Ei	
	40	26.4	71.0)	2	2.0	47.5		120		150	
	50	14.9	53.5		1	2.3	37.0	Ś	121		145	
•	60	9.5	41.0			8.3	30.0		115		137	
	70	6.4	33.5			5.8	26.0	5	110		129	
	80	4.4	27.0)		4.1	23.5	5	107		115	
	Definitio	n of Para	meters	wi	th Ur	nits:						
1	r	radial dis	tance	fee	5 †						{	
	- D	peak side	-on ove	100	ress	ure p	aio					
	i	side-on in	mulse	- P	si-m	sec	8					
	t	arrival ti	me. m	sec	~~ ~**	~ ~ ~					}	
	Ep	TNT equi	valent	bas	ed or	n over	oressu	re	, per c	ent		
	Ei TNT equivalent based on impulse, per cent											
ł	Footnote	s:		<u></u>								
	^a Discarded points.											

Æ

:. ٠,

å

2

ł,

(

',

10) '' يې مىر

.

King

ł

24 v x F

.

		Table V	/111.	B	last. Pr	Wave I opella	Data fo .nt	r EJD	······			
		Shot 1	.9					Shot 134	1			
L	eg r	p	i	•	t	Leg	r	р	i	t		
A	A 40	26.6	65.0	12	2.5	В	40	27.5	69.0	12.7		
Æ	A 45	16.5	68.7	1	5.4	В	50	13.2	40.4 ^ª	18.7		
£	A 60	9.7	41.8	2	5,3	В	60	9.4	43.2	25.6		
F	A 70	7.5	39.2	3	2.4	В	70	7.3	32.9	32.8		
F	A 80	5.0	32.2	4	0,0	A	50	15.3	60.8	19.2		
E	3 45	9.6	61.8	1	4.6	C	50	14.1	43.6	19.0		
E	3 60	7.6	40.6	2	5.3	С	70	7.1	34.4	33.2		
C	C 45	8.4	55.2	14	4.7							
T	EJD Avg. TNT Avg. TNT Equivalent											
f	r	<u>р</u>	i			p	i	Er)	Ei		
ħ	40	24.4				2 0	17 1			10		
	50	14.6	54 (5.5 4.0		23	37 (12.	t C	40		
-	60	14.0 a a	24.0 44 F	;		83	30 (נ ₇	48		
	70	7.3	36.5	5		5.8	26.0		, , 6 1	40		
	80	5.0	29.5	5		4.1	23.9	5 12	2 1	26		
	•		- / • •	•								
Ī	Definitio	n of Para	meters	wi	th Ur	nits:						
	r	radial di	stance.	fee	et							
	р	peak side	e-on ove	erp	ress	ure, p	sig					
	i	side-on i	mpulse	, p	si-m	sec	U					
	t	arrival t	ime, m	sec								
	Ep	TNT equ	ivalent	bas	ed o	n over	pressu	are, per	cent	Ì		
	Ei	TNT equ	ivalent	bas	ed o	n impu	lse, p	er cent				
	Footnotes:											
	Disc	arded poi	ints.									

35

CONFIDENTIAL

• •

≈.

2.

è,

à:

65

		Table 1	x.	B	last- Pı	Wave D copellar	ata fo nt	or FAE		_
		Shot 11	8				_	Shot 13	2	
Leg	r	р	i		t	Leg	r	р	i	, t
A	40	14.5	55.0	12	2.2	в	40	22.9	51.4	14.0
A	45	9.3	47.8	1!	5.1	в	50	14.5	42.0	20.1
A	60	6.4	40,7	20	6.1	В	60	9.2	38.1	26.8
А	70	5.6	32.1	32.1 33.5		В	70	7.0	33.7	34.1
A	80	4.8	27.7 40.1		в	80	4.8	28.1	41.8	
В	60	9.0	39.3	39.3 26.2		A	50	15.7	61.2 ^a	20.3
С	45	18.0	18.0 52.2		6.4	A	80	5.3	26.6	41.9
с.	60	9.4 37.0		20	6.4	С	50	14.7	43.0	20.2
						С	70	6.1	29.9	34.4
		FA	AE A	vg.		TNT A	vg.	TN	T Equiv	alent
	r	p i				р	i	E	p	Ei
4	:0		55.0)	22	2.0	4.7 .	5		116
5	0		45.0)	12	2.3	37.0	5]	122
6	0		37.5	5	8	8.3	30.0	0 / ~10	0 1	125
7	0		31.9	5	!	5.8	26.0	0]	121
8	0		28.0)	4	4.1	23,	5	j	l 19
1										
Defi	nitior	n of Para	meters	wit	th Un	 its:		I		
		radial di	atanaa	foo	4					
		neak eide	-on or	166	;L P.0001	170 50	ia			
	· .	side_on i	mnijea	nd re rd re	i caal ai _m	are, ha	-R			
l t		arrival f	ime. m	, P. Sec		900				
E	σ	TNT equi	ivalent	bas	ed or) OVERN	regan	re nor	cent	
	· F' \;	TNT equi	ivalant '	haa		. overp		ue, per	Cent	

^aDiscarded points.

	Table X.	Blas	t-Wave Da Propellar	ta for Al nt	NB-3119					
			Shot 12	7						
Leg	r	•	р		i	t				
А	40		10.0 ^a	3	5.0	19.3				
A	45		10.6	3	3.9	22.8				
A	60		5.9	2	6.5	33.7				
А	70		3.2	1	5.2	41.4				
A	80		2.2	1	4.2	49.3				
B	45		13.6	3-	4.2	22.4				
В	60		4.7	2	4.2	33.3				
C C	45		10.6	3	3.6	22.4				
С	60		3.5	2	26.1 3					
	ANB-3119	Avg.	TNT A	Avg	TNT Eq	uivalent				
r	р	i	.p	·'ì	Ep	Ei				
40	13.8	41.0	22.0	47.5	63	86				
. 50	8.2	30.5	12.3	37.0	67	83				
60	4.9	23.5	8.3	30.0	59	78				
70	3.2	18.5	5.8	26.0	55	71				
80	2.2	15.5	4.1	23.5	54	66				
Definitio	n of Parame	eters wi	th Units:							
	adial distan	ce. feet								
	eak side-on	overpro	essure, ps	ig						
i s	ide-on impr	ilse, psi	i-msec	-6						
t arrival time, msec										
ЕрТ	NT equival	ent base	d on overg	oressure,	per cent					
Ei T	Ei TNT equivalent based on impulse, per cent									
Footnote	Footnotes:									

^aDiscarded points.

N. Contraction

A CONTRACTOR OF A CONTRACTOR O

ò

<u>ج</u>

°,

-07

. ¢

- Autorita-

¢

Ċ

あたい方

A. 1. 1. 1.

12

£

1

÷,

	Table XI. Blast-Wave Data for ANB-3123 Propellant										
			Shot 12	28							
Leg		r	· p		i	t.					
A		40	10.9	2	36.9	18.6					
A		45	10.9		34.1	21,9					
A		60	6.0		27.6	32.7					
A		70	4.2		22.5	40.4					
B		45	14.2		36.9	21.9					
В		60	6.6		24.2	32.8					
C		45	14.1	2	34.6	21.7					
C 60 3.1 ^a 24.0 32.5											
ANB-3123 Avg. TNT Avg. TNT Equivalent											
r	р	i	p	i	Ep	Ei					
40	14.6	40.0	22.0	47.5	66	84					
. 50	9.3	32.0	12.3	37.0	76	86					
60	6.3	26.0	8.3	30.0	75	87					
70	4.2	22.5	5.8	26.0	72	87					
80	2.9	20.0	4.1	71	89						
Definitio	n of Paran	neters wi	th Units:	····	<u></u>						
	adial dieta	nce feet									
ם מ	eak side-o	n overpr	essure. r	sig							
i s	ide-on imp	ulse, ps	i-msec	0							
t a	rrival time	e, msec									
Ер І	INT equiva	lent base	d on over	pressure,	per cent	;					
Ei I	E: TNT equivalent based on impulse, per cent										
Footnote	Footnotes:										
^a Disc	arded poin	ts.			•	1					

÷

٤,

2

*****.:

ň

2

••

CONFIDENTIAL

100

15-

March Monday

Ţ

۹.-3

7

ĩ

e

.

	Table XII. Blast-Wave Data for ANB-3127 Propellant										
	Shot 129										
Leg		*د	· p		i	t					
А		40	10.4	1	38.0	13.3					
А	4	1 5	11.9		35.2	21.7					
А	4	60	7.4		25.6	32.4					
А	•	70	4.7		18.3	39.8					
А	ł	30	4.2		20.8	47.6					
В	4	1 5	11.5		34.4	21.5					
В	(60	6.1		25.7	32.3					
C	4	45	12.6		36.6	21.7					
C	C 60 6.9 33.5 32.4										
	ANB-3127 Avg. TNT Avg. TNT Equivalent										
r	р	i	Р	i	Ep	Ei					
40	14.1	42.5	22.0	47.5	έ4	89					
• 50	9.6	32.5	12.3	37.0	78	88					
60	6.8	26.0	8.3	30.0	82	87					
70	4.9	21.0	5.8	26.0	84	81					
80	3.5	18.5	4.1	23.5	85	79					
Definiti	on of Paran	neters wi	th Units:		•						
r p i t Ep Ei	 Definition of Parameters with Units: r radial distance, feet p peak side-on overpressure, psig i side-on impulse, psi-msec t arrival time, msec Ep TNT equivalent based on overpressure, per cent Ei TNT equivalent based on impulse, per cent 										
Footnot ^a Dis	Footnotes:										

1

1.15

÷

* 0 *

1. 1. 1. 1.

Ŀ

....

FIGURE 28. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR ANB-3127 PROPELLANT AND TNT

Y

22

49

ł

11

t,

· · · ·

. स

10 H ...

Ņ

	Table XIII. Blast-Wave Data for ANP-2969 Propellant											
		Shot 12	22					Shot 14	l			
Leg	r	р	i		t	Leg	r	p	i	t		
А	40	15.2	42.5	1'	7.9	В	38	9.4	27.4	19.5		
Α	45	7.7	25.8	2	1.0	В	48	6.0	20.1	26.9		
A	60	6.8	28.2	3(0.6	В	58	4.1 a	15.7	34.6		
A	70	4.7	22.8	38	8.1	В	68	7.7~	41.9	50.9		
A	80	3.3	20.8	4!	5.8	B	78	1.9	6.5	29.5		
В	45	8.0	26.2	20	0.9	A	50	6.7	20.1	29.0		
C	45	8.7	21.4	20	0.7	A	80	1.8	6.2	54.9		
С	60	7.5	28.4	3	1.1	С	50	7.5	34.0	45.4		
	ANP-2969 Avg. TNT Avg. TNT Equivalent											
	r	р	i			р	i	Ep		Ei		
	1 0	10.3	35 (,	2.2	2.0	47.5	47	·	74		
	50	7.3	28.5		12	2.3	37.0	59		77		
· •	50	5.2	22.0			8.3	30.0	63	1	73		
	70	3.6	17.0		l	5.8	26.0	62		65		
8	30	2.5	13.5	5	4	4.1	23.5	61		57		
Def	initior	n of Para	meters	wit	h Ur	nits:						
1	r :	radial di	stance,	fee	t					1		
l f)	peak side	e-on ove	erpi	ressi	ure, ps	ig					
;	1	side-on i	mpulse,	, ps	si-m	sec						
} t	: ;	arrival ti	ime, m	sec								
1	Ep '	TNT equi	valent 1	bas	ed or	n overp	ressur	e, per	cent			
	Ei '	TNT equi	valent	bas	ed or	n impul	se, pe	r cent				
Foo	Footnotes: ^a Discarded points.											

50

States and a second sec

.... .

C

CONFIDENTIAL

51

× . .

2

	Table 3	KIV	Blast P	-Wave D ropella	ata for nt	ANP-3	3066					
	Shot 12	.5			s	hot 139						
Leg 1	р	i	.t	Leg	r	р	į	t				
A 40) 16.3	44.0	18.4	в	47	10.9	30.3	22.2				
A 4	5 10.5	34.8	21.6	в	57	6.9	23.0	29.8				
A 60	6,4	25.3	32.3	в	67	5.7	24.7	37.4				
A 70) 43	30.6	39.9	B	77	3.9	19.6	45.3				
B 4	45 12.0 40.3 60 6.5 26.3			A	50	9.0	35.0	27.1				
B 60	6.5	26.3	32.3	C	50	8.9	28.3	27.3				
C 4!	45 12.3 39.0 5 60 6.7 26.8		21.7	C	70	4.9	24,2	42.5				
C 60) 6.7	26.8	32.4					1				
	ANP-	3066 A	vg.	TNT A	vg.	TNT	Equi	valent				
r	p i			р	i	Ep		Ei				
40	14.4	43.5	2	2.0	4.7.5	65		92				
50	9.7	33.0	1	2.3	37.0	79		89				
60	6.9	26.0		8.3	30.0	82		86				
70	4.8	21.5		5.8	26.0	83		82				
80	3.3	18.0		4.1	23.5	81		76				
		<u>_</u>										
Definitio	on of Para	meters	with U	nits:								
r	radial di	stance,	feet									
p	peak side	e-on ove	rpress	ure, ps	ig							
i	side-on i	mpulse,	, psi-m	nsec								
t	arrival t	ime, m	sec									
Ep	TNT equ	ivalent 1	based o	n overp	ressur	e, per	cent					
Ei TNT equivalent based on impulse, per cent												
Definition of Parameters with Units: r radial distance, feet p peak side-on overpressure, psig i side-on impulse, psi-msec t arrival time, msec Ep TNT equivalent based on overpressure, per cent Ei TNT equivalent based on impulse, per cent Footnotes:												

The state of the s

2642

CONFIDENTIAL

Surger 2

£4

		Table X	v	В	last- Pi	Wave I ropella	Data foi nt	ANP-	3146			
		Shot 11	0				i	Shot 13	8			
Leg	r	р	i		t	Leg	r	р	i	_ t		
A	40	14.9	39.0	1	8.0	В	37	8.0	38.9	27.7		
A	45	11,3	41.3	2	1.4	В	57	12.3	46.3	16.3		
A	60	6.3	28,4	37	2.3	В	67	10,6	34.4	22.9		
A	70	4.5	24.4	4	1.0	В	77	6.9	28.5	30.1		
A	80	3.3	18.8	4	B.9	 	In	Order	of t			
В	45	8.5	4).5	2	1.5	B	37	12.3	46.3	16.3		
В	60	5.9	26.6	37	2.4	В	47	10.6	34.4	22.9		
С	45	12.2	33.0	2	1.5	B ⁻	57	8.0	38.9	27.7		
	60	6.4	26.2	32	2.3	<u> </u>	67	6.9 28.5 30.				
		ANP-	3146 A	TNT A	vg.	TN	Γ Equi	valent				
	r	p i p i Ep Ei										
	40	14.9	39.5		2	2,0	47.5	68		81		
	50	9.3	32.0		1	2.3	37.0	76		86		
	60	6.5	27.5			8.3	30.0	78		92		
· · ·	70	4.6	23.0			5.8	26.0	79		89		
	80	3.3	20.0			4.1	23.5	80		85		
Def	initio	n of Para	meters	wi	th Ur	nits:						
	r	radial di	stance	fee	st							
	p	peak side	e-on ove	erp	ressi	ure, ps	ig					
i	i	side-on i	mpulse	, p	si-m	sec	-0					
1 1	t	arrival t	ime, m	sec								
]	Ep	TNT equ	ivalent	bas	ed or	n overp	ressur	e, per	cent			
1	Ei TNT equivalent based on impulse, per cent											
Foo	Footnotes:											
1	a Discarded points.											
		-										

56

CONFIDENTIAL

÷

.

· ---

ł

FIGURE 34. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR ANP-3146 PROPELLANT AND TNT

57

2

ł,

} 1

	••	Table X	IVI	Bl	ast-' Pr	Wave D opellar	ata for nt	ANP-:	3196				
		Shot 10	9				\$	Shot 14	1	_			
Leg	r	р	i	. f	-	Leg	r	р	i	t			
A A A A	40 45 60 70 80	10.3 7.6 4.2 2.6 2.9	24.7 22.9 17.2 14.7 11.9	21 24 36 44 52	0 4.6 5.1 4.2 2.4	B B B A	38 58 68 78 50	9.4 4.1 7.7 ^a 1.9 6.7	27.3 15.7 41.9 ^a 6.5 ^a 20.1	19.5 34.6 51.0 29.5 29.1	5 6) 5 1		
В В С С	45 60 45 60	8.1 4.5 10.3 <u>4.7</u>	23.6 18.6 23.2 16.1	24 35 24 35	.2 5.5 1.0 5.4	A C	80 50	1.8 7.5	6.3 ^a 33.9 ^a	54.9 45.3	} 3		
	ANP-3196 Avg. TNT Avg. TNT Equivalent												
	r	р	i		<u>, p i</u>			Ep)]	Ei			
	40 50 50 70 30	10.2 7.0 4.6 3.2 2.2	26.5 21.5 17.5 14.5 12.0			2.0 2.3 3.3 5.8 4.1	4.7.5 37.0 30.0 26.0 23.5	46 57 55 55 55 54		56 58 58 56 51			
Def I I I J J	Definition of Parameters with Units: r radial distance, feet p peak side-on overpressure, psig i side-on impulse, psi-msec t arrival time, msec Ep TNT equivalent based on overpressure, per cent Ei TNT equivalent based on impulse, per cent												
Foo	Ei TNT equivalent based on impulse, per cent Footnotes: ^a Discarded points.												

1' 34

 $\dot{\sigma}$

Ø-1

e.,

ŝ

4.

FIGURE 36. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR ANP-3196 PROPELLANT AND TNT

60

*** * *
		Table XVII Blast-Wave Data for C-129 Propellant									
			Shot 1	23		Shot 142					
L	eg	r	р	i	i.t		r	р	i	t	
	A A	40 45	10.2	31.7 25.4	19.6	B	38 48	11.8	40.5	18,3	
	A	60	5.0	21.7	34.4	B	58	5.9	32.9	21.3	
	A	70	3.7	19.9	42.3	в	68	5.2	21.4	40.6	
	A	80	2.8	14.4	50.3	В	78	3.3	19.4	48,6	
	В	45	8.4	29.9	23.0	A	50	8.5	28.4	26.9	
	в	60	5.7	22.1	34.2	C	50	7.9	25.6	27.4	
	С	60	5.0	19.6	34.5	С	80	4.3	19.7	43.0	
						<u> </u>				<u>-</u>	
				C-129 Avg	•	TNT A	lvg.	TNT	[Equiv	alent	
	r		р	i	. p		i	Ep)	Ei	
	40		11.0	36.0	2	22.0		50	50 76		
	50		8.2	28.5	1	12.3		66	7	7	
1	60		6.2	23.5		8.3	30.0	75	7	7	
	70		4.6	20.0	[5.8		79	7	8	
	80		3.3	18.5		4.1 23.5		81	7	9	
+	Defini	tior	of Para	ameters w	ith U	nits:		,L,			
	r	:	radial di	istance, fe	eet						
	р	1	peak sid	e-on over	press	ure, ps	ig				
	i	1	side-on	impulse,	psi-m	sec	_				
	t	:	arrival	time, mse	с						
	Ep		INT equ	ivalent ba	sed o	n overp	ressu	re, per	cent		
	Ei		TNT equ	ivalent ba	sed o	n impul	lse, pe	er cent			
[:	Footn	otes	:		· - · · · · · · · · · · · · · ·						
	^a Discarded points.										

62

FIGURE 38. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR C-129 PROPELLANT AND TNT

63

i

Table XVIII. Blast-Wave Data for TP-H-7020 Propellant										
Shot 124										
Leg		r	· p		i	t				
A	A 40				38.5	17.9				
А	4	15	10.3		27.5	21.3				
А	e	50	5.9		25.0	32.0				
А	2	0	3.7		24.9	39.7				
Α	8	30	4.3		20.9	47.6				
В	4	5	7.4		36.3	21.1				
В	6	50	5.2		27.7	31.9				
C 60			6.9		27.3	32.2				
	TP-H-702	0 Avg.	TNT Avg.		TNT Ec	uivalent				
r	р	i	,p	ì	Ep	Ei				
40	12.6	36.0	22.0	47.5	57	76				
. 50	8.4	30.5	12.3	37.0	68	83				
60	5.8	26.0	8.3	30.9	70	87				
70	4,2	23.5	5.8	26.0	72	90				
80	3.1	21.0	4.1	23.5	75	90				
Definition of Parameters with Units: r radial distance, feet p peak side-on overpressure, psig i side-on impulse, psi-msec t arrival time, msec Ep TNT equivalent based on overpressure, per cent Ei TNT equivalent based on impulse, per cent										

f

^aDiscarded points.

65

FIGURE 40. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR TP-H-7020 PROPELLANT AND TNT

4

\$

÷.

66

9

	Table XIX Blast-Wave Data for TP-H-7022 Propellant										
	Shot 108										
Leg	Leg r .		p		i	t.					
А		40	15.7		35.2	18.5					
А		45	13.2		28.8	21.9					
А		60	5.1	i	24.4	32.9					
A		80	3.6)	18.8	48.8					
В		45	12.1	4	42.4°	21.4					
B		60	4.6		24.6	32.3					
C		45	12.6		31.7	21.4					
	TP-H-700	2 Avg.	TNT	Avg.	TNT Ec	luivalent					
r	р	i	.P	i	Ep	Ei					
40	16.3	34.5	22.0	47.5	74	73					
. 50	9.5	28.5	12.3	37.0	77	74					
60	6.2	23.4	8.3	30.0	75	75					
70	4.5	20.5	5.8	26.0	78	79					
80	3.3	18,5	4.1	23.5	80	82					
						ļ					
Definitio	n of Param	neters wi	th Units:	- <u></u>	δ						
r r	adial dista	nce. feet									
 a a	eak side-o	n overpre	essure. p	sig							
i s	ide-on imp	ulse, psi	-msec	. 0							
t a	rrival time	e, msec									
Ер Т	NT equival	lent base	d on over	pressure,	per cent						
Ei T	NT equival	lent base	d on impu	ilse, per o	cent						
Footnote	s:			<u> </u>							
а											
"Disc	arded point	ts.									

3

÷

6

CONFIDENTIAL

FIGURE 42. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR TP-H-7022 PROPELLANT AND TNT

70

CONFIDENTIAL

7. :

Table XX. Blast-Wave Data for TP-H-7028 Propellant										
Shot 126										
Leg		r	. р		i	t				
А	4	£0	4.5	4.5 ^a		18.4				
А	4	15	9.3		30.6	21.8				
A	(50	7.3		24.9	32.7				
А	-	70	4.2	•	19.2	40.5				
A	8	30	3.7	,	17.2	48.3				
В	4	15	9.7	,	36.2	22.1				
В	6	50	5.0		26.9	33.3				
С	4	ł5	11.0)	35.0	21.4				
<u> </u>	(50	5.9		25.4	33.0				
	TP-H-7028 Avg.		TNT Avg.		TNT Eq	uivalent				
r	р	i	Р	ì	Ep	Ei				
40	11.7	38.0	22.0	47.5	53	80				
. 50	8.8	31.5	12.3	37.0	71	85				
60	6.5	26.0	8.3	30.0	78	87				
70	4.6	21.0	5.8	26.0	80	81				
80	3.2	17.0	4.1	23.5	78	72				
Definitio	n of Paran	neters wi	th Units:		I					
r r	adial dista	nce, feet								
p p	eak side-o	n overpre	essure, p	sig		, ,				
i s	ide-on imp	ulse, psi	-msec							
t a	rrival time	e, msec								
Ep 1	NT equiva	lent base	a on over	pressure,	per cent					
E1 1	NI equiva	lent base	a on impu	use, per (cent					
Footnote	Footnotes:									

^aDiscarded points.

ì.Ч

199

./

1.2.1

. . . .

71

FIGURE 44. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR TP-H-7028 PROPELLANT AND TNT


~~~

| Table XXI Blast-Wave Data for RH-P-112<br>Propellant |               |           |         |          |         |                |                  |                   |         |  |  |
|------------------------------------------------------|---------------|-----------|---------|----------|---------|----------------|------------------|-------------------|---------|--|--|
| Shot 136                                             |               |           |         |          |         | Shot 137       |                  |                   |         |  |  |
| Leg                                                  | egrpi.        |           | . t     | Leg      | r       | p              | i                | <u>.</u> t        |         |  |  |
| в                                                    | 40            | 20.5      | 52.1    | 14.6     | В       | 40             | 15.7             | 49.6              | 16.9    |  |  |
| в                                                    | 50            | 11.7      | 38.7    | 21.1     | В       | 50             | 4.6 <sup>a</sup> | 34.6 <sup>a</sup> | 23.5    |  |  |
| в                                                    | 60            | 7.4       | 34.1    | 28.2     | B       | 60             | 5.1              | 27.0              | 30.9    |  |  |
| B                                                    | 70            | 6.0       | 30.3    | 35.7     | B       | 70             | 4.5              | 25.9              | 38.3    |  |  |
| в                                                    | 80            | 4.3       | 26.7    | 43.6     | B       | 80             | 3.8              |                   |         |  |  |
| Α                                                    | 50            | 13.6      | 47.0    | 21.0     | A       | 50             | 9.7              | 44.4              | 23.4    |  |  |
| Α                                                    | 80            | 4.7       | 19.0    | 43.3     | A       | 80             | 3.4              | 25.9              | 46.4    |  |  |
| С                                                    | 50            | 12.7      | 40.1    | 21.0     | C       | 50             | 10.2             | 35.0              | 23.7    |  |  |
| С                                                    | 70            | 6.2       | 27.3    | 35.5     |         | 70             | 5.3              | 22.7              | <u></u> |  |  |
|                                                      | RH-P-112 Avg. |           |         |          |         | vg. TNT Equiva |                  |                   | ivalent |  |  |
|                                                      | r pi.         |           |         | <u>р</u> | i       | E              | Cp               | Ei                |         |  |  |
| 4                                                    | 0             |           |         |          | 22.0    | 4.7.           | 5 _              | _                 |         |  |  |
| 5                                                    | 0             |           |         |          | 12.3    | 37.            | 0 -              | -                 |         |  |  |
| 6                                                    | 0             |           |         |          | 8.3     | 30.            | 0 ~1             | 00                | ~100    |  |  |
| 7                                                    | 0             |           |         |          | 5.8     | 26.            | 0                | -                 |         |  |  |
| 8                                                    | 0             |           |         |          | 4.1     | 23.            | 5                | -                 |         |  |  |
|                                                      |               |           |         |          |         |                |                  |                   |         |  |  |
|                                                      |               |           |         |          |         |                |                  |                   |         |  |  |
| Defi                                                 | inition       | n of Para | nneters | with U   | Units:  |                |                  |                   |         |  |  |
| r                                                    | •             | radial di | stance, | feet     |         |                |                  |                   |         |  |  |
| p                                                    | )             | peak side | e-on ov | erpres   | sure, p | sig            |                  |                   |         |  |  |
| i                                                    |               | side-on   | impulse | e, psi-r | nsec    |                |                  |                   |         |  |  |
| t                                                    |               | arrival t | ime, m  | sec      |         |                |                  |                   |         |  |  |
| E                                                    | ∑p            | TNT equ   | ivalent | based    | on over | press          | ure, pe          | r cent            |         |  |  |
| ļŀ                                                   | Si            | TNT equ   | ivalent | based    | on impu | lse, p         | per cent         | t                 |         |  |  |
| Footnotes:<br><sup>a</sup> Discarded points.         |               |           |         |          |         |                |                  |                   |         |  |  |

ii Ii

#### 74



FIGURE 46. PEAK SIDE-ON OVERPRESSURE VS. DISTANCE FOR RH-P-112 PROPELLANT AND TNT

> 75 CONFIDENTIAL

CONFIDENTIAL

£ .....



#### REFERENCES

- 1. E. G. Johnson, PROPELLANT HAZARDS RESEARCH FACILITY, in preparation.
- 2. G. F. Kinney, EXPLOSIVE SHOCKS IN AIR, New York, The Macmillan Company, 1962.

E. . . .

| DOCUMERT CONTI<br>(Security classification of title, body of abstract and indexia) | ROL DATA - K 5                                                           | k D<br>stared when the t |                                        |  |  |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|----------------------------------------|--|--|--|--|
| I. ORIGINATING ACTIVITY (Comorale author)                                          | Infolktion must ve vi                                                    | 2. REPORT SE             | CURITY CLASSIFICATION                  |  |  |  |  |
| Rohm and Haas Company                                                              |                                                                          | Cor                      | nfidential                             |  |  |  |  |
| Redstone Research Laboratories                                                     | 1                                                                        | 25. GROUP                |                                        |  |  |  |  |
| Huntsville, Alabama 35807                                                          |                                                                          | Ţ                        | V                                      |  |  |  |  |
| 3. REPORT TITLE                                                                    |                                                                          |                          |                                        |  |  |  |  |
| Comparative Tests of Propellants by Per                                            | ek Side-On C                                                             | wernressi                | are and Side-On                        |  |  |  |  |
| Immilee                                                                            | IN 0140-011 0                                                            | //crp1000.               | ine and bree en                        |  |  |  |  |
| impulse                                                                            |                                                                          |                          |                                        |  |  |  |  |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)                          |                                                                          |                          |                                        |  |  |  |  |
| 5. AUTHOR(5) (First name, middle initiat, last name)                               | <del></del>                                                              | <u> </u>                 |                                        |  |  |  |  |
| T. H. Pratt                                                                        |                                                                          |                          |                                        |  |  |  |  |
|                                                                                    |                                                                          |                          |                                        |  |  |  |  |
| 6. REPORT DATE                                                                     | TTA. TOTAL NO. OF                                                        | PAGES                    | 75. NO. OF REFS                        |  |  |  |  |
| October 1967                                                                       | 77                                                                       |                          | 2                                      |  |  |  |  |
| M. CONTRACT OR GRANT NO.                                                           | 24. ORIGINATOR'S REPORT NUMBER(5)                                        |                          |                                        |  |  |  |  |
| DAAH01-67-C-0655                                                                   | Technical I                                                              | Panart S_1               | 10                                     |  |  |  |  |
| A. PROJECT NO.                                                                     |                                                                          | Ceport 0                 | 40                                     |  |  |  |  |
|                                                                                    | L                                                                        |                          |                                        |  |  |  |  |
| c.                                                                                 | Sb. OTHER REPOR<br>this report)                                          | IT NO(S) (Any of         | her numbers that may be assigned       |  |  |  |  |
| a.                                                                                 |                                                                          |                          |                                        |  |  |  |  |
| 10. DISTAIBUTION STATEMENT                                                         | <u> </u>                                                                 | <u> </u>                 | ······································ |  |  |  |  |
| Initial distribution of this report has been                                       | n made in ac                                                             | cordance                 | with contractual                       |  |  |  |  |
| agreements. Distribution to foreign gov                                            | ernments an                                                              | d nations                | can be made only                       |  |  |  |  |
| with specific prior approval of U.S. Arr                                           | ny Missile (                                                             | Command.                 |                                        |  |  |  |  |
| 11. SUPPLEMENTARY NOTES                                                            | 12. SPONSORING MILITARY ACTIVITY<br>Research and Development Directorate |                          |                                        |  |  |  |  |
|                                                                                    | II S Army Missile Command                                                |                          |                                        |  |  |  |  |
|                                                                                    | Radetine Areenal Alabama 35809                                           |                          |                                        |  |  |  |  |
| 13. ABSTRACT                                                                       | Incastone II                                                             | 13char, 1.               |                                        |  |  |  |  |
|                                                                                    |                                                                          |                          |                                        |  |  |  |  |
| Peak side-on overpressure and sid                                                  | le-on impuls                                                             | e as a fun               | ction of distance have                 |  |  |  |  |
| been determined for 17 propellant formu                                            | lations in a <i>i</i>                                                    | series of 3              | 31 shots. TNT                          |  |  |  |  |
| equivalents based on overpressure and T                                            | NT equivale                                                              | nts based                | on impulse have been                   |  |  |  |  |
| assigned the formulations examined. Blast overpressures and impulses were          |                                                                          |                          |                                        |  |  |  |  |

assigned the formulations examined. Blast overpressures and impulses have been generated by 100-lbm propellant charges initiated with 25 lbm of high explosive and measured at distances from 40 to 80 feet from ground zero. It has been found that, depending on formulation, non-detonable propellants exhibit a TNT equivalent of 55 to 85 and that detonable propellants exhibit a TNT equivalent of 100 to 140. These TNT equivalents should be used in hazards classification only when stimuli are comparable.

#### DD 100 .1473 BEPLACES OD FORM 1472, 1 JAN 64, WHICH 19

| 14.              |   |     | LINK A |    | LINK |    | LINK C |     |
|------------------|---|-----|--------|----|------|----|--------|-----|
|                  |   | R   | OLE    | WT | ROLE | WT | ROLE   | WT  |
| Blast wave       |   |     |        |    |      |    |        |     |
| Overpressure     |   |     |        |    |      |    |        |     |
| Impulse          |   | 1   | 1      | 1  |      |    |        |     |
| Solid propellant | 8 |     |        |    |      |    |        |     |
| TNT equivalents  | 9 |     |        |    |      |    |        |     |
|                  |   |     | ļ      |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    | 1      |     |
|                  |   |     |        | 1  |      |    | ł      |     |
|                  |   |     |        |    |      |    | 1      |     |
|                  |   |     | Í      |    |      |    |        |     |
| ]                |   |     |        |    |      |    | ļ      |     |
|                  |   |     |        |    |      |    | 1      |     |
|                  |   | 1   |        |    |      |    |        | Į   |
|                  |   | l l |        |    |      |    | Į      | ļ   |
|                  |   |     |        | ·  |      |    |        |     |
|                  |   |     |        |    |      |    | Į      |     |
| 1                |   |     |        | ļ  |      |    | 1      | l   |
| Į                |   | ļ   |        |    |      |    |        |     |
|                  |   | 1   |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
| ļ.               |   |     |        |    |      |    |        |     |
|                  |   |     | [      |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
| ]                |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
| Î                |   | 1   | Î      |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
| 1                |   | ł   | - 1    |    |      |    |        |     |
|                  |   | ł   |        |    |      |    |        |     |
| J                |   | }   |        |    |      |    |        |     |
|                  |   | J   | i      |    |      |    |        |     |
|                  |   |     |        |    |      |    |        |     |
| Į                |   | j   |        |    |      |    |        |     |
| Ī                |   |     |        |    |      |    |        |     |
| 1                |   | 1   |        |    |      |    |        |     |
|                  |   | 1   | 1      |    |      |    |        | . I |
| a                |   |     |        |    |      |    |        |     |

\*\*\*

\*

× 14

3

, es ,

ł

1.10

41 17

· ···· ····

;

, ,

à