UNCLASSIFIED

AD NUMBER

AD377456

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; NOV 1966. Other requests shall be referred to Air force Propulsion Laboratory, Attn: Research Technology Division, Edwards, CA.

AUTHORITY

30 Nov 1978, Group-4, per document marking, DoDD 5200.10; AFRPL ltr, 7 May 1973

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked. Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

14 C C

1/100

63

AFRPL-7R-66-318

(Unclassified Title)

CHLORINE PENTAFLUORIDE HANDBOOK

Special Technical Report

 $\mathbf{B}_{\mathbf{Y}}$

Chemist Section Research Division Rockedyne A Division of North American Aviation, Inc. Canoga Park, California

TECHNICAL PEPORT AFRPL-TR-66-318

November 196a

Grou, 4 Downgraded at 3-Year Intervals Declassified After 12 Years

THIS MATERIAL CONTAINS IN ORMATION AFFECTING THE NATICAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING (\simeq ESPIONAGE LAWS, TITLE 18 U.S.C., SECTIONS 7(-3, A') p /94, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MAN. IN TO IN UNAUTHOR 12ED PERSON IS PROHIBITED BY LAW.

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPPR-STINFO), Edwards, California 93523.

13

Air Force Rocket Propulsion Laboratory Research and Technology Division Edwards Air Force Base, California Air Force Systems Command United States Air Force

"When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto."

AFRPL-TR-66-318

(Unclassified Title)

CHLORINE PENTAFLUƏRIDE HANDBOOK

Special Technical Report

₿у

Chemistry Section Research Division Rocketdyne A Division of North American Aviation, Inc. Canoga Park, Californía

November 1966

Group 4 Downgraded at 3-Year Intervals Declassified After 12 Years

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18 U.S.C., SECTIONS 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIDITED BY LAW.

In addition to security requirements which must be met, this document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPF2-STINF0), Edwards, California 93523.

- /

FOREWORD

This interim propellant handbook is submitted as a special technical report under Rocketdyne G.O. 7170 in compliance with Contract F04611-67-C-0005, Part I, Subline Item IAA. The effort under this contract is being sponsored by the Air Force Rocket Propulsion Laboratory, Research and Technology Division, Air Force Systems Command, USAF, Edwards, California, with 1/Lt. Ralph Fargnoli acting as the Air Force Project Officer.

The compilation, analysis, and publication of the data and information contained herein is part of a 9-month program to provide a comprehensive and systemized compilation of the properties, handling procedures, and design criteria for chlorine trifluoride and chlorine pentafluoride. This interim manual on chlorine pentafluoride is designed to meet immediate industry and government requirements until the publication of the final handbook. The final handbook, which is scheduled for distribution by 31 August 1967, will expand the CIF5 data and information contained in this handbook to include detailed design criteria.

This program is being conducted in the Chemical Research Section of the Rocketdyne Research Division, with Dr. J. Silverman serving as Program Manager and Mr. M. T. Constantine serving as Responsible Project Scientist.

The following technical personnel contributed to compilation and analysis of the data and information contained in this bandbook: M. M. Williams, K. J. Youel, D. Pilipovich, C. J. Rozas, and E. J. Walter.

This handbook has been assigned the Rocketdyne identification number R-6803.

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

W. H. EDELKE, Colonel, USAF Chicf, Propellant Division

ACKNOWLEDGEMENT

This interim handbook includes data and information generated through experimental and analytical studies conducted at many different organizations. Although every effort has been made to reference these studies, a great number of individuals responsible for these data have been neglected. These individual contributions as well as the contributions of the industry and government organizations are gratefully acknowledged.

ii

ABSTRACT

This interim handbook is a compilation of the engineering properties and handling characteristics of chlorine pentafluoride. The handbook includes data and information on chlorine pentafluoride physico-chemical properties, mixtures, materials compatibility, materials preparation, toxicity, fire and explosion hazards, hazard prevention and control, safety equipment, decontamination, production, propellant analysis, transportation, storage, and handling.

(Confidential Abstract)

^{iii/iv} CONFIDENTIAL

CONTENTS

Forewor	rd	•	•	•	•	•	٠	٠	٠	•	٠	•	•	٠	•	٠	•		•	٠	i i
Abstra	ct	•	•	•	•	•	•	•	•	•			•	٠	•	•	•	٠	•		iii
Section	a 1;	Int	rod	uc f	tior	נ		•	•	•	•		•	•		٠		•	•		1
1.1	Gener	al		•	•	•			4				•			•	•		٠		1
1.2	Handb	ook	Fo	1.WE	et	•				•					•						2
Section	n 2:	Phy	sic	0-(Cher	nic	al	Pro	per	tie	ß					٠			•		9
2.1	Gener	al	Des	cri	pti	ion			•	•					•	,				•	9
2.2	Physi	ical	Pr	ope	erti	ieb			,						•						9
2.3	Chemi	ical	Pr	ope	erti	leø		•		•		•	•	•					•		42
2.4	Chlor	ine	Pe	nte	fl	10 r	ide	Mi	rtu	ure e					•	•	•			•	65
2.5	Chlor	ine	Pe	nte	fl	1¢r	ide	Ge	18				•			•			٠	•	73
Section	n 3:	Ma t	eri	ale	ı of	r c	ons	tru	cti	on		•	•			•					75
3.1	Mater	rial	s (omp	ati	ibi	lit	у				•	•				•		,	•	75
3.2	Prepa	arat	ion	of	: Me	ate	ria	ls	•	•	•	•			•			•	•		99
Section	n 4:	Haz	ard	8	•	•	•	•		•	•		•	•			•				105
4.1	Toxic	eity			•		•	•	•	•	•	•	•	•		•		•			105
4.2	Fire	and	E	plo	siv	re	Ha z	ard	9	•				•	•	•		•			108
Section	n 5:	Saf	ety	Cı	ite	eri	a	•	•	•		•		•	•		•	•	·	•	109
5.1	Hazar	rd P	rev	ent	ior	1	•		•	•	٠	•	•	•		•	•	•		•	109
5.2	Hazaı	rd C	ont	ro]	L					•			•		•						112
5.3	Safet	ty E	qui	pma	ent				•		1	•	۵	•	•		•	•	•	•	115
5.4	Decor	itam	ine	tic	n	•	•			٠		•	•	•		•					118
Section	n 6:	Log	ist	ice	8	•		•					•	•	•	•			٠		121
6.1	Produ	icti	on		•		•				•	•	•	•	•		•	•	٠		121
6.2	Trans	spor	tat	ior	1	•		٠			•	•		•					•	•	126
6.3	Store	age								•				•	•			•			127
6.4	Hand]	ling		•		•	•							•			•	•		•	132
Referen	nces		•			•	•				•									•	149
Contra	ctual	Die	tri	but	tion	1		•	•	•	•		•				•				157

LEALE TEN

ľ

ILLUSTRATIONS

1.	Density of Liquid Chlorine Pentafluoride (Ref. 6) .		•	•	23
1A.	Density of Liquid Chlorine Pentafluoride (Ref. 6) .		•		24
2.	Vapor Pressure of Chlorine Pentafluoride (Ref. 6) .			•	25
2Á.	Vapor Pressure of Chlorine Pentafluoride (R.f. 6) .		•		26
3.	Surface Tension of Chlorine Pentafluoride (146f. 6) .	•		•	27
3A.	Surface Tension of Chlorine Pentafluoride (Ref. 6)	•	•	•	28
4.	Adiabatic Compressibility of Chlorine Pentafluoride (H	lef.	5)	•	29
4A.	Adiabatic Compressibility of Chlorine Pentafluoride (H	lef.	5)	٠	30
5.	Isothermal Compressibility of Chlorine Pentafluoride	•		•	31
5A.	Isothermal Compressibility of Chlorine Pentafluoride		• ;	•	32
6.	Specific Heat of Chlorine Pentafluoride (Ref. 14) .	•		•	33
6A.	Specific Heat of Chlorine Pentafluoride (Ref. 18) .	•	•	•	34
7.	Viscosity of Chlorine Pentafluoride (Ref. 14)	,		•	35
7A.	Viscosity of Chlorine Pentafluoride (Ref. 14)	•	٠	•	3 6
8.	Thermal Conductivity of Chlorine Pentafluoride	•	•	•	37
8A.	Thermal Conductivity of Chlorine Pentafluoride	•	•	•	38
9.	Sonic Velocity of Chlorine Pentafluoride (Ref. 10) .	•	•	•	39
9Л.	Sonic Velocity of Chlorine Pertafluoride (Ref. 10) .	•		٠	40
10.	Dielectric Constant of Chlorine Pentafluoride (Ref. 6))	•	•	41
11.	Transfer of Chlorine Penatafluoride From Pressurized				
	Single-Opening Cylinders			•	136
12.	The Transfer of Chlorine Pentafluoride From Double-				
	Opening Containers Using Gas Pressurization	•	•	•	140
13.	The Transfer of Chlorine Pentafluoride From Double-				
	Opening Containers Using a Pump	•			143

and the second second

tatirda al

Total Shiddle (1741)

-

vii/viii CONFIDENTIAL

1000

į

Additional for the

TABLES

1.	Physical Constants 4
2.	Conversion Factors
3.	Temperature Conversion
4.	Physical Properties of ClF ₅
5.	Reactivity of Elements and Compounds With ClF ₅
6.	Compatibility of Materials With ClF ₅
7.	Typical Assay of Chlorine Pentafluoride
8.	Chlorine Pentafluoride Storability Tests

ļ

, jitel leader of star in the state of the second sec

Parily of

ų,

100

ومصيف ورحلتها تعا

~

SECTION 1: INTRODUCTION

1.1 GENERAL

During the course of an Office of Naval Research contract on basic fluorine chemistry studies (Ref. 1) in 1960, a new fluorinecontaining compound was synthesized by investigators at the Rocketdyne Division of North American Aviation, Inc. Sufficient quantities of the compound were not readily available at that time to identify and characterize the material unambiguously. The unknown material was, therefore, designated as Compound A. In 1962, under Air Force Rocket Propulsion Laboratory sponsorship (Ref. 2), Compound A was definitely identified as chlorine pentafluoride (ClF_5) by the same investigators.

P liminary characterization of chlorine pentafluoride, which bore a strong chemical and physical resemblance to its lower interhalogen how ogue, a prime trifluoride, indicated that a significant no addition we seen made to the small family of dense, high-performance, scatte liquid rocket oxidizers. Because of the potential useful less and near-term application of this complete to rocket propulsion systems, the Department of Defense accordingly supported continuing investigations which chloring pentafluoride to complete the chemical and physical characterization of the materi 1 and establish its unitary in such systems.

This hand, ok is a current summary of the engineering properties of chlorine puttafluoride. The material presented is that which has evolved from various engineering characterization studies, applicab' - Fondling experience, and the chemical similarity of the compound to chlorine trifluoride. The handbook is intended as a gride for those involved in the handling and application of this oxidizer.

1.2 HANDBOOK FORMAT

The material contained in this handbook has been organized into seven sections. These are:

Section 1: Introduction Section 2: Physico-Chemical Properties Section 3: Materials of Construction Section 4: Hazards Section 5: Safety Criteria Section 6: Logistics Section 7: References

Each section is subdivided further, to permit the user of the handbook to obtain specific information expeditiously. The material is arranged in such a manner as to permit convenient updating of various sections as data are generated from additional studies in these areas.

The internet of each individual user may be limited to specific aspects of the subject material; however, it is recommended that personnel involved in ClF_5 handling be thoroughly familiar with ail of the material contained in this report. Although every effort has been made to provide presently available information on ClF_5 in sufficient detail for most of the potential users of the handbook, size limitations of the handbook obviously preclude inclusion of every conceivable detail. Thus, for those users who desire additional details on specific items, consultation of the referenced publications is recommended.

Wherever possible, the data and information referenced are from final reports. This was done to eliminate confusion in efforts where progress reports included incomplete experimentation and/or

analysis of the data. In those efforts where a final report has not been issued, the data were taken from the latest progress report containing pertinent results.

Because the major portion of this handbook is related to areas of engineering interests, all of the data are presented in engineering terminology (i.e., English units). However, as a convenience to all of the users, data in certain sections (notably, the physical properties section) of the handbook are presented in both metric and English units. Where data are presented in both units, the attendant discussion indicates the units of the referenced work.

As a further convenience to the user, physical constants and conversion factors are presented in Tables 1 through 3 to enable The user to convert the values to his particular needs. Also, because these constants are presented to the known degree of significance, they can be rounded to fit particular needs.

TABLE 1

PHYSICAL CONSTANTS

<u>Unit</u>	<u>Remarks</u>	Value
¢ _c	Standard gravitational acceleration	32.1740 ft/sec ² 980.665 cm/sec ²
l atm	Standard atmosphere	',013,250 dynes/sq cm
1 mm Hg	Standard millimeter Hg	1333.2237 dynes/sq cm
l cal	Thermochemical calorie	4.1840 abs joules 41.2929 ±0.0020 cu cm-atm
l cal (I. T.)	International Stream Tables calorie	1,000654 thermochem- ical calories
T ₀ C	Ice Point	491.6880 ±0.018 R 273.160 ±0.010 K
$(PV)_{0 C}^{P=0} = (RT)_{0 C}$	Pressure-Volume product for ideal gas at O C	22,414.6 ±0.4 cu cm- atm/g mole 2271.16 ±0.04 abs joules/g mole
R	Molar gas constant	8.31439 ±0.00034 abs joules/K-g mole 1.98719 ±0.00013 col/ K-g mole 82.0567 ±0.0034 cu cm- atm/K-g mole 59.47 cu ft-atm/R-lb mole 10.73 cu ft-psia/R-lb mole
l Btu		1055.040 abs joules 252.161 thermochemical calories 251.996 I. T. calories
1 in.	United States unit	2,54000508 cm
1 ft	United States unit	30.4800610 cm
1 1b	Avoirdupois	453.5924277 g
l gol	United States unit	0.133680555 cu ft 3785.43449 cu cm

Note: Compiled by Rossini, F. D. et al, <u>American Petroleum Institute</u> <u>Research Project 44</u>, U.S. Department of Commerce, Natl. Bur. Standards, Circular 461, U.S. Government Printing Office, Washington, D. C. 1947.

TABLE 2

CONVERSION FACTORS

Tempera 'ure

C + 273.16 = K F + 459.58 = R $(C \times 1.8) + 32 = F$ (F - 32)/1.8 = CK(1.8) = R

Pressure

atm x 14.69618 = psi mm Hg x 0.00131579 = atm mm Hg x 0.019337 = psi g/sq cm x 0.00096784 = atm g/sq cm x 0.0142234 = psi bars x 0.98692 = atm bars x 14.504 = psi megabaryes x 1 = bars

Mass

grame (mass) x 0.002204622 = pounds (mass)

Length

centimeters x 0.393700 = inches centimeters x 0.032808 = feet

Area

square centimeters x 0.15500 = square inches square centimeters x 0.0010764 = square feet square feet x 144 = square inches

TABLE 2 (Continued)

<u>Volume</u>

cubic centimeters x 0.061023 = cubic inches cubic centimeters x 3.531445×10^{-5} = cubic feet cubic inches (U.S.) x 5.78704×10^{-4} m cubic feet

<u>Time</u>

seconds/60 = minutes seconds/3600 = hours seconds/86,400 = days

<u>Force</u>

dynes x 0.00101972 = grams (force) grams (force) x 0.00220462 = pounds (force)

Density and Specific Volume

(g/cu cm) x 62.43 = 1b/cu ft (cu cm/g) x 0.016018 = cu ft/1b

Surface Tension

 $(dynes/cm) \times 6.8523 \times 10^{-5} = lbf/ft$

Thermodynamic Properties

(cal/g mole) x 1.8 = Btu/lb mole (cal/g mole- K) x 1 = Btu/lb mole - R (Btu/lb mole)/mol. wt = Btu/lb (Btu/lb mole- R)/mol. wt = Btu/lb - R

TABLE 2 (Concluded)

Viscosity

centipoises x 0.672 x $10^{-3} = 1bf/ft$ -sec centistokes x 1.076 x $10^{-5} = sq ft/sec$ (kinematic viscosity) x (density) = (absolute) viscosity

Thermal Conductivity

 $(cal/cm-aec-C) \times 241.8588 = Btu/ft-hr-F$

Velocity of Sound

 $(m/sec) \times 3.28083 = ft/sec$

ŝ

Inter Fr

1.11 1.67 2.22 2.78 3.33 1.09 4.44 3.00

TABLE 3

TEMPERATURE CONVERSION

		459 (0	0	U (a 10		10	Lo I	00	100	ALUER	20 70	a 10	1 84 1	000	100	0 to 1	¥90]	13	uu to	2000
	c	1	r	c	1	r	c	,		c	1	1	· ·	1 İ	•	4		•	- L	1	
						10.0	10.0		۱. اس	1	100	1	160	100	452	- 1H		1852	-16	13001	1737
1	- 264 1	-410	1	-17 -1	ĩ	33.0	LU D		145.0	-	110	210	104	5(0)	950	1.1	1014	10.10	mil	1310	2730 .
	262	-550		.16.7	- I	11.4	11.1	12	121.6	40	1.70	24 M	20	3/01	116.00		1020	1.000	825	13290	2768
	-857	-410	1	-16.1	,	17.5	11.7	55	10.5	55.5	110		217	310	· 3+46.	111	1030	1.000	H12	1530	2.00.
	-231	-420		-13.0	• 1	39.2	12.21	14	129.2	6.16	170	284	202	550	1005	ann	1050	1905	нин	mail	2405
	-216	-410		-15.U	,]	41.0	12.6	n)	- 14L a]	e.,	15-1	102	208	570	1002	104	1050	1922	853	1550-	1422
	-210	-400		-15.5	. }	12.8	15.1-	ч,	112.0	21	140	1.00	202	da.	1040	574 -	1060	1950	659	1 Worth	2850
	-234	- 190		-13.9	2	45.6	13.91	1 7 '	136.6	11	179	11-1		570	1014	377	1070	1928	455	1570	2434
	-229	- 380		-13.3	* ;	46.5	15.57	5H (135.4	4 2	140	17.	μ.	3841	1076	1+2	1040	1474	ньој	1.00	2476
·	-223	- 370		-12.# ³	9	- 5 8,2 - [15.0	39	134.2	1.1	2.419	171	i 11 u	240	1464	1444	1640	1997.]	nes,	1590	20005
1	-718	- 960		-12.2	10	50,0	15.6	60	117.0	41	300	¥92	110	4.(014	1112	593	1100-	2012	-#71 <u>-</u>	10.00	294.2
(-212	-350		-107	11	51.0	16.1 ;	4I ;	151.8		210	210	34	610	11.00	2414	1110	2010	M77 1	1616	5020
	207	-360		-11.1	42	33.6	16.7	62	155.6	1.190	212 j	515	M. 1	6.20 J	1150	101	1150	-10%	N. N. Y.	1620)	2960 j
	-201	-110	l l	-10.6 '	11	33.1	17.2	51.	155.5	195	229	124	312	•10 [°]	1104	1.10	1110	2000. j	1001	1430	Sur ?
etare	-146	-120		-10.0	14	37.2	12.00	14	157.2	110	230	154	114	650	1145	646 '	1140	2005	HV31	1649	21114
 	-190	-310		- 9.44	12	57.0	18,1	65	159.0	116	14444 1	164	151	1.30	1202	1421 -	11.10	2102	HUNG I	16201	1002
3 3 6	-185	- 300		- 8.89	10	6U.P	18.9	<i>ш</i> .	1.0.0	121	1,001	172	337		1220		1100.	2120		10001	1020
2 7.2	-179	-290		33	17	62.0	19.5		1.4.6	127	200	514		1.40	1.00		11793	-			3034
9 9.0	-175	-260	440	- / /		44.44	20.0		12.4	112	270	516	10.0	1010	1259		1100	1.1		uan	1074
7 12.6	-109	- 11)	-177	- 1.22	14	444.11	20.0	10	194.4		200	1.4	371	2001	12412		1200	9199	427	1704	1000
8 14.51	167	.260)	-176	- 6.11	21	10.0	21.71	71	50.8	1.9	100	579	177	710	1316	435	1210	210		1210	1110
Ú 18.0		-740	-618	. 1. 16	22	71.6	22.2	72 1	161.0	154	310	\$90	102	720	1120	64.0	1220	2228	916	1720	3124
	-151	-242	-400	- 5.00	21	73.5	22.8	73	163.5	160	120	00H	188	730	1350	660	1210	2240	453	1710	3146
	-145	-230	- 382	- 1.44	25	75.2	23.3	75	103.2	100	\$10	626	393	750	1364	671	1240	2264	459	1750	1104
	-140	-710	-364	- 3.84	25	77.0	23.9	75	16*.0	171	\$40	644	399	750	1342	1.77	1250	2202	955	1750	11.es
	-134	-210	-364	- 3.33	26	7H.H	24.5	76	161.8	177	190	662	404	760	1400	tang	1940	2300	960	1760	3200
	-129	-200	- 320	- 2.78	27	BU.U	25.0	77	170.6	1.42	190	680	510	770	1415	ына	1270	2118	966	1770	1218
	-123	-197	-110	- 2,22	38	82.4	25.6	7H	17:15	189	370	69 H	510	780	1536	693	1200	2336	941	1740	3214
	-118	-180	-292	- 1.67	27	64.2	20.1	79	174.2	195	340]	716	421	710	1454	697	1300	2355	977	1790	1255
	-112	-170	-274	- 1,11	30	86,0	26.7	R0	176.0	199	190	734	427	H00	1472	701	1.200	2372	Y#2	I HOD	1272
	-107	-160	- 256	- 0,56	31	67.8	27.2	81	177.8	205	100	792	432	H10	1490	710	1310	2390	988	1810	1290
	-101	-150	-238	0	32	\$9.6	27.8	62 '	177.6	210	410	770	538	820	1506	716	1 320	250H	993	1820	3308
	- 95.	6 -140	-220	0.56	33	91.5	20.3	85	181,4	216	120	788	\$45	Н 30	1526	721	1 3 30	2626	979	1830	3320
	- 90.	9 -130 į	~202	ւս	34	93.2	28.9	85	183,2	221	430	HOG	449	840	1544	727	1340	2444	100%	1840	1344
	- 84.	-120	-184	1.67	15	95.0	29.4	85	185,0	227	440	624	454	850	1562	732	1350	2462	1010	1850	3162
	- 78.	7 -110	-166	2,22	×	76,8	30,0	66	186,8	232	450	842	100	#00 #70	1280	7 58	1900	2480	1010	1400	1708
	* 75.) -100	-148	2.78	37	98.0	10.6	87	160.4	275	570	600	1.7	- H0	1398	143	1370	2490	1021	10/0	1,194
	- 07.	9 - 90	-170	3.33	10	100.1	1.1	60 80	190,4	24.5	400	e/e	477	190	1614	754	1300	2514	1032	1600	3494
	- 02.		4112	1,09	10	104.0	10.0	90	194.0	254	490	914	482	900	1652	76.0	1400	2552	1034	1900	3452
	- 41	(- 70 1 - 60	- 76	5.00		105-6	32.8	21	145.A	1.1		,	480	210	1670	766	1410	2570	1013	1910	3170
		6 - 30	- 50	3,06	42	107.6	53,3	92	197.6	1			493	220	1600	771	1420	2568	1049	1920	3400
	- 40.	0 - 10	- 40	6.11	43	109.4	53.9	93	199.4				429	950	1706	1777	1430	2606	1055	1930	3506
	- 34.	6 - 30	- 22	6,67	44	111,2	34.4	96	201.2				503	940	1724	782	1440	2624	1060	1940	3524
	- 29,	2 - 20		7.22	45	113.0	55.0	95	\$03.0				010	950	1742	780	1450	2642	1066	1950	3542
	- 23,	3 - 10	14	7.78	46	114.8	35.6	96	204.8				516	960	1760	793	1460	2660	1071	1960	3560
	- 17.	άo	32	8,33	47	116.6	56.1	97	206.6				521	970	1776	199	1470	2678	1077	1970	3578
	1	1)	8.89	48	118.4	36.7	98	208.4				527	980	1796	00%	1480	2696	1082	1900	3596
]			2.45	49	120.2	37.2	\$9	210.2				532	970	1814	010	14:20	2714	10(18)	1990	3614
	l I	1	ł	10.00	00	122.0	37.0	100	212.0	(538	1000	1852				1093	2000	3632
	i	I		L	_	L	L		L				1			L					L

8

SECTION 2: PHYSICO-CHEMICAL PROPERTIES

2.1 GENERAL DESCRIPTION

Chlorine pentafluoride (CFF, Compound A, Fluoridyne) is a halogen fluoride having the empirical formula $C.F_5$. The color of the propellant is white in the solid state, water-white in the liquid state, and colorless in the gaseous state. The odor has been described as both sweet and pungent, similar to fluorine, chlorine trifluoride, chlorine, or mustard. It is insensitive to mechanical shock, nonflammable in air, and exhibits excellent thermal stability over its entire liquid range.

Chlorine pentafluoride can be a hazardous propellant because of its toxicity and reactivity. The greatest hazard of the propellant lies in its reactivity; it reacts with the vast majority of organic and inorganic compounds and, under proper conditions, with most common metals.

Chlorine pentafluoride boils at approximately 7 F and has a vapor pressure of approximately 49 psia at 68 F. As a result, refrigeration is not required to keep the propellant in the liquid state in conventional moderate-pressure vessels. When stored and/or transferred in clean, dry, compatible systems, by properly trained personnel, chlorine pentafluoride does not present a serious storage or handling problem.

2.2 PHYSICAL PROPERTIES

Selected physical properties of chlorine pentafluoride have been defined in a number of experimental and analytical investigations. Nominal values for various phase, thermodynamic, transport, and electromagnetic properties, that have been recommended as the most representative of the existing data, are summarized in

Table 4. The recommended data were selected from those studies in which the sample composition was ≥ 98 w/o ClF₅. All of the presented data are direct experimental determinations or are derived from curve-fits of the experimental data, except for those data referenced with an asterisk; the starred data are calculations made during the referenced work based on standard analytical correlations and physical relationships. The absence of data on a particular property is denoted by blank spaces.

Properties, for which property-temperature relationships have been established, are noted in Table 4 with a figure number. The values listed at a nominal temperature were established from their respective property-temperature plots. These graphical illustrations (Fig. 1 through 10) represent either curve-fits of the best available experimental data or analytical estimations of the property; curve-fits of experimental data are noted with a solid line, while a dashed line designates calculated data. Equations reprejenting the curve-fits over the noted temperature ranges are included.

The origin of the selected data is referenced in Table 4 and in each individual figure. A brief discussion of the available data for each property is presented in the following paragraphs.

2.2.1 General Identification

The physical classifications under general identification are those properties that are used to identify a particular substance and its physical state.

2.2.1.1 <u>Molecular Weight</u>. The molecular weight of chlorine pentafluoride was experimentally determined by vapor density measurements as a means of preliminary identification of CIF₅ (Ref. 3). The resulting experimental value of 128 compared favorably to that value (130.5) calculated from the International Atomic Weights in conjunction with the molecular formula.

- 2.2.1.2 <u>Freezing Point</u>. Experimental measurements on a ClF₅ sample of >99 w/o purity (Ref. 3) established a freezing point of -103 ±4 C. A freezing point of -96 C was measured on a ClF₅ sample of ~96 w/o purity (Ref. 4).
- 2.2.1.3 <u>Normal Boiling Point</u>. The normal boiling point (equilibrium vapor pressure of 760 mm Hg) of an "ultrapure" (>99.9 w/o ClF₅) sample of ClF₅ was experimentally measured as -13.7 C (Ref. 5). Boiling points of -13.1 C (Ref. 6), -13.6 (Ref. 3), and -18.1 (Ref. 4), were calculated from equations representing experimental vapor pressure measurements on less pure ClF₅ samples.
- 2.2.1.4 <u>Critical Properties</u>. The ClF₅ critical point was experimentally determined as 143 ±0.5 C, 771 psia, and 0.565 gm/sc (Ref. 6).

2.2.2 Phase Properties

Those properties of ClF₅, which are associated with one particular phase (either solid, liquid, or gas), have been grouped as phase properties.

2.2.2.1 <u>Density</u>. The saturated liquid density of ClF₅ has been established from -80 C to the critical point as a result of two experimental efforts (Ref. '3 and 6). These data, which are shown in Fig. 1 and 1A, were curve-fitted from -80 C (-112 F) to 99 C (210 F) with the following equations:

$$\rho_{(gm/cc)} = 3.553 - 1.396 \times 10^{-2} r_{(K)} + 4.565 \times 10^{-5} r_{(K)}^2 - 6.3111 \times 10^{-8} r_{(K)}^3$$

and

$$\rho_{(1b/ft^3)} = 221.8 - 48.42 \times 10^{-9} T_{(R)} + 87.96 \times 10^{-5} T_{(R)}^2 - 67.56 \times 10^{-8} T_{(R)}^3$$

Liquid density measurements were also conducted from 0 to 70.5 C on a ClF₅ sample of unreported purity (Ref. 7), and from ~77 to 27.5 C on a ClF₅ sample of ~96 w/o purity (Ref. 4). Density equations representing these data are:

$$\rho_{(gm/cc)} = 1.832 - 3.71 \times 10^{-3} T_{(R)}$$

and

$$\rho_{(gm/cc)} = 1.776 - 31 \times 10^{-4} T_{(C)}$$

No density data have been reported for the solid and gas phases of $\mathrm{ClF}_{\pi},$

2.2.2.2 <u>Vapor Pressure</u>. Vapor pressure measurements on ClF₅ have been conducted by a number of investigators (Ref. 3, 4 and 6 through 8). The recommended data, which are shown in Fig. 2 and 2A are a correlation (Ref. 6) of the results from two (Ref. 3 and 6) of these studies. Equations representing these data from -80 C (-112 F) to the critical point are

$$\log P_{(atm)} = 4.6029 - 1197/T_{(K)}$$

and

$$\log P_{(psia)} = 5.7701 - 215..6/T_{(R)}$$

With the exception of measurements conducted on ClF_5 of ~ 96 w/o purity (Ref. 4), all of the results from the other studies were in good agreement with the selected data.

2.2.2.3 <u>Surface Tension</u>. The surface tension of ClF₅, which was experimentally determined over a temperature range of -50 to 25 C (Ref. 6), is shown in Fig. 3 and 3A. The equations representing these data are

$$\gamma_{(dynes/cm)} = 57.949 - 0.14463T(K)$$

and

$$\gamma_{(1b/ft)} = 3.9708 \times 10^{-3} - 0.55058 \times 10^{-5} T_{(R)}$$

- 2.2.2.4 <u>Coefficient of Thermal Expansion</u>. No date are available on the coefficient of thermal expansion of Cha₅.
- 2.2.2.5 <u>Coefficient of Compressibility</u>. The adiabatic compressibility of liquid CIF₅ was calculated from experimental sonic velocity and density data on the saturated liquid (Ref. 5). Graphical representations of these data, shown in Fig. 4 and 4A, can be described by the following equations:

$$\frac{\beta}{(\text{atm}^{-1})} = 1.1565 \times 10^{-4} + 1.3942 \times 10^{-6} \text{T}_{(\text{C})} + 1.2708 \times 10^{-8} \text{T}_{(\text{C})}^2 + 1.4680 \times 10^{-10} \text{T}_{(\text{C})}^3 + 9.6855 \times 10^{-13} \text{T}_{(\text{C})}^4$$

13

and

$$\beta_{(psi^{-1})} = 6.4065 \times 10^{-6} + 4.0065 \times 10^{-8} T_{(F)} + 1.4103 \times 10^{-10} T_{(F)}^{2} + 9.0915 \times 10^{-13} T_{(F)}^{3} + 6.2782 \times 10^{-15} T_{(F)}^{4}$$

An empirical relationship based on a common molecular parameter was used to calculate the isothermal compressibility (Ref. 6). These data were corrected (Ref. 9) and expanded, and the results are presented in Fig. 5 and 5A.

2.2.2.6 <u>Inert Gas Solubility</u>. Current experimental measurements on gaseous N₂ solubility in ClF₅ have resulted in an average differential solubility value of ~3.0 x 10^{-5} lb N₂/lb ClF₅-psi at 120 F (Ref. 10). These measurements are being extended to other temperatures and to the determination of helium solubility in ClF₅.

2.2.3 Thermodynamic Properties

The properties of ClF_5 which define energy changes in the physical transitions through the various solid, liquid, and gas states, as well as in chemical changes, are classified under thermodynamic properties.

2.2.3.1 <u>Heat of Formation</u>. The heat of formation of liquid ClF_5 has been established by the Joint Army-Navy-Air Force (JANAF) Thermochomical Panel as -60.5 ±6.0 kcal/mole at 298 K (Ref. 15). This value represents an average of Δ H_F values resulting from experimental

measurements of the heats of reaction (Ref. 3) of CIF₅ with gaseous H_2 and gaseous NH₃ and the heat of hydrolysis in the presence of hydrazine hydrochloride (Ref. 12).

- 2.2.3.2 <u>Heat of Fusion</u>. There are no available data on the heat of fusion of ClF_{g} .
- 2.2.3.3 <u>Heat of Vaporization</u>. A ClF₅ heat of vaporization value of 5.313 kcal/mole was calculated from the Clapeyron equation using the selected vapor pressure data (Ref. 6).
- 2.2.3.4 <u>Heat Capacity</u>. The heat capacity of saturated liquid CIF₅ has been experimentally determined during two different studies over temperature ranges of -50 to 50 C (Ref. 6) and -72.9 to -31.0 C (Ref. 13). The data from the first study (Ref. 6) was analyt-ically re-evaluated and corrected during a subsequent study (Ref. 14). Although there are unexplainable discrepancies between the two different sets of data, the data over the larger temperature range were arbitrarily selected as the recommended values. These data, which are shown in Fig. 6 and 6A, are defined with the following equations (Ref. 14):

$$C_{g}(cal/gm-K) \approx 1.0847 - 0.9522 \times 10^{-2}T(K) +$$

0.3595 x 10⁻¹/₄T(K)² - 0.4309 x 10⁻⁷T(K)³

and

$$C_g(Btu/1b-R) = 1.0847 - 0.5290 \times 10^{-2}T_{(R)} + 0.1110 \times 10^{-4}T_{(R)}^2 - 0.7389 \times 10^{-8}T_{(R)}^3$$

No data have been generated on the heat capacity of solid or gaseous ClF_5 .

2.2.4 Transport Properties

All properties of ClF_5 that involve the transfer of mass or energy at the molecular level are presented in the following paragraphs.

2.2.4.1 <u>Viscosity</u>. The recommended viscosity data for saturated liquid ClF₅ are a correlation (Ref. 14) of experimental data resulting from two different studies (Ref. 6 and 13) with overlapping temperature ranges. The equations, which describe the data shown in Fig. 7 and 7A, are:

$$\log \eta(c_p) = -1.62875 + 335.636/T(K)$$

 $\log \eta_{(1b/ft-sec)} = -4.80138 + 604.145/T(R)$

Although no viscosity data are available on gaseous ClF₅, additional efforts are in progress (Ref. 10) to expand the liquid data to higher temperatures under both saturated and pressurized conditions.

2.2.4.2 <u>Thermal Conductivity</u>. Although no experimental data are available, the thermal conductivity of liquid CIF₅ has been estimated using a technique described by Weber (Ref. 15). This technique relates thermal conductivity to density and heat capacity through the following equation:

$$K = 3.59 \times 10^{-3} c_p \rho \left(\frac{\rho}{M}\right)^{1/3}$$

CONFIDENTIAL

where

p

K = thermal conductivity

C_p ⇒ heat capacity

= density

M = molecular weight

Using experimental density data (Ref. 6) and heat capacity data (Ref. 14), the thermal conductivity of CIF₅ was calculated from -50 (-58 F) to 50 C (122 F) and is graphically illustrated in Fig. 8 and 8A.

2.2.4.3 <u>Velocity of Sound</u>. Experimental sonic velocity measurements have been conducted in saturated liquid ClF₅ from -77.1 to 68.7 C (Ref. 10). A curve-fit of the data, shown in Fig. 9 and 9A, resulted in the following equations:

$$c_{(m/sec)} = 1755 - 4.074T_{(K)} + 5.936 \times 10^{-4}T_{(K)}^{2}$$

and

1

$$c(ft/sec) = 5758 - 7.426T(R) + 6.011 \times 10^{-4}T(R)^{2}$$

Sonic velocity measurements were also conducted in liquid CIF_5 under total pressurizations (with gaseous nitrogen) of 500 and 1000 psia (Ref. 10) over temperature ranges of -73.5 to 69.2 C and -27.0 to 16.8 C, respectively. These data, in which certain anomalies were apparent (Ref. 10), were curve fitted with the following equations:

At 500-psia pressurization (199.7 to 342.4 K)

$$(m/sec) = 1967 - 5.869T(K) + 4.128 \times 10^{-3}T(K)^2$$

while at 1000-psia pressurization (246.2 to 290.0 K)

$$^{\circ}(m/sec) = 1530 - 3.133T(K)$$

No sonic velocity data are available for the gaseous ClF_5 state.

2.2.5 Electromagnetic Properties

The electrical, magnetic, and electromagnetic (optical) properties have been grouped as "Electromagnetic Properties." These properties generally are related to the electronic structure of the atoms in contrast to the transport properties which involve only molecular movement.

- 2.2.5.1 <u>Index of Refraction</u>. No data are available on the index of refraction of solid, liquid, or gaseous ClF₅.
- 2.2.5.2 Dipole Moment. No data are available on the dipole moment of ClF_F.
- 2.2.5.3 <u>Dielectric Constant</u>. The dielectric constant of liquid ClF₅ was measured from -80 to -17 C (Ref. 6). A curve-fit of the experimental data, shown in Fig. 10, can be expressed by the following equation:

$$\epsilon = -0.015 T_{(C)} + 3.08$$

The dielectric constant of gaseous ClF_5 , experimentally measured at ~10 megacycles, 23.9 C, and 746.5 mm Hg, was 1.00279 ±0.00007 (Ref. 6).

- 2.2.5.4 <u>Electrical Conductivity</u>. The specific conductivity of liquid C1F₅ was found to be $<1.3 \times 10^{-9}$ ohm⁻¹ cm⁻¹ over a temperature range of -80 to -17 C (Ref. 6). The value at -17 C (1.4 F) was 0.45×10^{-9} ohm⁻¹ cm⁻¹ (mho/cm).
- 2.2.5.5 <u>Magnetic Susceptibility</u>. No data are available on the magnetic susceptibility of $\text{ClF}_{\mathcal{B}}$.

PRISICAL PROPERTIES OF CIP5

TABLE 4

		TT- 1		
		antav	f Figure	Reference
Property	Metric	English	Nuc her	Number
General i centification				
Identification	CPF, Compou	ind A, Fluoridyne		m
Molecular Formula		clF ₅		ю
Molecular Weight	130-5 ((calculated)		ĸ
Freezing Point	-107 ±4 C	-153.4 ±2.2 F		ю
Normal Foiling Point	-13.7 c	7.3 F		LC)
Critical Constants				
Temperature	145 ±0.5 C	289.4 ±0.9 F		Q
Fressure	52.3 atum	771 psia		9
Density	0.565 gm/cc	35.5 lb/ft ³		9
Volume	1.77 cc/gm	0.0282 ft ³ /lb		و
Phase Properties				
Density				
Solid				
Liquid	1.795 gm/cc at 20 C	111.9 lb/ft^3 at 68 F	1, IA	و
ਜਿਤ				
Vapor Pressure	3.31 atm at 20 C	48.7 psis at 68 F	2, 2A	9
Surface Tension	15.55 dynes/cm at 20 C	0.1065 x 10 ² lb/ft at 68 F	3, 3A	9

TABLE 4 (Continued)

÷.

	Ve	a lue	Ri on re	Raference
Property	Metric	English	Number	Number
Coefficient of Thermal Expansion				
Solid				
Lāquid				
Gas				
Compressibility		,		
Adiabatic	1.4995 x 10 ⁻⁴ atm ⁻¹ at 20 C	$1.0203 \times 10^{-5} \text{ psi}^{-1} \text{ at 68 F}$	4, 4A	5
Isotherma1	3.04 x 10 ⁻⁴ atm ⁻¹ at 20 C*	$2.07 \times 10^{-5} \text{ psi}^{-1} \text{ at } 68 \text{ F*}$	5, 5A	6
Inert-Gas Solubility		ſ		
Nitrogen	4.4 x 10 ⁻⁴ gm/gm-atm at 48.9 C	3.0×10^{-5} lb/lb-psi at 120 F		10
Helium				
Thermodynamic Properties				
Heats of				
Formation	-60.5 kcal/mole at 25 C	-834 Btu/Ib at 77 F		11
Fusion				
Vaporization	5.513 kcal/mole at NBP*	76.04 Btu/Ib at NBP*		\$
Heat Capacity				
Solid				
Liquid (C _s)	38.78 cal/mole-K at 20 C	0.2972 Btu/Ib-R at 68 F	6, 6A	14

CONFIDENTIAL

ł

TABLE 4 (Continued)

	Number							14	•		15	-		10						
Ti mine D	Number							7, 7A			8, 8å			9, 9A					<u></u>	
alue	English							$2.20 \times 10^{-4} \text{ lb/ft-sec at 68 F}$			0.1108 Btu/ft-hr-F at 68 F*			2007 ft/sec at 68 F						
Ŋ	Metric							0.328 cp at 20 C			0.4581 x 10 ⁻³ cal/cm-sec at 20 C*			611.7 m/sec at 20 C						
4	Property	Gas	පීපී	Enthelpy	Entropy	Transport Properties	Viscosity	lâguid	Gas	Thermal Conductivity	liquid	ମିଷ୍ଟ	Velocity of Sound	Liquid	Gas	<u>Electromaguetic</u> Froperties	Index of Refraction	Solid	Liquid	Gas

CONFIDENTIAL

「「「「「「「」」」」」」

21 CONFIDENTIAL

/

TABLE 4. (Concluded)

連

	Valı	ae	Figure .	Reference
Propurty	Metric	English	Number	Number
Dipole Moment				
Dielectric Constant		.:		
Liquid	$\epsilon = 0.015 T_{(c)} + 3.08$	(from -80 to -17 C)	10	9
Gas	:. J0279 at 23.9 C (75 F)), 10 mc, 746.5 mm Hg		9
Electrical Conductivity	0.45 x 10 ⁻⁹ mbo/cm	st -17 C (1.4 F)		9
Magnetic Susceptibility				

CONFIDENTIAL

Figure 1. Density of Liquid Chlorine Pentafluoride (Ref. 6)

Figure 3. Surface Tension of Chlorine Pentafluoride (Ref. 6)

۰.

CONFIDENTIAL 99 Ŧ Figure 4A. Adiabatic Compressibility of Chlorine Pentafluoride (Ref. 5) 120 80 CALCULATED DATA CURVE-FITTED FROM -112 TO 158 F WITH EQUATION $B_{(PSIA^{-1})} = 6.4065 \times 10^{-6} + 4.0065 \times 10^{-8} t_{(P)} + 1.4103 \times 10^{-10} t_{(P)}^{2}$ $B_{(PSIA^{-1})} = 5.0915 \times 10^{-13} t_{(P)}^{5} + 6.2782 \times 10^{-15} t_{(P)}^{6}$ TEMPERATURE, F ç Q 4 8-2.0 120 12.0 0.0 6.0 0,4 24.0 F 22.0 80 20.0 18.0 16.0 4.0 ADIABATIC COMPRESSIBILITY, PSIATI × 106

Figure 6A. Specific Heat of Chlorine Pentafluoride (Ref. 18)

Figure 7A. Viscosity of Chlorine Pentafluoride (Nef. 14)

Figure &A. Thermal Conductivity of Chlorine Pentaflusride

•

CONFIDENTIAL

a de la de Aldre - Aldre A

.

2.3 CHEMICAL PROPERTIES

The chemical characterization of ClF₅ has been conducted by a number of investigators with various objectives. A primary effort (Ref. 8) was directed toward definition of the chemistry of ClF_g in relation to its use as a propellant to provide a sound basis for future operational propellant handling procedures. Other investigators (Ref. 6 and 13) have contributed toward the definition of chemical properties through propellant characterization and engineering studies. A less extensive study (Ref. 16) has provided additional solubility and chemical reactivity data, while various other investigators (Ref. 17 through 32) have contributed to the chemistry of ClF_5 through attempted synthesis of new compounds using ClF₅ as a starting or immediate compound. The results of these studies are summarized by various classes of elements and compounds in Table 5. Although the more interesting features regarding ClF_5 chemical reactivity are presented in the following paragraphs, more detailed data from these studies can be located in the appropriate references.

2.3.1 <u>Reaction with Nontransition Metals</u>

Results of reaction studies between ClF_5 and the nontransition metals (Groups IA, IIA, and IIIA of the Periodic Table) indicate the apparent nonreaction of A1 powder, Mg powder, and Be chunks at 150 C over a 16-hour period.

2.3.2 <u>Reaction with Transition Metals</u>

Reaction studies of CIF_5 with the transition metals indicate that some correlations can be established between the completeness or degree of reactivity of the transition metals and the volatility or melting point of the resulting fluoride. Transition metals that form volatile or low melting fluorides react completely at

150 C (and many react at ambient temperature). For example, vanadium, niobium, mol idenum, tantalum, and tungsten, all of which form fluorides melting below 120 C, react completely at ambient temperature. Titanium reacts more slowly under similar conditions. Transition metals (Cr, Mn, Co, Ni, Pd, Pt, Cu, Zn, and Cd), which are least reactive with ClF₅ in studies to 150 C, all form fluorides with melting points above 850 C.

2.3.3 <u>Reactions with Nonmetals and Metalloids</u>

The reactions between nonmetals or metalloids and ClF₅ appear to be typical for the action of interhalogen fluorides in general toward these reagents. All physical states of graphite react at ambient temperature. The extreme reactivity of activated charcoal is attributed to the high concentration of organic material normally found in charcoals.

2.3.4 <u>Reaction with Metal Oxides</u>

For the most part, the reactivity of metal oxides with ClF_5 is similar to the reactivity of the perent metal. For example, the nontransition metal oxides (BeO, MgO, Al_2O_3 , PbO, and Bi_2O_3) are unreactive to 150 C. This relationship is also generally observed with transition metal exides with two notable exceptions: HgO and CrO_3 . Both Cr_2O_3 and CrO_3 react completely at 150 C although chromium metal is unreactive under the same conditions. These data suggest that the formation of a stable, fluoride coating is not the only criterion for nonreactivity of a material with ClF_5 .

2.3.5 <u>Reaction with Water</u>

Under carefully controlled conditions (and excluding metal), the reaction of ClF_5 with H_{20} occurs according to the following equation:

 $C1F_5 + 2H_20 - FC10_2 + 4HF$

With a local excess of water (in the presence of metal which provides a surface to catalyze the decomposition of FClO₂) the reaction apparently occurs as follows:

 $301F_5 + 7H_20 \longrightarrow 2010_2 + F010_3 + 9HF$

It is apparent from the second equation (which represents normal reaction conditions) that ClO_2 , an unstable and (...tremely sensitive species, is normally produced during the hydrolysis of ClF_5 .

Water in the form of metal fluoride hydrates reveals no difference in reactivity with respect to the products formed.

2,3,6 Reaction with Hydroxides

The reactivity of basic, neutral, and acidic hydroxides toward ClF_5 is similar in that HF and 0_2 are formed in all cases. The formation of Cl_2 and/or Cl_2 from these reactions is a result of the degradation of ClF_5 , except in the cases of $\text{Na}_2\text{B}_40_7 \cdot 10\text{H}_20$ and $\text{Na}_2\text{SiC}_3 \cdot 9\text{H}_20$. The initial reaction of hydroxides appears to be the formation of HF. Chlorine, generated from the decomposition of ClO_2 , accounts for the formation of $\text{Ca}(0\text{Cl})_2$ in the reaction of ClF_5 and $\text{Ca}(0\text{H})_2$ as follows:

 $2010_2 - - - - 01_2 + 20_2$

 $2C1_2 + Ce(Gai)_2 \longrightarrow Ca(0C1)_2 + 2HC1$ 44
CONFIDENTIAL

Similar chlorination reactions also probably occur in other ClF_g-hydroxide reactions.

2.3.7 Reaction with Solvents

Chlorine pentafluoride compatibility and solubility studies (Ref. 8) with hydrogen fluoride and halocarbon-base solvents indicate Freen 11, Freen 113 and Hocker Fluoride Oil are compatible and miscible with ClF_5 at ambient temperature. At -30 C, however, Freen 113 is not miscible. The tertiary amine, $(C_4F_4)_5N$, and the cyclic perfluoroethers, FC-75 and FC-77, are miscible with ClF_5 in 50 m/o mixtures at ambient temperature. At -30 C, no solubility is apparent with the tertiary amine. No F^{19} exchange is apparent ... the halocarbon solutions at 27 C. Anhydrous HF will discolve 6 m/o 5.35_5 at -38 C and greater than 13 m/o at 0 C. No F^{10} exchange is observed in the HF-ClF₅ system which precludes any approxiable solvent-solvent interaction and particularly excludes the equilibrium:

$$01F_5 + HF = H + C1F_6^-$$

Chloroform and carbon tetrachloride both react slowly with ClF_5 at ambient temperature to form Cl_2 and $CFCl_3$. In addition to these products, the reaction with chloroform also forms $CHCl_2F$, $C(l_2F_2)$, and CV_4 . Beacuse of this reaction, no ClF_5 solubility data are available with CCl_4 and $CHCl_3$.

2.3.8 <u>Miscellaneous Reactions</u>

The chemical reactivity of CIF₅ with a number of reagents encompassing additional categories of compounds are also presented in Table 5. These include metalloid oxides, nonmetal oxides, salts of oxyacids, halides, borides, carbides, nitrides, sulfides,

Lewis acids and bases, etc. Because the chemistry of these systems are of special interest to a small minority (for example, the interaction of CIF₅ with Lewis acids is only of academic interest), investigators interested in the descriptive aspects of these reactions, such as characterization and properties, should refer to the cited original sources.

From a practical point of view, engineers (or chemists) will not encounter the problem of "treating" these miscellaneous reagents with ClF₅. Should a special situation develop, again the original literature should be consulted.

£

TABLE 5

REACTIVITY OF ELEMENTS AND COMPOUNDS WITH CIF5

Material	Test Temperature	Results and Products	Reference Number
<u>Metals and</u> <u>Metalloids</u>	•		
Li (chunk)	Ambient	Reaction: LiF, Cl ₂	8
Be (chunk)	Ambient 150 C	No reaction No reaction	8 8
Mg (powder)	Ambient 150 C	No reaction No reaction	8
Ca (chunk)	Ambient 150 C	No reaction Partial reaction: flaking of CaF ₂	8 8
B (granular)	Ambient	Reaction: BF ₃ , Cl ₂	8
Al (powder)	Ambient 150 C	No reaction No reaction	8 8
In (Powder)	Ambient 150 C	No reaction Extensive surface attack and film	8 8
Ge (wafer)	Ambient	Reaction: GeF_{k}	8
Su (powder)	Ambient 150 C	No reaction Reaction: SnF ₄ , Cl ₂	8 8
РЪ	Ambient 150 C	No reaction Surface attack	8 8
As (chunk)	Ambient	Reaction: AsF ₅ , Cl ₂	8
Sb (churk)	Ambient	Reaction: SbF ₅ , ClF ₄ ⁺ SbF ₆	8
Bi (powder)	Ambient 150 C	No reaction Surface attack	8 8

N E

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
<u>Transition</u> <u>Metals 3d</u> <u>Series</u>			
Cu (wire)	Ambient 150 C	No reaction No reaction	8 8
Zn (granular)	Ambient 150 C	No reaction No reaction	8 8
Ti (chunks)	Ambient	Slow reaction; complete reaction in 1 week: TiF4, Cl _o , coating	8
	150 C	One-half reaction in 1 day	8
V (granular)	Ambient	Reaction: Cl ₂	8
Cr (chunks)	Ambient 150 C	No reaction No reaction	8 8
Mn (chips)	Ambient 150 C	No reaction No reaction	8 8
Fe (powder)	105 C 150 C	No reaction Reaction: FeF ₃ , Cl ₂	8 8
Co (rod) (powder)	Ambient 150 C	No reaction No reaction	8 8
Ni (sheet)	Ambient 150 C	No reaction No reaction	8 8
<u>Transition</u> <u>Metals 4d,</u> <u>5d Series</u>			
Ag (reagent- grade shot)	Ambient	No reaction	8
(electrolytic plate)	150 C	Severe surface attack: AgF, Cl ₂	8

CONFIDENTIAL

I

Ş

سر

1

ij

I

and substantion of

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
<u>Transition</u> <u>Metals 4d.</u> <u>5d Series</u>			
Cd (rod)	Ambient	No reaction	8
Zr (chunķs)	Ambient 150 C	No reaction Surface darkened	8 8
Nb (powder)	Ambient	Reaction: Cl ₂	8
Mo (strips)	Ambient	Reaction: MoF ₆ , Cl ₂	8
Pd (sheet)	Ambient 150 C	No reaction Slight tarnish	8 8
Au (sheet)	Ambient 150 C	No reaction Surface tarnished	8 8
Нg	Ambient	Reaction: HgF ₂ , HgCl ₂	8
Ta (strips)	Ambient	Slow reaction: ClF ₃ , TaF ₅	8
	150 C	Reaction: purple coating	8
W (powder)	Ambient	Reaction · WF ₆ , Cl ₂	8
Pt (wire)	Ambient 150 C	No reaction No reaction	8 8
Nonmetals			
C (Lampblack Raven-30	Ambient	No reaction	8
l-Percent Volatiles)	150 C	Partial reaction: Cl_2 , CF_4 , CF_5Cl	8
Si (chunks)	Ambient	Reaction: SiF4, Cl2	8
Gr aphit e (powder)	Ambien <i>t</i> .	Partial Reaction: absorption into lattice; no CF_4 , Cl_2	8

TABLE 5

MULTINGUE

「「「「「」」」」

1000日本に設定する。これになるのである。

.

(Continued)

Material	Test Temperature	Results and Products	Reference Number
Nonmetals			
Graphite (pressed rod)	Ambient	10-percent uptake: inter- calation compound formed; во CF ₄ , Cl ₂	8
Charcoal (activated)	-150 C	Extremely vigorous reac- tion:CF4, C2F6, SF6	8
Lamblack (Neo- Supra II; 15- percent vola- tiles)	Ambient	Reaction: CF_4 , CF_3C1 , $C10_2$, C_2F_6	8
P ₄ violot powder	<80 C	Reaction: PF ₅ , Cl ₂	8
S ₈ (roll excess)	Ambient	Reaction: SF_4 , $C1_2$	8
Se ₈ (powder, excess)	Ambient	Reaction: SeF $_6$, Cl $_2$	8
N ₂	-⇒196 C	Solubility of solid $ClF_5 < 0.1$ percent	•
	25 C	No reaction	8
0 ₂ (dry)	-183 C	Solubility of solid $ClF_5 < 0.1$ percent	16
	Ambient	No reaction	8
	150 C	No reaction	8
	230 C 375 to 430 C	No reaction No reaction	8 26
03	-133 to 78 C	No reaction; some decom- position of O ₃	16
F ₂	-196 C	Solubility of solid C1F ₅ < 0.1 percent	16
1	310 C	No reaction	8
	300 to 375 C	No reaction	26

50

4

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
Nonmetals			
C1 ₂	Ambien* 150 C >180 C	No reaction No reaction Partial reaction: ClF ₃ + F ₂	8 8 8
$\operatorname{Br}_2(\ell)$	100 C	Partial reaction: $BrF_3 + Cl_2$	8
I ₂ (s)	Ambient	Reaction: IF ₅ , ClF, ClF ₃	8
ClF	-88 C	No reaction: homogeneous mixture	16
clf3	-83 C	Homogeneous mixture	16
C10 ₂ F	230 to 430 C	No reaction	26
C10 ₃ F	300 C	No reaction	28
NF ₃	200 C	No reaction	31
^N 2 ^F 4	Ambient	No reaction	18
KrF4	-93 to -53 C	No reaction	16
NOF	-78 C	Reaction: solid (complex)	17, 30
N0 ₂ F	-78 C -183 C	No reaction Solubility of solid ClF ₅ < 0.1 percent	28 16
0F ₂	-73 C Ambient 300 C	No reaction No reaction No reaction	17 18 31
0 ₂ F ₂	-93 C	No reaction: some decomposition of $\theta_2 F_2$	16

ł

r 1 հետաեններինը։ Այն եւ վերեն

TABLE 5

(Continued)

Material Temperature Res	ults and Products	linmper
1		
Nonmetals_		
H ₀ 0 ₀ (90 -78 C Viole	nt reaction:	17
percent) Clo ₃ F	r, c10 ₂ , 0 ₂	
(98 percent) -78 C Viole Clo ₂ F	ent reaction: 7, ClO ₂ , O ₂	17
Metal and Metalloid Oxides		
Na ₂ 0 ₂ (powder) Ambient No re 100 C React	enction tion: ClF_3 , $FClO_2$, O_2	8 8
KO ₂ (powder) Ambient React	ion: CIF ₃ , FC10 ₂ ,C10 ₂ ,	8
BeO (powder) Ambient Sligh	it reaction	8
150 C Sligh	it reaction: FC10	8
MgO (powder) Ambient No re 150 C No re	eaction eaction	8 8
CaO (powder) Ambient Compl	ete reaction: 0_2 , Cl_2	8
CaO ₂ (powder) Ambient Compl	ete reaction: 0_2 , CF ₃	8
BaO (powder) Ambient React ClO ₂	tion: FC10 ₃ , 0 ₂ , C1 ₂ ,	8
Ba0, (powder) Ambient No re	action	8
100 C React	ion: 0 ₂ , Cl ₂ , Cl0 ₂	8
B ₂ 0 ₃ (powder) Ambient React FC10 ₃	$BF_{4}, BF_{4}, 0_{2}, Cl_{2}, BF_{4}$	8
Al ₂ 0 ₃ (activated) Ambient React	ion: FC10 ₃ , C1 ₂	8
Al ₂ 0 ₃ (vacuum Ambient No re baked) 150 C No re	action action	8 8

52 CONFIDENTIAL

ADDED STOLENESS

a taikidika sa a

÷/

y

 $(2\pi d_{1}-2\pi d_{2}) \leq \alpha$

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
<u>Metal and</u> <u>Metalloid</u> <u>Oxides</u>			
Al ₂ 03 (fused; Lucalux)	Ambient 150 C	No reaction No reaction	8 8
SnO (powder)	Ambient 150 C	No reaction Reaction	8 8
SnO ₂ (powder)	Ambient 150 C	No reaction Slight reaction	8 8
PbO (powder)	Ambient 150 C	No reaction Slight reaction	8 8
Pb0 ₃ (powder)	Ambient 150 C	No reaction Complete reaction	8 8
Pb304	Ambient	Complete reaction: $Cl_2, 0_2$	8
As ₂ 0 ₃ (powder)	Ambient	Complete reaction: AsOF ₃ , Cl ₂ , O ₂	8
As ₂ 0 ₅ (powder)	Ambient	Complete reaction: Cl ₂ , O ₂ , nonoxidized solids ²	8
Sb ₂ 0 ₃ (powder)	Ambient	Complete reaction: 0 ₂ , solids	8
Sb ₂ 0 ₅ (powder)	Ambient	Complete reaction: 0 ₂ , solids	8
Bi ₂ 0 ₃ (powder)	Ambient 150 C	No reaction Slight reaction	8 8
<u>Transition</u> <u>Metal Oxides</u>			
Cu ₂ 0	Ambient 150 C	No reaction No reaction	ຜ 8

Ω

• • •

1

K

٩

<mark>स्टल्या हिं</mark> हे नगवदार जन्म गय गरे

TABLE 5 (Continued)

4

i

Material	Test Temperature	liesults and Products	Reference Number
<u>Transition</u> <u>Metal Oxides</u>			
CuC	Ambient 150 C	No reaction No reaction	8 8
Ад ₂ 0	Ambaent	Reaction: $FC10_2$, $C10_2$, 0_2 , $C1_2$, AgF	8
Zn0	Ambient 150 C	No reaction Slight reaction	8 8
CaO	Ambient 150 C	No reaction Slight reaction	8 8
НдО	Ambient Ambient	No reaction Reaction: ClO ₂ , ClO ₂ F, ClO ₄ F	8 18
	150 C	Incomplete reaction: FC10 ₂ , C1F ₃ , C10 ₂	8
Ti0 ₂	Ambient 150 C	No reaction Slight reaction: 0_2 , Cl_2 , FCl0 ₂ , TiF ₄	8 8
v ₂ 05	Ambient 150 C	No reaction Complete reaction: 0_2 , Cl_2 , Cl_2	8 8
0r203	Ambient 150 C	No reaction Extensive reaction: ClO ₂ , FClO ₂	8 8
Cr03	Ambient	Complete reaction: $Cr0_2F_2$, FCl0 ₃ , Cl ₂ , 0 ₂	8
M003	Ambient	Complete reaction: FClO ₃ , Cl ₂ , O ₂ , FClO ₂ , ClO ₂	8
MnO ₂ (powder)	Ambient 150 C	No reaction No reaction	0 8

TABLE 5

10000000

Stringth Sail Statistics, Heads

(Continued)

Material	Test Temperature	Results and Products	Reference Number
<u>Transition</u> <u>Metal Oxides</u>			
FeO	Ambient	No reaction	8
	150 C	Reaction: Cl ₂ , FClO ₃ , O ₂	8
Fe ₀ 0 ₇	Ambient	No reaction	8
2 5	150 C	Reaction: Cl ₂ , O ₂ , FC10 ₃	8
Co_0_	Ambient	No reaction	8
23	150 C	No reaction	8
NiO	Ambient	No reaction	8
	150 C	No reaction	8
Ni _o 0	Ambient	No reaction	8
23	150 C	No reaction	8
Nonmetal Oxides	Antiont	Complete penetium, COP	8
CU	Amplent	COC1F	0
со ₂	Ambient	No reaction	8, 18
Si0 ₂	-20 C and	$C1F_3$, $C1_2$, $S1F_4$, $S10_2$, 0_2 ,	16
	ambient	$C10_2^{-}, C1_2^{-}0, C10F$	
(quartz)	Ambient	No reaction	8
(325-mesh)	Ambient	No reaction	8
	Ambient	Reaction	18
}	140 C	No reaction	31
	250 C	0_2 , $Cl0_2F$	51
NO	Ambient	Complete reaction: FNO + Cl ₂	8

という言語

· · · · · ·

1

ł

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
<u>Nonmetal</u> Oxides			
N02	Ambient	Complete reaction: FClO ₂ , ClO ₂ , FNO ₂ , FNO	8
3	Ambient	Reaction: FNO, FNO ₂ , FNO ₃ , C1F ₃	18
P205	Ambient	Complete reaction: POF_3 , 0_2 , Cl_2	8
so2	Ambient	Vigorous reaction: SF ₆ ,	18
		SOF_4 , SOF_2 , SO_2F_2 , CIO_2 , CIO_3F	
50 ₃	Ambient	$\begin{array}{c} \textbf{Complete reaction: } \text{Cl}_2,\\ \textbf{S0}_2\textbf{F}_2, \text{ 0}_2 \end{array}$	8
	Ambient	Explosive reaction	18
SOF4	Ambient	Slight reaction: SOF_2 , SO_2F_2	18
s2 ⁰ 6 ^F 2	<130 C 130 C	No reaction Slight reaction	18 18
C10 ₂	Ambient 100 to 110 C	No reaction No reaction	8 32
1 ₂ 0 ₅	-100 to -78 C	$\begin{array}{c} \text{Reaction: IF}_{5}, \text{ IF}_{7}0_{2}, \\ \text{C10}_{3}\text{F}, \text{ C10}_{2}\end{array}$	17
<u>Water and</u> <u>Metal Fluoride</u> <u>Hydrates</u>			
H ₂ 0 (vapor in N ₂ with metal/Kel-F system)	0 C	C1 ₂ , C10 ₂ , FC10 ₃	8

56

TABLE 5

- And - Appendia appendia - Andress

(Continued)

Material	Test Temperature	Results and Producte	Reference Number
<u>Water and</u> <u>Metal Fluoride</u> <u>Hydrates</u>			
КГ • 2Н ₂ 0	Ambient	C10 ₂ , FC10 ₂ , FC10 ₃	8
MgF ₂ ∙xH ₂ 0	Ambient (partial reaction)	C10 ₂ , FC10 ₂ , FC10 ₃	8
H ₂ 0 (50-percent solution in HF with all Kel-F system)	-30 C	FC102	8
CrF ₃ ·3 1/2 H ₂ 0	Ambient	c10 ₂ , Fc10 ₃ , C1 ₂	8
CuF₂·2H₂0	Ambient	C10 ₂ , FC10 ₂ , FC10 ₃	8
H ₂ 0 (liquid)	Ambient	Vigorous reaction	13
H ₂ 0 (vapor)	Ambient	Vigorous reaction: ClO ₂ F, ClO ₃ F, HF	13
н ₂ 0	Ambient	Violent reaction	18
н ₂ 0	0 C	HF, C1 ₂ , HC10 ₃ , 0 ₂	16
<u>Hydroxides</u>			
Ca (OH) ₂ - ClF ₅ (1)	Ambient	$0_2^{}$, $C1_2^{}$, $FC10_2^{}$, $CaF_2^{}$, $Ca(C10)_2^{}$	8
Ca(OH) ₂ - ClF ₃ (g)	Ambient	0 ₂ , C1 ₂ , FC10 ₂ , FC10 ₃ , CaF ₂	8
B(OH)3	Ambient	0 ₂ , C1 ₂ , RF ₃	8
NaB ₁ 07·10H20	Ambient	0 ₂ , RHF ₃ OH, NaBF ₄ , HCl(bydrated)	8

NGE

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference lumber
Hydroxides			
A1(0H)3	Amhient	02, C102, FC12, AIF3	ರ
Na ⁺ CO ₂ (OH)	Ambient	NOF, 0_2 , CF_4 , $C_3^{-2}C1$, $C1_2$	8
$(\mathrm{CF}_3)_2 \mathrm{c(OII)}_2$	Ambient	0_2 , CF_20 , Cr_4 , CF_3C1 , $C10_2$	8
JF-300(01)	23 C	0 ₂ , FC10 ₂ , CF ₃ CF0	8
у.•	25 C	0_2 , FC1 0_2 , CF ₃ CF0,	8
		$(cr_{3}c0)_{2}0$	
^{Na2} 3103.9H20	Ambient	$0_2^{}$, Na ₂ SiF ₆ , HCl (hydrated)	8
NO ₂ (OH) (70 percent)	Ambient	0 ₂ , C1 ₂ , C10 ₂ , FC10 ₂ , NO ₂	8
$K^{+}PO_{2}(OH)_{2}^{-}$	Ambient	0 ₂ , C1 ₂ , C10 ₂ , FC10 ₃ , KPF ₆	8
Р0 ₂ (он)	Ambient	0 ₂ , C10 ₂ , FC10 ₂ , PF ₅ , POF ₃	8
нро(он) ₂	Ambient	0 ₂ , C1 ₂ , POF ₃	8
Ce ⁺⁴ [S0 ₃ (011)] ₄	Ambient	0 ₂ , C10 ₂ , S0 ₂ F ₂ , SF ₆ , solids	8
50 ₂ (0H) ₂	Ambient	0 ₂ , C10 ₂ , S0 ₂ F ₂ , S0F ₄	8
C10,(0H) (72 percent)	Ambient	⁰ 2, ^{C1} 2, ^{C10} 2, ^{FC10} 3	8
Salts of Oxygen Acids			
Nr82 ^{CO} 3	Ambient 100 C	No reaction Reaction: 0 ₂ , Cl ₂ , CF ₄ , CF ₃ Cl, NaF	8 8

TABLE 5

W

(Continued)

Material	Test Temperature	Results and Products	Reference Number
Salts of Oxygen Acids			
NaN02	Ambient	Reaction: NO ₂ , FNO, FNO ₂ , FClO ₂ , Cl ₂ , NaF	8
NaNO3	Ambient	Reaction: FNO ₂ , FClO ₂	8
Ca3 (P04)2	Ambient	Reaction: 0_2 , $C1_2$, $C10_2$,	8
Na25203	Ambient 150 C	No reaction Reaction: 0_2 , Cl_2 , Cl_2 , SO_0F_0 , SF_c , NaF	8 8
Na2503	Ambient 150 C	No reaction Reaction: 0_2 , Cl_2 , Cl_2 , SO_2F_2 , SF_6 , MaF	8 8
KN03	-7 8 C	No reaction	17
к ₂ so,	Ambient 130 C	No reaction Reaction: O ₂ , ClO ₂ , SO ₂ F ₂ , SF ₆ , KF, KClF ₄	8 8
KC103	78 to -27 C	Limited reactions; FC10 ₂	17
	Ambient	Reaction: $0_2^{}$, $C10_2^{}$, $FC10_2^{}$, FC10 ₃ , KC1F ₄	8
кс104	-78 to -27 C	Limited reaction: FC10 ₂	17
-	Ambient; 150 C	No reaction	8
K ₂ Cr0 ₄	Ambient 150 C	Slight reaction Reaction: 0_2 , $Cl0_2$, $FCl0_2$, $FCl0_7$, $Cr0_9F_9$, $KClF_1$.	8 8
K ₂ Cr ₂ 07	Ambieat	Reaction: 0_2 , FCl 0_3 , Cr 0_2F_2 , KCl F_4	8

59 CONFIDENTIAL

/ . ⊧

1

「「「「「「」」の言語

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
Salts of Oxygen Acids			
КМпО ₁₂	Ambient	Reaction: 0_2 , FC10 ₂ , FMn0 ₃ , KF, KC1F ₄	8
C5NO3	-78 to	Slow reaction	17
-	~25 C 25 C	Reaction completed after 3 days: NO ₂ F, ClO ₂ F	17
Liclo ₄	-78 C	Reaction: LiF	23, 24
Lewis Acids and Bases			
KF	Ambient 150 C	No reaction No reaction	8 8
CaF,	-78 C to	No reaction	28,8
	150 C	No reaction	8
TiF ₄	Ambi ent	No reaction	8
BF	-112 C	No reaction	8
<i>,</i>	Ambient	Reartion	18
	Amdient	No reaction	27
PF ₅	0 C	No reaction	8
АвF ₅	0 C	Reaction: CIF, AsF6	8
)	Ambient	Reaction: $ClF_4^+AsF_6^{-}$	18 - 24
SdF5	0 C	Reaction: $C1F_4^+SbF_6^-$. LSbF5	8
-	375 C	Reaction: $C1F_4^+SbF_6^-$	27
SF4	Ambient	No reaction	18, 27
SF ₆	Ambient	No reaction	27

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Reference Number
<u>Halides and</u> <u>Pseudohalides</u>			
нсі	Ambient	Reaction: HF, Cl_2	8
NaCl	Ambient	Reaction: Cl ₂ , ClF, NaF	8
кı	Ambient	Reaction: Cl ₂ , KICl ₄ , KIF ₆	8
	150 C	Reaction: Cl ₂ , IF ₅ , KICl ₄ , KIF ₆	8
. KCN	Ambient	Vigorous reaction: Cl ₂ , CF ₄ , N ₂ , C: KF	8
$Hg(CN)_2$	Ambient	Vigorous reaction: Cl ₂ ,	8
_		C1F, CF_4 , N_2 , N_2F_2 , HgF_2	
KOCN	Ambient	Reaction: 0 ₂ , Cl ₂ , N ₂ ,	8
		CF ₄ , KF, KC1F ₄	
NaN ₃	-150 C	Violent reaction: Cl ₂ , NaF, N ₂	8
Borides, Carbides, Nitrides, Sulfides ond Azides			
CaB ₆ (techni- calgrade)	Ambient	Reaction: Cl_2 , BF_3 , O_2 , CaF_2	8
CaC ₂	Ambient	Slight reaction: CF,	8
	100.0	CF_3C1, C, CaF_2	0
B _h C	Ambient	No reaction	8
•	150 C	Slight reaction: trace CF ₄	8

2

TABLE 5

(Continued)

Material	Test Temperature	Results and Products	Ref erence Number
<u>Borides,</u> <u>Carbides,</u> <u>Nitrides,</u> <u>Sulfides</u> <u>and Azides</u>			
A1 C4	Ambient	Partial reaction: ClO_2 ,	8
(impure sample)		FC10 ₃ , CF ₄ , (appearance unchanged)	
SiC	Ambient 150 C	No reaction Slight reaction: trace CF ₄	8 8
WC	Amhient 150 C	No reaction Beaction: Cl ₂ , CF ₄ , CF ₃ Cl, WF ₆	
^M g ₃ ^N 2	Ambient 100 C	No reaction Reaction: ClNO ₂ , Cl ₂ , N ₂ , MgF ₂ , FNO ₂	8 8
Ca ₃ N ₂	Ambient	Reaction: $C1NO_2$, $C1_2$, N_2 CaF_2	8
ZrN	Ambient	No reaction	8
	100 C	$C1NO_2, C1_2, N_2, ZrF_4$	8
CrN	Ambient 150 C	No reaction Partial reaction: FNO ₂ , Cl ₂ , N ₂ , CrF ₃	8 8
BN	Ambient	Reaction: Cl ₂ , N ₂ , BF ₃	8
Na ₂ S (techni- cal grade)	Ambient	Reaction: Cl ₂ , SF ₆ , SOF ₂ , NaF	8
TABLE 5

(Continued)

Ì

and the second
Material	Test Temperature	Results and Products	Reference Number
ZnS	Ambient	Reaction: Cl_2 , SF_6 , SOF_2 , ZnF_2	8
COS	Ambient	Reaction: Cl_2 , COF_2 , COFC1, SF_4 , SOF_2	8
Azides (general)	-78 C to Ambient	Vigorous reaction	17
Solvents			
(CF _z) _o CO	-80 C	No reaction	8
2	0 C	Violent reaction: 0 ₂ ,	8
		C1 ₂ , COF ₂ , CF ₄	
(CF ₃ CO) ₂ 0	-60 to -30 C	Slight solubility	8
CHC1 ₃	Ambient	Slow reaction: CHCl_F,	
)		$CC1_2F_2$, $CFC1_3$, CF_4 , $C1_2$	8
CC14	Ambient	Slow reaction: CFCl ₃ , Cl ₂	8
CFC1 ₃ (Freon 11)	Ambienċ	No reaction: no F ¹⁹ exchange	8
CF2C12	-93 C	Forms homogeneous mixture	16
(Freon 12)	Ambient	Progressive fluorination of $\text{CC1}_2\text{F}_2$ after 10 days	32
CC1F3	-93 C	Forms homogeneous mixture	16
CF ₄ (Freon 14)	-128 C	Solubility of solid ClF ₅ <0.5 percent	16
CF ₂ C1CFC1 ₂			
(Freon 113)	-30 C	Immiscible	8

TABLE 5

(Concluded)

1

1

ł

Material	Test Temperature	Results and Products	Reference Number
Fluorolube Oil	Ambient	No reaction: no F ¹⁹ exchange	8
$(C_{1}F_{0})_{7}N(N-43)$	-30 C	Immiscible	8
· 4 9 2	Ambient	No reaction: no F ¹⁹ exchange, Miscible at 50 m/o	8
Kel F 0il (No. 3)	Ambient	Readily soluble	16
FC-75	Ambient.	No reaction; no F ¹⁹ exchange; miscible at 50 m/o	8
FC-77	Ambient	No reaction: no F ¹⁹ exchange; miscible at 50 m/o	8
HF	-38 C	No reaction: 6 m/o solubility; no F ¹⁹ exchange:	8
		solvent shift = 2.6 ppm downfield	
	0 0	No reaction: >13 m/o solubility	8
	28 C	No reaction: no F ¹⁹ exchange	8

64 CONFIDENTIAL

7

CHLORINE PENTAFLUORIDE MIXTURES

2.4

A number of propellant mixtures and new propellant concepts involving ClF_p have been investigated under programs designed to formulate new and useful high-energy, earth-storable oxidizer mixtures. Organizations that have conducted experimental investigations of various homogeneous mixtures with ClF_c, include Aerojet-General Corporation (Ref. 33 through 39), Allied Chemical Corporation (Ref. 18), Monsanto Research Corporation (Ref. 17), Reaction Motore & Ofvision of Thickol Chemical Corporation (Ref. 7 and 40 through 43), and Rocketdyne (Ref. 8 and 45). In addition, Reaction Motors (Ref. 43 and 44) has also investigated heteregeneous mixtures with ClF₅. For the most part, these investigations consisted of studies of formulation compatibilities, miscibilities, homogeneity, and/or engineering properties. Because these studies are related to potential application of ClF_5 , brief summations of the various formulations are presented in the following paragraphs.

2.4.1 <u>CIF₅-CIF₃ Mixtures</u>

A ClF_5 -ClF₃ mixture (64 w/o ClF₃) was found to be miscible, with vapor pressure data demonstrating a slight positive deviation from ideality at ambient temperature (Ref. 17).

2.4.2 CIF_BrF, Mixtures

A study (Ref. 17) of two ClF_5 -BrF₅ mixtures (42 and 62 w/o ClF_5) indicated miscibility and positive vapor pressure deviations from ideality. The deviations were more positive with increased ClF_5 contert.

2.4.3 <u>CIF_-FC10_ Mixtures</u>

Mixtures of $\text{ClF}_5\text{-FClO}_3$ were found to be completely miscible, compatible, and insensitive to shock (Ref. 7). The vapor pressures of various mixtures were reported (Ref. 8) to have slight positive deviations from ideality over a temperature range of -46 to 20 C; very little vapor pressure deviation was noted (Ref. 7) in an 80 w/o $\text{ClF}_5\text{-20 w/o FClO}_3$ mixture from -23 to 25 C.

2.4.4 <u>ClF_R-XeF₂ Mixtures</u>

The solubility of XeF_2 in ClF_5 , determined over a temperature range of 0.1 to 41.2 C, ranged from 4.68 to 13.3 gm/100 gm ClF_5 . This low solubility limited future use of this theoretically potential high-density impulse formulation (Ref. 45).

2.4.5 <u>ClF₅-XeF₄ Mixtures</u>

Experimental determinations of XeF_4 solubility in ClF_5 indicated that low solubilities (2.92 to 7.92 gm/100 gm ClF_5 over a temperature range of 4.5 to 45.5 C) would prevent effective application of this oxidizer mixture (Ref. 45).

2.4.6 <u>C1F₇-OF₂ Mixtures</u>

۲

Mixtures of $0F_2$ and $C1F_5$ were found to be miscible at -78 C, but demonstrated large positive deviations from ideality (Ref. 17).

2.4.7 <u>ClF_HNF_Mixtures</u>

A 3 to 1 mixture of ClF_5 -HNF₂ detonated within 1 minute after mixing at-120 C (Ref. 7). However, it was also noted (Ref. 46) that very pure ClF_5 and HNF_2 reacted smoothly at -80 C to form ClNF_9 in good yields.

2.4.8 <u>CIF_-NF_ Mixtures</u>

Equal weights of ClF_5 and NF_3 were found to be miscible at -78 C in glass capillaries (Ref. 17).

2.4.9 <u>CIF_-N_F_Mixtures</u>

 $ClF_5-N_2F_4$ mixtures have been extensively studied by Aerojet (Ref. 33 through 39), Reaction Motors (Ref. 7 and 41 through 43) and Rocketdyne (Ref. 8 and 45) as a primary candidate high-energy storable oxidizer formulation. Early studies (Ref. 7, 8 and 34) indicated reaction between the two compounds above ambient temperatures. Additional laboratory investigations (Ref. 35 through 45) confirmed decomposition of the compounds in various materials over a wide temperature range and suggested that decomposition was both homogeneous and heterogeneous in nature (Ref. 45).

Vapor pressure studies (Ref. 7, 8, 33, and 41) indicated slight positive deviations from ideality for various mixtures at temperatures from -46 to 71 C. Density determinations (Ref. 7 and 33) resulted in experimental values slightly higher than

theoretical values based on additivity of molar volumes. Various laboratory sensitivity studies demonstrated the insensitive characteristics of various mixtures in relation to shock (Ref. 7), rapid compression (Ref. 34), and gaseous nitrogen pressurization (Ref. 42).

2.4.10 <u>ClF₇-NF₇O Mixtures</u>

The ClF_5-NF_30 mixture was found to be compatible and miscible in all proportions (Ref. 8); however, results from vapor pressure measurements by various investigators were in conflict. Measurements on ClF_5-NF_30 mixtures at -82 and -97 C (Ref. 8) indicated large positive deviations from ideality; moderate positive deviations were reported at -78 C (Ref. 17) and room temperature (Ref. 7). In complete disagreement with these data, strong negative deviations were also reported (Ref. 18) for mixtures at temperatures up to 24 C. The discrepancies in these data have not been resolved.

2.4.11 <u>CIF _-N204 Mixtures</u>

 N_2O_4 was found to be incompatible with ClF_5 . Pressures in excess of 350 psia were recorded after 18 hours when a $ClF_5-N_2O_4$ mixture was sealed in a Kel-F tube at ambient temperatures. Mass spectrometer analysis of the vapor phase revealed 25 percent Cl_2 , 10 percent SiF_4 , 5 percent ClO_2 , 60 percent NO_2 , NO, N_2O , and NO_2^+ species and complete decomposition of ClF_5 in this phase (Ref. 7).

68

2.4.12 <u>CIF₅-C(NO₂)₄ Mixtures</u>

A preliminary experimental characterization of the $\text{ClF}_5-C(\text{NO}_2)_4$ system demonstrated compatibility between two compounds. Vapor pressure measurements at 0 and 20 C resulted in data very near ideality; however, mixtures containing more than 85 percent $C(\text{NO}_2)_4$ were solid at 0 C (Ref. 8).

2.4.13 <u>CIF₅-FC(NO₂)₃ Mixtures</u>

The compatibility and miscibility of $\operatorname{ClF}_5-\operatorname{FC}(\operatorname{NO}_2)_3$ was verified over a ClF_5 composition range of 40 to 90 w/o. Vapor pressure measurements indicate high concentrations of ClF_5 form essentially ideal mixtures; however, mixtures with low concentrations of ClF_5 exhibit positive deviations from ideality indicating limited solubility of ClF_5 in $\operatorname{FC}(\operatorname{NO}_2)_3$. Mixtures containing equivalent amounts of ClF_5 and $\operatorname{FC}(\operatorname{NO}_2)_3$ were found to be more sensitive than the individual components (Ref. 7).

2.4:14 <u>ClF₅-FC(NF₂)₃ Mixtures</u>

Binary mixtures of ClF_5 and $\operatorname{FC}(\operatorname{NF}_2)_3$ were found compatible at various temperatures to 71 C (Ref. 7, 8, and 17). Although one investigator (Ref. 7) reported the apparent immiscibility of a 50-50 mixture at 0 C with solubility increasing as temperature increases, other investigators (Ref. 8 and 17) found miscible mixtures (including 50 percent mixtures) from -78 to 20 C and slight positive deviations in vapor pressure.

> 69 CONFILIENTIAL

2.4.15 <u>CIF₁-C(NF₂), Mixtures</u>

Mixture screening studies from room temperature (Ref. 40) to 71 C (Ref. 8 and 45) indicate that ClF_5 is comparible and miscible with $\operatorname{C(NF}_2)_4$. Vapor pressure measurements (Ref. 45) indicate slight positive deviations from 0 to 71 C. Trauz] block sensitivity tests (Ref. 40) gave positive results.

2.4.16 CIF OF CIF Mixtures

Mixtures of $C1F_5$ - $C1F_3$ - OF_2 containing OF_2 concentrations of 2 and 7 w/o in the liquid phase at -78 C showed large positive deviations from ideality during vapor pressure measurements (Ref. 17).

2.4.17 CIF OF BrF Mixtures

Vapor pressure we asurements on two ClF_5-0F_2 -BrF₅ mixtures at -78 C demonstrated large positive deviations from ideality (Ref. 17).

2.4.18 <u>CIF_OF_NF_O Mixtures</u>

A ternary mixture of 37 w/o ClF_5 -14 w/o OF_2 -39 w/o NF_3 0 exhibited a large positive deviation in vapor pressure measurements at -78 C (Ref. 17).

2.4.19 <u>CIF₇-OF₂-CF(NF₂)</u>, Mixtures

Ternary mixtures of $ClF_5-0F_2-CF(NF_2)_3$ exhibited large positive deviations in vapor pressure measurements at -78 C (Ref. 17).

2.4.20 <u>CIF₇-OF₂-N₂F₄ Mixtures</u>

A $C1F_5-0F_2-N_2F_4$ mixture of approximately equal parts was found to be miscible at -78 C in sealed Pyrex glass capillaries (Ref. 17).

2.4.21 <u>CIF_FC10_N_F_Mixtures</u>

A study of the ClF_5 -FClO₃-N₂F₄ ternary system demonstrated the compatibility, miscibility, and insensitivity of the system. Vapor pressure measurements on five different mixtures over a range of -45 C to ambient temperature showed very slight deviations from Ideality (Ref. 7).

2.4.22 <u>CIF_q-FC10_q-BrF_q Mixtures</u>

The homogeneity, vapor pressure, and storability studies were conducted on several mixtures of ClF_5 , FClO_3 , and BrF_5 (Ref. 47). A 52 w/o ClF_5 -11 w/o FClO_3 -37 w/o BrF_5 mixture was homogeneous at -76 C and demonstrated nearly ideal behavior with respect to vapor pressures to 165 F. Positive deviations were found in vapor pressures of a 69 w/o ClF_5 -11 w/o FClO_3 -20 w/o BrF_5 mixture during high temperature storage tests at 217 F; however, posttest

analysis indicated this was caused by the original presence of a noncondensable gas. This particular mixture war completely stable in type 347 CRES over a period of 22 weeks at this temperature.

2.4.23 <u>ClF₅-N₂F₄-C(NO₂)₄ Mixtures</u>

Reactions, noted in $\operatorname{ClF}_{5}-\operatorname{N}_{2}\operatorname{F}_{4}-\operatorname{C}(\operatorname{NO}_{2})_{4}$ ternary mixtures, have been attributed to reaction between $\operatorname{N}_{2}\operatorname{F}_{4}$ and ClF_{5} . Homogeneity data indicate positive deviations in vapor pressures over almost all compositions and temperatures (0, 45, and 71 C); the deviation increases with increasing $\operatorname{C}(\operatorname{NO}_{2})_{4}$ content and decreases with increasing temperature (Ref. 8).

2.4.24 CIF₁₇-N₂F₄-FC(NF₂)₃ Mixtures

Some homogeneity data have been generated for $ClF_5-N_2F_4-FC(NF_2)_3$ mixtures at low temperatures; however, potential incompatibility and sensitivity problems have eliminated interest in these mixtures (Ref. 8).

2.4.25 <u>ClF₅-FC(NF₂)₃-C(NO₂)₄ Mixtures</u>

The ternary system, ClF_{5} -FC(NF₂)₃-C(NO₂)₃, was found to be compatible and stable at 71 C. Data obtained at 0, 45, and 71 C demonstrated a positive deviation from ideality for all compositions and temperatures except for a negative deviation in a FC(MF₂)₃-rich mixture at 71 C. The quount of positive deviation increased with increasing C(NO₂)₄ content and decreased with increasing temperature (Ref. 8). Sensitivity problems have also eliminated interest in these mixtures.

2.4.26 <u>CIF₇-C(NF₂)₄-C(NO₂)₄ Mixtures</u>

The compatibility of the ternary system, $\operatorname{ClF}_5-\operatorname{C}(\operatorname{NF}_2)_4-\operatorname{C}(\operatorname{NO}_2)_4$, was examined in type 304 stainless steel at 71 C. The composition of two mixtures, 68.5-5.7-25.8 and 68.9-7.5-23.6 w/o $\operatorname{ClF}_5-\operatorname{C}(\operatorname{NF}_2)_4-\operatorname{C}(\operatorname{NO}_2)_4$, remained unchanged over a test period of 5 days (Ref. 45). Interest in these mixtures has been curtailed by sensitivity problems.

2.4.27 <u>ClF₇-B₄C Mixtures</u>

Heterogeneous mixtures of ClF_5 and B_4C have been investigated in an effort to develop high-energy beterogeneous monopropellant systems (Ref. 43 and 44). Preliminary thermal stability and card gap sensitivity tests on ClF_5-B_4C mixtures indicated possible stability and sensitivity problems.

2.5 CHLORINE PENTAFLUORIDE GELS

^ A variety of compounds have been investigated as potential gelling agents for ClF_5 (Ref. 17, 35 through 37, 48 and 49). Actual ClF_5 gels have been formed through use of 30 w/o calcium fluoride or 9.9 w/o precipitated lithium fluoride (Ref. 48), and 10 percent $\operatorname{Ba}(\operatorname{SbF}_6)_2$ (Ref. 37). In addition, blends of ClF_5 and ClF_3 (≤ 50 percent ClF_5) were gelled with $\operatorname{Ba}(\operatorname{SbF}_6)_2$ (Ref. 49).

73/74 CONFIDENTIAL

SECTION 3: MATERIALS OF CONSTRUCTION

3.1 MATERIALS COMPATIBILITY

The compatibility of ClF_5 with selected materia's has been experimentally determined under various conditions associated with common utilization of materials in the fabrication and construction of propellant handling equipment and facilities. The primary data presented in this section are a result of studies (Ref. 3, 6, 9, 13, 16, and 50 through 52), that were, at least partially directed at the examination of materials compatibility with ClF_5 . The results of these studies, which were designed to provide basic information for the fabrication of test systems as well as to form a basis for more sophisticated efforts, are presented in Table 6. As a supplement to these data, various results of the ClF_5 chemistry studies (Table 5) and an experimental evaluation of selected Atlas Missile System components in ClF_5 service (Ref. 52) provide additional technology on materials compatibility.

The compatibilities of the various metals are rated in Table 6 from experimental data interpreted on the basis of practical experience. The test conditions are described and pertinent data are presented. Each individual metal was placed in one of four rating classifications corresponding to its compatibility under the exposure conditions described. These four rating classifications, which are similar to those used by the Defense Metals Information Center (Ref. 53), are as follows:

 Metals suitable for unlimited use (after proper material preparation) under the specified exposure conditions. Corrosion rates are less than 1 mil per year (MPY). Typical use involves constant contact with ClF₅.

- 2. Metals suitable for transient and/or limited contact under the specified exposure conditions. Corrosion rates are less than 5 MPY. Typical uses are in hardware which handles the propellant intermittent.
- Metals suitable for momentary contact. Corrosion rates are < 50 MPY. Prolonged or repeated exposures should be avoided.
- Metals unsuitable for use under any condition. Corresion rates are > 50 MPY.

The compatibility ratings for the nonmetallics are based on different standards but correspond on a usage basis with the metals classifications. Definition of the nonmetallic ratings are as follows:

- Satisfactory for service under conditions indicated. No significant change is noted in the material or propellant.
- 2. Use with knowledge that the material will undergo slight changes in its physical properties. Slight changes may also occur in the propellant.
- 3. May be used where moderate chemical and physical degradation can be tolerated for a short period. Potential results from usage must 'e fully comprehended.
- 4. Unsatisfactory for use under conditions indicated. There is extensive or complete physical and/or chemical breakdown of the material or propellant.

A general summary of the results from ClF_5 materials compatibility studies indicates the behavior of ClF_5 with various structural materials is generally similar to that of ClF_3 . If the metallics are compatible under conditions of normal sposure to liquid and gaseous ClF_5 . Notable exceptions in the setuls tested are molybdenum and columbium (niobium), which

undergo complete reaction. Although tested, the compatibility of gold and titanium with ClF_5 is still in doubt because of conflicting results in comparison with ClF_3 . In addition, the presence of moisture may have a significant detrimental effect (Ref. 6) on the rate of film formation or corrosion of the metal. Of the metals tested under conditions of moisture contamination, only Hastelloy C and nickel 200 provided complete resistance to attack.

The number and types of compatible nonmetallic materials are limited with ClF_5 . Experimental efforts have shown that Kel-F and Teflon plastics, various fluorocarbon oils, and some noted specialty items are compatible under limited conditions (static application over ambient temperature ranges). Because very little useful data prescribing the actual limitations of nonmetallic use with ClF_5 have been generated, proposed applications should be experimentally and thoroughly investigated. However, it should be noted that, based on the chemical similarity between ClF_5 and ClF_3 and the demonstrated compatibility of materials with ClF_5 , the compatibility of any nonmetallic with ClF_5 under dynamic conditions is highly suspect.

TABLE 6

10.11 C

立て四日間に開かれ、成市と自住には

COMPATIBILITY OF MATERIALS WITH CIF5

		E	posure				
Material	Type	Phase	Teaperature, F	Time, Days	Bating	Remarks	Reference Number
<u>Aluminum Alloys</u>						8	
1100	Static	Liquid	60 to 15	30	A	Slight weight gain	9
			80 to 100	580	A	Slight weight loss	6
			160	30	Å	Slight weight gain	9
		Vapor	60 to 75	30	4	Slight weight gain	é
		4	30 to 100	580	A	Slight weight loss	6
			160	30	-	Slight weight gain	9
	Static	Liquid	86	21	A	Slight weight change	50
2014-T6	Static	Liquid	152	21	Ą	No weight change	50
	<u>Dynami</u> c		86	1	Ą	~65 ft lb impact	50
						test	
2021	lyna: itc	Tedry	1125 (metal)	i	Ą	Impingement of vapor	51
	, ,		1185 (metal)		ф	on heated metal	51
2024-T3	Static	Liquid	60 to 7 <u>7</u>	30	A	Slight weight loss	9
		•	50 to 100	580	A	Slight weight loss	<i>б</i>
			160	30	A	Slight weight gain	9
		Vapor	Ambient	~	¥	Slight weight gain	52
			60 to 75	30	¥	Slight weight loss	9
			50 to 100	580	A.	Slight weight loss	σι
			160	30	¥	Slight weight gain	o

CONFIDENTIAL

<u>;</u>

•

Reference Number 600 600 000 5 \mathbf{r} Ó Ś 00 ŝ 00 600 Slight veight loss Slight veight loss Slight weight gain Slight veight loss Slight veight loss Slight veight gain Slight weight J~ss Slight weight loss Slight weight gain Slight weight loss Slight weight loss Slight weight gain Slight weight loss Slight weight loss Slight weight loss Slight weight loss Slight weight Joss Slight weight gain Slight weight gain No weight change No weight change Remarks Rating 4 4 4 ₹, 4.4 44 * * * 4 2 ¥ 4 4 4 4 444 Time, Days 30 30 30 femperature, 60 to 75 30 to 100 60 to 75 30 to 100 60 to 75 30 to 100 160 60 to 75 30 to 100 160 60 to 75 30 to 100 66 to 75 30 to 100 160 60 to 75 30 to 100 160 160 160 160 £ų Exposure Liquid Liquid Liquid Liquid Vapor Phase Vapor Vapor Static | Static Static Static Type <u>Aluminum Alloys</u> (continued) Material 2024-T351 2219-T351 5086 5457

TABLE 6 (Continued)

•

:.

79

;

i

Reference Number 22 50 999 90 Q 6 60 Q 6 Q. Ŷ 54 Slight weight change Slight weight change Slight weight loss Slight weight loss Slight weight gain Slight weight loss Slight weight loss Slight weight gain Slight weight loss Slight weight loss Slight weight gain Slight weight loss Slight weight loss Slight weight gain Slight weight loss Slight weight loss Slight weight gain Slight weight gain Remarks Rating 4 4 4 4 444 ¥ 44 4 4 4 *** Time, Days 96 92 98 92 ~ ដដ Temperature, 60 to 75 30 to 100 160 Ambient 152 152 Exposure Ģ. Liquid Liquid Static Liquid Vapor Phase Vapor Vapor Vapor Static Static Static Type <u>Aluminum Alloys</u> (continued) Material 6061-T651 6061-T6 6066-T6 6061**-T**4 5457

TABLE 6 (Continued)

!

CONFIDENTIAL

80

1

Referenc asin oss asin asin asin asin asin oss asin oss oss oss oss of of of of of of of of of of of of of	Remarks Slight weight ge Slight weight ge	ম দা ব্য ব্যব্ধ ব্যব্ধ ব্যব্ধ ব্যব্ধ গু ম	Time, Days Days 70 70 70 70 70 70 70 70 70 70 70 70 70	Remperature Temperature Femperature 60 to 75 50 to 100 160 to 75 50 to 100 160 to 75 60 to 75 30 to 100 160 160 60 to 75 30 to 100 160 160 160 160 160 160 160 160 160 160 160 160 160		Exp Phase Liquid Vapor Vapor Vapor Vapor	Type Phase Type Phase Static Liquid Static Liquid Vapor Static Liquid Static Liquid Vapor
ain 6 ain 9	Slight weight ge	ৰৰ	580 580	60 to 75 50 to 100	Liquid	Static	504
		-				leas	sels
						ar (toto otton
ain 6	Slight weight ge	¥	30	160			
038 - 9	Slight weight Id	¥	086	30 to 100			
ain b	Slight weight ge	4	92	60 to 75	Vapor		_
		•	í		1		
ain 6	Slight weight ge	A	30	160			
088 9	Slight weight Id	A	580	30 to 100			
ai n 6	Slight weight g	A	30	60 to 75	Liquid	Static	079-T651
	1						-
ain 6	Slight weight ge	4	30	160			
0.58 9	Slight weight lo	A	580	30 to 100	1		
ain 6	Slight weight ga	¥	30	60 to 75	Vapor		
ain 6	Slight weight ge	¥	30	169			
088 9	Slight weight lo	¥	580	30 to 100	1		_
ain 6	Slight weight ge	¥	30	60 to 75	Liquid	Static	075-T6
	Sugraw Jugits St	4	2	TON			
	T ANATAM ANATIC	4 -		001 01 0C			
0	Clicht woisht 1	<		70 40 100			
ain 6	Slight weight go	-4	30	60 to 75	Vapor		
ain 6	Slight weight ga	¥	30	160			
053 9	Slight weight lo	4	580	30 to 100			
ain 6	Slight weight ga	A	30	60 to 75	Liquid	Static	2002
						1	at inued)
							ninum Alloys
Number	Remarks	Rating	Days	F4	Phase	Type	laterial
Reference			Time,	Temperature,			
				posure	TH		

TABLE 5 (Continued)

81

j.

		Ex	posure	_			
Material	Type	Phase	Temperavure, F	Tize, Days	Rating	Remarka	Reference Number
<u>Austenitic Stain</u> <u>Steels (Continued</u>	less						
304	Static	Vapor	60 to 75 30 to 100	30 580	4 4	Slight weight gain Slight weight gain	\$ \$
			160	e E	4	Slight weight gain	9
	Dynamic		1078 (metal) 1502 (metal)	11	မပ	Impingement of vapor on heated metal	51
316	Static	Liquid	60 to 75 30 to 100 160	30 30 30	444	Slight weight gain Slight weight gain Slight weight gain	φ & φ
		Vapor	60 to 75 30 to 100 160	30 30 30	444	Slight weight gain Slight weight gain Slight weight gain	୰ଡ଼ଡ଼
347	Static	Liquìd	60 to 75 86 30 to 100	30 21 580	444	Slight weight gain No weight change Slight weight gain	50 50
-			152 160	38	44	No weight change Slight weight guin	20 6
•		Vapor	60 to 75 30 to 100 160	38 38 30	ৰৰৰ	Slight weight gain Slight weight gain Slight weight gain	00 0

CONFIDENTIAL

	Beference Number		20	3 S		৩ ক ৩	\$00	13	৩০৩	969
	Вењаткв		~ 65 ft 1b impact test	Impingement of vapor on heated metals		Slight veight guin Slight veight gain Slight veight gain	Slight weight gain No weight change Slight weight gain	Slight weight loss	Slight veight gain Slight veight gain Slight veight gain	Slif weight loss Slight weight gain Slight weight gain
	Rating		4	<u></u> ара		ন্থ ন্থ ন্থ	न्द न्द न्द	4	न्त न्त न्त	ন্ব ন্যা ন্য
	Time, Days		I	F 1	_	R 8 X	. 95 <u>98</u> 95	175	28 29 28 29	
posure	Temperature, F		80	1125 (metal) 1150 (metal)		60 to 75 30 to 100 160	60 to 75 50 to 100 160	167	60 te 75 30 to 100 160	60 to 75 30 to 100 160
揻	Phase		Liquid	Vapor		Liquid	Vapor	Liquid	Liquid	Vapor
	Type	less	Dynamic			Static		Static	Static	
	Material	<u>Austenitic Stain</u> <u>Steels</u> (continued	747		Nonsustenitic Stainless Steal	PELIS-7 No		4M 347	AM 350	

CONFIDENTIAL

ţ

		R	pesure				
Material	Type	Phase	femperature, F	Time, Days	Bating	Remarks	Reference Number
<u>Nomaustenitic</u> Stainless Steels (continued)							
AM 350	Static	Liquid and Vapor*	8	<u>9</u> £	¢4	Metallographic studies indicated definite attack	e
<u>AM 775</u>	Static	Liquid	60 to 75 30 to 100 160 167	580 50 175 05 175	ন ন ৰ ৰ	Slight veight gain Slight veight gain Slight veight gain Slight veight gain	9 6 9 6 U
		Yapor	60 to 75 30 to 100 160	30 30 280 30	* *	Slight weight gain Slight weight gain Slight weight gain	৩ক৩
		Liquid and Vapor*	86	20	<i>р</i> а _	Metallographic stucies indicateô definite attack	e e
410	Static	Liquid	60 to 75 86 30 to 100 152 160	A B 8 8 8 9	ন্ম ন্থ ন্য ন্য	Moderate weight gain indicated; however, rate change data remain < 1 MFY	စ ဗို စ မို စ
		Vapor	60 to 75 30 to 100 160	30 380 30	ৰ ৰ ব		6 6

*Moisture contaminated

26 1-5

CONFIDENTIAL

New 2

1

	Reforence Number	ť	22	ę	20	9	20	•	9	<u>م</u>	o	Q		50		9	o v	•
	Remarks		No obvious reaction	Slight weight gain	No weight change	Slight weight gain	Slight weight change	Slight weight loss	Slight weight gain	Slight weight loss	Slight weight loss	Slight weight gain; no attack noted in	metallographic analysis	~ 65 ft lb impact	test	Slight weight gain	Slight weight gain	
	Bating		4	A	₹	¥	A	¥	A	A	4	4		Ą		¥	4 4	1
	Time, Days	,	e i	30	21	580	21	30	30	580	30	30		1		30	580	>
posure	Temperature, F		Ambient	60 to 75	86	39 to 100	152	160	60 to 75	30 to 100	160	86		86		60 to 75	30 to 100 160	>
ाख	Phase		Vарог	Liquid					Тарог			Liquid and	Vapor*	Liquid		Liquid		
	Type		Static)	Static										Dynamic		Static		
	Material	<u>Nickel and Nicke</u> Base Alloys	Mickel ((99.99 percent	Nickel 200												Nickel 211		

85

CONFIDENTIAL

*Moisture contaminated

1

ł

CONFIDENTIAL

٩

F

		F	posure				
Material	Type	Phase	Temperature, F	Тіше, Даув	Ruting	Remarks	Beference Number
Nickel and Nicke Ease Alloys (continued)	비						
Nickel 211	Static	Vapor	60 to 75 30 to 100 160	30 289 30	ৰৰৰ	Slight weight gain Slight weight loss No veight change	୰ଡ଼ଡ଼
		Liquid and Vapor*	88	30	д	Some surface attack noted; however, weight change nægligible	ف
Inconel X-750	Static	Liquid	60 to 75 30 to 100 160	30 580 30	ब्द द द	Slight veight gain Slight veight gain No veight change	909
		Vapor	60 to 75 30 to 10 160	30 30 30	ৰ ৰ	Slight weight gain Slight weight gain No weight change	৩০৩
		Liquid and Vapor*	86	30	щ	Some attack noted	9
Rene ^{t 4} 1	Static	Liquid	60 to 75 30 to 100 160	30 580 30	ধধ	Slight weight gain Slight weight gain Slight weight gain	७७७

CONFIDENTIAL

Moisture contaminated

pe Phase
apor
quîd
Por
quid ad por*
quid

87 CONFIDENTIAL

*Moisture contaminated

٦

CONFIDENTIAL

e1

5

P L A

ľ

	Beference N-mber		७०७	Q	७०७	696	و	696
	Remarks		Slight veight gain Slight veight gain Slight veight gain	Increased attack noted in comparison to uncontaminated exposure	Slight weight gain Slight weight gain Slight weight loss	Slight weight gain Slight weight gain Slight weight loss	Increased attack noted in comparison to uncontaminated exposure	Slight weight gain Slight weight gain Slight weight loss
	Rating		ৰ ৰ ৰ	ра 	*	* * *	д	ৰৰৰ
	Time, Days		30 30 30	₽.	€ 8.85 €	30 28 28 90	Ŷ	36 580 36
posure	Temperature, F		60 to 75 30 to 100 160	86	60 to 75 30 to 100 160	60 to 75 30 to 160 160	86	60 to 75 30 to 100 160
THE	Phase		Vapor	Liquid and Vapor*	biupuid	Тарог	}≟quid and Vapor*	Liquid
	Type	d.)	Static		Static			Static
	Material	Copper and Monel Allovs (centinge	Monel 400		Monel 402			Monel R-405

CONFIDENTIAL

Moisture contaminated

17

1111日本には、1111日本には、1111日本になる。1111日本には、

		Er	posure				
. Material	Type	Phase	Femperature, F	Тіше, Дауғ	Bating	Remarks	Reference Number
Copper and Monel Alloy3 (continued	- (ř						
Konel B-405	Static	Vapor	60 to 75 30 to 100 160	589. 20 20 20	ৰৰৰ	Slight veight gain Slight veight gain Slight veight gain	600
		Liquid and Vapor*	&	30	£	Mincreased attack noted in comparison to uncontaminated exposure	` ¢
Monel K-500	Static	Liquid	60 to 75 30 to 100 160	30 30 30	ন্দ্ৰ কা কা	Slight weight gain Slight weight gain Slight weight gain	600
		Vapor	60 to 75 30 to 100 160	30 30 30	द्यद	Slight weight gain Slight weight gain Slight weight gain	७७७
		Liquid and Vapor*	86	30	Щ.	Increased attack acced in comparison to uncontaminated exposure	Ŷ
Monel 501	Static	Liquid	60 to 75 50 to 100 160	30 580 30	ৰ ব ৰ	Moderate weight gain Slight weight gain Slight weight gain	(فریم فر

CONFIDENTIAL

*Moisture contaminated

1

Ē

		E	posure				
Material	Type	Phase	Temperature. F	Time, Days	Rating	Remarks	Reference Number
Copper and Monel Alloya (continue	(P						
Monel 501	Static	Vapor	60 to 75 30 to 100 160	30 30 30	ৰ ব ব	Moderate weight gain Slight weight gain Slight weight gain	৩কাত
		Liquid and Vapor*	86	30	¢۵	Increased attack noted in comparison to uncontaminated exposure	Q
Monel 505	Static	Liquid	60 to 75 30 to 100 160	30 380 30	4 4 4	Slight weight gain Slight weight gain Slight weight loss	999
		Vapor	60 to 75 30 to 100 160	30 38 30 30	444	Slight weight gain Slight weight gain No weight change	مەم
		Liquid and Vapor*	86	30	£۵	Increased attack noted in comparison to uncontaminated exposure	Q
Молеl 507	Static	Liquid	60 to 75 30 to 100 160	30 580 30	ৰৰৰ	Slight weight gain Slight weight gain Moderate weight gain	6, 9 Ci
*Moisture contam	linated						

90 Confidential

CONFIDENTIAL

Ì

	Reference Number		60	w w	9	ę	50	¢	S C	9	9	¢.	٥	9		<u> </u>		52
	i Remarks		Slight weight gain	Slight weight gain	Heavy attack noved	Slight weight gain	Slight weight change	Slight weight gain	Slight weight change	Slight weight gain	Slight weight gain	Slight weight gain	Slight weight gain	Increased attack	noted in comparison	to uncontaminated	erposure	Slight weight gain
	Bating		4	4 4	ф	4	A	¥	A	A	A	A	¥	Æ				Å
	Time, Days		30 Fea	96 96	30	<u>9</u> £	18	580	21	30	30	580	30	30				7
pollure	Temperature, F		60 to 75	JU 50 100	86	60 to 75	86	30 to 100	152	160	60 to 75	50 to 100	160	* d	Ambient			
Ex	Phase		Vapor		Liquid and Vapor*	Liquid	•				Vapor			Liquid	and	Vapor*		Vapor
	Type	q)	Static			Static												Static
	Material	Copper and Monel Alloys (continue	Monel 507			ETP Copper												Copper (soft)

CONFIDENTIAL

*Moisture contaminated

TABLE 6 (Continued)

펿	posure				
Phase	Temperature, F	Time, Days	Rating	Remarks	Reference Number
	70	6	4		c u
 DIBPL	152	51	⊀ ⊀	Silgar weight gain Increased weight gain but < 1 MPY	0.00
Liquid	86	1 V	A	Complete reaction (not violent)	50
Vapor	Ambient	H	1	Reacted to form compound	25
Vapor	Ambient	ri	₽	Some surface reaction	52
Vapor	Ambieut	1	Å	Weight increased 2 percent	52
Liquid	86 152	22	4 4	Slight weight change Slight weight change	50 50
 0		I	¥	~ 65 ft lb impact test	50
Liquid	86	I >	A	Complete reaction (not violent)	50
Vayor	Ambient	~	Ĥ	Weight increased 2.5 percent	52

CONFIDENTIAL

1

TABLE 6

-
ъ
۵,
- ġ
i d
-c-
_
0
Ö

		₽ ₩	rposure				
Material	Type	Phase	Temperature, F	Time, Days	Rating	Remarks	Beference Number
<u>Miscellaneous</u> <u>Metals</u> (continue	d)						
Titanium	Static	Liquid	86	- - -	I	No apparent change	50
Armalon A (aluminum- coated Teflon)	Static	Vapor	Ambîsat	8 houre	Р.	Weight increased 4 percent; reaction with Al coating	52
Armalon G (gold-coated Teflon)	Static	Vapor	Ambient	8 hours	-4	Weight increased 4 percent; no chem- ical reaction	52
Asbestos Cloth (Specification SS-C-466)	Static	Vapor	Ambient	36 seconds	Â	Ignited	52
Asbestos Gasket Neo- prene filled (MIL-A-7021)	Static	Vapor	Ambient	30 seconds	A	Ignited	52
Buna 0-Ring (MII-5516)	Static	Vapor	Ambient	~	A	Weight increased 103 percent; exploded with friction and/or shock	25
Calcium Sulfate (Drierite)	Static	Vapor	Ambient .	8 hours	¥	Absorbed CIF5 with no visible reaction	52

93 CONFIDENTIAL

CONFIDENTIAL

ŧ.

			10.7	ntinueaj			
		[XH	po su re				
Material	Type	Phase	Temperature, F	Time, Days	Rating	Remarks	Reference Number
<u>Miscellaneous</u> <u>Metals (continue</u>	q)						-
Carbon (spectroscopic grade)	Static	Liquid	98	1 V	<u>م</u>	No chemical attack; crumbled to powder	50
CCl ₄ -CHCl ₅ (constant temperature bath fluid)	Static	Liquid	Ambient	I	U	Potential violent reaction when ClF ₅ spilled in CCl ₄ - CHCl ₅ bath	Q
Dirt (red)	Static	Vapor	Ambient	30 seconds	A	Reaction and fuming	52
Fluorocarbon- Black	Static	Vapor	Ambient	7	£А	Weight increased 4 percent; negative results at 2 ft-lb shock	52
Fluorocarbon- Green	Static	Vapor	Ambient	t~	<u>م</u>	Weight increased 6 percent; negative results at 2 ft-lb shock	50
Fluorocarbon- Gold	Static	Vapor	Ambient	7	щ	Weight increased 5 percent; negative results at 2 ft-lb shock	50

Ś

1 A A A A A

TABLE

	-		-							
	Reference Number		13	Ŷ	ų	0	.	52	\$	20
	Remarks		Reaction at glass	surrace; extensive reaction and Cl0 ₂ formation		no reaction observed when glass and CL'5 is dry	Erĉensive reaction and Cl02 formation	Inconclusive results	No apparent reaction when CIF5 spilled into FC-75 bath	No chemical attack; crumbled to powder
	Rating		v	ų		4	υ		4	A
	Time, Days		£	hours 30 minutes		Several	30 minutes	16 hours		~ V
posure	Tempera ture, F		Ambient			005 03 CC-	Ambient	Ambient	Ambient	86
1 H	Phase		Liquid	Liquid and	Vapor	Liquid and Vapor	Liquid and Vapor	Vapor	Liguid	Liquid
	Type		Static		:	Static	Static	Static	Static	Static
	Materia]	<u>Miscellaneous</u> <u>Metals</u> (continue	Glass-Pyrex	(dry)		Glass-Quartz (dry)	Glass-Vycor (dry)	Fluorocarbon 0il (FS5)	Fluorocarbon Oil - FC-75 (constant temperature bath fluid)	Graphite (spectroscopic grade)

TABIE 6 (Continued)

17

¥

l

· P · ·

r

P5 CONFIDENTIAL

odicy	educa	a,	sure				
	Type	Phase	Temperature, F	Time, Days	Rating	Renarks	Reference Number
inue	(P						
tant e)	Static	Liquid	Ambient	ł	ç	Potential violent reaction when ClF ₅ spilled in CCl ₄ bath	ý
et)	Static	Liquid	86 Ambient	130minutes	A	Moderate weight gain Some absorption of CIF5	30
		Liquid and Vapor	30 to 160	580 580	4	Some absorption of CIF ₅	6, 9
	Static	Liquid	30 to 100	580	A	Moderate weight gain	6
	Static	Liquid	Ambient	30 minutes	A	Some absorption of CIF5	٤
	Static	Liquid	Ambient	30 minutes	A	Swelled, frayed, and tacky	£
e ct	Static	Vapor	Ambient	7	A	Decomposed, foamed, soft and powdery	52
8	Static	Liquid	Ambient	 I	A	Reacts readily	16
			Vapor	16 hours	A	Decemposed; became a light liquid	52

CONFIDENTIAL

	Reference Number		25	52	52	ю	m	6,9	6,9	50
	Remarks		Potential use as spectrophotumetric window	ресопровед	Window surface deposit rendered it useless as optical window	No apparent change	No apparent change	Moderate weight gain	Moderate weight gain	No apparent change
	Rating		A	â	A	¥.	¥ 8	4	¥	¥
	Time, Days		CV CV	X	minut	30 5 minute:	30 minute	30 580	30 to 580	- I ->
postre	Temperature, F		Ambient	Ambient	Ambient	Ambient	Ambient	30 to 160	30 to 160	86
Ecp	Phase		Vapor	Vapor	Vapor	Liquid	Liquid	Liquid and Vapor	Liquid and Vapor	Liquid
	Type	ج (Static	Static	Static	Static	Static	Static	Static	
	Material	<u>Miscellaneous</u> <u>Hetala</u> (continue	Lithium Fluoride Window	Mylar Sheet	Sodium Chloride Window	Teflon	Teflon 100	Teflon FEP	Teflon TFE	

CONFIDENTIAL

z٦

TABIE 6 (Concluded)

	Reference Number	20	25	52	9	32	52	κ	52
	Remarks	Completely reacted when impacted by 410 CRES at ~ 65 ft-1b in ClF5	Moderate weight gain	Moderate weight gain	Diffusion of liquid through tube	Diffusion of liquid through tube	Ignited	Swelled, partial breakdown	Melted and flowed during tests
	Rating	A	¥	A	U	C	A	A	A
	Time, Days	I	2	7	30	۲~	30 second	30 minute	~
osure	Temperature, F	86	Ambient	Ambient	Ambient	Ambient	Ambiert	Ambient	Ambient
[X]	Phase	Liquid	Vapor	Vapor	Liquid	Vapor	Vapor	Liquid	Vapor
	Type	d) Dynamic	Static	Static	Static		Static	Static	Static
	Material	<u>Miscellaneous</u> <u>Metals</u> (continue Teflon TFE	Teflon Gasket (0-75063)	Teflon Sheet	Teflon Tube		Transite	Viton A (carbou filled)	Viton A Gasket

CONFIDENTIAL

°.

98

3.2 PREPARATION OF MATERIALS

All components of a chlorine pentafluoride handling and/or storage system must be properly prepared prior to installation. In addition, the assembled system must be carefully dried and passivated. These procedures render all surfaces to be exposed to the propellant chemically inert.

Items such as values, pumps, etc., cannot be cleaned in the assembled state because it is very difficult to remove all contaminants that might be present. Consequently, the cleaning of these items must be accomplished before the component parts are assembled.

The preparation of materials generally consists of degreasing, descaling, passivating, and drying. The cleaning solutions utilized during these operations shall be applied by immersing, epraying, circulating, or any other manner, as long as the surfaces to be cleaned are completely wetted in the solutions. Any component which can trap or retain liquids shall be drained or emptied between applications of different cleaning solutions.

All solutions shall be made with distilled, deionized, or clean tap water and all chemicals shall be of chemically pure grade or better. The water shall be filtered through a 40-micron nominal-size filter.

3.2.1 Degreasing

Components fabricated of stainless steel, copper, and aluminum alloys can be degreased by cold flushing or vapor degreasing with trichloroethylene, or by flushing with a mild alkaline solution containing from 5 to 7 ounces of Turco #4090* (or

*Turco #4090 is furnished by Turco Products, Inc., 6135 So. Central Avenue, Los Angelos, California.

equivalent) per gallon of water at 140 to 160 F. The application of the mild alkaline solution shall be followed by a thorough water rinse.

Nonmetallic components, such as valve-stem packings fabricated of Teflon, can be degreased by immersion or scrubbing with the mild alkaline solution previously described, followed by a thorough water rinse.

Items such as nonmetallic components or simple components fabricated of machine metal stock, which are not to be cleaned any further, shall be dried by flushing with dry, hydrocarbon-free, filtered nitrogen gas or by heating in an oven at 140 to 160 F.

3.2.2 Descaling

Newly fabricated or reworked components which have scale resulting from welding or heat treatment, or impurities resulting from casting or forging, shall be descaled. Descaling solutions should not be used after precision machining unless the finished surfaces are protected.

The descaling of stainless-steel components is accomplished as follows:

- Etch at room temperature for a period of no longer than 60 minutes with an aqueous solution containing from 3 to 5 weight percent technical grade hydrofluoric acid and from 15 to 20 weight percent technical grade nitric acid.
- 2. Rinse thoroughly with water to remove all traces of the descaling solution.

NOTE: If the components are to be passivated immediately after descaling, they need not be dried. Otherwise, the components may be dried by purging with dry, hydrocarbon-free filtered nitrogen gas or by heating in an oven at 140 to 160 F.

Components fabricated of copper can be descaled as follows:

- Descale with an aqueous solution containing approxmately 20 percent (by volume) technical grade hydrochloric acid, at room temperature, until the surfaces are bright and free of oxidation.
- 2. Rinse with water to remove all traces of the descaling solution.

NOTE: After being descaled, the components require no further chemical treatment. They should be dried by purging with dry, hydrocarbonfree filtered nitrogen gas or by heating in an oven at 140 to 160 F.

The descaling procedure for components fabricated of aluminum alloys is as follows:

- 1. Clean with Turco Snut-Go* solution (1 lb/gallon of water), or an approved equivalent cleaner, until the surfaces are visibly clean and shiny.
- 2. Rinse with water to remove all traces of the acid solution. If the components are to be passivated immediately after descaling, they need not be dried. Otherwise, the components may be dried by purging with dry, hydrocarbon-free, filtered nitrogen gas or by heating in an oven at 140 to 160 F.

3.2.3 Passivating

The passivation procedure for components fabricated of stainless steel is as follows:

 Immerse for a minimum period of 30 minutes, at room temperature, in an aqueous solution containing from 45 to 55 percent (by weight) technical grade nitric acid.

*Turco Smut-Go is a chromic acid cleaner furnished by the Turco Products, Inc., 6135 So. Central Avenue, Los Angeles, California.

- 2. Rinse with water to remove all traces of the passivating solution.
- 3. Dry by purging with dry, hydrocarbon-free, filtered nitrogen gas or by heating in an oven at 140 to 160 F.

NOTE: Acid passivation of components having polished or lapped surfaces may be ommitted if the finished surfaces cannot be conveniently protected from the acid solution.

Components fabricated of aluminum alloys can be passivated as follows:

- Immerse for a minimum period of 1 hour, at room temperature, in an aqueous solution containing approximately 43 percent (by weight) technical grade nitric acid.
- 2. Rinse thoroughly with water to remove all traces of the passivating solution.
- 3. Dry by purging with dry, hydrocarbon-free, filtered nitrogen gas, or by heating in an oven at 140 to 160 F.

3.2.4 Handling

Items that have been prepared for chlorine pentafluoride service shall be handled, stored, or packaged in a manner to prevent recontamination. Large components such as valves, piping sections, tanks, etc., should have all openings copped with clean, compatible materials. Small items can be sealed in clean plastic bags.

3.2.5 System Passivation

After the chlorine pentafluoride system has been assembled and leak-checked, it is necessary to propellant-passivate the system. This is accomplished by introducing a small

amount of chlorine pentafluoride vapor into the system. The gaseous chlorine pentafluoride not only reacts with any residual contaminating material, but also slowly attacks the containing metal surfaces forming an inert metal-fluoride film.

The passivation of chlorine pentafluoride systems can be accomplished as follows:

- 1.. Evacuate the system by means of a high-capacity vacuum pump for at least 2 hours to remove any volatile contaminant or water vapor that might be present.
- 2. Place a slight positive pressure in the system using dry, hydrocarbon-free nitrogen gas.
- 3. Disconnect the vacuum pump, and cap and seal the open system connection.
- 4. Introduce gaseous chlorine pentafluoride slowly into the system until a pressure of approximately 20 to 25 psig is obtained.
- After the gaseous chlorine pentafluoride has been in the system for approximately 10 minutes, bleed the system slowly to ambient pressure.
- 6. Introduce gaseous chlorine pentafluoride into the system until a pressure of approximately 20 to 25 psig is again obtained.
- 7. After the gaseous chlorine pentafluoride havi been in the system for approximately 6 hours, bleed the system slowly to a pressure slightly above ambient.

After completion of the seven preceding steps, the system is considered passivated and ready to accept liquid chlorine pentafluoride. Precautions must be taken to prevent the entry of

moisture into the system. This can be accomplished by using dry pressurizing gas and by maintaining a positive pressure in the system at all times.

NOTE: Although it is preferable to use gaseous ClF_5 as the passivating agent, it has been demonstrated that gaseous ClF_5 is effective us an alternative passivating material, if desired. Fluorine gas has also been used as a passivating agent; however, its effectiveness is apparently less than that of ClF_5 or ClF_3 .

SECTION 4: HAZARDS

4.1 TOXICITY

4.1.1 Vapor Inhalation

Chlorine pentafluoride is a highly toxic compound and inhalation of even dilute concentrations must be avoided. Results of toxicological range studies with animals at Rocketdyne (Ref. 54) have shown a marked qualitative similarity of chlorine pentafluoride to chlorine trifluoride (Ref. 55 and 56) with respect to mode of attack and symptomatology. It was noted during these studies, however, than because of the apparent greater reactivity of chlorine pentafluoride with moisture in the air, the end amount of chlorine pentafluoride reaching the animal was considerably less than that of the chlorine trifluoride using the same initial concentrations.

Until more systematic and definitive studies have been conducted, the toxicity level presently utilized is that previously established for chlorine trifluoride (Ref. 57). This level is expressed as a threshold limit value (TLV) of 0.1 ppm. The TLV value represents the average concentration over a normal work day to which the average human can be safely exposed on a daily basis without adverse effects.

The odor threshold for chlorine pentafluoride vapors is very low, but has not been established reliably. However, personnel have detected the presence of chlorine pentafluoride vapors for short periods without suffering any apparent ill effects. Although the propellant odor has been used as a warning of potential danger with immediate personnel protective measures (evacuation of the hazard area and/or the use of self-contained or filtered breathing air) required, it is recommended that vapor detection devices be utilized in conjunction with an alarm system.

If an individual is exposed to strong vapor concentrations of chlorine pentafluoride, he should hold his breath, if possible, until fresh air is reached or adequate breathing equipment is put on. If the person must breathe the vapor, breathing should be as shallow as possible. The exposed individual should be placed in the care of an authorized physician as soon as possible; in the meantime, first-aid treatment can be administered as directed by the local medical authority. For this purpose, it is recommended that personnel assigned to propellant handling and storage areas be properly trained in first-aid techniques. These techniques must be established only by the responsible medical authority.

Although symptoms of chlorine pentafluoride exposure have not been completely characterized, preliminary data indicate they are similar to those observed from chlorine trifluoride exposure. Thus, until additional toxicological studies have been conducted with ClF_5 , the data available on ClF_3 should be utilized as a guide. The symptoms of ClF₃ inhalation will vary according to vapor concentration, duration of exposure, and the individual. Exposure to olfactory detectable concentrations for short periods of time usually results in watering of the eyes, dry throat, chest pain, and sometimes coughing. Exposure to larger concentrations or prolonged exposure will result in gasping for breath, swelling of the eyes and eyelids, cloudiness of the cornea, lachrimation, severe salivation, coughing, breathing difficulty, and possibly convulsions or vomiting. In practice, fatal concentrations would be so irritating to the eyes and respiratory tract as to make the area intolerable. However, exposure to concentrations of 50 ppm or more of chlorine trifluoride for 15 to 30 minutes may result in subsequent death.

4.1.2 Cutaneous Exposure

Chlorine pentafluoride is extremely corrosive and any contact of the propellant with living tissue will result in severe chemica) burns. These deep, painful burns can cause serious tissue damage -especially in the eyes. If a person has suffered skin or eye exposure to liquid or vaporized chlorine pentafluoride, the exposed areas should be washed immediately with large quantities of water for a period of at least 15 minutes. A continuous flow of water should not exceed 5 minutes and should be followed by a short rest interval. The affected individual should be placed in the care of an authorized physician as soon as possible.

4.2 FIRE AND EXPLOSIVE HAZARDS

Preliminary detonation sensitivity tests (Ref. 3) indicate that ClF_5 is insensitive to initiation and will not propagate a detonation. Impact sensitivity tests with a modified JANAF dropweight tester in dry nitrogen and dry air at liquid temperatures to 0 F showed no evidence of detonation up to 100 in.-1b, the limit of the tester. A modified cap-in-pipe test in 1/2-inch CRES tubing at 0 F resulted in no evidence of propagation of a detonation initiated by a 50-gram Compound C charge and blasting cap.

Additional tests (Ref. 6) with the U-tube apparatus demonstrated the insensitive nature of ClF_5 to adiabatic compression stimulus over a variety of selected "worst conditions" (both air and water contaminated). Two detonation propagation tests in 1-inch-OD GRES tubes provided further verification that liquid ClF_5 will not propagate a detonation.

The insensitive nature of ClF_5 was also confirmed by a standard Trauzl block test (Ref. 7).

The greatest fire and explosion hazard relating to the utilization of this oxidizer is related to its extreme reactivity with a variety of materials commonly found in propellant handling areas and systems. Although r · .ammable in air, its oxidizing potential is sufficiently strong to ignite and support combustion with fuels, many common materials of construction, solvents, organic contaminants and residues, etc. As indicated in the section on chemical properties, chlorine pentafluoride even reacts vigorously with water.

The energy release generated by these reactions is often large enough to initiate burning of other normally compatible materials (such as metal) with the exidizer. Explosions involving shlerine pentafluoride are usually attributed to the rapid energy releases and attendant pressure buildup in confined systems.

SECTION 5: SAFETY CRITERIA

5.1 EAZARD PREVENTION

As described in the Hazards Section, spills and leakage of chlorine pentafluoride can result in extreme hazards to both personnel and facilities. The best possible means of avoiding these hazards is elimination or minimization of the potential cause factors. Effective reduction of leakage, spills, and other potentially hazardous situations can be best accomplished by the use of properly designed equipment and thoroughly trained personnel.

5.1.1 System Integrity

The importance of the design integrity of the propellant's storage, transfer, and handling system cannot be overemphasized. The systems should be reliable, operationally flexible, and easy to maintain. Some of the suggested design criteria that should be incorporated in the system are as follows:

- 1. Only materials of construction which are definitely known to be compatible with the oridizer shall be employed.
- 2. The system shall be designed and operated in such a manner as to prevent contamination of the system with moisture and any other known reactive materials.
- 3. The number of mechanical joints shall be reduced to a minimum, thus reducing the probability of propellant laakage.

- 4. The system shall be designed to safely withstand the maximum operating pressure.
- 5. The transfer lines shall be free of liquid traps.
- 6. An inert-gas (moisture free) system must be provided to purge the transfer lines without the necessity of dumping the residual propellant or disconnecting any system joints.
- 7. The system components must be reliable, compatible with the exidizer, and properly serviced (cleaved and passivated).
- 8. The chlorine pontafluoride vents should be ducted together and connected to a vapor scrubber or high vent stack.
- 9. Sufficient remotely actuated control equipment must be provided to isolate portions of the system during emergencies or components replacement.

The continual observation of an operational system for possible malfunctions can prevent serious propellant spills. The leakage of chlorine pentafluoride is not always apparent because its vapors are colorless. However, a sensitive halogen detector can be used effectively to check the system joints because a small propellant leak yields high local vapor concentrations. Thus, if a small leak is detected, corrective action pust be taken as soon as possible.

5.1.2 Trained Personnel

Properly trained personnel are required to handle chlorine pentafluoride safely. Operating personnel should be thoroughly familiar with the following:

- 1. The properties of chlorine pentafluoride
- 2. Operation of the transfer and storage system
- 3. Toxicity and physiological effects of the propellant
- 4. Operation and use of safety equipment
- 5. Fire and spill provention techniques
- 6. Fire and spill control measures
- 7. Disposal and decontamination techniques
- 8. Local operating procedures and regulations
- 9. First sid techniques

No person should be allowed to handle chlorine pentafluoride unless thoroughly familiar with the previously listed items and confident that the propellant can be handled safely with the equipment and facilities available. In addition, all operations should be controlled by a procedures checklist, which has been prepared and thoroughly checked by personnel most familiar with the potential problem areas.

5.2 HAZARD CONTROL

Because the probability of experiencing a propellant leak or spill at some period in its utilization is always present, personnel should be thoroughly educated as to the potential effects and their control. Although detailed hazard classification (cause and effect) and control studies have not been performed with chlorine pentafluoride, the general philosophy used thus far in its handling is identical to that suggested for chlorine trifluoride.

In the event of chlorine pentafluoride spillage or fire, all personnel should report to predesignated safe areas or emergency operating posts (usually positive pressure shelters and/or upwind areas). Immediate evaluation of the hazardous situation is necessary so that appropriate control action can be initiated in the shortest possible time.

The time period between the inception of the hazardous situation and initiation of control action shall be reduced to a minimum. This can be accomplished through proper planning, training, and organization. The following items shall be considered in the administration of the storage and handling areas:

- 1. Safe areas and ovacuation routes shall be pre-established t'wrough cognizance of local meteorology conditions.
- 2. Only authorized personnel shall be allowed to enter storage and handling areas.
- 3. A minimum of two operating personnel shall wear protective clothing and equipment during propellant handling operations.
- 4. Periodic drills shall be performed to ensure personnel proficiency during emergency operations.

5.2.1 Spill Control

A propellant spill can be most efficiently controlled by performing the following steps chronologically:

- 1. Stop the propellant handling operations.
- 2. Isolate the propellant tanks from the transfer lines by closing the necessary valves (by remote control if possible).
- 3. Locate the source of spill.
- 4. Isolate the affected corponents by closing the necessary valves.
- 5. Dispose of the spilled propellant.

The performance of the first four steps listed previously should be automatic and can be performed in a very short time.

The disposition of the spilled propellant should not be too difficult, especially when propellant handling is performed only during satisfactory weather conditions and the first four steps listed previously are quickly executed. The disposition method depends greatly on the quantity of propellant spilled, prevailing weather conditions, location of storage and/or handling area, etc. Therefore, the discussion presented herein will be limited to general criteria which will be applicable to most situations.

Chlorine pentafluoride spills can be best controlled by allowing the propellant to vaporize. In this case, a large amount of propellant would initially vaporize (flash) resulting in the cooling of the residual propellant. Shortly thereafter, steady-state

額

vaporization is experienced. It should be noted that a large amount of toxic vapors are generated over a long period of time, thus dictating the need of performing propellant handling operations during satisfactory weather conditions.

As an alternate method, the spilled propellant can be deluged with large quantities of water. In this case, however, the water reacts with the propellant forming hydrofluoric acid and generating large quantities of energy. This method is not recommended for the following reasons:

- 1. A large quantity of hydrofluoric acid is formed which might be difficult to dispose of subsequently because of water pollution problems.
- 2. The water might react explosively with the propellant.
- 3. The energy liberated by the reaction would cause rapid vaporization of the residual propellant which can result in prohibitive vapor concentrations.

After the spill is controlled, the entire area must be thoroughly decontaminated. Decontamination techniques are presented in another section of this document.

5.2.2 Fire Control

Chlorine pentafluoride fires result in the generation of intense heat for a short period of time. Because the propellant fires cannot be extinguished efficiently, if at all, the fire control techniques are based on preventing facility damage. This is accomplished by deluging the area with copious quantities of water. Fog-type water injection nozzles are particularly suitable for this application.

The reduction or prevention of facility damage resulting from fires can be attained when the following items are considered in the design, fabrication, and operation of the storage area:

- 1. The facility must be designed as fireproof as possible.
- 2. The area must be maintained clean, uncluttered, and free from combustible materials.
- 3. The facility must be equipped with a properly designed water-deluge system, preferably of the fog type.
- 4. The storage tanks must be diked to limit the potential propellant burning zone.

It is emphasized again that the most important way of preventing facility damage is by preventing chlorine pentafluoride leaks and spills.

5.3 SAFETY EQUIPMENT

The toxic and extremely reactive properties of chlorine pentafluoride dictate the need for adequate safety equipment to protect operating personnel and facilities. It should be recognized that the type of personal safety equipment recommended for a given situation must be consistent with the potential hazard extant, e.g., liquid impingement, vapor inbalation, etc. The category of safety clothing required for a given job must be specified at the time it is assigned. Preferably, written job instructions should be given to ensure adequate communication and agreement between operating and responsible safety personnel.

5.3.1 Facility Safety Equipment

Equipment for facility protection shall consist of a water deluge system (preferably of the fog type), portable fire extinguishers, and fire hoses. This equipment shall be strategically located and easily accessible. Other facility items to be provided for personnel protection include safety showers, eye wash fountains, and appropriately located first-aid kits.

All operating personnel shall be thoroughly familiar with the location and operation of each piece of safety equipment. The operating condition of the equipment must be verified periodically.

5.5.2 <u>Personal Protective Equipment</u>

All personnel in the chlorine pentafluoride handling and storage areas shall wear flame-retardant clothing at all times. In addition, all personnel performing propellant transfer operations shall wear fully protective personal equipment. If the operations are performed remotely, it is still recommended that at least two operating personnel be fully protected to facilitate proper spill and fire control. A chlorine pentafluoride vapor detector should be used to determine vapor concentration present in the area prior to removal of protective equipment.

The following items of personal protective equipment, or their equivalent, have been used with satisfactory results:

- 1. Flame retardant coveralls (worn as an inner garment)
- Apron (cpen back) or rocket fuel handler's coverail, 406F-116, DuPont Armalon (choice of outer covering dependent on quantity of propellant involved)
- 3. Neoprene-type gloves

- 4. Hood, 406F-116 DuPont Armalon with 0.080-inch methyl methacrylate window
- 5. Neoprene-type boots
- 6. Supplied Air Breathing Apparatus (SABA) or airline respirator

This equipment must be maintained clean and in good operating order. A contaminated suit, for example, can become a definite safety hazard.

NOTE: The preceding equipment recommendations are based only on their commercial availability and previous history of use. Safety equipment specifications and limitations should be checked with the manufacturer before use. In general, protective clothing impermeable to fluorine compounds 1s acceptable, although under certain conditions these materials may react.

5.4 DECONTAMINATION

 Decontamination involves the removal of chlorine pentafluoride, hydrofluoric acid, and other fluorides following a propellant spill or fire, and the deactivation of facility equipment previously exposed to chlorine pentafluoride. Decontamination procedures are employed to protect both personnel and equipment. Personnel performing these operations shall wear the full protoctive equipment described in the Safety Equipment section.

5.4.1 Area Decontamination

The contaminants remaining from a chlorine pentafluoride spill or fire are hydrofluoric acid, solid fluorides, and in some cases, liquid chlorine pentafluoride. Because these fluorine compounds are corrosive and toxic, they must be removed. This can be accomplished by washing the area with copious quantities of water. The drained water in turn becomes contaminated and must be disposed of as stipulated by local water pollution control regulations.

5.4.2 Equipment Decontamination

The removal of a component from a chlorine pentafluoride system must be preceded by a thorough inert gas (dry) purge to remove any residual propellant. If the removed component is to be reused without service or modification, no further decontamination operations are required; otherwise, the removed component is purged thoroughly with water and dried by purging it with inert gas.

All components removed from a chlorine pentafluoride system must be labeled clearly, describing the extent of decontamination and operational status.

۲.

Any component or system exposed to the atmosphere, water, cleaning solvent, etc. must undergo cleaning and passivation (described previously) before its reuse with chlorine pentafluoride. In addition, as shown in the Ma⁺ 'als, section, the prolonged contact of chlorine pentaflue is in fluoride films with even small amounts of moisture will scale time excessive corrosion of normally compatible metals and potentially hazardous situations.

SECTION 6: LOGISTICS

6,1 PRODUCTION

.4

1

北京和国にアカル市に自己的などのためためたけにの市場に回したのである

6.1.1 Synthesis Techniques

The first synthesis of ClF_5 was accomplished by reaction of a fluorine, chlorine, and nitrogen mixture in glow-discharge apparatus at -80 C (Ref. 1). It was soon found that only chlorine and fluorine or fluorine and chlorine trifluoride were necessary and sufficient for this preparation; however, the glow-discharge technique did not provide adequate amounts for characterization. Rocketdyng investigators also found that ClF_5 could be prepared through a variety of techniques (Ref. 3). Three of these which were used succession are described below.

Direct combination of chlorine and fluorine at temperatures up to 285 C gives ClF_5 at moderate pressures (500 to 1500 psi). This reaction probably proceeds in a stepwise process in the sequence:

$$\frac{1/2 \text{ Cl}_2 + 1/2 \text{ F}_2 \longrightarrow \text{ClF}}{\text{ClF} + \text{F}_2 \longrightarrow \text{ClF}_3}$$
$$\frac{\text{ClF}_3 + \text{F}_2 \longrightarrow \text{ClF}_5}{\text{ClF}_5}$$

As is apparent from this reaction sequence, ClF_5 can also be prepared from the reaction of ClF_3 with F_2 .

On the laboratory scale, a convenient method for preparing ClF_5 is through the fluorination of an alkali-metal tetrafluorochlorate, $MClF_4$. Cesium tetrafluorochlorate has been preferred because of favorable equilibrium and handling properties when working on a laboratory scale.

 $CBC1F_4 + F_2 \longrightarrow CsF + C1F_5$

This reaction has several advantages. Only one condensable gaseous product is produced, making purification relatively simple. The $CsClF_{L}$ can also be regenerated with ClF_{3} by the reaction:

$$CaF + C1F_3 = CaC1F_4$$

In addition to these initial techniques, electrochemical synthesis of ClF_5 has been demonstrated (Ref. 58 and 59). During these studies, both the HF-NaF-ClF₃ system and the HF-NaF-Cl₂ (gas) system were used in the preparation of ClF_5 .

Although detailed information on the present production techniques of various facilities is restricted, the methods primarily utilized are the direct combination of chlorine or chlorine trifluoride with fluorine (and modifications thereof). The development and operation of an initial pilot plant, employing a 12 lb/day continuous-flow process, has been described by Rocketdyne (Ref. 6).

6.1.2 Availability

Thus far, three different production facilities, Aerojet-General Corporation, Allied Chemical Corporation, and Rocketdyne, are presently capable of supplying ClF_5 in quantities of several thousand pounds. It is assumed that all three facilities will continue to supply ClF_5 in the future at rates equivalent to the demands. However, it is apparent that future requirements will necessitate expansion of all present facilities.

6.1.3 Cost

The initial cost (~ \$200 to \$400 per pound) of high-purity ClF_5 reflected the cost of process research and development. During subsequent procurements of larger quantities, the cost was reduced \$20 to \$30 per pound. An appraisal of the production process indicates that the eventually obtainable cost of ClF_5

will be comparable to that of liquid fluorine at the same usage rates. (Potential cost\of liquid fluorine at high usage rates has been quoted as \sim \$1.00 per pound.) The reduction of the current cost to that projected level will be a direct function of the demand. Cost quotations for a particular quantity over a defined period should be obtained from the suppliers.

6.1.4 Propellant Specification

Although there is no present government specification for ClF_5 , a formal specification is being prepared by the Air Force Rocket Propulsion Laboratory, Edwards, California. This specification will designate a propellant grade purity of 99+ weight percent ClF_5 for procurement purposes.

6.1.5 <u>Chemical Analysis</u>

÷.

10043

The complete chemical analysis of ClF_5 is presently conducted at Rocketdyne with a combination of two techniques: vapor phase chromatography and infrared spectrophotometry. The combination of these techniques assays for F_2 , HF, ClF, CF_4 , SiF_4 , SF_6 , FClO_3 , Cl_2 , FClO_2 , ClO_2 , and ClF_3 present in ClF_5 . The procedure is described in the following paragraphs.

6.1.5.1 <u>Chromatographić Analysis</u>. A 2- to 5-gram liquid sample of ClF₅ is completely vaporized into a large-volume cylinder attached to the manifold of a custom-built chromatograph (Ref. 60) that has been thoroughly passivated with ClF₃. Sufficient vapor is admitted into the chromatograph to develop 400 to 800 mm Hg pressure in a 5- or 10-cc sample loop.

The vapor is separated on a Halocarbon gel column of 50 percent 4-11v Halocarbon oil on 40-60 mesh low-density Kel-F molding powder packed in 30 feet of 3/16-in a-diameter stainless-steel tubing. The components are eluted from the column in the following order: $(0_2 + N_2 + F_2 + CF_4 + SiF_4)$, SF_6 , CIF, $FCI0_3$, CI_2 , $(FC10_2 + C10_2)$, CIF_3 , and CIF_5 . From the chromatogram, the mole percentage of the individual components, the sum of $F_2 + CF_4 + SiF_4$ and the sum of $FC10_2 + C10_2$ can be calculated.

6.1.5.2 Infrared Analysis. Part of the originally vaporized sample is introduced, usually at a pressure of 75 mm Hg, into a 5-centimeter Monel gas cell fitted with silver chloride windows. Using the infrared absorption curve, the mole percentages of CF_4 , $FClo_2$, and SiF_4 can be calculated from the absorption bands at 7.75, 7.95, and 9.7 microns, respectively.

> A third portion of the sample is introduced into a 7.5-centimeter Monel cell fitted with calcium fluoride windows to a pressure of 500 to 750 mm Hg. The spectrum from 2700 to 2500 millimicrons is scanned. The absorption peak of HF at 2575 millimicrons is measured and the mole percentage of HF is calculated using a Beers-Lambert calibration plot of anhydrous HF vapor.

6.1.5.3 <u>Typical Analysis</u>. A typical chemical analysis of the material produced in the Rocketdyne CIF₅ production plant is presented in Table 7.

TABLE 7

TYPICAL ASSAY OF CHLORINE PENTAFLUORIDE

LOG # <u>6-4-300</u>

CERTIFICATE OF ANALYSIS

FLUORIDYNE

CONSIGNEE	
CYLINDER NO. W 1481	DATE5/3/66_
LOT NO42	
	WEIGHT PERCENT
ASSAY (MININUM)	99.4+
HYDROGEN FLUORIDE	0.3
CHLORINE MONOFLUORIDE	0.03

0.03 CHLORINE < 0.02 CHLORINE DIOXIDE 0.09 CHLOLINE TRIFLUORIDE 0.06 PERCHLORYL FLUORIDE < 0.02 NON CONDENSABLES (as F_2) 0.04

GF.OSS 410 LBS.

「「「「「「「「「」」」という。」という

1

and the set of the set

おおいておいた。

なる。そのためのないので、などのないので、などのないので、

副子子 Part - 1995

TARE 195 LBS.

QUANTITY 215 LBS.

Q.C. NO. ____

25

6.2 TRANSPORTATION

Shipment of chlorine pentafluoride by common carrier is authorized by the Interstate Commerce Commission (ICC) which classifies ClF₅ as a "Corrosive Liquid." It also has an "NOS" (not otherwise specified) designation. In transit, cylinders are marked as Compound A, Corrosive Liquid, and Flammable Liquid Only and must be affixed with an ICC-approved WHITE label. Highway vehicles carrying 2500 pounds or more of ClF₅ must be identified with "Dangerous" placards in letters at least 3 inc es high on a contrasting background.

Chlorine pentafluoride has been shipped under its own vapor pressure in a variety of different sized cylinders in quantities ranging from a few grams to 165 pounds (ICC 3AA 2400) per ("linder; these cylinders are equipped with one shutoff valve. Eventually, it is antici . ted that larger cylinders, equipped with both vapor and liquid shutoff valves, will be approved and utilized. At present, the ICC specifications applicable to the shipping cylinders have been authorized under ICC special permits obtained in accordance with Agent T. C. George's Tariff No. 15, "Interstate Commerce Commission Regulations for Transportation of Explosives and Other Dangerous Articles by Land and Water in Rail Freight Service and By Motor Vehicle (Highway) and Water." These special permits are granted to the individual uppliers by the ICC Bureau of Operations and Compliance, Washington, D. C., 20423. The applicable shipping cylinder specifications relative to each shipment should be obtained from the supplier prior to delivery.

CONFIDENTIAL

来ると言語を見ていた。

6.3 STORAGE

6.3.1 Storability Test Analysis

There have been several studies conducted to establish the storability of ClF_5 under various conditions. These tests and their results are characterized in Table 8.

6.3.2 Thermal Stability and Equilibrium Analysis

In addition to basic thermal stability data developed during the high-temperature storability tests, materials compatibility tests, and physical property measurements, the thermal stability characterization of ClF_5 was attempted through the use of the standard JANAF thermal stability apparatus (Ref. 6). Each test, which involved heating of the ClF_5 sample at a rate of 20 F/minute, was terminated at approximately 680 F by the rupture of a 5300-psi burst diaphragm in the apparatus. Although there was no detectable evidence of decomposition of C^{-1} (by ΔT^{-1} as uremeats between the heating bath temperature -ample erature, during three tests, it should be noted that sma at effects are not detected by this relatively crude ap 18. The data obtained during the thermal equil brium st з subsequently discussed, provide a more accurate knowledg __f thermal stability.

Early in the synthesis of ClF_5 is apparent that dissociation of ClF_5 occurs at elevated temperatures. Accordingly, a study was undertaken (Ref. 8) to ascertain the nature of the dissociation and measure the temperature dependence of the equilibrium cont. nt. Studies were conducted in the range 210 to 279 C (410 to 518 F). For the reaction

 $ClF_3 + F_2 - ClF_5$

CILORINE PENTAFLUORIDE STORABILITY TESTS

TABLE 8

:

- AL

ľ

, Reference Number ۵ 5 ÷ ٩ ٥ -0 \$ 7 5 ÷ ۵ Sesul ts (d) 30 days 7 months 24 vecks 32 vecks 15 months 15 nonths 24 vechs 32 vechs b vecks 19 vecks 13 Eouths 50 days 12 vecks 6 weeks Stornge Time 10 dove 84 days 12 vecks IB weeks 454 days oo days b weeks Conditioning(c) Not specified La La No t ĥ Sample Purity, (b) veight percent CIF₆ (b) Test Conditions ģ š Tenpe : a ture (a) Aubient Ambient Ashient Subject Ambient 160 F 107 F 160 F 104 F 160 F 260 F Ullage, voimme percent 21.5 to 40 Unspecified (Turied) Unspecified (varied) Unspecified Buspecified 31 te <u>5</u>0 **Enspeci fied** 99 8 R ŝ Unspecified i.5 galloc 8 gullen 206.5 cc £31.5 c 17 cc 7 cc 17 cc さいいた l quart 510 ö Tolune Ji7 Stalaless Steel **521 Stainless Steel 504 Stainless Steel** 547 1 (three containers) (Gontinuation of above tests under mer couditions) Stainless Steel (type unspecified) 6061 Aluminum (?o) 6061 Aluminum (76) Containes Material 7052-0 Aluminum

CONFIDENTIAL

同時に無いていた。

(Concluded) TABLE 8

В Сор	(tataer				Text Partician					- 6
			Tilate		FUOIDING SAL					-
Materia	7	Folume	Tolone percent	Temporature (a)	veight percent CIF (b)	Conditioning(c)	Storege	(P)	Reference	
ucture IN 0-250		3 1	Ş				9077	Besults'	Number	
,			2	7007401	+66	Yet	12 weeks	63	\$	·
							18 weeks	64		
•			- 3				24 vecks	'n		-
- 4 2		17 sc	. 9			•	32 weeks	ĩ		_
прег (сотел	cial)	7 66	5 5	a nor		Dry.	30 days	-		_
						Hiet.	b weeks	-		
				-			12 veeka	а		
•							16 weeks	cı		
							24 weeks	5		
 ,		215 cc	24 to b1			•	32 weeks	10		
*		17 cc	60	a uýt		Dry	13 monthe	•	0	
Del 400		218 cc	28.5 to 48			Dry.	30 days	~	0	
				Vaurent		Dr:	15 EORIDE		o	

(a) remestare represents arende storage temperature; ambient indicates a prevailing temperature runge (30 to 100 g)

(b). Sumple purity represents analysis at initiation of test

CONFIDENTIAL

(r)Conditioning indientes presence of moisture at loading

(d'Besultu are indicated by:

l. No evidence of propeliant breakdown 2. Trace propeliant hreakdown

Significant propellant breakdown

ø CONFIDENTIAL the equilibrium constant, Kp, is best expressed over this range by the equation

$$\log K (atm^{-1}) = \frac{3984}{T(K)} - 9.25$$

It was significant that no dissociation of CIF_5 was observed at 165 C (329 F), well above the critical comperature of 143 ±0.5 C (289.4 ±0.9 F). Either the noted equilibrium constant, determined over the higher temperature range, cannot be extrapolated to lower temperatures or, more probably, the decomposition rate at 165 C (329 F) is extremely slow.

6.3.3 General Storage Requirements

From the available storability and thermal stability data it is obvious that ClF_5 may be stored safely under prevailing ambient temperatures for long periods of time provided the storage system is fabricated from compatible materials, properly cleaned and passivated, and kept free of moisture (ard/or other contamination) and excessive heat. Although storage data have been limited to periods of < 2 years, it is anticipated (based on the apparent inherent stability of ClF_5 and extrapolated materials compatibility data) that ClF_5 may be stored for periods of several years without adverse effects on either the propellant or material. Future analyses of longer-term storage tests currently in progress will provide additional data relative to potential time limitations.

The shipping containers in which the propellant is received are satisfactory for storage. However, frequent inspection of the valves and fittings is mandatory because of the corrosive nature of the propellant. These cylinders must be located in a designated safe storage area and positioned so that they are secured against rolling or being inadvertently tipped ever. This can be accomplished by placing them in cradles or by securing them in a vertical position with chains and individual cylinder supports.

Storage of ClF₅ in containers other than the shipping cylinders can be effected in tanks fabricated of compatible materials (i.e., stainless steels, aluminum alloys, Monels, etc.), provided they are properly designed, fabricated, cleaned, and passivated prior to use. direction of a short distributed and a second s

6.4 HANDLING

Chlorine pentafluoride handling operations, as described herein, include generalized recommended handling techniques for the unloading of the shipping cylinders, loading of storage tanks, venting, and disposal operations. All other handling operations are specific to particular systems and cannot be treated with generalized criteria. Personnel performing handling operations must wear fully protective equipment described in the SAFETY EQUIPMENT ection. Another activity closely associated with the above functions is the handling of the shipping cylinders. The shipping cylinders can be handled safely without the need of fully protective equipment.

6.4.1 Handling of Shipping Cylinders

The shipping cylinders must be handled with extreme care. The cylinder shutoff valve(s) cap(s) must be installed at all times during cylinder handling operations.

The cylinders may be transferred by means of any piece of equipment capable of handling them safely. While in transfer, the cylinders must be firmly secured.

Storage of the shipping cylinders should be restricted to those areas specifically designated for this purpose. The condition of each cylinder (full, empty, contaminated, etc.) must be marked clearly.

6.4.2 Transfer of Chlorine Pentafluoride from Shipping Cylinders

Chlorine pentafluoride can be discharged from its storage container either by its own vapor pressure, by pressurizing the container with dry nitrogen or helium, or by connecting a

transfer pump in the container discharge line. Inert gas pressurization is used almost exclusively at the present time for unloading large cylinders because this technique is extremely reliable. The transfer pump technique is practical when large quantities of the propellant must be transferred in a relatively short period of time. Vapor pressure unloading is used primarily in the transfer of small quantities and is impractical in the handling of large propellant quantities. 1.1999年1月1日に、1995年1日には、1995年1日には、1995年1日に、1995年11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、1995年11月11日に、199

The propellant transfer system must be chemically compatible with the propellant, leakproof, and in excellent operating order. The complete system must also be passivated immediately prior to the commencement of complete flow conditions.

In preparing for a transfer operation, all personnel not directly concerned with the operation shall evacuate the hazard area. Appropriate warning lights and signs shall be displayed to keep out unauthorized personnel.

Personnel performing the transfer operation shall wear the fully protective _____pment described in the Safety Equipment section. If the _____rations are performed remotely, at least two operating personnel should be fully dressed to facil_____te proper spill a. a fire control. Sufficient safety equipment should be available for all personnel alloved to remain in the hazard area

Supervisory and emergency support personnel shall be notified prior to executing my hazardous operation in the storage area.

The propellant transfer procedures are dependent upon numerous factors such as transfer system design, type of propellant convince, training of operating personnel, prevailing weather convitions, etc. Establishing proper operating procedures for each pecific situation in a single document is not feasible.

1

Therefore, the procedures presented in the following paragraphs are general in nature. The transfer system schematics presented (Fig. 11 through 13) are not finalized designs; they are provided only to facilitate the explanation of typical proce³ v. es.

6.4.2.1 <u>Transfer From Single-Opening Containers</u>. The currently available ClF₅ cylinders are single-opening containers in which only one opening is available to perform the propellant transfer operation. The opening is sealed by a compatible shutoff valve, which in turn is protected by a gas-tight cap. These cylinders are not equipped with dip tubes and as such should be avoided because they present additional propellant transfer complexity.

> The propellant can be transferred from these cylinders by prepressurizing the cylinders with dry nitrogen prior to the transfer, or by allowing the propellant to flow under its own vapor pressure. The vapor transfer technique is inefficient, and in some cases, impossible, unless the collecting tank is cooled. Therefore, the prepressurization technique is recommended for most operations involving single-opening cylinders.

The prepressurization of the cylinder with dry nitrogen can be accomplished as follows:

- 1. Remove the protective cap from the cylinder shutoff valve.
- 2. Connect a clean, regulated, dry-nitrogen supply line to the shutoff value of the cylinder.

- 3. Regulate the pressure supply to the desired value. The regulated pressure level determines the rate of propellant transfer. A value of approximately 100 psig is usually adequate. The pressure should never exceed 10 psig less than the cylinder design pressure.
- 4. Open the pressure supply shutoff valve.
- 5. Slowly open the cylinder shutoff valve.
- 6. When the cylinder pressure equalizes the regulated source pressure, class the supply and cylinder shutoff valves.

NOTE: Two basic techniques can be used to determine when pressure equalization is attained. First, the noise generated by the gas flow through the pressurizing line ceasez. Second, the regulated pressure gage registers the regulated pressure value prior to gas flow.

- 7. Bleed the trapped gas between the two shutoff valves by opening the transfer-line bleed valve.
- 8. Disconnect the pressurizing line from the cylinder shutoff valve.
- 9. Cap the opened connections to prevent contamination.

The transfer of ClF_5 from the pressurized cylinder to the storage tank (Fig. 11) can be performed as follows:

- 1. Turn the cylinder upside down and place it in a transfer cradle. The cylinder must be properly secured and care must be exercised to prevent damage to the cylinder shutoff valve.
- 2. Connect the cylinder shutoff valve to the propellant transfer system as shown in Fig. 11.
- 3. Close all system values except value No. 6 which must be maintained open. The purpose of value No. 6 is to prevent the continuous escape of ClF_5 in case of

burst-diaphragm failure and to facilitate the removal of the burst diaphragm whenever required.

- 4. Purge the propellant transfer line to remove any residual trapped water vapor. This is accomplished by opening valves No. 3 and 1. When the purge operation is completed (approximately 3 minutes), close valves No. 3 and 1.
- 5. Open valve No. 2 slowly and check for leaks. If a leak develops, close the valve, open valve No. 1, and take the action necessary to stop the leak. (Valve No. 1 must be closed and valve No. 2 opened before proceeding with Step 6.)
- 6. Open valve No. 4.
- 7. After values No. 2 and 4 have been opened, the propellant flows from the cylinder into the storage tank until the liquid in the cylinder is depleted or the pressure in the two containers equalizes. If the pressure in the two containers equalizes, close value No. 4, and open value No. 5 momentarily to depressurize the storage tank. The flow can be resumed by reopening value No. 4.
- 8. When the desired quantity or all of the available provellant has been transferred, close valves No. 2 and 4.

NOLL. There are several devices that can be used to detect the completion of the propellant transfer operation. Combinations of two or more devices are usually required to provide the desired flexibility of the transfer system. Some of these devices are:

- a. A flowmeter installed in the transfer line
- b. A scale or other weight-sensing device attached to the container being unloaded
- c. A calibrated level indicator mounted on the storage tank
- Purge the transfer line thoroughly by opening values
 No. 1 and 3. When the purging operation is completed (approximately 3 to 5 minutes), close values No. 3 and 1.

- Depressurize the storage tank to a safe, positive pressure level by opening valve No. 5 momentarily.
- 11. Disconnect the cylinder shutoff valve from the transfer system and cap the opened components.
- 12. Turn the cylinder to the upright position, mark it adequately, and dispose of it according to operating procedures.
- Notify all personnel concerned that the transfer operation is completed and the area is clear.
- 6.4.2.2 <u>Transfer From Double-Opening Containers</u>. At the present time, there are no double-opening shipping containers in CIF_5 service; however, the eventual use of cylinders similar to the 1-ton CIF_5 cylinders is assured. The operation of these cylinders in CIF_5 service will be identical. The 1-ton CIF_5 shipping cylinder is a double-opening container and is equipped with two shutoff valves. During transfer operations, one opening can be used to pressurize or yeat the container and the other opening to discharge the propellant.

The propellant can be discharged from the shipping container either by pressarizing the container with dry nitrogen or by connecting a transfer pump in the product discharge line. Although the pressurization unloading technique has been used nearly exclusively in the past, procedures for both transfer techniques are discussed in detail below.

6.4 7.2.1 <u>Pressurization Unloading</u>. As mentioned previously, the transfer of liquid ClF_5 from shipping containers can be performed reliably by pressurizing the containers with dry nitrogen. The following procedure is basically applicable to the transfer of the propellant from double-opening containers into a storage tank using gas pressurization.

- 1. Place the 1-ton cylinder in the horizontal position with the shutoff valves aligned with the vertical centerline axis.
- 2. Remove the protective cap from the cylinder and connect the cylinder shutoff values to the transfer system as shown in Fig. 12. When the cylinder is positioned according to Step 1, above, the upper shutoff value is connected to the regulated pressure supply, and the lower shutoff value is connected to the transfer line.
- 3. Ensure that all system values are closed except value No. 9 which must be maintained open. The purpose of value No. 9 is to prevent the continuous escape of CIF₅ in case of burst-diaphragm failure and to facilitate the replacement of the burst diaphragm whenever required.
- 4. Set the dry nitrogen regulator to the desired pressure level. This pressure level determines the propellant discharge flow. A value of ~ 100 psig is usually adequate. The pressure should never exceed 10 psig less than the container design pressure.
- 5. Purge the propellant lines to remove residual trapped water vapor. This can be accomplished as follows:
 - a. Open valves No. 4 and 7, and purge for approximately 3 minutes
 - b. Close valve No. 7 and 4
 - Open valves No. 3 and 2, and purge for approximately 3 minutes
 - d. Close valves No. 2 and 3
- 6. Open valve No. 5 and check for leaks. If a leak develops, close the valve, open valve No. 4, and take the necessary action to stop the leak. (Valve No. 4 must be closed and valve No. 5 opened before proceeding with Step 7.)

- 7. Open valve No. 6
- 8. Establish the propellant flow by pressurizing the CIF₅ cylinder. This is accomplished by opening valves No. 1 and 2. A propellant flow is experienced until the liquid in the shipping container is depleted or the pressure in the two containers equalizes. If the pressure in the two containers equalizes, close valves No. 2 and 6, and open valve No. 8 momentarily. The flow can be resumed by reopening valves No. 6 and 2.
- 9. When the desired quantity or all of the available propellant has been transferred, close valves No. 2 and 5.

NOTE: There are several devices which can be used to detect the completion of the propellant transfer operation. Combinations of two or more devices are usually required to provide the desired transfer system flexibility. Some of these devices are:

- a. A flowmeter installed in the transfer line
- b. A scale or other weight-sensing device attached to the container being unloaded
- c. A calibrated level indicator mounted on the storage container
- Depressurize the shipping container by opening valve No. 3. When the container is depressurized, close valves No. 1 and 3.
- 11. Close valve No. 6 and purge the transfer line by opening valves No. 4 and 7. When the transfer line is properly purged (usually 3 to 5 minutes at a pressure level of approximately 50 psig), close valves No. 7 and 4.
- Depressurize the storage container by opening valve No. 8 for a short period of time.

i.

- 13. Disconnect the shipping cylinder shutoff valves from the transfer system and cap the opened components.
- 14. Mark and dispose of the shinping container according to operating procedures.

6.4.2.2.2 <u>Transfer Pump Unloading</u>. As mentioned previously, pump unloading is a potential alternate method of transferring ClF₅ from the shipping cylinders into storage tanks. This technique is highly applicable when large quantities of the propellant must be transferred in a relatively short period of time.

The following procedure is basically applicable to the potential transfer of ClF_5 from a "1-ton" type shipping cylinder into a storage tank by means of a transfer pump:

- 1. Place the shipping cylinder in a horizontal position with the shutoff values aligned with the vertical centerline axis.
- 2. Remove the cylinder protective cap and connect the cylinder shutoff values to the transfer system as shown in Fig. 13. With the cylinder positioned according to Step 1, above, the upper shutoff value is connected to the vapor-return line and the lower shutoff value is connected to the transfer line.
- 3. Ensure that all system values are closed, except values No. 11 and 7, which must be opened. The objective of value No. 11 is to prevent the continuous escape of ClF₅ in case of burst-diaphragm failure and to facilitate the removal of the burst diaphragm whenever required. Value No. 7 prevents pump damage caused by overpressures resulting from the possible vaporization and expansion of trapped propellant in the pump.

^{15.} Notify all personnel concerned that the transfer operation is completed and the area clear.

- Set the dry nitroger rega: to the desired pressure level. A value r ring com 60 to 70 psig should be adequate
- Purge the propellant line. J remove trapped water vapor. This can be accoust ished as follows:
 - a. Close valve No. 7.
 - b. Open values No. 3, 5, and 6, and purge for approximately 3 minutes.
 - c. Close valves No. 6, 5, and 3.
 - d. Open values No. 2, 8, and 6, and purge for approximately 3 minutes.
 - e. Close valves No. 6, 8, and 2.
 - f. Open valve No. 7.
- Pressurize the ClF₅ cylinder to permit the proper priming of the transfer pump, if required. This is accomplished as follows:
 - a. Close valve No. 7.
 - b. Open valves No. 1, 8, and 6.
 - c. When the gas flow stops, close values No. 6,
 8, and 1.
 - d. Open valve No. 7.
- 7. Open valve No. 4 and check for leaks. If a leak develops, close the valve, open valve No. 3, and take the necessary action to stop the leak. (Valve No. 3 must be closed and valve No. 4 opened before proceeding with Step 8.)
- Open value No. 5 and check for leaks. If a leak develops, close values No. 5 and 7, open values No. 8 and 2, and take the action necessary to

stop the leak. (Valves No. 2 and 8 must be closed and valves No. 5 and 7 opened before proceeding with Step 9.)

- 9. Open valve No. 1.
- Start the transfer pump and open valve No. 9.
 A closed-loop pump transfer operation is thus established.
- When the desired quantity or all of the available propellant have been transferred, stop the transfer pump and close valve No. 7.

NOTE: There are several devices which can be used to detect the completion of the propellant transfer operation. Combinations of two or more devices are usually required to provide the desired transfer system flexibility. Some of these devices are:

- a. A flowmeter installed in the transfer line
- b. A scale or other weight-sensing device attached to the container being unloaded
- c. A calibrated level indicator mounted on the storage tank
- Close valve No. 9 and depressurize the shipping cylinder by opening valve No. 2. When the container is depressurized, close valve No. 2.
- Depressurize the storage tank by opening valve No. 10 for a short period of time.
- 14. Purge the propellant transfer line as follows:
 - a. Open valve No. 6 for about 2 to 3 minutes or until the gas flow stops.
 - b. Close valve No. 6.
 - c. Close valve No. 4.
 - d. Open valves No. 3 and 6, and purge the line for approximately 3 to 5 minutes.
 - e. Close valves No. 6, 5, and 3.

- 15. Depressurize the shipping cylinder by opening valve No. 2. When the cylinder is depressurized, close valves No. 1 and 2.
- 16. Purge the vapor-return line as follows:
 - a. Open valves No. 2, 8, and 6, and purge for approximately 3 to 5 minutes.
 - b. Close valves No. 6, 8, and 2.
- 17. Open valve No. 7.
- 18. Disconnect the shipping cylinder shutoff valves from the transfer system and cap the opened components.
- 19. Mark and dispose of the shipping cylinder according to operating procedures.
- 20. Notify all personnel concerned that the transfer operation is completed and the area clear.

6.4.3 Venting

The frequent depressurization of C1F5 containers is necessary during handling and test operations. In this operation, a considerable amount of vapor is released which must be handled safely. Two basic methods can be used for handling the propellant vapor. These methods are:

1. The transfer system vent lines are connected to a scrubber system which removes the propellant vapor from the vented gases. Many types of scrubbers and solutions for absorbing the propellant can be used.

2. The transfer system vent lines are connected to a vent stack which discharges the vented gases at least 60 feet above the highest working point in the area. A low-pressure nitrogen purge can be installed in the stack to further dilute the vented propellant vapor before being discharged into the atmosphere. 日本に、日本の日本のです。

Chlorine pentafluoride containers should be vented only under controlled conditions. These conditions are dependent upon area location, weather conditions, etc.

6.4.4 Disposal

Disposal involves the controlled release of CIF₅ from a shipping or storage container into a system capable of disposing of the propellant safely. Military regulations, at the present time limit the disposal of similar propellants to a maximum of 1000 pounds for any one disposal operation.

The following items are essential for the proper selection and safe operation of the ClF_5 disposal area:

- 1. The disposal area shall be adequately isolated.
- 2. The disposal area shall be clear of trees, weeds, brush, and other combustibles.
- 3. The area must be provided with adequate facility safety equipment (refer to Safety Equipment section).
- 4. One person shall never be allowed to work in the disposal area alone.

- 5. The personal safety equipment which was described in the Safety Equipment section must be worn during disposal operations.
- 6. All personnel not participating in the disposal operation shall evacuate the area.
- Disposal operations shall be performed only under controlled conditions. These conditions are dependent upon area location, weather conditions, etc.

The following methods can be employed to dispose of ClF₅:

- 1. <u>The slow release of the propellant through a high</u> <u>vent stack</u>. The outlet should be at least 60 feet above the disposal area. A dry nitrogen purge must be installed in the stack to dilute the propellant vapor before being exhausted into the atmosphere.
- 2. The controlled burning of ClF_5 by the use of a <u>fuel such as alcohol or kerosene</u>. This is accomplished by placing a quantity of fuel approximately equal to the quantity of ClF_5 to be disposed of into a burn basin. The oxidizer is then fed slowly into the burn basin and allowed to react with the fuel. For this operation, the ClF_5 supply tank should be located at least 50 feet from the burn basin.

REFERENCES

- R-334-13, <u>Research on Fluorine Propellants, Quarterly Progress Report</u> <u>Period Ending 15 September 1960 Nonr 1818(00)</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, CONFIDENTIAL.
- R-3070-6, <u>Quarterly Progress Report</u>, <u>Research in the Synthesis of High</u> <u>Energy Storable Oxidizers</u>, Rocketdyne, a Division of North American Aviation, Inc.. Canoga Park, California, January 1963, CONFIDENTIAL.
- R-5369 (RTD-TR-1117), <u>Final Report, Research in the Synthesis of High-Energy Storable Oxidizers</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AFC4(611)-7023, December 1963, CONFIDENTIAL.
- RMD-5025F, <u>Heterogeneous Propellant Program</u>, Reaction Motors Division, Thiokol Chemical Corporation, Denville, New Jersey, Contract NOw 63-0396-C, 16 November 1963, CONFIDENTIAL.
- R-6638-3 Engineering Property Data in Rocket Propellants, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF04(611)-11407 (to be published in January 1967).
- R-6055 (AFRPL-TR-65-51), <u>Final Report. Preparation and Characterization</u> of a New High Energy Oxidizer, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF04(611)-9563, April 1965, CONFIDENTIAL.
- RMD 5036-F, <u>Advanced Earth Storable Liquid Propellants, Reaction</u> <u>Motors Division</u>, Thiokol Chemical Corporation, Denville, New Jersey, Contract NOw 63-0740-c, February 1965, CONFIDENTIAL.
- R-6147 (AFRPL-TR-65-125), <u>Final Report, Physico-Chemical Characteri-</u> zation of <u>High-Energy Storable Propellants</u>, Rocketdyne, a Division of North American Aviation, Inc., Gunoga Park, California, Contract AF04 (611)-9563, September 1966, CONFIDENTIAL.

- 9. R-6445, (AFRPL-TR-66-184), <u>Addendum to Final Report, Preparation and</u> <u>Characterization of a New High-Energy Oxidizer</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF04(611)-9563, September 1966, CONFIDENTIAL.
- R-6638-2, (AFRPL-TR-66-289), Engineering Property Data on Rocket Propellants, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF04(611)-11407, October 1966, CONFIDENTIAL.
- 11. JANAF Thermochemical Data, The Dow Chemical Company, Thermal Laboratory, Midland, Michigan, Series C, pp. 48-50, April 1965, CONFIDENTIAL.
- AR-IS-63, (RTD-TDR-63-1065), <u>Preparation and Characterization of Compound F₁₁BG and its Mixtures With Other Oxidizers</u>, The Dow Chemical Company, Midland, Mzchigan, Contract AF04(611)-8524, 5 July 1963, CONFIDENTIAL.
- RMD 5050-F, <u>Advanced Oxidizers for Prepackaged Liquid Engines</u>, Reaction Motors Division, Thiokol Chemical Corporation, Denville, New Jersey, Contract Nów 64-0447-c, 31 July 1965, CONFIDENTIAL.
- R-6535 (AFRPL-TR-J23), <u>Final Report, Engineering Properties of Rocket</u> <u>Propellants</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF04(611)-10546, July 1966, CONFIDENTIAL.
- Calculated from experimental density (Ref. 6) and heat capacity (Ref. 14) data using the Weber Equation: Weber, H. L., <u>Weidemann's Ann. Phys</u>. <u>Chem., 10</u>, 103 (1880).
- Streng, A.G., <u>Solubility Tests and Some Chemical Properties of Fluori-</u> <u>dyne (Compound A)</u>, The Research Institute of Temple University, Philadelphia, Pennsylvania, 2 December 1964, CONFIDENTIAL.
- AFRPL-TR-65-62, <u>Synthesis of New Oxidizers for Solid Propeliants</u>, Monsanto Research Corporation, Everett, Massachusetts, Contract AF04 (611)-8520, 1 October 1963 through 31 January 1965, CONFIDENTIAL.

- PR-19, Research on High Energy Oxidizers for Advanced Solid Rocket <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-30-069-0RD-2638, 31 December 1963, CONFIDENTIAL.
- PR-20, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-30-069-0FD-2638, 31 March 1964, CONFIDENTIAL.
- PR-21, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corp., Morristown, New Jersey, Contract DA-30-069-0RD-2638, 30 June 1964, CONFIDENTIAL.
- PR-22, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-30-069-0RD-2638, 30 September 1964, CONFIDENTIAL.
- 22. PR-23, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-30-069-0RD-2638, 31 December 1964, CONFIDENTIAL.
- 23. PR-24, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-30-069-0RD-2638, 31 March 1965, CONFIDENTIAL.
- 24. PR-25, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-01-021-AMC-12264(Z), 30 June 1965, CONFIDENTIAL.
- 25. PR-26, <u>Research on High Energy Oxidizers for Advanced Solid Rocket</u> <u>Propellants</u>, Allied Chemical Corporation, Morristown, New Jersey, Contract DA-01-021-AMC-12264(Z), 31 September 1965, CONFIDENTIAL.
- QFR No. 5, <u>Synthesis of Inorganic Oxidizers</u>, Pennsalt Chemicals Corporation, King of Prussia, Pennsylvania, Contract AF04-(611)-8518, 1 December 1963 to March 1964, CONFIDENTIAL.

- 27. QFR 6, Synthesis of Inorganic Oxidizers, Pennsalt Chemicals Corporation, King of Prussia, Pennsylvania, Contract AF04(611)-8518, 1 March 1964 to 1 June 1964, CONFIDENTIAL.
- QFR No. 7, Synthesis of Inorganic Oxidizers, Pennsalt Chemicals Corporation, King of Pruscia, Pennsylvania, Contract AF04(611)-8518, 1 June 1964 to 1 September 1964, CONFIDENTIAL.
- QFR No. 8, <u>Synthesis of Inorganic Oridizers</u>, Pennsalt Chemicals Corporation, King of Prussia, Pennsylvania, Contract AF04(611)-8528, 1 December 1964 to 1 March 1965, CONFIDENTIAL.
- 30. (Fr: No. 9, <u>Synthesis of Inorganic Oridizers</u>, Ponnsalt Chemicals Corporation, King of Prussia, Pennsylvania, Contract AF06(611)-8518, 1 March 1965 to 1 June 1965, CONFIDENTIAL.
- 31. QFR. No. 10, <u>Synthesis of Inorganic Oxidizers</u>, Pounselt Shemicals Eorporation, King of Prussia, Vennsylvania, Contract AF04(611)-8518, 1 June 1955 to 1 September 1965, CONFIDENTIAL.
- QPR. No. 11, <u>Synthesis of Inorganic Uxidizers</u>, Pennsalt Chemicals Corporation, King of Prussia, Pennsylvania, Contract AF04(611)-8518, 1 September 1965 to 1 December 1965, CONFIDENTIAL.
- 0801-01-3, Evaluation of High Emergy Materials as Liquid Propellants. Aurojet-General Corporation, Azusa, California, Conducat BA-04-495-AMC-255(Z), April 1964, CONFIDENTIAL.
- 34. 0801-01-4, Evaluation of High Energy Materials as Liquid Propellants, Acrojet-General Corporation, Azusa, California, Contract DA-04-495-AMC-255(Z), July 1964, CONFIDENTIAL.
- 35. 0801-02-7, Evaluation of High Energy Materials as Liquid Propellants, Aerojet-General Corporation, Azura, California, Contract DA-04-495-AMC-255(Z), CONFIDENTIAL.

- 0801-02-8, Evaluation of High Energy Materials as Liquid Propellants, Aerojet-General Corporation, Azusa, California, Contract DA-04-495-AMC-255(Z), July 1965, CONFIDENTIAL.
- 0801-02-9, Evaluation of High Energy Materials as Liquid Propellants, Aerojet-General Corporation, Azusa, California, Contract DA-04-495-AMC-255(Z), October 1965, CONFIDENTIAL.
- 0801-02-10, <u>Evaluation of High Energy Materials as Liquid Propellants</u>, Aerojet-General Corporation, Azusa, California, Contract DA-04-495-AMC-255(Z), January 1966, CONFIDENTIAL.
- 0801-02-11, Evaluation of High Energy Materials as Liquid Propellents, Aerojet-General Corporation, Azusa, California, Contract DA-04-495-AMC-255(Z), April 1966, CONFIDENTIAL.
- NMD-5061-Q1, <u>The Formulation of New High Energy Storable Propellants</u>, Reaction Motors Division, Thiokol Chemical Corporation, Denville, New Jersey, Contract NOw 65-0430-C, 14 March 1965, CONFIDENTIAL.
- RMD-5061-Q2, The Formulation of New High Energy Storable Propellants, Reaction Motors Division, Thiokol Chemical Corporation, Denville, New Jersey, Contract NOW 65-0430-C, 14 June 1965, CONFIDENTIAL.
- 42. NMD-5061-Q3, <u>The Formulation of New High Energy Storable Propellants</u>, Reaction Motors Division, Thiokol Chemical Corporation, Denville, New Jersey, Contract NOW 65-0430-C, 14 September 1965, CONFIDENTIAL.
- 43. RMD-5061-Q4, The Formulation of New High Energy Storable Propellants, Reaction Motors Division, Thiokol Chemical Corporation, Denville, New Jersey, Contract NOW 65-0430-C, 14 December 1965, CONFIDENTIAL.
- 44. RMD-5061-Q5, <u>The Formulation of New High Energy Storable Propellants</u>, Reaction Motors Division, Thickel Chemical Corporation, Denville, New Jersey, Contract NOW 65-C430-C, 14 March 1966, CONFIDENTIAL.

- R-6737, <u>Final Report</u>, <u>Physico-Chemical Characterization of High</u> <u>Energy Storable Propellants</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF04(611)-10544, (To be published December 1966) CONFIDENTIAL.
- 46. R-6258, <u>Annual Summary Report, Inorganic Halogen Oxidizer</u>, Recketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract Nonr 4428(00), 30 July 1965, CONFIDENTIAL.
- 47. AJG-2952, <u>Investigation of Advanced Hybrid Propellants</u>, Aerojet-General Corporation, Azusa, California, Contract NCw 64-0210-C, December 1964, CONFIDENTIAL.
- Research Report No. 65-26, <u>Determine Feasibility of Hodifying Certain</u> <u>Physico-Chemical Parameters of Liquid Propellants</u>, Technidyne, Inc., West Chester, Pennsylvania, Contract DA-36-034-AMC-01532, April 1965, CONFIDENTIAL.
- 49. MRD3008F, <u>Gelled High Energy Oxidizers</u>, Monsanto Research Corporation, Everett, Massachusetts, Contract N600(19)59719, 31 March 1964, CONFIDENTIAL.
- 50. AFML-TR-64-391, <u>The Compatibility of Structural Materials with</u> <u>Hybaline A-5 and Compound A</u>, Pennsalt Chemicals Corporation, King of Prussia, Pennsylvania, Contract AF33(657)-8461, December 1964.
- LRPL QFR 4-64, <u>Quarterly Progress Roport</u>, Picatinny Arsenal-Liquid Rocket Propulsion Laboratory, Pover, New Jersey, December 1964, CONFIDENTIAL.
- Memo No. 64-050, <u>Compatibility of Parts and Materials with Compound Λ</u>, General Dynamics/Astronautics, San Diego, California, 1 October 1964, CONFIDENTIAL.
- 53. Memo No. 64-050, <u>Compatibility of Rocket Propellants with Materials</u> of <u>Construction</u>, Defense Metals Information Center, Battelle Memorial Institute, 15 September 1960.

- R-5439, <u>Toxicological Range Finding on New Propellants</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract AF33(657)-7773, June 1964, CONFIDENTIAL.
- 55. Horn, J. H. and R. J. Weir, "Inhalation Toxicology of Chlorine Trifluoride: Acute and Subacute Toxicity," <u>A.M.A. Arch. Indust. Health</u>, Part I, 12:515 (1955)
- Horn, J. H. and R. J. Weir, "Inhalation Toxicology of Chlorine Trifluoride: Chronic Toxicity," <u>A.M.A. Arch. Indust. Health</u>, Part II, 13:340 (1956).
- 57. Anon. "Threshold Limit Values for 1957," Adopted at the 19th Annual Meeting of the American Conference of Governmental Industrial Hygienists, St. Louis, April 20-23, 1937, published in the <u>A.M.A. Arch</u>. <u>Indust. Health</u>, <u>16</u>, 261-265 (1957).
- R-5639, <u>Research in Fluorine Chewistry, Summary Report</u>, Rocketdyne, a Division of North American Aviation, Iwa., Canoga Park, California, Contract Nonr 1818(00), 15 April 1964, CONFIDENTIAL.
- R-6190, <u>Research in Fluorine Chemistry, Summary Report</u>, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, Contract Nour 1818(00), 15 June 1965, CONFIDENTIAL.
- 60. Lysyj, I., and P. R. Newton, "Evaluation of Gas Chromatographic Columns for the Separation of Fluorinated Materials," <u>Anal. Chem.</u>, <u>35</u>, 90-92 (1962).

 MMD 5073-Q5, <u>Advanced Propellants for Prepackaged Liquid Engines</u>, Reaction Motors Division Thiokol Chemical Corporation, Denville, New Jersey, Contract NO₁ 65-0575-C, 11 July 1966, CONFIDENTIAL.

> 155/156 CONFIDENTIAL

ŗ

٠

P

CONFIDENTIAL					
Security Classification			بمحبو معدارة بربي سير الماليني عبد فأخذك بالشكاك		
DOCUMENT CO	NTROL DATA - R&	D Manad under A	he averall each is also iffed		
1. ORIGINATING ACTIVITY (Composite author)	annoration maar oo a	2. AEPOP	T SECURITY CLASSIFICATION		
Rocketdyne, a Division of North American Aviation, Inc., 6633 Canoga Avenue, Canoga Park, California		CONFIDENTIAL			
		20 GROUP 4			
TREPORT TITLE		I			
CHLORINE FENTAFLUORIDE HANDBOOK (U)					
• DESCRIPTIVE NOTES (Type of report and inclusive deles) Special Interim Report					
S. AUTHOR(S) (Last mans, lirst name, initial)					
Constantine, M. T.; Williams, M. M.; Rozas, C. J.; Walter, R. J.	Youel, K. J.;	Pilipov	ich, D.;		
30 November 1966	70. 7670 - NG. OF P		74. NO. OF REPS 01		
SA. CONTRACT OR GRANT NO.	Se. ORIGINATOR'S REPORT NUMBER(S)				
F04611-67-C-0006	R-6803				
ç.	25. OTHER REPORT HO(3) (Any other numbers that muy be seeighed				
	AFRPL-TR-66-318				
d.	to geourity r	oguirom	ante which must he		
met. this document is subject to spec	ial report con	trols a	nd each transmittal		
to foreign governments or foreign nat	ionals may be	made on	ly with prior approval		
of AFRPL (RPPR-STINFO), Edwards, Cali	fornia 93523	ورايسي مرينية			
11- SUPPL EMENTARY NOTES	12. SPONSORING MIL	TARY ACTI			
	Air Force i Research an Edwards Ce	locket P Id Techn	ropulsion Laboratory ology Division		
13 A8STRACT	Lawaras, oa	11101111	u		
This interim handbook is a compilatio	n of the engin	eering	properties and		
handling characteristics of chlorine	pentaî luoride.	The h	andbook includes		
data and information on chlorine pent	- afluoride phys	ico-che	mical properties,		
mixtures, materials compatibility, ma	terials premar	ation a	nd control, safety		
	verzazo propus		, convici, buicey		
equipment, decontamination, productio	n, propellant	analysi	s, transportation,		
storage, and handling. (C)					
DD FORM 1473					
	-	ē.	CONFIDENTIAL		
		36	Curry Classification		

1 40 V

CONFIDENTIAL									
Security Classification			ارو وه ما اخت						
14. KEY WORDS		LINK A		LINK		LINK C			
		ROLE	₩ T	AOLE	wt	ROLZ	w†		
Chlorine Pentafluoride Physico-Chemical Properties Materials Compatibility Materials Preparation Toxicity Fire and F plosion Hazards Hazard Prevention and Control Safety Procedures									
INSTR 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De-	UCTIONS Imposed by Buch set	y security	cleesific	pation, u	ling stan	dard state	i		
fence activity or other organization (corporate euthor) issuing the report. 2a. REPORT SECURITY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Reotricted Data" is included. Marking is to be in accord- unce with appropriate security regulations. 2b. GROUP: Automatic downgrading is specified in DoD Di- rective 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ised. 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis immediately following the title.	(1) "Qualified requesters may obtain copies of this report from DDC."								
	(2) " (3) "	D "Foreign announcement and dissemination of this report by DDC is not authorized." It fill a Government encoder with the sector of the sector of the sector of the sec							
	this report directly from DDC. Other qualified DDC users shall request through								
	(4) "U. 8. military egancies may obtain copies of this report directly from DDC. Other qualified users that request the super the second secon								
	(5) "All distribution of this report is controlled. Quel- ified DDC users shall request through								
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summerz, annual, or final, Give the inclusive dates when a specific reporting period is covered.	If the report has been furnished to the Office of Tec Bervices, Department of Commerce, for sale to the publi								
5. AUTHOR(#): Enter the neme(s) of author(s) os shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of	 cate this fact and enter the price, if known. 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. 12. SPONBORING MILLITARY ACTIVITY: Enter the number of the depertmental project office or laboratory sponsoring (pey- ing for) the research and development. Include address. 13. ABSTRACT: Enter an abstract giving a brief and factual 								
6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.									
7s, TOTAL NUMBER OF PAGES: The total page count should follow normal paginstian procedures, i.e., enter the number of pages containing information.	eummary of the document indicative of the report, oven though it may also appear elsewhere in the body of the technical re- port. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the subtract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the in- formation in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. How								
76. NUMISER OF REFERENCES. Enter the total number of references cited in the repart.									
8. CONTRACT OR GRANT NUMBER: If eppropriate, enter the applicable number of the contract or grant under which the report was written.									
86, 86, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.	ever, the e 14. KEY	iuggested VORDSI	longth le Key word	from 15) to 225 hnically	words. Meeningh	al terme		
94. ORIGINATOR'S REPORT NUMBER(5): Enter the offi- cial report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.	or snort parases that unsracterise a report and may be used a index entries for oataloging the report. Key nords must be selected so that no socurity classification is required. Ident flers, such as equipment model designation, trade name, mill project code name, geographic location, may be used as key words but will be followed by an indication of technicat con-								
essigned any other report numbers (either by the originator or by the sponeor), size enter this number(s). 10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-	test: The	assignme	nt of link	le, rules,	and viel	ghte le op	tional.		
itations on further dissemination of the report, other than those	1								
				CONFIL Security	ENTITA Classi	r. fication	اردیک میں ایک		

1

1

ł