UNCLASSIFIED

AD NUMBER

AD384224

CLASSIFICATION CHANGES

TO:

UNCLASSIFIED

FROM:

CONFIDENTIAL

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 30 SEP 1967. Other requests shall be referred to Office of Naval Research, One Liberty Center, 875 North Randolph Street, Arlington, VA 22203-1995.

AUTHORITY

ONR ltr dtd 16 Feb 1979 ONR ltr dtd 16 Feb 1979

THIS PAGE IS UNCLASSIFIED

GENERAL Declassification Schedule

IN ACCORDANCE WITH BSS 5200.1-R & EXECUTIVE ORDER 11652

THIS DOCUMENT IS. CLASSIFIED BY DDC Subject to General Beclassification Schedule of Executive Order 11652-Automatically Downgraded at 2 Years Intervals- DECLASSIFIED ON DECEMBER 31, 7.3.

BY

Defense Documentation Center Defense Supply Agency Cameron Statica Alexendria, Virginia 22314 THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200,20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE:

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED,

.. .

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

.

C					
·		A DI	ROCKI VISION OF NORTH AME CANOGA AVENUE. CA	RICAN ROCKWELL	CORPORATION
			QUARTERLY PRO	fied Title) OGRESS REPORT, OGEN OXIDIZER ugh 31 August	as
(S	Downgraded at Declassified Contract No G:0 Sponsored by Offic Power Code PREPA D. Pi C. J. C. B. R. D.	After 12 Year onr 4428(00) . 8614 ce of Naval Ra Branch e 429 ARED BY Lipovich Schack Lindahl Wilson OVED BY	Reproduction in whole or in part is permitted for any purpose of the United States Government
	NO. OF PAGE	s <u>18 & iv</u>	Mai Synthetic and P: Researc	Lawton nager ropellant Cher h Division	
C.	DATE	REV. BY	PAGES AFFECTED		REMARKS
			······································		
	1				

FOREWORD

The reaearch reported herein was aupported by the Office of Naval Reaearch, Power Branch, Code 429, with Mr. Richard L. Hanson as Scientific Officer. This report was prepared in compliance with Section H of Navy Contract Nonr 4428(00) and covers the period 30 May 1967 through 31 August 1967. The program manager was Dr. E. A. Lawton, Manager, Synthetic and Propellant Chemistry. The work was conducted in Oxidizer and Fluorine Chemistry with Dr. D. Pilipovich, Principal Scientist as project scientist. Fa.1-time staff members contributing to the technical effort were Dr. C. J. Schack, Dr. C. B. Lindahl, and Mr. R. D. Wilson.

R-7239-1

£

CONFIDENTIAL

ii

ABSTRACT

A new more powerful ultraviolet source has been employed in the ultraviolet activated reactions of chlorine oxyfluorides. This has resulted in significant reductions in the time necessary for complete reaction. Reactant systems have been limited to the $FCl0_2/ClF_5$ and $FCl0_3/ClF_5$ pairs. Excellent conversions and yields of ClF_3 0 have been realized.

Reactions of $NaClO_4$ and NO_2ClO_4 with ClF have been carried out in an effort to prepare chlorine perchlorate, $ClOClO_3$. Preliminary results are encouraging but poor yields have hampered absolute identification of the evolved reaction product.

Samples of IF₇ were prepared and converted to IF₅0. A redetermination of the sublimation pressure-temperature relationship for IF₇ was made and the derived equation is: $\log p_{mm} = 7.6939 - 1356.6/T$. Flow pyrolyses of IF₅0 samples were conducted both in the presence of metal oxides and in simple straight tubes. This approach to IF₃0 or IF₃0₂ was unsuccessful. Reactions of KOCF₂NF₂ and PF₅ were carried out with the aim of producing PF₅NF₂ through NF₂⁻ ion transfers from the salt. This was not achieved because one or another of the reactants was degraded by the test solvents or the PF₅ was complexed by residual KF.

(Confidential Abstract)

R-7239-1

C

CONFIDENTIAL

' iii

CONTENTS

Foreword	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
Abstract	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•		•	iii
Introduction	D	•	•			•	•	•	•	•	•	•	•		•	•	•	•	•	1
Diacuaaion	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	2
Ultraviol	et.	Act	iva	ted	Re	act	ions	Ľ.,	•	•	•	•	•	•	•	•		•	•	2
Attempted	Sy	nth	esi	80	f C	hlo	rine	P	erc	hlo	rate	e	•	•	•	•	•	•	•	6
Iodine Flu	uor	ide	a a	nd	0xy	flu	orid	lea		•	•		•	•	•	•	•	•	•	11
Difluoram	ide	T.	ena	fer	Re	act	ions	5	•	•	•	•	•	•	•	•	•	•	•	12
Experimenta	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
Ultraviol																				
Referencea	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•		18

B-7239-1

C

(

CONFIDENTIAL

iv

INTRODUCTION

This program is concerned with the synthesis of new halogen fluoridea and oxyfluoridea. To accompliah this task, a variety of preparative techniques have been employed in both the aynthesis of intermediates and also in the fluorination reactions used to give final products. Ultraviolet activated reactions of chlorine oxyfluorides in the presence of active fluorine sources have been shown to be effective in the formation of different oxyfluorides. The ultraviolet activated reactions of the present period have utilized FC10₂ and FC10₃ exclusively as F-C1-0 intermediates and ClF₅ as the fluorinating agent with resultant excellent conversions to ClF₃0.

The utility of ClF-HX condensationa for synthetic reactions was demonatrated earlier in thia program. Thus, reactions of ClF and HNF_2 or HNO_3 were shown to be excellent methoda of preparing ClNF_2 or ClNO_3 . Similar reactions of C.F and perchlorate apecies have been undertaken to synthesize a new chlorine oxide, chlorine perchlorate (ClOClO_3).

Pyrolytic studies of $1F_5^0$ were continued as a potential means of forming new covalent I-F-0 materials, and an effort was made to utilize the NF_5^- ion transfer properties of the KOCF_0NF_0 salt in inorganic systems.

CONFIDENTIAL

DISCUSSION

ULTRAVICLET ACTIVATED REACTIONS

Previous work (Ref. 1) has shown that ultraviolet activated reactions involving chlorine oxyfluorides result in the formation of Florox, ClF_3^{0} . These routes to Florox were the first demonstrations of high-yield syntheses of Florox not involving inorganic hypochlorites as intermediates. Several of the important reaction conditions were partially defined during the course of this work. For example, it was found that a low temperature ($\langle -40 \ C \rangle$) was necessary to achieve Florox formation. This investigation was continued both to define Florox synthesis parameters more precisely and also to determine the applicability of this technique as a tool for achieving the synthesis of ClF_3O_2 and ClF_5O .

The single most important variation in the more recent reactions has been the use of a new, more powerful ultraviolet source. The new lamp requires a 450-watt input as compared to the 100-watt input lamp previously employed. While the power input to the lamp is only 4.5 times as great, the resultant radiation in the 2000- to 2400-angstrom range is 75 to 150 times greater in the new lamp than in the old. It was shown earlier (Ref. 1) that the compounds of interest generally have absorption maxima in this region. The use of this new lamp was expected, therefore, to give gross changes in the course of the reactions. Thus, the radiation period required to effect complete or useful conversions of chlorine oxyfluorides was expected to be considerably shortened. It was also hoped that the tremendous increase in available radiant energy would result in different final products, the aforementioned ClF_3O_2 and ClF_5O , in addition to ClF_3O .

R-7239-1

ł

CONFIDENTIAL

Reactions

ſ

1

The recent experimental work has been concerned exclusively with two oxyfluorides. $FClo_2$ and $FClo_3$, and only one fluorinating agent. ClF_5 . The latter was chosen because of its proven superiority (Ref. 1) over other fluorinating agents in these ultraviolet activated reactions.

The same reaction cell and cooling system described previously were employed again. Results for the actual reactant combinations and conditions are presented in Table 1 and are discussed in the following paragraphs.

<u>FC10</u> - <u>Clt</u>. Because this system was the most well defined in the earlier work and gave the best conversions to Florox, it was used to test the utility of the new lamp. Irradiation of a 1:1 mixture of FC10₂:ClF₅ for either 1/2 or 1 hour at -40 C resulted in complete consumption of the starting materials and the clean-cut formation of ClF₃0 and ClF₃ as the only condensable products. The fact that all starting materials were reacted even in the short time period under otherwise identical conditions demonstrates that even less irradiation time is needed. The excellent conversions achieved compare favorably with all but the best results from the earlier work which required significantly longer reaction times. The low yield of by-product in these short time-period reactions is the best attained to date. Overall, these results show that the basic course of the fluorination reaction producing Florox has not been altered. The reaction scheme may be considered as follows:

R-7239-1

CONFIDENTIAL

Reartion		Mole Ratio	Temu	Time *		Percent Conversion	Percent Yield
Number	Reactants	(to 1)	10	hours	Condensable Products	to CIF_3^0	to CIF ₃ 0
1.	CIF5, FC102	1.0	-40	۲	CIF ₃ 0, CIF ₃	45	45
5.	CIF ₅ , FCI0 ₂	1.0	-40	1/2	CIF ₃ 0, CIF ₃	45	45
3.	clF_5 , $Fclo_3$	6.0	-40	1	CIF_{70} , CIF_{7} , unreacted	07	100
7	clF_5 , $Fclr_5$	1.4	04-	1/2	clr_{5}^{rclo3} , clr_{5} , unreacted $rclo_{5}$	30	55
5	clF ₅ , FCl0 ₃	1.4	-58	1/2	$ClF_{3}0$, ClF_{3} , unrescted FCl0 ₃	30	75
6.	CIF ₅ , FC10 ₃	2.0	-60	1/4	Recovered Reactants		
7.	CIF ₅ , FC10 ₃	2.0	-60	1/2	Small amount ClF_3		
æ	CIF ₅ , FCI0 ₃	1.0	07-	1/2	$CIF_{3}0$, CIF_{3} , unreacted FC10 ₃	30	55
9.	FC10 ₃	I	-60	ର	Unreacted FClO ₃ , ClF, small amount 7310 ₂		
10.	FC10 ₃	I	-60	1/2	Unreacted FClO ₇ , ClF, small amount FClO ₂		
VII reac	*All reaction periods d	lo not include	e a 10-	ninute 16	do not include a 10-minute lamp warm-up period.		

TABLE 1

(

ULTRAVIOLET ACTIVATED REACTIONS

R-7239--1

(

CONFIDENTIAL

 $[FC10] + 0 - C1F + 0_{2}$ $[FC10] + C1F_{5} - C1F_{3}0 + C1F_{3}$ $C1F + C1F_{5} - 2C1F_{3}$

The observed ClF_3 is a product of ClF_5 degradation and also the fluorination of ClF.

<u>FC10₃ - C1F₅</u>. As shown in Table 1 several temperatures and mole ratios were utilized in the study of the ultraviolet activated FC10₃ - C1F₅ reactions. Only one experiment (Ref. 1) had been performed with FC10₃ snd any fluorine source during the earlier Rocketdyne work. This revealed that FC10₃ is a suitable precursor to Florox. Additional experments were needed to more clearly define the reaction. Irradiation times of 0.5 to 1.0 hour and reaction temperatures of -40 to -58 C were used. The C1F₅/FC10₃ mole ratio was varied from 0.9 to 1.4. Consistent conversions of FC10₃ to C1F₃0 of 30 to 40 percent were found. However, the yields varied between 55 and 100 percent. The higher yields were obtained with lower relative amounts of C1F₅ or lower temperatures. Again, the reactions were well defined and gave only C1F₃ as a condensable by-product. The experiment that resulted in a 100 percent yield of C1F₅0 also gave s measured recovery of C1F₃ that quantitatively confirmed the overall resction stoichiometry as shown:

 $FC10_3 + C1F_5 - C1F_30 + C1F_3 + 0_2$

While these results were well defined, the change of just one reaction parameter produced unexpected results. When the mols ratio of ClF_5 to FClO₅ was increased to 2, irradiation as before for 0.25 of 0.5 hour did not result in any significant reaction and the starting materials were recovered. The higher concentration of ClF_5 , a much stronger ultraviolst absorber than FClO₅ (Ref. 1, Fig. 1), may have prevented effective excitation of the latter and thus inhibitsd its reaction during ths

R-7239-1

CONFIDENTIAL

short reaction time. However, the increase in ClF_5 concentration was relatively small while the effect on ClF_3^0 was many orders of magnitude. To ensure that an unobserved equipment malfunction had not caused these results, a 1:1 $\text{ClF}_5/\text{FCl0}_3$ experiment was conducted immediately subsequent to the 2:1 mole ratio experiments. Again a good conversion (30 percent) and yield (55 percent) of ClF_3^0 were obtained confirming that the equipmept was functioning properly. A more complete explanation of the nonreaction is desired. More experimental evidence for the reaction mechanism operative in these systems should provide an insight and fuller understanding of the process.

To aid in this determination of the reaction mechanism, two experiments were conducted with $FClo_3$ alone. A quantitative measure of the decomposition products was sought. As previously, however, the only isolated products were $FClo_2$ and ClF. Further experiments are being conducted to determine the ratio of $FClo_2$ to ClF produced.

ATTEMPTED SYNTHESIS OF CHLORINE PERCHLORATE

Condensation reactions of chlorine monofluoride have not been the subject of extensive investigations, previously. However, the synthetic utility of such reactions has been demonstrated under this program (Ref. 2 and 3). Specific examples are:

> $C1F + HNF_2 - HF + C1NF_2$ $C1F + HNO_3 - HF + C10NO_2$

These equations suggest that a general condensation of this type may exist and work has been continuing to exploit this chemistry.

R-7239-1

CONFIDENTIAL

The present goal of these condensation reactions is the synthesis of chlorine perchlorate, ClOClO_3 . Formation of ClOClO_3 would represent the first example of a chlorine oxide containing chlorine atoms in two different oxidation states, i.e., Cl(I) and Cl(VII). The comparable electronegativity of the ClO_4^- and NO_5^- groups coupled with the known stability of ClNO_3 makes the proposed existence of ClOClO_3 appear reasonable. In addition, the mild, low-temperature conditions available through ClF condensations present synthetic conditions not previously applied to chlorine oxide syntheses.

The first attempts at the preparation of $CloClo_{3}$ were no. conducted with anhydrous ΠClo_{4} . Rather, use was made of anhydrous perchlorate salts that were readily available. The desired reactions were:

 $NaClo_4 + ClF - NaF + CloClo_3$ $No_2Clo_4 + ClF - FNO_2 + CloClo_3$

It was hoped that the use of these materials would eliminate the need for preparing anhydrous HClO_4 and at the same time avoid possible complications associated with the explosive inpurity Cl_20_7 often present in anhydrous HClO_1 (Ref. 4).

Several reactions of ClF and NaClO₄ were conducted at -78, -45, and O C. These reactions were of several hours to 2 weeks duration. In all cases, a volatile material was formed which could be fractionally condensed at -112 C but not at -78 C. As a solid, this material is pale yellow to colorless and on contact with moist air it is partially decomposed to HClO₄. The infrared spectrum of this unidentified material is simple and has the bands noted in Table 2.

R-7239-1

CONFIDENTIAL

TABLE 2

INFRARED BANDS OF UNKNOWN FROM C1F-MC10, REACTIONS

Band, cm⁻¹ Relative Intensity 2320 vw 1280 s 1040 (doublet) m 750 (broad) vw 650 s 565 w 510 vw

Comparison of these absorption with those of other covalent perchlorates (listed in Table 3) illustrates a pronounced similarity. This similarity is most noteworthy in the two bands (~1300 and 1040 ${
m cm}^{-1}$) assigned to the covalent $-Clo_3$ stretching vibrations (Ref. 5 through 7). This comparison indicates that the unknown formed in the CIF-NaClO_L reaction may be a covalent perchlorate such as the desired ClOClO₃. Furthermore the remaining bands are not incompatible with a structure of the ClOClO₃ type. A final comparison was sought between the infrared spectra of the unknown sample and that of dichlorinc hexoxide, Cl₂0₆. The infrared spectrum of the latter has not been reported and an authentic sample will be prepared (Ref. 8) to secure its spectrum. In the interim a comparison was made with unverified in-house spectra attributed to Cl₂0₆. These spectra only cover the 2 to 15 micron range. The comparison indicated that the unknown material and the "Cl₂06" were quite similar but not identical. In addition, the reported properties of Cl_20_6 (dark orange-red color and low volatility) make it unlikely that $Cl_2 0_6$ is present in the unknown.

R-7239-1

GONFIDENTIAL

TABLE 3

FC104	(Ref. 5)*	нс	10 ₄ (Ref. 6)	C1 ₂ 0	D_{τ} (Ref. 7)
Band, 	Relative Intensity	Band, <u>cm⁻¹</u> 3560	Relative Intensity m(0-H)	Band, $\frac{-1}{cm}$	Relative <u>Intensity</u>
1298	8	1325	S	1310	8
1049	m	1050	m	1025	m
885	w(0-F)	725	m	690	w
6ú6	9	580	m	600	m

PRINCIPAL INFRARED BANDS OF COVALENT PERCHLORATES

*NaCl region only

A major problem is the characterization of this new unknown material is the low yield realized in the synthesis. This has generally been of the order of 5 to 10 percent with one attempt giving slightly higher results. The duration of the preparative experiment has had no significant effect on yield. Higher temperatures have so far only given slightly better yields and have also resulted in increased by-product formation $(Cl_2, Clo_2, Fclo_2, Fclo_3)$.

One approach in attempting to circumvent this problem is using scaled up synthetic reactions, some of which are in progress. (The original reactions were on a small scale to minimize any potential hazard.) An alternate starting material was also chosen to find a more efficient synthesis. Thus, reactions with NO_2CiO_4 and CIF were conducted. These

R-7239-1

CONFIDENTIAL

gave poorer yields of the desired volatile unknown and none of the expected co-product FNO_2 . The failure to generate free FNO_2 may be the result of a side reaction between it and a chlorine oxide such as the reported reaction (Ref. 9):

$$FN0_2 + C1_20_6 - FC10_2 + N0_2C10_4$$

Pending the preparation and purification of larger samples, an attempt was made to obtain a preliminary characterization of the volatile unknown by fluorination reaction. If the unknown is $CloClo_3$, the fluorination might proceed as follows:

$$c_{10}c_{10} + F_2 - F_{10} + C_{1}F_{3}$$

However, in an experiment completed at -45 C, it was found that fluorination yielded FClO₂ and FClO₃ in addition to some unreacted starting material. The products may have arisen from ClOClO₃ as follows:

$$c_{10}c_{10} + F_2 - Fc_{10} + Fc_{10}$$

2 [Fc_{10}] - Fc_{10} + C_{11}F

The amount of ClF formed would have been too small to identify spectrally. An alternate possibility is that the unknown sample is a chlorine oxide other than ClOClO_3 . For example, the unknown Cl_2O_5 might fluorinate as follows:

$$0C10C10_3 + F_2 - FC10_2 + FC10_3$$

To facilitate the characterization of this unidentified material, additional preparative reactions will be employed. The use of the $CsClo_4$ salt is planned together with ClF reactions of covalent species, $HClo_4$ and Cl_2O_7 :

 $HC10_4 + C1F - HF + C10C10_3$ $C1_20_7 + C1F - FC10_3 + C10C10_3$

R-7259-1

CONFIDENTIAL

Confidential

IODINE FLUORIDES AND OXYFLUORIDES

The utilization of IF₅0 as a precursor to unreported IF_x0 compositions has been of interest. Simple thermsl reactions were considered as s direct approach to these materials; reactions of the following type were sought:

Earlier pyrolysis experiments with IF_50 (Ref. 1) indicated that the predominant thermal reaction was degradation through oxygen elimination.

$$IF_5^0 - IF_5 + 1/2 0_2$$

However, in some experiments conducted in the presence of CaO, the IF_5^0 pyrolysis was observed to result in the formation of trace quantities of an unknown volatile material.

A limited effort was made to prepare more of this material in order that it might be identified. After replenishment of the IF_5^0 supply, pyrolysis experiments were resumed. Duplication of the earlier reaction conditions (~350 C with Cu0 packing in a 1/4-inch stainless-steel tube) failed to yield any of the sample and ngain gave only IF_5 , I_2 , and noncondensables. The reaction temperature was varied between 200 and 400 C and still did not materially change the course of the reaction. Substitution of a different methl oxide, Pb0₂, only resulted in lowering the temperature necessary for complete IF_5^0 decomposition. Finally, substitution of a Monel pyrolysis tube with a Cu0 packing was attempted in an effort to generate some of the previously observed material. This too was unsuccessful and the experiments were terminated. Because the only real difference

R-7239-1

Confidential

between these reactions and the earlier ones was the use of e different batch of IF₅0, it is possible that the unknown previously observed arose through reaction of some impurity in the first IF₅0 supply.

DIFLUORAMIDE TRANSFER REACTIONS

The use of possible "difluoramide transfer" reactions in inorganic systems has been investigated. Lewis Acids have been reacted with the perfluoro-formamide - KF samples (Ref. 10) with the goal of obtaining useful intermediates such as PF_LNF_p :

 $\frac{\text{KOCF}_{2}\text{NF}_{2} + \text{PF}_{5}}{4} + \text{CF}_{2}0}{\text{KPF}_{5}\text{NF}_{2}} + \text{CF}_{2}0}$ $\frac{4}{\text{KF} + \text{PF}_{4}\text{NF}_{2}} \text{ or } \text{KF} + 1/2\text{N}_{2}\text{F}_{2} + \text{PF}_{5}$ $\frac{4}{\text{KF}_{5}}\text{KF}_{2} + \frac{1}{2}\text{KAsF}_{6} + \frac{1}{2}\text{KAsF}_{6} + \frac{1}{2}\text{KAsF}_{2}$

Experiments have been conducted using propylene carbonate, nitrometbane, and acetonitrile as solvents. One sample of KCCF_2NF_2 was prepared in CH_CN, redissolved in propylene carbonate and subsequently treated with PF₅. This sample deflagrated presumably tbrougb a rapid decomposition of INF_2 as in the CsF·HNF₂ system. In two more reactions, FCONF₂ was added to a solution of KF in propylene carbonate. Upon warming from -196 C to -25 C, the material melted to a purple liquid which evolved gas and dis... sipated its color over s 10-minute period giving a quantitative yield of COF_2 . Propylene carbonate obviously is not a suitable solvent for the desired reactions.

B-7239-1

CONFIDENTIAL

Reactions with CH_3NO_2 indicate that it is a relatively poor solvent for the complex formation. In several experiments, evolution of significant amounts of COF_2 has indicated that the complex (Ref. 10) goes beyond the first desired step to the second undesired steps:

$$FCONF_{2} + KF \longrightarrow NF_{2}CF_{2}O^{-}K^{+}$$
$$NF_{2}CF_{2}O^{-}K^{+} + FCONF_{2} \longrightarrow (NF_{2})_{2}CFO^{-}K^{+} + CF_{2}O^{-}K^{-}K^{+}$$

Final solvent studies utilized the KF-FCONF₂ complex in CH₃CN. While it is likely that the KOCF₂NF₂ complex was formed in CH₃CN, addition of PF₅ to the KOCF₂NF₂ complex produced only small amounts of COF₂ and FCONF₂. It is possible that most of the PF₅ reacted with KF (present from making the KOCF₂NF₂ complex) or with the solvent. Because no simple direct route to the desired PF₄NF₂ was found, the effort was terminated.

R-7239-1

ſ

CONFIDENTIAL

EXPERIMENTAL

ULTRAVIOLET IRRADIATION

Cell and Fractionation System

A new Teflon-metal high vacuum system was constructed, passivated, and calibrated. A specially designed ultraviolet reactor was connected to the system and consisted of a stainless-steel body and a 4-incb-diameter ultraviolet-grade sapphire window. The cell temperature was automatically controlled by a circulating methanol cooling system to within 3 C of the desired temperature and within a range of -60 C to amhient temperature. The cell apparatus was modified so that a new ultraviolet lamp could he used. This modification consisted of a metal housing above the cell window to bold the new lamp and a system to supply dry nitrogen which can he blown continuously across the cell window to prevent "frosting" during low-temperature reactions. The new lamp provided a greatly increased amount of irradiation; however, it also increased the amount of heat generated and the cell housing must be cooled by a large fan.

Ultraviolet Source

Work was conducted with a Hanovia lamp No. 679-A-36 (power input 450 watts).

Materials

The FClO₂ was prepared by the reaction of ClF_3 and KClO_3 . Purification of FClO₂ was carried out by pumping off the Cl₂ impurity while holding the FClO₂ at -78 C. The cbromatographic purity of the colorless liquid was better than 99.9 percent. The FClO₃ was purchased from Pennsalt. The ClF₅ prepared at Rocketdyne, bad a purity of 99+ percent.

B-7239-1

CONFIDENTIAL

Attempted Synthesis of ClOClO₃

All reactions were conducted under static conditions. Small stainlesssteel bombs (10 or 30 milliliters) were passivated with ClF_{z} , evacuated, and then put into s nitrogen-filled dry hox, where they were opened, and loaded with weighed amounts of solid perchlorate $(NaClo_{\mu} \text{ or } NO_{0}Clo_{\mu})$. After closing, reattaching to the vacuum line, and evacuating, measured amounts of freshly fractionated ClF were condensed into the homhs at -196 C. The quantities of reactants were in the 3 to 12 mmole range. Reactions were of several hours to several days duration and at constant temperature (-78, -45, or 0 C). At the conclusion of a reaction, the cylinder was cooled to -196 C and opened to determine if any noncondensable gas had been formed. In all experiments, only traces or no noncondensables were detected. The reactor was warmed to ambient temperature and the volatile materials were fractionated through traps cooled to -112, -142, and -196 C. The unidentified volatile product was retained at the highest temperature (it would pass a trap cooled to -78 C). Byproduct mixtures containing Cl_2 , $FCl0_2$, and $FCl0_3$ were retained in the -142 C trap and unreacted CIF passed through to the -196 C trap. The amounts of unknown material formed were generally 5 to 10 percent of the starting CIF and the by-products were somewhat greater.

Preparation of IF,

Iodine pentafluoride and excess F_2 were heated at 150 C in Monel or stainless-steel cylinders for several hours. Conversion to IF₇ was nearly quantitative. Rough purification was achieved by vacuum fractionation. Samples often contained traces of IF₅0 and possibly HF. Despite the limited quantities of these impurities, it was not possible to duplicate the reported sublimation pressures for IF₇ (Ref. 11) even approximately. Therefore, when during the course of the present preparations

R-7239-1

CONFIDENTIAL

a sample was found that contained no detectable impurities (HF or IF_5^{0}), a redetermination of the sublimation pressure-temperature relationship was undertaken. The experimental data are presented in Table 4 and the derived equations are:

$$\log p_{mm} = 7.6939 - 1356.6/T$$

or:

$$\log p_{mm} = 11.2319 - 3046.93/T + 197769/T^2$$

The derived heat of sublimation is 6.2 kcal/mole and the solid melts at 6.5 C.

TABLE 4

SUBLIMATION PRESSURE-TEMPE	RATURE DATA	FOR	IF,
----------------------------	-------------	-----	-----

Temperature, C	Observed Pressure, mm	Calculated Pressure, mm
-79.8	6	5
-63.8	45	16
-55.5	25	29
-29.5	113	134
-11.1	516	325
0.0	567	535
8.6	822	758
17.2	1130	1050

E-7239-1

Ĉ

CONFIDENTIAL

Preparation of IF_0

Ĺ

In the past, no difficulty had been encountered in the conversion of $1F_7$ to iF_50 with Cab-O-SiI. However, one of the recent syntheses gave no $1F_50$. Instead, only SiF_h. IF₅ and 0_2 were found. Apparently the heat of the reaction during its uncontrolled warm-up resulted in thermal decomposition of the IF₅0.

$$2IF_7 + SiO_2 - 2IF_5 + SiF_7 + O_2$$

Therefore, it is now evident that this synthesis does require some temperature control.

Pyrolysis of IF_0

A cylinder containing $IF_{\overline{0}}^{0}$ was attached to a straight metal tube stainlesssteel or Monel; (30 inches long, 12-inch heated zone) passing through a furnace and then connected to a Teflon U-trap and the vacuum line. The tube was heated to test temperature and passivated with $CIF_{\overline{3}}$ if no metal oxide packing was used. When chlorine oxides were no longer generated, the system was completely pumped down. The $IF_{\overline{5}}^{0}$ cylinder was cooled to -78 C and the U-trap was cooled to -196 C. Continuous pumping was maintained and a flow of $IF_{\overline{5}}^{0}$ was begun (calibrated rate = 5.5 cc/min). Separate flow experiments were of 13 to 15 minutes duration.

R-7239-1

ſ

CONFIDENTIAL

REFERENCES

- R-7149, <u>Final Report</u>, <u>Inorganic Halogen Oxidizers</u>, Contract Nonr 4/28(00), Rocketdyne, a Division of North American Aviation. Inc.. Canoga Park, California. 31 July 1967, CONFIDENTIAL.
- R-6641-1, <u>Annual Summary Report</u>, <u>Inorganic Halogen</u> <u>Oxidizers</u>, Contract Nonr 4428(00), Rocketdyne. a Division of North American Aviation Inc., Canoga Park, California, 31 July 1966. CONFIDENTIAL.
- R-6258, <u>Annual Report</u>, <u>Inorganic Halogen Oxidizers</u>. Contract Nonr 4428(00), Rocketdyne, a Division of North American Aviation. Inc., 30 July 1965. CONFIDENTIAL.
- 4. Pearson, G.S. in "Advances in Inorganic Chemistry and Radiochemistry." Academic Press, Vol. 8 (1966) p. 177.
- Agahigian, H., A. P. Gray and G. D. Vickers, <u>Can. J. Chem.</u> <u>40</u>, 157 (1962).
- 6. Giguere, P. A. and R. Savoie, Can. J. Chem. 40, 495 (1962).
- 7. Savoie. R. and P. A. Giguere, Can. J. Chem., 40, 991 (1962).
- Schmeisser, M. in "Handbook of Preparative Inorganic Chemistry," ed. by G. Brauer, Academic Press. Vol. I (1963) p. 303.
- 9. Schmeisser, M. and K. Brandle. in "Advances in Inorganic Chemistry and Radiochemistry." Academic Press. Vol. 5 (1963) p. 41.
- AFRPL-TR-67-185, Quarterly Progress Report. Research High Energy Oxidizers, Rocketdyne, a Div. of North American Aviation. Inc.. June 1967, CONFIDENTIAL.
- 11. Bartlett. M. and L. E. Levchuk, Proc. Chem. Soc., 542 (1963).

R-7239-1

€

CONFIDENTIAL

Rocketdyne, a Division of North American Rockwell CONFIDENTIAl Conjoration, 6633 Canaga Avenue, Canaga Park, California. 20 secur A DEFORT TILE 100RGANIC HALOGEN OXIDIZERS 4 OSSCRITTIVE NOTES (Type of report and inclusive darse) Quarterly Report (30 May 1967 through 31 August 1967) 5 AUTIOR(3) (Ceitneme, instance, ins	urity Classification		
OPEGNATING A CTURY (Copport wide) Rocketdyne, a Division of North American Rockwell Corporation, 6633 Canaga Avenue, Canaga Park, California. 2* areas stcutur CONFIDENTIAL 2* areas stcutur 2* areas stcutur 3*			
Corporation, 6633 Canoga Avenue, Canoga-Park, California. 12 scour A 1 INCROANT TITLE INORGANIC HALOGEN OXIDIZERS 0 OESCRITIVE NOTES (Type of report and inclusive derse) Quarterly Report (50 May 1967 through 51 August 1967) AutiON(5) (Autimane discove derse) Quarterly Report (50 May 1967 through 51 August 1967) AutiON(5) (Autimane discove derse) Quarterly Report (50 May 1967 through 51 August 1967) Nord (428)(00) A project No. Contract on shart No. Nonr (428)(00) A project No. C. A A states Government. A states Government. A. A states Government. A states Gover	ACTIVITY (Corporate author)		20 REPORT SECURITY CLASSIFICATION
Galifornia. 4 INGRGANIC HALOGEN OXIDIZERS OUSCRNTTVE NOTES (Type of report and inclusive datas) Quarterly Report (50 May 1967 through 51 August 1967) AUTOROGIASCH mark the mass invitable pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. A REPORT OATE 50 September 1967 30 September 1967 31 CONTACT ON GRANT NO. 74 TOTAL NO OF PAGES 22 31 Discontract on GRANT NO. A REPORT OATE 30 September 1967 31 CONTACT ON GRANT NO. 74 TOTAL NO OF PAGES 21 32 ONTEX REPORT NO(5) (Any other number 33 OTHER REPORT NO(5) (Any other number 34 CONTACT ON GRANT NO. 4. 74 TOTAL NO OF PAGES 34 OTHER REPORT NO(5) (Any other number 35 OTHER REPORT NO(5) (Any other number 36 OTHER REPORT NO(5) (Any other number 37 OTHER REPORT NO(5) (Any other number 38 OTHER REPORT NO(5) (Any other number 39 OTHER REPORT NO(5) (Any other number 30 September 31 OTHER REPORT NO(5) (Any other number 34 OTHER REPORT NO(5) (Any other number 35 OTHER REPORT NO(5) (Any other number 36 OTHER REPORT NO(5) (Any other number 37 OTHER REPORT NO(5) (Any other number 38 OTHER REPORT NO(5) (Any other number 39 OTHER REPORT NO(5) (Any other number 30 OTHER REPORT NO			CONFIDENTIAL
INDEGANIC HALOGEN OXIDIZERS OBJORNITIVE NOTES (Type of report and inclusive datas) Quarterly Report (50 May 1967 through 51 August 1967) AUTOR(S) (Letrame inclusive datas) Quarterly Report (50 May 1967 through 51 August 1967) AUTOR(S) (Letrame inclusive datas) Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. REPORT GATE 30 September 1967 72. TOTAL NO. OF PAGES 22 In CONTACT on GRANT NO. Nonr 4428(06) h. PROJECT NO. c. d. d. d. Dis CONTACT on GRANT NO. A. c. d. d. d. d. Dis CONTACT ON GRANT NO. A. d. d. </td <td></td> <td>oga Park,</td> <td></td>		oga Park,	
INORGANIC HALDGEN OXIDIZERS OUSCRITIVE NOTES(Type of report and inclusive detas) Quarterly Report (50 May 1967 through 31 August 1967) VITOMON (Varie mann, finital) Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. REPORT OATE 50 September 1967 11 e Contract on GRANT NO. Nonr 4422(00) h PROJECT NO. c A AVAILABULITY/LIMITATION NOTICES Reproduction in whole or in part is permitted for any purpose of the States Government. 1. SUPPLEMENTARY NOTES 1. SUPPLEMENTARY NOTE			4
OESCRIPTIVE HOTES (Type of report and inclusive deves) Quarterly Report (30 May 1967 through 31 August 1967) AUT HOR(5)/Lest name, first name, (midal) Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. REPORT OATE 70. TOTAL NO OF PAGES 70. No. of 22 70. No. of 22 * CONTRACT ON GRAWT NO. Nonr 4428(00) R-7239-1 R-7239-1 * CONTRACT ON GRAWT NO. St. ORIGINATOR'S REPORT NUMBER(3) * CONTACT ON GRAWT NO. St. ORIGINATOR'S REPORT NUMBER(3) * CONTACT ON GRAWT NO. St. ORIGINATOR'S REPORT NUMBER(3) * CONTACT ON GRAWT NO. St. ORIGINATOR'S REPORT NUMBER(3) * CONTACT ON GRAWT NO. St. ORIGINATOR'S REPORT NUMBER(3) * CONTACT ON GRAWT NO. St. ORIGINATOR'S REPORT NUMBER(3) * ANALLABILITY/LIMITATION NOTICES R-7239-1 * ANALLABILITY/LIMITATION NOTICES States Government. 1: SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of NSval Research Power Branch, Code 429 Washington, D. C. * ABSTRACT A new more powerful ultraviolet source has been employed in the ult voted reactions of ACIO3/CIF5 pairs. Excellent conversi of CIF50 have been realized. Reactions of NGL04, and NO2CI0, with carried out in sn effort to prepare chlorine perchlorate, CIOCI05. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7, Were prepared a			
Quarterly Report (30 May 1967 through 31 August 1967) Aut (OR(5) (Lest name, thist name, initial) Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. Interport (ALL) AUTOR(5) (Lest name, thist name, initial) Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. Interport (ALL) AUTOR(5) (Lest name, thist name, initial) 30 September 1967 22 11 Schack, C.; Lindahl, C.; Wilson, R. Interport (ALL) Autor (ALL) Autor (ALL) A. C. A. C. A. C. A. C. A. A. </td <td>HALOGEN OXIDIZERS</td> <td></td> <td></td>	HALOGEN OXIDIZERS		
S AUY 10R(S) (Lesi name. initial) Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. 30 September 1967 22 30 September 1967 22 11 30 September 1967 22 30 September 1967 32 30 September 1967 90 ORIGNATOR'S REPORT NUMBER(S) Nonr 4428(00) R-7239-1 5. PROJECT NO. 4. 90 OTTICL REPORT NO(S) (Any other number of the states Government. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILTARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 13 ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FCl02/CLF5 and FCl03/CLF5 pairs. Excellent conversi of CLF30 have been realized. Reactions of NaCl04 and N02Cl04 with carried out in sn effort to prepare chlorine perchlorate, Cl0Cl05, r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimition pressure-temperature relations made and the derived equation is: log Pmm 7.059 - 1556.6/T. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsucessful. KOCF0/NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not			
Pilipovich, D.; Schack, C.; Lindahl, C.; Wilson, R. Image: September 1967 22 11 Image: September 1967 Report 100 11 Image: September 1967 Report 100 Report 100 Image: September 100 Report 100 Report 100 Ima		h 31 August 196	(7)
A REPORT OATE 72 TOTAL NO OF PAGES 75. NO. OF 30 September 1967 22 11 30 CONTACT OR GRANT NO. 90 ORIGINATOR'S REPORT NUMBER(S) R.7239-1 30 September 1967 90 ORIGINATOR'S REPORT NUMBER(S) R.7239-1 4. 90 OTHECK REPORT NO(S) (Any other number discreption) 4. 90 OTHECK REPORT NO(S) (Any other number discreption) 4. 90 OTHECK REPORT NO(S) (Any other number discreption) 4. 90 OTHECK REPORT NO(S) (Any other number discreption) 4. 90 OTHECK REPORT NO(S) (Any other number discreption) 4. 91 OTHECK REPORT NO(S) (Any other number discreption) 5. 0.5 OTHECK REPORT NO(S) (Any other number discreption) 4. 92 OTHECK REPORT NO(S) (Any other number discreption) 5. 0.5 OTHECK REPORT NO(S) (Any other number discreption) 5. 0.5 OTHECK REPORT NO(S) (Any other number discreption) 5. 0.5 OTHECK REPORT NO(S) (Any other number discreption) 5. 0.5 OTHECK REPORT NO(S) (Any other number discreption) 6. 11 12 SPONSORING MILTARY ACTIVITY 0. 0.5 OTHECK REPORT NO(S) (Any other number discreption) 10. 1.5 SUPPLEMENTARY NOTES 1		C. Wilson P	
30 September 1967 22 11 50 September 1967 22 11 50 September 1967 Se ORIGINA TOR'S REPORT NUMBER(S) R-7239-1 5. STRACT NO. St. OTHER REPORT NO(S) (Any other number Misr Report 4 Set ORIGINA TOR'S REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 5 OTHER REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 5 OTHER REPORT NO(S) (Any other number Misr Report 4 St. OTHER REPORT NO(S) (Any other number Misr Report 5 St. OTHER REPORT NO(S) (Any other number Misr Report 5 St. OTHER REPORT NO(S) (Any other number Misr Report 5 St. OTHER REPORT NO(S) (Any other number Misr Report 11. SUPPLEMENTARY NOTES St. SpONSORING MILTARY ACTIVITY 13 ABSTRACT A new more powerful ultraviolet source has been employed in the ult 14 and the t	h, D.; Senack, C.; Lindani,	C.; WIISON, R.	
30 September 1967 22 11 30 September 1967 22 11 30 September 1967 30 September 1967 12 31 September 1967 30 September 1967 11 32 September 1967 30 September 1967 11 31 September 1967 31 September 1967 11 32 September 1967 31 September 1967 11 32 September 1967 31 September 1967 12 34 32 September 1967 11 35 September 1967 31 September 1967 12 34 32 September 1967 11 35 September 1967 12 36 September 1967 12 37 September 1967 12 38 September 1967 12 39 September 1967 12 30 September 1967 12 31 Asstract 12 32 A september 1967 12 33 September 1967 12 34 September 1967 12 35 September 1967 September 1967 <td< td=""><td></td><td></td><td></td></td<>			
10. UPDE LEVENT ON LADIA 10. CONTRACT OR BRANT NO. Nonr 4428(00) b. PROJECT NO. c. d. d. <	E	74- TOTAL NO. OF	
Nonr 4428(00) b. PROJECT NO. c. AVAILABILITY/LIMITATION NOTICES Reproduction in whole or in part is permitted for any purpose of th States Government. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 13. ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FCl02/CIF5 and FCl03/CIF5 pairs. Excellent conversi of CIF50 have been realized. Reactions of NaCl04 and N02Cl04 with carried out in sn effort to prepare chlorine perchlorate, Cl0Cl05. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relationss made and the derived equation is: log pmm = 7.6939 - 1356.6/T. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF50 or IF50 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 in transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)		22	11
 A PROJECT NO. C. 32. OTHERREPORT NO(3) (Any other number of the report of the sequence of the states of the states		Se. ORIGINATOR'S	REPORT NUMBER(\$)
 3b. OTHER REPORT NO(5) (Any other number disregards) a c. AVAILABILITY/LIMITATION NOTICES Reproduction in whole or in part is permitted for any purpose of th States Government. 1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 33 ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FCl02/ClF5 and FCl03/ClF5 pairs. Excellent conversi of ClF3O have been realized. Reactions of NaClO4 and N02ClO4 with carried out in sn effort to prepare chlorine perchlorate, ClOClO5. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations straight tubes. This approach to IF30 or IF30 was unsuccessful. KOCF2NF2 and PF5 were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF30 was unsuccessful. KOCF2NF2 and PF5 were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF30 was unsuccessful. KOCF2NF2 and PF5 were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF30, was complexe KF. (C) 		R-7239-1	
 AVAILABILITY/LIMITATION NOTICES Reproduction in whole or in part is permitted for any purpose of th States Government. 1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 3 ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/C1F5 and FC103/C1F5 pairs. Excellent conversi of C1F30 have been realized. Reactions of NaC104 and N02C104 with carried out in sn effort to prepare chlorine perchlorate, C10C103, r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log Pmm = 7.6939 - 1356.6/T. F of IF30 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and FF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C) 			
 AVAILABILITY/LIMITATION NOTICES Reproduction in whole or in part is permitted for any purpose of th States Government. 1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 3 ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/C1F5 and FC103/C1F5 pairs. Excellent conversi of C1F30 have been realized. Reactions of NaC104 and N02C104 with carried out in sn effort to prepare chlorine perchlorate, C10C103, r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log Pmm = 7.6939 - 1356.6/T. F of IF30 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and FF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C) 		95. OTHER REPOR	T NO(5) (Any other numbers that may be seeigned
0. AVAILABILITY/LIMITATION NOTICES Reproduction in whole or in part is permitted for any purpose of th States Government. 1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 3. ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/C1F5 and FC103/C1F5 pairs. Excellent conversi of C1F30 have been realized. Reactions of NaC104 and N02C104 with carried out in sn effort to prepare chlorine perchlorate, C10C105. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log pmm = 7.6959 - 1356.6/T. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF50 or IF302 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)		this report)	
Reproduction in whole or in part is permitted for any purpose of th States Government. I. SUPPLEMENTARY NOTES I. SUPPLEMENTARY NOTES I. SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. 3 ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/C1F5 and FC103/C1F5 pairs. Excellent conversi of C1F30 have been realized. Reactions of NaC104 and N02C104 with carried out in sn effort to prepare chlorine perchlorate, C10C105, r, sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log pmm = 7.6939 - 1356.6/T. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)			
States Government. IL SUPPLEMENTARY NOTES IL SPONSORING MILITARY ACTIVITY Office of Nsval Research Power Branch, Code 429 Washington, D. C. IS ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FCl02/ClF5 and FCl03/ClF5 pairs. Excellent conversi of ClF30 have been realized. Reactions of NaCl04 and N02Cl04 with carried out in sn effort to prepare chlorine perchlorate, Cl0Cl03. r, sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relationss made and the derived equation is: log p _{mm} = 7.6939 - 1356.6/T. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF50 or IF50 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)			
Power Branch, Code 429 Washington, D. C. ¹³ ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/C1F5 and FC103/C1F5 pairs. Excellent conversi of C1F30 have been realized. Reactions of NaCl04 and N02C104 with carried out in sn effort to prepare chlorine perchlorate, C10C103. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relationss made and the derived equation is: log $p_{mm} = 7.6939 - 1356.6/T$. F of IF40 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)	overnment.	12. SPONSORING M	
Washington, D. C.Washington, D. C.ABSTRACTA new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/C1F5 and FC103/C1F5 pairs. Excellent conversi of C1F30 have been realized. Reactions of NaCl04 and N02C104 with carried out in sn effort to prepare chlorine perchlorate, C10C103. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log $p_{mm} = 7.6939 - 1356.6/T$. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)			
A ABSTRACT A new more powerful ultraviolet source has been employed in the ult vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FCl02/ClF5 and FCl03/ClF5 pairs. Excellent conversi of ClF30 have been realized. Reactions of NaCl04 and N02Cl04 with carried out in sn effort to prepare chlorine perchlorate, Cl0Cl03. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and con A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log $p_{\rm HIM} = 7.6939 - 1356.6/T$. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)			-
vated reactions of chlorine oxyfluorides. This has resulted in sig tions in the time necessary for complete reaction. Reactant system limited to the FC102/ClF5 and FC103/ClF5 pairs. Excellent conversi of ClF30 have been realized. Reactions of NaCl04 and N02Cl04 with carried out in sn effort to prepare chlorine perchlorate, Cl0Cl03. r. sults are encouraging but poor yields have hampered absolute iden the evolved reaction product. Samples of IF7 were prepared and com A redetermination of the sublimation pressure-temperature relations made and the derived equation is: log $p_{mm} = 7.6939 - 1356.6/T$. F of IF50 samples were conducted both in the presence of metal oxides straight tubes. This approach to IF30 or IF302 was unsuccessful. KOCF2NF2 and PF5 were csrried out with the aim of producing PF5NF2 ion transfers from the salt. This was not achieved because one or reactants was degraded by the test solvents or the PF5 was complexe KF. (C)			
	actions of chlorine oxyfluor the time necessary for comp to the FC102/C1F5 and FC103/ have been realized. Reaction out in sn effort to prepare are encouraging but poor yie reaction product. Samp mination of the sublimation the derived equation is: samples were conducted both tubes. This approach to 11 and PF5 were csrried out we afers from the salt. This we	vides. This has olete reaction. (C1F5 pairs. Ex- ons of NaClO4 a chlorine perch elds have hamped les of IF7 were a pressure-tempo in the presence F_{30} or IF $_{30}$ was ith the aim of p was not achieved	s resulted in significant redu Reactant systems have been scellent conversions and yield and NO2ClO4 with CIF have been lorate, ClOClO3. Preliminary red absolute identification of prepared and converted to IF5 erature relationship for IF7 w 39 - 1356.6/T. Flow pyrolyses e of metal oxides and in simpl s unsuccessful. Reactions of producing PF5NF2 through NF2 d because one or another of th
DD JAN 64 1473	1473		

I.

Security Classification

L	lassification		LIN	KA	LIN	Ka	LIN	ĸc
	KEY WORD5		ROLE	WT	ROLE	WT	ROLE	WT
Helogen Oxid: Chlorine Oxy:								
		v						
	INSTR	JCTIONS	_1		<u>i </u>	L		
	ACTIVITY: Enter the neme and addrass ubcontractor, grantee, Department of De-	imposed such as:	by security	clasaifi	cation, u	sing sten	dard state	ementa
ense activity or ot he report.	her organization (corporate euthor) issuing	(1)	"Qualified report from	DDC."				
all security classif 'Restricted Data'' ance with appropris	icstion of the report. Indicata whether is Included. Marking is to be in accord- te security regulations.	(2)	"Foreign a report by D "U. S. Gov this report	DC is no remment	t suthorl: agencies	red." n.ay obta	in copies	of
ective 5200, 10 and he group number.	mstic downgrsding is specified in DoD Di- Armed Forcas Industrial Manual. Enter Also, when applicable, show that optional used for Group 3 and Group 4 as suthor-	(4)	"U. S. mili	l request	through	obtein d	opies of	" this
8. REPORT TITLI capital letters. Tit if a meaningful title	E: Enter the complete report title in all les in sil cases should be unclassified. cannot be selected without classifica- ssification in all cooltats in parenthesis ing the title.	· (5)	"All diatri ified DDC	st throug	h this repo	ort is con	trolled. ("
DESCRIPTIVE	NOTES: If appropriste, enter the type of , progress, summary, snnual, or final. dates when a specific reporting period is	Services	e report has , Departme: s fact and e	nt of Com	merce, fo	r sale to	ce of Tec	hnical Ic, indi
and AUTHOR(S): E ar in the report. Er f military, ahow ra	nter the name(s) of author(s) as shown on the last name, first name, middle initisl. nk and branch of service. The name of is an absolute minimum raquirement.	IL SUI	PLEMENT	ARY NO	TES: Us	e for add		-
. REPORT DATE	Enter the date of the report as day, th, year. If more than one date appears	the deps ing for) 13. AB:	rtmental pr the researc STRACT: I	oject offi h and dev Enter an a	ce or 1sb velopment abstract g	orstory s t. Includ giving a 1	ponsoring e address brief and i	(psy-
shourd follow norma	ER OF PAGES: The total page count al paginstion procedures, i.e., enter the atsining information.	it may a	of the docu lso appear o sudditional o hed.	elsewhere	e in the b	ody of th	e technic	al re-
eferences cited in Ba. CONTRACT O	R GRANT NUMBER: If appropriate, enter	be uncla an indic	s highly dea ssified. Ea ation of the n in the par	ch parag military	security	he abstra classific	ct shall e	nd with he in-
he report was write	per of the contract or grant under which en. JECT NUMBER: Enter the appropriate identification, such as project number,	The ever, the	re is no lim suggested	length is	n the len s from IS	gth of the 0 to 225	e abstract words.	How
subproject number, 9s. ORIGINATOR' and controlled by the be unique to this re	system numbers, tssk number, etc. S REPORT NUMBER(S): Enter the offi- by which the document will be identified ne originating activity. This number must port.	or ahort index en selected fiers, su project of	Y WORDS: phrases that tries for cal so that no ich as equip code name.	t charact tsloging security ment mod geograph	terize a re the report classific tel design ic location	eport and t. Key we ation is s nation, tr on, may b	l may be u ords must required. ade name e used sa	ised an i be Identi , milita i key
assigned sny other or by the sponsor).	RT NUMBER(S): If the report has been report numbers (either by the originetor siso enter this number(s).	text. T	it will be fo ne assignme	nt of lini	y sn indio (s, rules,	snd wei	technicsi ghts is op	i con- otional.
	Y/LIMITATION NOTICES: Enter any lim- dissemination of the report, other than those							
					CONFIT	ENTIA	T.	