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FOREWORD
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Division of North American Aviation, Inc., Solid
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Richard E. Spann
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UNCLASSIFIED ABSTRACT

The program originally outlined the development
of three designs of lightweight, upper-stage
motors using wire as grain reinforcement. During
the course of the program, one of the original
three upper-stage designs was replaced by a test-
weight air-launched demonstration motor with
extreme environmental requirements. One of the
upper-stage designs included a supersonic split-
line gimbaled nozzle. Static firing data of the
upper-stage motors showed the design approach
yielded high mass fraction goals. However, fab-
rication experience proved that unusual care and
development approaches were necessary. Limita-
tions and areas of risk, as well as preferred
approaches, were established from the wide range
of tests conducted during this Advanced Develop-
ment Program.
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CONFIDENTIAL ‘

SECTION I

INTRODUCTION

This report describes progress and results of advanced development
effort under the Reinforced Grain Program, Contract AF 04(611)-9090,
conducted under sponsorship of Solid Rocket Division, Rocket Propulsion
Laboratory, Research and Technology Directorate, Air Force Systems
Command, Edwards Air Force Base, California. Contract period was April
1963 to March 1965.

1. OBJECTIVE

(C) The objective of the primary Advanced Development Progrem (see Fig. 1)
was to fabricate and test full-scale motors so that an engineering
development program utilizing reinforced grain motors tailored to a ﬁ
specific mission could be initiated subsequently with minimum risk.

Two motor types, representing typical upper stage and air-launched
missile motors, were investigated. Performance requirements for Motor
A, B, and C, (high mass fraction units, utilizing ultra-thin fiberglass
cases wound over wire filament reinforced grains) weie based generally
on upper stage Scout (Motor A) and second stage Skybolt requirements
(Motors B and C), with payloads patterned after upper stage ICBM re-
quirements. Severe flight loads and tempesrature raage (=75 to 170 F)
were specified. Motor C requirements were similar to Motor B. with
increased total impulse to be obtained by replacing aluminum with
beryllium in the propellant. Motor D, a cartridge-loaded reinforced
grain in a steel case, typifies an advanced air-launched rocket motor
incorporating stop-restart capability. Figures 2 through o present
introductory schematics of all four motors and the Motor B thrust d
vector control systeu,

(c) Initially the program was directed entirely toward demonstration of
full-scale, high mass fraction motors .lor upper stage application. This
application uses the proven pressure-carrying capability and stiffness
of the RFG to supplement the strength of the glass filament wound case,
thus reducing inert weight. Three distinct motor designs, desigmnated
Motors A, B, and C, were included in the program. In the Motor C
design, beryllium wire and powder replaces the conventional powdered
aluminum to obtain a predicted significant increase in propellant
impulse., Means of thrust reversal and thrust vector control were
planned as integral parts of Motors B and C, However, the requirement
for thrust reversal was later deleted because future systems prehably
will not require ports in the forward dome as a means of achievi.. thrust

reversal. i)
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Early in 1964 it was determined that the extended effort and expense
involved in developing the beryllium wire drawing process was not con-
sistent with program funding and first-priority Air Force requirements.
Furthermore, experimentation showed that the principles and techniques
developed to fabricate RFG motors with aluminum wire would be adequate,
with minimum adaptation, for winding Motor C with beryllium wire when
this type wire becomes available in adequate quantities and at reason-
able cost.

During this same period, the increasing need for and deliberate emphasis
on development of advanced air-launched missile propulsion systems,
coupled with a recognition of RFG's physical ruggedness and mechanical
properties, led to strong consideration for substituting an air-launched
missile motor for Motor C. Accordingly, in February of 1964, the pro-
gram was redirected to continue Motor A and B, discontinue Motor C, and
demonstrate an RFG stop-restart motor (designated Motor D) with envi-
ronmental capability over tb- -~xtended range of temperature (-75 to

250 F), endurance-vibration and aeroheat.

The specific requirements for all four of the development motors are
presented in the following discussion.

2., SPECIFIC REQUIREMENTS
a. Original Program Requirements
The requirements for the three original motors (Motors A, B, and C) are
presented first. The modifications required to reflect the previously
discussed redirections follow,
(1) Dimensions

The motors were to be designed and fabricated according to the dimensions
which follow:
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Flightweight Motors

A B&C

f ; Outside Diameter, in. (max) 30 36.25%
B (c) Length, in. 1

¥ Over-—all (max) 100 90
{;a Skirt to Skirt (min) 51 40

, Weight, 1b

; Total (max) 2600 3200

Mass Fraction (min) 0.96* 0.937%%

*With skirts; cylindrical section—-36 in.
**Total motor weight shall include: skirts, igniters, thrust reversal
b system, altitude nozzle, and complete thrust vector control system
including gas generator, actuating deviccs, hydraulic oil, and tank.
In the event that a heavyweight gas generator is utilized, the gas
generator weight used in calculating mass fraction will be 10.9 1b.

2o

(2) Mechanical and Physical
Flight and payloads loading--buckling criteria, simultaneously applied
to forward thrust skirt faces, were specified as follows:

(c) (a) Motor A

Axial Compression Load, 1b 40,000

Bending Momert, in.-lb 800,000
Shear Load, 1b 7,500 f
Torsional Moment, in.-1b 110,000 ]

(b) Motor B Loads Simultaneously Applied to Aft Skirt

Axial Compression Load, 1b 3,000
Bending Moment, in.-1b 1,500,000
Shear, 1b 30,500

(¢) Motor C Loads Simultaneously Applied to Aft Skirt

Axial Compression Load, 1b 15,000
Bending Moment, in.-1b 500,000
Shear, 1b 10,160

CONFIDENTIAL
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(c)

*Additional requirement-—-shall be capable of ignition to 90,000

feet altitude.

simulated altitude of 100,000 feet or greater.

Tests of Motors B and C to be conducted at

b
(c) (d) Vibration (Motor B only)--Procedure 1 of MIL-R-25534A l
| Exception: Survey and endurance testing to be conducted at ambient
temperature. 1
Temperature cycling (Motors B and C) was to be conducted in accordance
with MIL-R-25534A. The temperature range was =75 to 170 F.
(c) (e) Operational Temperature Range
A
Motor A 5 to 90 F
Motor B& C ~75 to 170 F
(3) Performance
{
(C) The rated performance at 60 F und applicable altitude shall be as follows: 1
Motor 7 ;
A B | C
Altitude Condition Sea Level Vacuum Vacuum
Thrust, 1b
Average 16,750 21,000 23,000
» Maximum 28,000 30,000 31,000 ‘
Minimum Action Time Total ' !
Impulse, lb-sec 540,000 800,000 800,000 [
Ignition
Maximum Ignition Delay, sec 0.100 0.100* 0.100* P
Deliver Specific Impulse, :
1b-sec/1b 250 250 300
(1000 psia at 0° Half Angle) |(S.L.) (s.L.) (Vac) |
Nozzle Expansion Ratio Optimum 25:1 25:1

. . e
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)
(4) Thrust Vector Control !

(C) Motors B and C shall have a TVC system capable of vectoring the thrust
line of action a minimum of plus or minus 4 degrees from centerline in '

} both the pitch and yaw directions.

-y

(5) Thrust Reversal

(C) Motors B and C shall have thrust reversal capabilities according to the
following criteria: *

A 1. Port location shall be in accordance with the design
as mutually agreed upon between the contractor and the

Contracting Officer or his designee.
Lictuation shall be anytime after 10 seconds of burning.

4 The initial nat reverse thrust level, excluding any
: transient thrust peak at time of actuation, shall be

at least 200 pounds when port actuation occurs at a ]

pressure level equivalent to the average chamber pres-

sure at 60 F. Subsequent to port actuation a net re-

verse thrust shall be continuously maintained. The 1

initial transient net reverse thrust peak shall be nom-

inally 1000 pounds.

4., Must achieve reverse thrust within 5 milliseconds (42
milliseconds) after signal.

5. Thrust reversal ports must withstand reverse thrust
for seven seconds, regardless of time of activation

in motor firing cycle. "

: i

b. Revisions To Program Requirements ]

As the program progressed, the requirements changed and these modifica-

tions were necessary: f
1. Because RPL mission analysis studies showed no need for
thrust termination ports, direction was given to delete

the thrust reversal ports in Motors B and C. i

!

b

]
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2. The slow progress in beryllium wire drawing technology,
and its high costs, coupled with the recognition of the
need for a rugged, extreme environment, air-launched
missile, resulted in the replacement of Motor C with A
Motor D.

3. A better definition of the Motor B external load re-
quirements, required expanding the original specifi-
cation.

These modifications changed the original specifications as listed below: +

(1) Dimensional Requirement Revisions

Motors A and B were unchanged.
All requirements for Motor C were deleted.

(2) Mechanical and Physical Requirement Revisions

Motor A requirements were unchanged.

(C) These design loads were added for Motor B:

Bending
Compression, | Shear, | Moment,
1b 1b in.-lb
(c) Pressurized Condition
Forward Skirt 15,000 3,000 300,000
Case 15,000 3,000 300,000 4
Aft Skirt - - — ‘
Unpress Condition
(Max Long Accel)
Forward Skirt 15,000 5,000 500,000
Case 61,500 10,160 823,300
Aft Skirt 61,500 10,160 823,300
Unpress Condition
(Max Lat Accel)
Forward Skirt 3,000 15,000 {1,500,000
Case 12,300 30,500 |2,469,000
Aft Skirt 12,300 30,500 |2,469,000

~ CONFIDENTIAL ‘
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(C) The requirement "Motor B simultaneously applied to aft skirt" was changed
to read "test loads simultaneously applied to aft skirt" shall be:

Axial Compression Load, 1b 3,000
r Bending Moment, in,.-lb 1,500,000
Shear, 1b 30,500

The Motor B vibration, temperature cycling,and operating temperature
range are unchanged.

s — el T SRS S

All requirements and references to Motor C were deleted.

1 (3) Performance Revisions

Motor A performance was unchanged.

Motor B performance was changed as follows:

| (C) Motor B 1
' Altitude Condition Vacuum
Thrust, 1b ,
Average 24,000
Maximum 31,000 1
Minimum Action Time Total
Impulse, lb-sec/lb 800,000
Ignition
Maximum Ignition Delay, sec 0.100%
Deliver Specific Impulse,
lb—sec/lb 283%* )
Nozzle Expansion Ratio 25:1

*Additional requirement-—shall be capable of ignition
up to 90,000 feet altitude. Tests of Motor B to be
conducted at simulated altitude of 100,000 feet or
greater,

**Vacuum at motor pressure, actual expansion ratio
and half angle.

'
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All requirements for Motor C were deleted.

(4) Thrust Vector Contro) Revisions

Motor B requirements were unchanged.
All Motor C requirements and references were deleted.

(5) Replacement of Motor C with Motor D

This required the foliowing summary of design objectives and nominal

values for the new motor:

1. Action Time Total Imp e, lb-sec

(Sea Level Optimum Expansion) 155,000
2., Thrust, Average
Boost 5,000
Sustain 1,400
Restart, minimum 1,400
3. Outside Diameter, in. 15
4, Over-all Length, in. 100
5. Length, Grain, in, 80
6. Propellant Weight, maximum, 1b 680
7 Delivered Specific Impulse, lb-sec/lb
(Corrected to Optimum 1000/14.7 psia
Expansion and 0° Half Angle) 250
8. Boost Grain Design Suitable for Ignition
From Sea Level to 80,000 Feet
9. Restart Grain Design and Restart Suit-
able for Ignition From Sea Level to
80,000 Feet
10. Action Time, sec
Boost 12
Sustain 50
Restart, minimum 10
11. Storage, years 5

16
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! (c) 12. Thermal Environment Demonstration—-
Design Considerations
Environment: -75 to 170 F (Storage)
250 F—60 min (Captive Flight)
, 650 F—2 min (Captive Flight)

Demnustration: Temperature Cycling =75 to 250 F
20 times Military Specification
MIL- -25534A requirement (2 1/2 f
cycles), end at 250 F, subject
_ to 650 F (hold for 2 min), fire
i at 650 F ambient air temperature ?

4'_-
g

13. Case structure will be hLeavyweight

14, Ignition delay for boost and restart, minimum, 0.100 sec

% 15. Vibration design considerations for motors of the D

i conliguration shall include the capability of with-
3 standing vibration in accordance with Procedure 1 J
of MIL-R-25534A.

(C) In addition to the design considerations specified above, the design :
included the capability of the motors to withstand a 4+3g input through ’
6 log-sweeps of 10 minutes each over the frequency range of 30 to 2000
cps; and through log-sweeps of 10 minutes duration over the frequency i
range of 5 to 28 cps at 0.100 inch double amplitude and from 28 to 300
cps at +4g input. (A sweep is defined as either increasing frequency
or decreasing frequency, and shall extend over a 10-minute period.) The

Motor D configuration shall be capable of surviving the above vibration }
requirements at the following ambient air temperatures: -75, 70, 170,

and 250 F.

3. PROGRAM PLAN ' 1

Based on the specification for the three separate motors, Rocketdyne pro-
ceeded to establish the design, development, und test program necessary
to accomplish these objectives. Because of the similarity of the
missions for Motors A and B, and the different mission for Motor D (also
because of its late addition), the program was aligned to conduct tests

that supported both Motors A and B, with some additional tests required ‘
for Motor D.

Tc facilitate program control it was divided into nine distinct tasks.
Figures 7 and 8, respectively, show the two-year evolution of the
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program from its origin with Motors A, B, and C to its final structure
of Motors A, B, and D. Tasks I through VII included the design, devel-
opment, fabrication, and testing of two different flightweight motors,
A and B, and one heavyweight Motor D. Task VIII covered the fabrica-
tion and delivery of two each Motors B and D. Task IX covered the
industrial hygiene and occupational medicine programs for beryllium
motor fabrication and testing (related to Motor C only). A brief dis-
cussion of each task follows,

a. Task I—Program Plan (Motors A, B, and D)

This task reguires the prepar2tion, submittal and maintaining an up to
date program plan, The pian is to be updated monthly and will include,
but not be limited to the following:

1. Master Schedule

2. Plan for testing of subscale specimens and full-scale
motors

3. Full-scale motor performance parameter definitions
which conform to MIL-R-25532A; the method of testing
for full-scale motors shall be as specified in MIL-
R-25532A and data shall be reported in general con-
formance with requirements of MIL-R-25532A

4. Identification of major component subcontractors

b. Task II--Design and Fabrication Development

Conduct design analysis and design Motor A, B and D including the
reinforced grain, core grain, glass filament wound and steel cases,
nozzle and associated systems (thrust vector control) where applicable.
Conduct grain winding and case winding fabrication development to
advance reinforced grain processing techniques and fabrication tech-
niques for glass filawment case winding for Motors A and B; test fire
igniters %o determine and evaluate ignition characteristics. Accom-
plish, through fabrication and test of small test specimens, that struc-
tural and ballistic characterization is associated directly with design
and fabrication of full-scale Motors A, B, and D.

21
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c. Task III--Fabrication and Test of Full-Scale Motors

(1) Motor A, 30-inch Diameter

‘ Five complete full-scale motors will be fabricated and tested. Testing
| shall consist of:

L Motor | Type of GFW Case| RFG | Core Grain Test Requirements
A Test Weight Al None Static Test Fire-—Ambient
Test Weight Al Al Static Test Fire--Ambient
Test Weight Al Al Static Test Fire--Ambient
Flightweight Al Al Static Test Fire-—Ambient
r Flightweight Al Al Combined Loads and Static
{ Test Fire—-Ambient

(2) Motor B, 36-inch Diameter

7 Six full-scale motors will be fabricated and subjected to the following
tests:
I Motorl Type of GFW Casel RFG ICore Grain! Test Beguirements I
B Flightweight Al None Pressure Burst
Test Weight Al Al Static Test Fire--Ambient
u . Flightweight Al Al Static Test Fire—-Ambient
Flightweight Al Al Temperature cycle test,

static test fire at ambi-
ent, hydraulically actu-
ate TVC with hydraulic
cart,

Flightweight Al Al Vibrate, static fire at
=75 F hydraulically actu-
ate TVC with hydraulic
test stand.

Flightweight Al Al Temperature cycle, vi-
brate, combined loads

test, static fire at
+170 F. Hydraulically
actuate TVC with hydrau-
lic cart.

i e, “'"-_ e T
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(3) Motor D, 15-inch Diameter

One full-scale motor will be fabricated and tested at ambient temperature
(70.i 10 F). This motor will be testweight in design and is intended to
prove concept feasibility.

d. Task IV--Tooling and Special Test Equipment (Motors A, B, and D)

Design, develop, fabricate, and/or procure tools, fixtures and special
test equipment necessary to perform the work provided for under this
program,

e. Task V--Documentation and Drawings (Motors A, B, and D)

Specified drawings and documentation shall be prepared, maintained, and
submitted. (Submittal of drawings was deleted when contract was
terminated.)

f. Task VI—Photographic Documentation

Provide photographic coverage of Motors A and B consisting of one com-
plete 16um audio visual report in color, not exceeding 20 minutes in
length, (Submittal of final film report was deleted.

g. Task VII—Aerospace Ground Bquipment (Motors A and B)

Design, fabricate, and/or procure aerospace ground equipment necessary
for handling, transporting, and testing of the motors. (This task was
not compieted since the program never developed a need for the equipment.)

h., Task VIII--Motor Delivery and Field Test Support

Delive<:r %0 the Air Force two motors of the B configuration with altitude
nozzies complete with thrust vector control system. Deliver to the Air
Force two testweight D motors. Provide field support for testing of
delivered motors. Deliver the necessary aerospace ground equipment for
support of testing the deliverable B and D motors at a designated Air
Force test facility. (No motors were delivered to the Air Force.)

23
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i. Task IX--Hygiene and Safety

(C) Perform an industrial hygiene and occupational medicine program for
beryllium motor fabrication and testing. (This tasi was related only

+ to Motor C, which was replaced by Motor D.)
v
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SECTION II

SUMMARY

The original Reinforced Grain Advanced Development Program, initiated
in April 1963, was to develop three different designs of lightweight,
upper-stage motors designated Motors A, B, and C. Motors A and B used
aluminum wire as grain reinforcement and Motor C used beryllium wire.
In early 1964 the high cost and limited availability of beryllium wire
required the redirection of the program. At this time Motor C was re-
placed with Motor D, a testweight air-launched demonstration motor with
extreme environmental requirements. The specific requirements for all
four motors are listed in the Introduction.

The initial design and development was on Motor A, a 30-inch diameter,
100 inch long, 2600 pound motor. Early development consisted of sub-
scale tests and partial full-scale fabrication. Six full-scale motors
were fabricated and tested. The test plan was to begin with a heavy-
weight conservative motor (to obtain an initial suecessful firing to
evaluate ballistic and other data); and then reduce the weight to the
flightweight configuration. The results of the motor firings are
summarized in Table I and Fig. 9.

The Motor B program was initiated after the Motor A program to take
advantage of the experience. Motor B was similar in design concept to
Motor A, was 36 inches in diameter by 90.00 inches in length, and
weighed 3200 pounds. The motor was initally intended ‘o have thrust
reversal ports, but these were deleted at USAF direction. It also had
a supersonic split-line, gimbaled nozzle. Like Motor A, six motors
were scheduled for development testing on Motor B, starting with a
heavyweight motot for initial firing and reducing the weight on subse-
quent motors to the flightweight design.
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The contract was terminated after completing fabrication of the second
Motor B. For a summary of the Motor B results, see Table II.

TABLE II

MOTOR B--SUMMARY OF TEST RESULTS

Motor No. Type Test

Summary of Design

Test Results

B-2001 3 cycle-
hydrotest

Flightweight RFG,
GFW case, & liner
(0.210 inch); no
core grain

1st cycle: 1150 psi
2nd cycle: 1160 psi
3rd cycle: 1430 psi;
failure design pressure
1650 psi (one cycle)
Successful cycle test
with grain plastic
strain indicated after
first cycle

B-2002 Static fire at
ambient on hori-| GFW case, and

zontal test
stand

Testweight RFG,

liner (0.38 inch)

Never subjected to test-
ing due to cracks in
cast propellant core
grain

B-2003

Only component
fabrication 'was
initiated prior to
contract termina-
tion

Motor D was initiated when Motor C was cancelled. It was a 15-inch
diameter x 100-inch long testweight, air-launched motor featuring a
duty cycle of boost»austain/stop—restart-sustain. Three motors were
planned .to be fabricated with one static fired and the other two to be
delivered to RPL. “he design was nearing completion when a program
Subsequently, the contract was terminated,

review was held with RPL.

effective 15 March 1965.
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SECTION III

CONCLUSIONS AND RECOMMENDATIONS
1. CONCLUSIONS

(C) Test results from static firings of Motors A and B showed that the design
approach used in both motors to achieve high mass fraction goals (Motor A,
0.96; Motor B, 0.937) through the use of a composite RFG/GFW structure
and a cast core grain is feasible. This was demonstrated by the suc-
cessful test firing of Motor A at a mass fraction level of over 0.91.
However, fabrication experience proved that this particular type of
motor requires unusual care in fabrication and is subject to performance
degradation arising from the addition of burning rate depressants in RFG
propellant formulations to achieve regressive pressure-time characteris-
tics. The program provided a foundation upon which to base designs for
a variety of RFG motors for specific applications. Limitations and
areas of risk, as well as preferred approaches, were established from
the wide range of tests conducted during the course of tiis Advanced
Development Program.

(c) Engineering and fabrication technology was developed which is directly
applicable to any future programs utilizing reinforced propellants.
These are the main achievements:

1. New machines and techniques were devised for fabricating
thick wall, helically wound pressure vessels with geodesic
isotensoid domes, using 7.5 mil aluminum wire filaments
and FLEXADYNE* (CTL polybutadiene) propellant binder.

2. Methods and materials for overwrapping glass cases on
propellant grains were developed.

3. Analytical techniques were evolved for handling complex
viscoelastic fields in wire-wrapped domed structures,
and for combining them with structurally thin (0.032 inch)
filament wound glass cases.

4, Methods were developed for designing the motor components
to simultaneously satisfy the ballistic, structural, and
processing (fabrication) requirements of a design wherein
the propellant grain is a working structural member.

*Trademark
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5. End ciusure attachments (polar bosses) utilizing the sup-
port of both the grain and the case were designed, developed,
| and proof tested. The end closures also provided nozzle and J
igniter attachment points. 1

6. Testing methods were developed to evaluate reinforced grain
and motor reaction to both interral pressure loads and
T bending, compression and torsional flight loads. |

7. A very lightweight omni-axial, supersonic split line gimbaled
nozzle applicable to conventional motors was developed for
Motor B. 1

8. Two nozzles and a thrust vector control system were delivered
to AFRPL for test.

9. All components critical to the final design except the ulti-
mate flightweight case and liner were proven in separate
tests, although not combined in one motor. 4

10. There is an indication of a solution of the major structural
and fabrication technique problems with the case/grain com-
posite and the polar end bosses joining them.

11. Swmooth progression of burning during core-to-RFG transition !
and through the multi-layered RFG was successfully demonstrated 1
in Motor A-1002.

12, Reinforced propellant specific impulse levels and burning
rates, in formulations without depressants, were shown to be
essentially the same (within measurement accuracy) as that
of similar powdered aluminum formulations.

13. Adequacy of Motor A nozzle and igniter performance were demon-
strated in static tests. . P

A flightweight configuration Motor A was successfully hydrotested to
well beyond motor operating pressure limits (ever 15%), and the first
Motor B was successfully hydrotested to 14% over motor operating pres-
sure limits after two pressure cycles.

The first Motor B scheduled for static firing exhibited cast core grain
cracking. Subsequent contractual decisions and actions precluded further
effort toward correcting this by design or process changes.

(C) The use of beryllium wire in Motor C did not progress far emough to
evaluate combustion efficiency or to permit full-scale experimentation.
Subscale winding of the small amounts of beryllium wire procured indicates
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(C) that the currently available beryllium wire is considerably more brittle,

even in the annealed state, than aluminum wire. However, grains can be
fabricated from beryllium wire with minor modification of aluminum wire
winding equipment to increase the bend radius. Known future mission
requirements at this time do not appear to warrant further work with
beryllium RFG. However, the potential performance increases prompting
the inclusion of Motor C in the program remains for possible future
consideration.

Al though the program was terminated before the Motor D design could be
tested, all data acquired and analyses conducted on the program indi-
cate that the strength and ruggedness inherent in wire reinforced propel-
lants can be utilized effectively to provide motors with extended vibra-
tion, shock and temperature cycling capability. Based on data from

tests of smaller motors, and optimization studies of Motor D design,
there is considerable evidence that characteristics such as volumetric
loading, delivered impulse, and service life/initial cost tradeoffs, are
competitive with conventional cast propellants.

When reflecting on the practicality rather than the feasibility of the
concepts under development, the pro.cessing and fabrication difficulties
encountered would have to be considered greater than normally expected.
Error free fabrication of the motors presented many problems in process
control and operator training throughout the program.

A review of program objectives, progress and funding was made by the
Air Force at the conclusion of the Motor A phase. The Motor B program
was viewed in the light of Moctor A experience and the similarity of

the two designs. At the same time, Motor D objectives were closely
scrutinized and compared with contemporary air-launched missile specifi-
cations and projected requirements.

As a result .of the reassessment, in early 1965, the .ir Force determined
that while Motor B program objectives might be met or closely approached,
the final product as designed would be largely unrewarding. The cost to
achieve these objectives would not be warranted in light of probable ad-
vancements in conventional solid propulsion system performance (mass
fraction, specific impulse) criteria. Serious doubt was also expressed
by the Air Force as to the real need in the foreseeable future for air-
launched missile propulsion systems possessing environmental capability
appreciably beyond the then current Military Specification requirements,
that could not be achieved using conventional cast propellants.
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The review culminated in an Air Force decision to terminate the program,

! on the basis that program progress and results to date did not warrant
its continuance. Remaining funds were stated to be inadequate to attain
suitable and worthwhile objectives in applying RFG technology to foresee-
able Air Force needs. Also, serious questions were raised as to the

r wisdom of further pursuing any type of grain reinforcement, until such
time as a future specific system has requirements for ruggedness or
other properties not attainable by conventional propellants.

m Termination of program effort, except for final report preparation, was
effective 15 March 1965.

2. RECOMMENDATIONS f

It is Rocketdyne's opinion that (1) future air-launched system may well

demand propellant grains and support systeme with properties permitting

application ¢f higher g loadings and greatly increased vibration endur-

ance cycles, as well as extended temperature range, and (2) that rein-

forced grain appears, on the basis of experimentation, test results and

analysis, to offer a most promising soluticn to these challenging and

perhaps even formidable technical barriers. For upper stage, high mass |
fraction motors capable of operating over extended environmental ranges |
and resisting severe flight load conditions, an all-reinforced grain !
motor, cylindrically-wound and slotted, without a cast core (Motor B !
design) offers a promising application of RFG. The geodesic method of {
grain fabrication, although largely unrewarding for conventional bal-
listic missiles, will be most useful in applications where the motor
should be entirely consumable (no case at all) for other than perform-
ance reasons (for example, when the last missile stage disappears for
penetration reasons, and for clandestine delivery of payloads). In the
ensuing period and during review of program data and progress in the
course of preparing this report, no information or conclusions have
been reached which change Rocketdyne's viewpoint. 'l

e

In retrospect, several deficiencies in the planning and conduct of the
ADP program are evidenli. The program objectives, as originally agreed 1
upon by Rocketdyne and the Air Force, were quite ambitious for advanced
development. In the light of the considerable and sometimes unpredic- |
ted problems of various types encountered, it is apparent that a less
ambitious program in terms of types of motors would have been desirable
and additional exploratory development prior to or concurrent with the
ADP would have been of great benefit. This would permit illumination
and sclution or circumvention of the more fundamental deterrents to
smooth program preo- ess, and would help prevent the costly and time con-

y v

suming effort of ing approaches in the course of a full-scale, ADP J
effort. Dual app s, which would have offered some assurance against
redirection, coul: be taken in most instances in this program because /
of program scope a unding limitations. [d
© |
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b The initial primary goal of the program was to reach for the ultimate
performance levels predicted for the RFG concept. This carries an
inherently higher risk than an incremental approach. Contract incentives
} were placed entirely on motor performance on the basis of the highest
attained in any one successful (full duration) firing. Although a more
conservative viewpoint stressing test motor success and stepwise approach
to program objectives, indicating "attainability" vs "attainment" pre-
vailed in the latter program phases, the predominant motivation was
actual demonstration of advanced objectives at recognized high risk. J

Although valuable design information was obtained on this program many
additional unknowns have been encountered. Therefore, future applica-

tions of the reinforced grain concept should be approached with addi- +
tional experimental attention to the phenomena which surrounds the vari-

ables intrinsic to the concept. From these basic experiments, the con-
s cept can be exploited to its fullest potential.




SECTION IV

MOTOR A

The design, development, fabrication, and test of the RFG Motor A are
presented in this section. It is divided into seven subsections. The
first part discusses design and development; the second part the first
development motor; and the remaining five parts discuss the static fired
development motors.

The major portion of the contract effort was devoted to this motor because
of the similarity between it and Motor B. As is common with large motor
(30—inch, 36-inch diameter) development programs, the new or novel com-
ponents and techniques are tested in less-expensive subscale models.

This large motor design and development effort was oriented in a similar
manner. The basic design description is presented first, including a
parametric study which established the basic motor goals. This is fol-
lowed by a ballistic design discussion which includes the ballistic design
of the RFG and core grain and the necessary propellant development; next,
a structural design is discussed, presenting the acquisition of required
design data and fabrication techniques and the method for analyzing the
RFG/GFW composite structure. The subscale test results necessary to
supporting the various design areas are presented within the discussion

on the particular area.

Throughout the actual ballistic and structural design, certain component
requirements were developed. Some of these components are common to all
solid rocket motors and others are unique to the RFG motor. Such com-
ponents as the polar bosses and load rings are unique to the RFG motor
but the nozzle, igniter, and restrictor are common to all solid rocket
motors. The development of the components to fulfill their specific
requirements .is discussed after the structural presentation in this
order--polar bosses, load rings, nozzles, igniters, and insulators.

After the discussion on the preliminary design and couponent verification,
the fullscale 30-inch diameter motor process development is presented.
This includes the reinforced grain fabrication techniques, application

of the restrictor to the RFG, and overwrap of a glass filament case on a
live grain. The process development concluded with a recommended proces-
sing procedure which is presented next. Along with the process develop-
ment of the motor, inspection techniques were developed to ensure the
quality of the final product. These techniques are presented after the
process procedures.
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The culmination to all the design, development, and subscale testing is
the fabrication and structural test of the first fullscale RFG motor
(A-1006 . This motor's discussion precedes the subsections discussing
: the fabrication and static test firing of the five development motors.

1. DESIGN AND DEVELOPMENT -

Motor A (Fig. 10) is 30 inches in diameter by 100 inches long with

dome shaped ends. A filament-wound skirt is made to integrate with, and:
attach to, the motor case at the case-head junctions. A metal ring flange
is bolted to the skirts to provide a mounting for missile interstage coup-
ling and to transfer external loads into the case and grain assembly.

An opening is provided through the forward end of the motor to permit
installation of the igniter. Another opening is provided through the
aft end where a static, bell contour nozzle is installed.

The grain is made in two sections. The outer section which is also the

8 load carrying grain, or RFG, is a thick layer of propellant matrix with

a uniform winding of high strength aluminum wire passing helically through
the layer, much like a wound ball of yarn. The inside section is a cast
conventional composite propellant.

Speciél fittings, or polar bosses, are wound in both the forward and aft
RFG openings to provide a means of attaching the igniter and nozzle, to
seal the spindle opening during RFG winding, and to transmit loads into
[ the case and grain.

Thin metal rings, called load rings, are fitted to the polar bosses be-
tween each primary RFG layer. The purpose of the load ring is to reduce
unit bearing loads in order that maximum joint strength may be obtained.

The case, which is a thin shell of glass reinforced epoxy, serves as a
primary structure to contain hot gases and to transfer external loads.
The igniter is a conventional basket design. l

The RFG provides extra strength to aid the case in carrying pressure and

external loads during the initial motor burning phase and acts as an |
ordinary propellant to provide thrust during the final burn phase. The
core grain provides thrust for the initial or boost phase.
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Figure 10. Motor A Assembly

37

e

CONFIDENTIAL




CONFIDENTIAL

—

The floating restrictors provide stress relief to areas of high stress
at the end of the core grain while the primary restrictor acts as a high
pressure seal and protects vulnerable components from hot gases.

a. Ballistic Design

In considering the ballistic design of Motor A it must be remembered that
the reinforced portion of the grain is utilized as a structural member,
and that the strength of the RFG is reduced as the grain is consumed.
Therefore, tc utilize this unique structural feature to its fullest, the *
chamber pressure must be maintained at a maximum that is commensurate
with the strength in the combined RFG and glass filament wound case.
However, since the RFG is consumed during the motor firing (and the com-
bined case and grain strength reduced), the chamber pressure must be
decreased in proportion to the reduction in the case-RFG structural capa- |
bility. This is accomplished by reducing the propellant burning rate.
The rest of the propellant (core grain) is a conventional composite and
is selected and designed with convention techniques.

l

(C) In determining the operating pressure limits of Motor A, a parametric !

study was conducted to optimize the mass fraction. By varying the RFG !

initial pressure while holding the final pressure constant, the mass q
fraction was optimized at an average core pressure and RFG initial pres-

sure of 800 psi for Motor A. Of necessity another variable in this para-
metric study was the RFG web thickness, the web thickness of 3.82 inches

corresponded to the 800 psi pressure. ;

This ballistic section is divided into three topics: (1) Parametric Ii
Study, (2) Propellant Development, and (3) Ballistic Design RFG and Core
Grain. .

e R

(1) Parametric Study

System analysis of Motor A was initiated to provide data for selection

of operating characteristics. This analysis included evaluating pressure

level, which would have a subsequent effect on mass fraction and total |
impulse. The over-all ballistic requirements for Motor A are summarized ‘

below:
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Action time total impulse, lb-sec 540,000
Average thrust, 1b 16,750

Maximum thrust, 1b 28,000

Nozzle expansion ratio Opt @ sea level
Total motor weight, 1b (max) 2,600

Mass fraction 0.96

Delivered spec impulse (Isps)’ 1b-sec/1b 250

(C) Of primary consideration was the mass fraction of 0.96. Of secondary

importance was the burning rate required in the outer layers. For in-
creasing operating pressures in the core, the nozzle areas required were
smaller; hence, the burning rates required in the outer layers of the
RFG became smaller. Difficulty was encountered in obtaining the low
rates, because the specific impulse of these propellants decreased with
the addition of depressants. Under certain simplifying assumptions the
RFG outer layer burning rate can be shown as a function of core pressure.
Core pressure is a function of propellant properties, grain geometry, and
nozzle throat area. In the study, propellant properties and core flow
channel geometries were essentially fixed. Variations of core pressure
required variation of the RFG thickness and, consequently, the core web.
However, average burning surface of the core was essentially constant.
With these assumptions the average core pressure is a function of throat

area only.

where Pc = chamber pressure

Ay

P =

. burning rate exponent

n

(l{) l/l-n At = throat area, average cone
1

1= constant

Similarly, the final pressure in the RFG is a function of its propellant
properties, geometry, and throat area. The latter is fixed by the enve-
lope, and only the burning rate in the final layer was considered as a
variable, along with throat area. Hence, the final pressure can be shown

as follows:

where Pf = final chamber pressure

. l/l—n
p _(:KE ﬁ) throat area
£ " t

At burning rate exponent

>
1]

constant

=N B
]
]

r, = burning rate
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(C) As the study was performed for a final pressure of x00(1) psia (Pg), the
two equations can be combined and the rate required in the outer layer
can be shown as a function of core pressure.

where r = burning rate in outer RFG layer *
. (;) Pc = chamber pressure, average core
c K3 = constant

These data were calculated and are shown in Table III.

TABLE III
SUMMARY OF MOTOR A PARAMETER EVALUATION
Final
Burning
rre( ) reg(2) Relative Rate,
Initial Final Total Variation | in./sec
Pressure Pressure Impul se in Mass at
(psia) (psia) (lb—sec) Fraction 1000 psi
1200 400 566,700 0.003 0.137
1100 400 566,300 0.002 0.151
1000 400 565,400 0.001 0.161 |
900 400 563,800 - 0.180 |
800 400 561,700 - 0.195 | |
700 400 560,500 - 0.241 |
600 400 551,700 - 0.286 5
500 500 540,300 0.001 0.356 ]
400 400 521,200 0.001 0.482

i
(I)Also, Core Grain Design Pressure |
(Q)Also, GFW Design Pressure 1
|
|
|

Propellant weight is essentially constant; however, inert weight from
point to point varies as a result of nozzle throat and closure modifica-
tions accommodating the pressure levels. Generally, the nozzle throat
area (and, hence, weight of the nozzle insert) decreases as pressure
increases. Higher pressures, however, required the increase structural 3

(1) This was considered the minimum pressure that the outer RFG layer
could efficiently burn.
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(C) support in the areas of the nozzle and polar bosses. This increased the
over-all motor weight. Along with the varying weight of the components
was the limitations of attainable burning rates required in the outer
layers of the reinforced grain. The minimum outer-layer RFG burning rate
that could be assured corresponded to a core average pressure of 800 psia.
At this pressure the mass fraction was at a maximum, and estimated total

+ impul se was well over the stipulated minimum of 540,000 lb-sec. Hence,

the level of pressure was taken as 800 psia; this was defined as nominal
maximum pressure. On this basis average pressure for the core was set

at 750 psia.

(c) With this initial RFG pressure the structural requirements of the com-
posite RFG-GFW case were established (ang, therefore, the RFG web). An
RFG with 20% aluminum wire weight percentage and an ID of 22 inches cor-
responded to the 800 psi nominal pressure. After testing Motor A-1002,
the average pressure was adjusted to 775 psia, when the pressure-time
record was found to be more neutral than originally estimated.

(2) Propellant Development

The burning rate of the reinforced propellant was controlled by the
burning rate of the nonaluminized propellant used as the binder composi-
tion in fabricating the reinforced propellant. Since the binder csiuposi-
tion is the prime influence on the resulting burning rate of the 1rein-
forced sections, company-sponsored activities were concerned principally
with developing binder propellants that had a wide range of burning rates
without sacrificing performance; that is, the oxidizer loadings were
maintained as high as possible to achieve a high oxidizer/fuel ratio.

(C) As a result of this development, binder compositions containing 87% or
88% by weight of solids were formulated for the RFG application. These q
compositions exhibited burning rates from 0.135 in./sec at 400 psi to
0.590 in./sec at 1000 psi. An upper range of hurning rates (0.31 te
0.59 in./sec at 1000 psi) was accomplished with a single composition by
varying the ratio of the fine-to-coarse oxidizer fractions. This com-
position is identified as RDS-512; the formulation is given in Table
IV, with the burrning rate (shown as a function of the oxidizer ratios)
given in Fig. 11.
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Binder compositions with burning rates below that of RDS-512 require the
use of burning-rate modifiers, or depressants. Since the RFG designs

required more extensive use of propellants with lower burning rates, the
company-sponsored phases of the propellant development were also concerned
with burning-rate depressants, solid particle size ratios, and/or materi-
als to reduce burning rate at low pressures by increasing the burning-
rate exponent, Over 40 individual ingredients and combinations of these
ingredients were evaluated for their effectiveness in reducing the burn-
ing rate in actual compositions. In general, the most promising burning-
rate depressants investigated were salts of metals from Group III of the
periodic table, which includes barium, strontium and calcium. Indica-
tions were that the salt shouid be one that produces carbon dioxide (such
as the citrates, oxalates, and carbonates).

From this study, the greatest reduction in burning rate from a control
value for a given amount of burning-rate depressant was accomplished with
strontium carbonate up to a 3% by weight level. However, increased quan-
tities, above 3%, failed to reduce the burning rate still further. On
the other hand, calcium citrate at increased levels continued to decrease
the burning rate, even though at the 3% level, the citrate was not as
effective as the strontium carbonate. By using a combination of calcium
citrate and strontium carbonate, a slight reduction in burning rate below
the individual ingredients could be achieved. This is illustrated in
Fig. 12.

A low burning rate composition, RDS-514, was issued for reinforced grain
application. It contained (1) 88% solids and (2; a depressant (50-50
ratio of calcium citrate and strontium carbonate) level varying from

0.1 to 7.0%. The burning rates that can be achieved by this composition
(formulation given in Table IV) when using the allowable range of de-
pressant levels are illustrated in Fig. 13. Using this composition at
the higher depressant levels resulted in processing problems associated
with increased rheological properties. To improve the processing consid-
erations with propellants at the lowest burning rates (higher depressant
levels), a second low-burning-rate composition was issued for this pro-
gram. This binder composition, RDS-523, contained the same depressants
as RDS-514 but with the solids loading reduced to 87% and with three
optional levels (10, 20, and 30 parts per hundred rubber of plasticizers,

for flow considerations); RDS-523 composition is given in Table IV. The
burning rate as a function of depressant level is illustrated in Fig. 1l4.
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Burning Rate, 1n./sec @ 515 psia
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Figure 12. Strand Burning Rates of an 87.5% Solids-Loaded
Propellant (analuminum) with Various Ratios
of Strontium Carbonate and Calcium Citrate at’
Total Level of 5%
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A fourth propellant composition was issued for usage in this reinforced
grain program. This propellant, RDS-526, is a conventional aluminized
Flexadyne composition containing 86% total solids with a burning rate
modifier to achieve the design burning rate. This composition is uc~d
as the core grain and is processed by normal casting techniques.

(3) Ballistic Design of RFG and Core Grain

The actual design of this motor differs from conventional motors. Know-
ing the charge configuration in a conventional motor design, the required
burning rate (r) to yield a particular pressure, with other parameters
known, can be determined explicity. However, in the reinforced grain the
specific impulse and characteristic exhaust velocity (c*) vary with the
amount of depressant added for burning-rate control. This burning-rate
variation is required by the decreasing chamber pressure. To facilitate
the design analysis, the following parametric curves were established.

1. The relation of specific impulse vs burning rate was
established, based on 6-inch motor firings. From this
curve a curve of c* vs r at 1000 psia was drawn (Figs.

15 and 16).

2. From the same 6-inch motor data, the variation of pres-
su;e exponent vs r at 1000 psia was determined‘(Fig.
17).

3. From the above, rate vs pressure curves were drawn, with
varying pressure exponents depending on r at 1000 psia
(Fig. 18).

4. From this information a parametric curve of the product of
c*¥ x r at chamber pressure vs chamber pressure, with r at
1000 psia as a parameter, was prepared (Fig. 19).
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Figure 17. Estimated Variation of Pressure
Exponent (n) with Burning Rate
at 1000 psia, RDS-514 and-523
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From the equation:

P - spc*r @ P
gA, ‘

—

L #_ where

Gravity constant

Throat area *

Burning surface area

o wv >
f

Propellant density

(o]
*l
]

Characteristic exhaust velocity

Burning rate

o]
]

Chamber pressure

the product of c¢* x r @ P can be solved explicitly and can be shown as
a function of burning surface.

Motor burning rate was estimated from the uncured-strand burning rate.
The strand rate was found to be approximately 18% lower than the motor
rate.

The functions described above were used as a basis for selecting the
required rate in each layer of the RFG. The calculations were straight-
forward except for the allowance made for core propellant (sliver) which
burns simul tanecusly with the RFG. (Details of this method are discussed
in the core grain subsection.)

(C) Having established these relationships, the ballistic design for the RFG
was initiated from the 3Jata provided by the parametric study. The enve-
lope available for the reinforced grain of Motor A was defined by an out-
side case diameter of 30 inches. Case thickness and insulation require-
ments reduced the diameter to 29.64 inches. The original case liner
thickness was set at 0.30 inch, however, the minimum attainable was found
to be about 0.060 inch, and this was used as a final target. The RFG in-
side diameter was set at 22.00 inches. Hence, the cylindrical web, based
on the liner thickness of 0.060 inch, was 3.79 inches.
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(C) The trade—off studies defined the nominal chamber pressure at the start
of RFG burning to be 800 psia at 60 F. As the motor was to be fired only
at 60 F, 800 psia was used as the design nominal. The design nominal
pressure-time requirement was defined by a straight line (pressure vs
web burned) from 800 psia at the start of RFG burning to 400 psia at a
web remainder of one inch. The design nominal pressure during the last
inch of web was constant at 400 psia. Thus, the configuration and amount
of propellant was obtained for the RFG. This left the major effort in
ballistic design in determining the burning rates for the propellant
layers and estimating the performance of the RFG.

Essentially all surface-burning modes in Motor A RFG are in the radial
direction. Because of the decrease in layer thickness in the domes, the
flame front is burning more than one layer simul taneously. However, the
burning modes initiated in this manner were assumed to contribute little
toward additional weight flow rate. All burning in the cylindrical por-
tion is theoretically normal to the initial surface. The flame front in
the domes was scaled, based on normal burning through these layers, their
burning rates and thickness. The total web through the RFG in the domes
is significantly less than in the cylindrical section. To provide simul-
taneous burnout of all surfaces of the RFG, the conicyl in the core grain
was dimensioned such that at the burnout of core web, a sufficient por-
tion of core propellant remains in the domes to provide the simultaneous
burnout of surfaces in the domes and cylinder.

(C) Performance estimates were based on instantaneous burning surfaces and
associated burning rates. Surfaces were first calculated for the RFG as
if no core propellant were present. Actually, at core burnout with all
surfaces burning completeiy normal, 128 pounds of core propellant remains.
Most of this comes from the star configuration, which has a cross-section
sliver fractioAE)of 0.16, based on the 22-inch JID of the core grain. A
portion of this 128 pounds is in the domes., To account for this in the
estimate of performance, an area equivalent to the volume of 128 pounds
was added to the curve of RFG surface vs web. The equivalent surface
from the web then was used with the parametric curves in determining the
burning rates of the grain.

Miscellaneous propellant weight and burning rate data for the RFG for
Motor A, with a liner thickness of 0.060 inch are presented in Table V.

(2)Cross-section sliver fraction is defined as the cross-sectional area
ratio of remaining core propellant to original core propellant, when
the core burn front first reaches 22 inches diameter.
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TABLE V
MOTOR A RFG PROPELLANT WEIGHT AND BURNING RATE DATA

Helical Uncured Estimated Propellant | Propellant
Layer Strand Rate| Motor Rate Weight, RDS Percent
No. @ P, in./sec| @ P, in./sec 1b Numver Depressant
—
1 0.260 @ 735 0.305 133 514 0.5
psia
2 0.220 @ 670 0.258 139 514 1.1
psia
3 0.179 @ 600 0.210 156 514 2.5
psia
4 0.170 @ 540 0.200 156 523 2.6
psia
5 0.145 @ 470 0.170 178 523 5.5
psia
6-9 0.132 @ 400 0.155 575 523 6.0
psia
Total Propellant 1337
Propellant in Domes 448
Propellant in Cylinder 889

Pressure and thrust-time were calculated by conventional methods, using
properties of the respective propellant layers. At the interfaces of
two layers with different burning rates, there is theoretically a dis-
continuity in the pressure-time function, as two pressures can be calcul-
ated for one time point. This of course, will not occur, primarily
because a degree of propellant blending will occur in the manufacture of
the RFG. As a methed for constructing the curves, the pressure-time
curve with discontinuvities was first drawn. The degree of propellant
blending was then estimated and its effect on pressure-time was drawn.
Pressure-time integrals were made to coincide with propellant weight and
ballistic properties.
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The total impulse was calculated for each layer based on its propellant
weight and average pressure over the particular interval. The average

pressure was based on the pressure-time curve with its discontinuities.
Portions of the core sliver were included with initial layers in deter-
mining the total impulse. Detailed evaluations of each test and a dis-
cussion of reinforced grain performance for each motor are given under

the full-scale motor tests reports.

Although the specific ballistic performance requirements for the core
grain were not specified, they are implied in the total motor performance
specification and other considerations.

Physical dimensions of the core envelope were fixed by the over-all motor
envelope and the RFG structural considerations. The outside diameter of
the grain was 22.00 inches, corresponding to the inside diameter of the
reinforced grain. The optimum initial RFG pressure from the trade off
studies was 800 psia and from this the core average operating pressure
for the core propellant was established at 750 psia.

Propellant RDS-526 was selected for the core propellant and was tailored
slightly for burning rate requirements. Properties of the propellant
applicable to Motor A core are:

Temp coefficient of pressure (nk),

#/deg F 0.12

Pressure exponent (n) 0.30

Motor burning rate at 1000 psia,

60 F 0.393

Characteristic exhaust velocity,

(c*), ft/sec 5168

Spec impulse (Isp) at 1000 psia,

zero deg half angle 250

*

Ratio of specific heats( ) 1.191
*

Theoretical flame temp, deg F( ) 5725

Density, 1b/cu in. 0.0629

(*)Based on shifting equilibrium
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With thrust and pressure levels essentially defined for the core burning
duration, weight flow rate was limited to a particular level. Within
the range of burning rates available in RDS-526, average burning surface
of the core grain was established commensurate with the pressure level
and nozzle throat area. From stress considerations and grain-design
requirements the core-web value was determined to be 4 inches.

Within these boundaries, grain design strdies were undertaken to obtain
the highest feasible volumetric loading. Fxperience had shown that a
coaventional star configuration would be best, and this was taken as.the
final design configuration, However, other configurations were consid-
ered, such as modified-star or dogbone configurations. In the studies,
port-to-throat ratios, erosive burning, and other variables affecting
maximum pressure were considered.

Pressure neutrality was a primary consideration in the grain design, as
the more neutral design could operate closer to 800 psia; thereby, it
could deliver more impulse. Conicyls (circumferential slots) in both
forward and aft ends of the grain were incorporated for this purpose as
well as stress considerations.

As a concept requirement, the reinforced grain was a pressure load-
carrying member; this called for keeping the core flame front away from
the reinforced grain in the dome areas prior to the transition from core
to RFG in the cylindrical section. Initial design analyses considered
restricting a portion of the core propellant to provide this feature,
when both aft and forward polar bosses were the same. However, design
features of the aft polar boss enabled the core configuration to be made
without restrictor in this area.

A five-point, conventional star cross-section was determined to be the
optimum design (see Fig. 20). The star angles were determined from the
ballistic design analysis. The fillet radius of 1.10 inch was primar-
ily a stress consideration, and the 0.87-inch radius at the star tip was
the minimum radius which mandrel design would tolerate.

With this core design, and based on the 22-inch diameter of the core
grain, the cross sectional sliver content is 16%. However, this propel-
lant is not sliver as such, as evidenced Ly data from A-1002 firing,
where the tail-off impulse represented 3.4% of the total impulse. Most
of this cannot be attributed to the cross—sectional sliver content of
the core grain. As the flame front progresses into the RFG, the propel-
lant remaining from the core has a relatively higher burning rate than
the RFG, and it will be consumed well before the end of RFG burning.
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| The final flightweight Motor A design weight summary is presented in
Table VI.
] TABLE VI
} ; MOTOR A DESIGN WEIGHT SUMMARY (FLIGHTWEIGHT MOTOR)
wWt, 1b
Propellant
Core Grain 1,133.00
RFG 1,349.00
{ Igniter 0.55
|| Total Propellant 2,482.55
Inert
Case and Skirt 34.0
-} Liner 12.0
Nozzle 26.77
Aft Polar Boss, Load Ring,
Flange, Pins 19.07
Forward Polar Boss and Load Rings 14.95
Igniter Assy 3.08
Total Inerts 109.87
% Total Motor 2,592.42 :1
[ Mass Fraction 0.958 H
}
b. Structural Design ?

The case-grain structure was designed to support maximum chamber pressure
as well as ultimate flight loads, whereas the filament-wound glass case
wvas only designed to contain chamber pressure near the end of burning g
combined with flight bending loads. Buckling of the thin fiberglass case
. would have been the critical load condition if a conventional grain had
i been used in these motors. However, because of the relatively high mod-
' ulus and inherent rigidity of the reinforced grain, the case was stabi-
lized in a manner similar to a pressurized case.
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‘The design of the reinforced grain-case combination provided a composite
structure with a greater structural efficiency throughout the burning
time than conventional grain-case combinations. Design of the motor
involved a balance between structural and ballistic performance and com- 1
patibility of the entire composite.

The glass filament wound case/reinforced grain composite structure for
Motor A was designed as a mutually interacting pressure vessel. The GIW |
case consisted of S-994-HTS glass fiber-reinforced epoxy resin which was

bonded through an R-143 rubber liner to a series of interlayers of fila- |
ment-wound, wire-reinforced Flexadyne propellant. Structural support .4
fittings of titanium and glass/phenolic insulation were provided at the

forward and aft ends for support during the winding and for attachment l
of the forward head closure and nozzle. The GFW case had integral for-
ward and aft skirts.

The specific requirements for Motor A establish the maximum geometric
envelope and externally applied loads. In addition to these loads, motor
internal pressure and thrust loads also had to be considered in the
structural design. Magnitude of the thrust load was small enough in
comparison with the externally applied bending moment that it did not
influence the design of Motor A.

(C) Trade—off studies conducted early in the program dictated these maximum
initial and burn-out pressures for the motor:

Maximum Initial Maximum Burn-out
Pressure, psia* Pressure, psia¥* i
Motor A 880 440 J

*Includes 10% for variation in ballistic reproducibility

(C) These values were for 60 F operating temperatures. Although it was only
required that Motor A be fired at 60 F, it was decided to design the
RFG/GFW structure so it could be fired at 90 F. This increased the maxi-
mum initial and burn-out pressure for Motor A to 935 and 468 psia,
respectively.
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The structural design conformed to the requirements called out in MIL-
R-25532A in that it was based on an iuternal pressure which was 1.25
times greater than the maximum hot operating pressure with a 10% assumed
maximum variation in ballistic performance. This value has proven
slightly conservative on other preliminary motor designs. Flight loads
were interpreted as the maximum operating loads and the structure was
designed not to fail at ultimate flight loads which were 1.25 times

greater than the maximum operating loads. Thus, the safety factors used
were:

SF = 1.25 internal pressure

S = 1,25 flight loads

This gave the following design ul timate structural loads for Motor A:

e

Initial Burnout |
Pressure, psia 1,170 585 ﬂ
Compression, 1b 50,000 50,000 1
Bending moment, in.-1b 1,000,000 1,000,000
Shear, 1b 9,375 9,375
Torsion, in.-1b 137,500 137,500 k

The RFG was capable of supporting the major portion of the internal pres-
sure until just prior to burnout. Therefore, the critical design condi-
tion for this motor was determined to be the simul taneous combination

of the following ultimate loads thich occurred just prior to burn-out
of the RFG):

Pressure, psia 585
Bending moment, in.-1b 1,000,000
Shear, 1b 9,375
Torsion, in.-1b 137,500

The GFW case was designed to withstand these loads at 90 F.




(1) Design Data Acquisition

At program initiation the proposed methods to be used in the structural
analysis were still in need of improvement, and some materials and fabri-
cation changes were indicated by a previous RFG contract (AFO4-611-8193).
These voids were planned to be filled by joint Air Force and Rocketdyne
subscale programs.

(a) Resin and Glass Studies

One arca of concern was in the glass filament wound cases. Although
glass filament wound cases have been used in the solid propellant rocket
industry for a number of years, the reinforced grain application required
a new resin system with somewhat unique qualities. Consequently, Rocket-
dyne made a study of many different systems before selecting one for RFG
cases. Since the glass filament wound case was wrapped directly onto

the grain, the resin had to be one which would cure at a relatively low
temperature and still retain good mechanical properties when the rocket
motor was subjected to a high temperature environment.

After testing many different resin and glass combinations, seven were
selected for final evaluation. All seven were tested at room temperature
and all resins (but not all glasses) were tested at 200 F. Owens-Corning,
20-end, X99% (now S994), HTS glass roving with DER 332 resin and APCO 320
curative were selected for preliminary design because of the high ulti-
mate strength attainable. The DER 332/APCO 320 resin was tested at room
temperature with S994 glass, and at 200 F with Owens-Corning "E" glass.
These tests, conducted on standard, Rocketdyne, 3-inch, open-end cylin-
ders, showed an ultimate hoop stress of 352,000 psi. One 18-inch dia-
meter glass filament wound case, fabricated and tested at room tempera-
ture, ruptured during a biaxial test at a composite hoop stress of
300,000 psi. Based on tests performed the following ultimate properties
(Table VII) were used for design of filament wound cases for reinforced
grains. These mechanical properties were used in the preliminary design
of Motors A and B.

Further resin studies continued on a Rocketdyne IR&D program where better
values of all material properties were obtained for final full-scale,
flightweight designs. Of the many low-temperature curing resins studied,
a few were subjected to final laboratory tests. Dow Chemical Company's
resin, DER 332, was retained and all tests used the new Owens-Corning
S994 fiberglass with the new resin curative EMI. Comparative test re-
sults are shown in Table VIII.
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TABLE VII

PROPERTIES USED IN FILAMENT WOUND CASE DESIGN

Materials

Fiberglass: Owens-Corning, 20-end, S994 (HTS) Roving

Resin: Dow Chemical Co. DER 332

Curative:

Applied Plastics Co. APCO 320

Mechanical Properties

Ultimate Tensile Stress, psi
(circumferential wraps)

Ultimate Tensile Stress, psi
(helical wraps, in the direction
of the fiberg

Ultimate Compressive Stress, psi
(in the direction of the fiber)

Young's Modulus, psi
(in the direction of the fiber)

Tension, million psi
Compression, million psi
Ultimate Interlaminar Shear Stress, psi

Poisson's Ratio

Composite Density

Temperature, dgng

80 |

270,000

230,000

180,000

10.0
9.0

3000
0.12
0.074

216,000

184,000

144,000

8.0
it

2400
0.12
0.074
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TABLE VIII

JR&D RESIN STUDY

Curative
Resin DER 332 APCO 320 EMI
b Ultimate Composite Tensile Stress, psi
at 80 F 293,000 304,000
at 200 F 231,000 267,000
Ultimate Interlaminar Shear Stress, psi .
j at 80 F 10,270 9,510
L at 200 F 6,450 6,210
at 250 F 2,250 5,580

for these cases are as follows:

Because of its slightly better tensile stress and much better inte -
laminar shear stress, particularly at elevated temperature, the EMi
curative was selected for testing in subscale GFW cases.
diameter GFW cases without skirts, 10-019 and 10-020, were fabricated
and tested at 200 F to determine the ultimate allowable stress at this
{ temperature for the glass-resin composite.

Two 10-inch

Pertinent fabrication data

Fiberglass
Resin/Curative
Length-to-Diawreter
Winding Pattern
Polar Wrap Angle

Polar Wrap

Circ Wrap

12 End S994
DER 332/EMI
1.0/1.0

Polar-4 Cycle-2 Covers

20° 43"

Glass Density, ends per inch

414
585
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Burst pressure only was recorded for these cases. It occurred at 1308
and 1277 psi for Cases 10-019 and 10-020, respectively. These tests

not only confirmed that the preliminary fiberglass ultimate stress values
vere realistic, but also indicated that the decrease in ultimate stress
at elevated temperature (200 F) was not going to present as large a prob-
lem as anticipated. Figure 21 shows the GFW case after rupture.
Initial rupture was in the cylindrical section.

Two more 10-inch cases (10-021 and 10-022) were fabricated with skirts
and hydrotested to verify the design stress allowables and to determine
the effect of the skirts on the rupture pressure. Pertinent design and
fabrication data for these cases are shown below:

Fiberglass 12 End S994
Resin/Curative DER 332/EMI
Length-to-Diameter Ratio 1.5/1.0
Winding Pattern Polar-4 Cycle-2 Covers
Polar Wrap Angle 17o 42'
Glass Density, ends per inch

Pslar Wrap 4519

Circ Wrap 503

Calculated burst pressure at 70 F for these cases was 1016 psi in the
circular wrap assuming the same maximum values of ultimate stress and no
degradation for the skirt stress concentration factor. Rupture occurred
at 1108 and 1145 psi in GFW Cases 10-021 and 10-022, respectively and
was in the hoop wraps. These cases were not balanced for a pressure
loading because they were designed for combined pressure, bending, tor-
sion, and compression.
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Figure 21. GFW Case 10-016 After Rupture
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Critical external load conditions for Motor A were expected to be unpres-
surized bending and compression of the motor. Compression and bending

tests of additional 10-inch motors which were scaled similar to Motor A
showed the critical buckling load on the RFG/GEM combinations to be
approximately 4.9 times as high as the critical buckling load for the
identical GIW case only. These tests confirmed previous laboratory test
results of 6-inch motors on a Rocketdyne-sponsored program. The ratio
of critical buckling loads for the 6-inch motor tests was 3.53:1. How-
ever, these laboratory specimens were cylinders only and a higher ratio
was expected for the dome-ended motors. Extrapolation of the 10-inch
motor test data to the full-scale motors indicated no buckling problem
would be encountered with the full-scale motors as a result of external
loads. The only problem concerning external loads which remained un-
solved when the contract was terminated was the inability of the GIW
case skirts to transmit the loads to the case without tearing out. This
problem is discussed in the full-scale motor fabrication and test sections
of this report.

(b) Aluminum Wire

Another problem area that developed early in the initial phase of the

p:ogram was with the reinforcing wirc. Reinforced grains for Motor A

were planned to be fabricated with approximately 0.0075-inch diameter

and 20% by weight aluminum wire (this percent was established in the

trade-off studies). Tests were conducted with 5056 aluminum wire fur-
nished by the Hudson Wire Company. Minimum guaranteed properties for

this wire are as follows:

Minimum Ultimate Tensile Stress, psi 70,000
Minimum Elongation, % 1.0

Composite properties as determined by tests conducted at Rocketdynéj) for
reinforced grains fabricated with low elongation 5056 aluminum wire were:

Maximum Hoop Stress at the

Inside Surface, psi 4500
Maximum Hoop Strain at the

Inside Surface, in./in. 0.01
Young's Modulus, psi - 6.0 x 10°

(3) Under Contract AF04(611)-8193 and Company IR&D
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Current tests had shown poor structural compatibkility of the RFG and GFW
on several 10-inch diameter tests which had been attributed to the low
elongation of the aluminum wire. Rupture of 10-inch diameter GFW cases
was consistently occurring at 3% strain. However, when RFG/GFW combina-
tion motors were tested, rupture of the RFG was occurring when strain in
the GFW case was only 0.3 to 0.7%4. Calculations showed that this strain
in the case, and therefore outside diameter of the RFG indicated approxi-
mately 0.6 to 1.4% strain in the aluminum wire on the inside diameter of
the grain. It was surmised that failure was initating at the inside sur-
face and propagating to the GFW case as a result of the wires reaching
the maximum strain capability.

Efforts to obtain a higher elongation aluminum wire without decreasing
the ultimate tensile strength were unsuccessful. It was evident that a
wire with at least 2.5% elongation (strain in GFW case at RFG burnout)
would have to be obtained to be compatible with the fiberglass case for
ballistic testing. Consequently, it was decided to obtain aluminum wire
with a minimum elongation of 5% to exclude rupture of the RFG at the
inner surface prior to rupture of the GFW case.

A survey of potential vendors showed the best available wire had a mini-
mum ultimate tensile strength of 50,000 psi with a minimum elongation

of 5%. Some of this wire was purchased on a company-sponsored program
and a 10-inch diameter RFG/GFW motor was hydrotested. This motor was
identical to previous 10-inch motors except high-elongation (5%) aluminum
wire was substituted for the low-elongation (1%) aluminum wire. Although
the ultimate tensile strength of the wire was decreased from 70,000 to
50,000 psi, the motor burst pressure was increased 38%. The high-elonga-
tion (5%) wire was selected for use in the design of all subscale and
full-scale motors for this contract.

Although 5% elongation was considered high for this high-strength aluminum
wire, it was still well below the minimum elongation of Flexadyne propel-
lant and resulted in a much lower reinforced grain composite modulus of
elasticity. Based on composite properties obtained with low—elongation
wire, the following were estimated mechanical properties of reinforced
grains fabricated with high-elongation wire:

Maximum Hoop Stress at the Inside

Surface, psi 3215
Maximum Hoop Strain at the Inside

Surface, in./in. 0.05
Young's Modulus, psi 1.5 x 105
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One variable in the aluminum wire which was not investigated on this
program was the influence on structural efficiency of wire diameter with

the high-elongation wire. Ballistic testing on the previous contract
had shown combustion efficiency with 5-mil wire to be slightly higher
than with 7.5-mil wire. Structural testing, however, with samples of
2, 6, and 10 inches in diameter had shown a structural advantage of
nearly 100% by using 7.5-mil wire. However, since these tests were all
conducted with low-elongation wire, the effect of the wire diameter on
structural efficiency when using high-elongation wire was unknown. It
was decided that structural efficiency of the 7.5-mil, high-elongation
wire was probably better than, but certainly equal to, the 5-mil wire
and since the difference in combustion efficiency was small, the 7.5-
mil, high-elongation wire was selected for the remainder of the work on
this program.

(¢) Localized Buckling or Crippling

Another area of investigation was that of problems of buckling and crip-
pling. The correct buckling coefficient for fiberglass cases and rein-
forced grains in combination was to have been determined experimentally.
(The forward and aft skirt design, however, were similar to current fiber-
glass case design.) Several experiments were completed by the Structural
Plastics Department of Rocketdyne to determine the correct buckling co-
efficient, C,., to be used in the conventional cylindrical buckling
equation:

o. R . (1)

Tests were conducted on Owens-Corning S994 fiberglass cylinders with an
R/t ratio of 50. Based on test results, Rocketdyne recommended a C

value of 0.49 for cylinders of this material which had an R/t ratio®of

50 and were wound with two circumferential wraps for each helical wrap.
This value was extrapolated for other R/t ratios by using the buckling
coefficient vs R/t ratio curve in the "North American Aviation Structures
Manual." For R/t ratios of interest, the following values of the buckling
coefficient C,,. were determined:

Radius to thickness (R/t) ratio 50 100 150 200
Buckling coefficient (ccr) 0.49 0.47 0.45 0.43
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The original program plan was to subject ten 10-inch GFW cases to external
bending, compression, and torsional loads and to compare these with 10-
i inch RFG/GEN motors subjected to the same type of loading. Only three of
the cases were fabricated and tested. Two of these, 6401 and 6402, were
subjected to axial compression at 170 F and the third was subjected to
bending. The bending test fix‘ure was designed to apply a uniform bending
moment over the entire length of the motor but a pin, which was used for
compression loading, was inadvertently left in the fixture during the
test and, therefore, loaded the case in a statically indeterminate manner.
Subsequent compression tests of the RFG/GFW’combination showed the com-
pressive ultimate strength of the 10-inck motors was improved by a factor
of approximately three and, therefore, the critical design condition for
the full-scale motors was determined to be the combination of pressure
and bending.

(d) Fabrication Modifications

The structural problem associated with fabrication was investigated on the
20-inch motor because the design, winding cams, and winding techniques
were already worked out for a partial-web, 20-inch RFG.

Ballistic considerations made it necessary to design and fabricate an
RFG having very near uniform thickness in the cylinder and the domes.
With conventional filament winding techniques this was not possible
because of the inherent buildup as the filament was wound on a smaller
adjacent radius, as in the domes. A technique of staggering the opening
diameter on the dome of each layer in the RFG was developed which gave a
very near uniform dome thickness.

Previous hydrotests of RFG/GFW motors had shown that the method of analy-
sis which treated the motor as a thick-wall, composite pressure vessel
was slightly conservative in the cylinder, »ut these tests indicated a
severe structural incompatibility in the region of the polar openings.
The polar bosses on RFG's prior to this contract had been retained by two

flanges or "load rings." One of these was located on the inside surface
of the RFG and the other between the outside surface of the RFG and the
GFW case.

To provide better load distribution across the web of the RFG, a load
ring was positioned between each helical layer that was wound with the
same opening as the diameter of the polar boss. The original design of
the load rings used plastic to provide additional flexibility as well as
better load distribution. To evaluate the loading concept one 20-~inch
RFG and one 20-inch RFG/GFW motor were fabricated and scheduled for hydro-
test. Primary objectives of these tests also included further evaluation
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of high-elongation wire, evaluation of structural capability of RFG's
fabricated with uniform web thickness, evaluation of structural compat-
ibility of RFG/GIW composite structure, and evaluation of polar boss,
RFG, GFW interaction.

The first 20-inch hydrotest (RFG/GFW 7202/7401) was a disappointment in
that rupture occurred at a very low pressure. Investigation after the
test, however, revealed that the wrong aluminum wire had been supplied
by the vendor and had been used to fabricate the RFG. This test and
subsequent design and fabrication changes which led to a completely
successful 20-inch, RFG/GFW motor hydrotest are discussed in Appendix I.

(2) Design Approach, GFW and RFG

To obtain maximum structural efficiency, it was desirable to have the
RFG and case stressed as near as possible to their ultimate for the
duration of the burning time. Thus, since the RFG structure burned away
as a function of time it was necessary to design for a regressive pres-
sure-time history. Since the case and grain had different moduli and
different failure points, it was important to consider the structure as
an interacting, two-element, redundant structure.

The analytical approach to the RFG and GFW case structural compatibility
during internal pressurization loading was to consider the reinforced
grain as a thick wall elastic cylinder contained in (and supported at its
outer diameter by) a thin elastic case. Infinitesimal elastic theory
using a plain strain end consideration was applied to predict the
stresses, strains, and deflections of the RFG and filament wound case at
intervals during the pressurized burning period.

Composite case and RFG hoop moduli were determined during hydrostatic
pressurization testing of RFG's and filament wound cases. These test
values along with other dimensional parameters were then used as inputs
to a computer program which determined the required case thickness, the
initial RFG web thickness, and the required web thickness-vs-pressure
curve necessary to maintain a sound structure until burnout. Figure

22 illustrates the RFG and case design procedure. The case was first
designed to withstand an internal pressure equal to the motor burnout
pressure (P2) and the ultimate flight loads. An RFG web thickness was
then calculated to ensure the composite structure would contain the
maximum initial pressure (Pl). The following discussion on the GFW
design, fullscale tests, and the RFG design presents the design procedure
for the individual elements and the composite structure.
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ULYIMATE DESIGN

Pressere, poi

t - Time

(s) DIAGRAMMATIC RPG MOTOR PRESSURE-TIME TRACS '

P, = INTERNAL DESIGN PRESSURE, pei

’l e ULTIMATE DESIGN PEAX PRESSURE. EQUAL
T0 THE INITIAL MAXINUM HOT OPERATING

PRESSURE (INCLUDING AN ASSUMED DEVIATION

FROM NOMINAL) MULTIPLIED BY THE
APFROPRIATE BAFETY FACTOR,

P, = ULTINATE DESIGN PRESSURE JUST PRICR 70
MOTOR BURNOUT, EQUAL TO THE MAXDAM _
NOT OPERATING PRESSURE JUST PRIOR T0

BURNOUT (INCLUDING AN ASSUMED DEVIATION

FROM NOMINAL) MULZIPLIED BY TIR
APPROFRIATE SAFETY FACTOR,

(V) COMPOSITE CASE THICOESS (i) DESIGNED POR
mn”?ssau (Pe) AND FLIGET LOADS ,

GLASS FILAGNT VOO
PLASTIC CASE

. ".""‘Fﬂ"a‘&"h“é

(¢) RPO VEB THICKMESS (V) DESIGNED 20 INSURE
TMAT THE COMIOSITE STRUCTURE VILL CONTAIN
TIE MAXDANM PRESSUE (P ).

Figure 22. RFG-Filament Wound Case Design Criteria

(a) GFW Case

The case loads were calculated as follows (Ref. Fig. 22)('*)

t
rh)Symbols are defined on pages 87 through 9%, and may be folded ou

for convenience in reading.
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the cylindrical helical angle was defined by:

Q= sin-l 1-19- !
C 4

The helical wrap thickness necessary to withstand the longitudinal loads
was calculated as follows:

With the cage wrapped on a goedesic-isotensoid contour around the heads, ‘

—

The circumferential (circ) wrap thickness required was calculated as
follows: |

& |

2 .2 2
tP. = - (tz sin a) aa
% 5

The composite case thickness was:

tc'=tz+te

The composite modulus of the case was calculated as follows:

E

c
E =—& Ee+t sinQaJ
Cq tc z
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The composite allowable hoop stress for the case was:

(C) The conventional netting analysis was used to calculate burst strength

for GFW cases. Hoop and longitudinal strength was approximately balanced
based on an ultimate fiberglass stress at 70 F of 388,000 and 422,000 psi
in the polar and circ wraps respectively. Burst pressure in the hoop and
circ directions was calculated by the following equations:

2 [ = = - - .2
P (Max. Hoop) =— [N 0 A + N O A sin
 (tax. Hoop) Di[:c AT ap]

' e Rl = = - §
P, (Max. Longitudinal) = . [:Np ogp A cos apJ

Nc and N = the number of fiberglass ends per inch in the
circ and geodesic wraps respectively

0 and 0 = ultimate allowable stress in the fiberglass in
c gp the circ and geodesic wr:ps respectively

A = the average cross-sectional area of a single
end of fiberglass roving

(C) Because the 10-inch GFW cases exceeded the design ultimate stress by

approximately 10%, it was decided to use the same ultimate fiberglass
stress in the first full-scale GFW case tests as well as in a 20-inch
RFG/GFW motor hydrotest. These values of ultimate stress in the fiber-
glass, (422,000 psi-circ wrap and 388,000 psi-helical wrap) although
considered to be optimistic at the time, were demonstrated on numerous
10-inch cases after all the various fabrication problems were solved.
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(b) Reinferced Grains

All RFG motors designed on this contract were designed specifically to
utilize the structural capabilities of the RFG to resist the intermal
pressure and applied external loads.

Trade-off studies showed that to obtain the highest possible mass frac-
tion, the core grain of Motor A should burn at 800 pei and that burning
of the RFG should regress from an initial nominal value of 800 psi to
400 psi at burnout. Therefore, the GFW case was designed to support the
internal pressure at RFG burnout and the RFG/GFW composite was Gesigned
to support the initial chamber pressure. Outside diameter of the case
was set by contract at a maximum of 30 inches. Allowance for the GIW
case skirt thickness and liner thickness set the outside diameter of the

Motor A at approximately 29.6 inches.

The maximum tensile stress and strain ‘~ the RFG occurred at the inside
surface and in a tangential direction. Calculations using the conven-
tional thick wall cylinder equations were used to determine the first
approximation of the web thickness:

o =5t E)i (a® + %) - 2 b2 P' (1)
& b -a
1 +u
€ = 5 £ é P, (a2 + b2 -2u a2) -
& E (»* - a%) . €
%

(2)

L]
For b il e,

e
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(C) In equation (1), 3215 psi was considered the maximum allowable hoop-
stress value. This value was determined from subscale motor testing and
has proven to be slightly conservative. P; is the ultimate chamber pres-
sure, -considering reproducibility lumits and a 1.25 load factor. P' is
the external pressure on the RFG or the pressure between the RFG and the
GFW case and is given by the following equation:

P' = A 0 (3)

s -
l+55+55 5 3 5 .o
a  a

where

A=2P, (1 *“g)
B = b° (1-2ug)

Eg 1 +p
& (2] C 2 2
D~= P b (1 2“c)*°
c
¢
inside radius of RFG

2

b = outside radius of RFG

C = outside radius of GFW case

Egg, Ecg are Young's modulus of the RFG and GFW case respectively in the
hoop direction.

ug’ uc are Poisson's ratio of RFG and GFW case respectively.

(c) Various values of "a" were substituted into Eq. 1, 2, and 3 for an
ultimate pressure (Pi) of 1170 psi. These calculations showed the RFG
inside radius should be approximately 11.0 inches, which gave a web
thickness of 3.82 inches.

CONFIDENTIAL

ﬁx__-,___._A. —il AR T . L | Aank o Wais



M e W SR 1 i ma i E e =

The preceding RFG equations were concerned with the calculation of
circumferential stresses and strains only. The RFG structure, however,
was made up of helical wraps as well as circumferential wraps to encure
a proper longitudiral pressure carrying capability.

The RFG web was divided into 9 geodesic isoiensoid (GI) layers and 8

fill layers, Fig. 23. Only the GI layers were considered in deter-
mining the longitudinal strength of the RFG because all the fill layers
terminate before reaching the load rings on the polar boss. For the

sane reason, only the GI layers were effective in resisting shearont of
the polar bosses. The fill layers were designed to provide hoop strength
in the cylindrical part of the grain as well as to fill in between the {
GI layers on the dome and provide a near-uniform web thickness.

Once the RFG preliminary web thickness had been determined, the final
grain design was established by balancing the maximum pressure capability
for the following conditions. !

Considering the RFG as a thick wall isotropic cylinder gave a longitu-
dinal stress cg of

For a series of concentric thin cylinders, the maximum value of og, 1
was given by the following: |

— n=i
( ) fw o, 2
o) =
g, max : Z cos Q. tn (5)
t n=1
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Cylinder
GI Radius,
No. in.

11.000
11.466
11.942
12.416
12.891
13.367
13.827
14 .287
14.725
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G1 Layer

Termination of Intermediate Layer

Cylinder Helix
GI Radius. Thickness, | Angle,

Neo. in. in. deg
| 1 11.000 1.133 31.20
2 11.466 0.133 30.10
3 11.942 0.133 28.60
4 12.416 ¢.133 26.59
5 12,891 0.133 25.04
6 13.367 0.114 23.70
7 13.827 0.11% 22.40
8 14 .287 0.095 21.46
9 14.725 0.095 20.40
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Figure 23. Motor A Layer Detail
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Near the polar bosses, only the 9 GI layers supported the longitu-

dinal load and gg, coull be determined from the values of the material
properties and winding geometry. After og, had been determined, the
maximum value of P; from Eq. 4 could be easily obtained. Maximum inter-
nal pressure, based on shear of the wires at the polar boss, was given
by the following: '

2

D
P, (max) = 2 0 NW(D—W) (6)

b

In the hoop or tangential direction, the stress was a maximum at the
inside surface and was given by the following:

oge (max) = 73 (1)

The maximum hoop stress which the RFG could withstand was given by the
following equation:

= n=i
o
0 = — wz sin2a t
ge t n n (8)
€t n=1

In Eq. 8, every wrap angle must be included because every layer, whether
GI or fill, contributed to the hoop strength. The value of Ogg was
determined from RFG geometry and material properties. Substituting

this value into Eq. 7 gave the maximum internal pressure the RFG could
withstand in the hoop direction. The number and thickness of the
various layers were modified until the value of internal pressure from
Eq. 4, 6, and 7 were approximately equal.
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Modifications to the individual RFG layers was done with discretion
because all internal layers affected the outside contour of the grain.
This contour must be maintained near the design contour to make the most
efficient use of the GIW case. Figure 108 shows ‘the actual and design
contour for the Motor A-1006 RFG. g
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DIMENSIONS

| a = Inside radius of cylindrical portion of RFG, in.
b b = Outside radius of cylinirical portion of RFG, in.
¢ = Radius of outside surface of the case, in.

e = Radius to the inside of the core grain web (Badius to
base of core grain star point), in.

t = Thickness of helical wraps on case, in.

z
: te = Thickness of circﬁmferential wraps on case, in.
'tc = Composite case thickness, in.
tn = Thickﬁess of nth layer of RFG, in.
’ tgt = Total grain thickness, in.

R, r = Radius, in.

R = Radius of polar dome opening, in.

0
? Db = Diameter of boss, in.
Dw = Diameter of wire, inm.

Q
]

Filament wound plastic case and wire wound grain helical
wrap angle (Angle between the wrap direction and longi-
tudinal centerline of motor, degrees)

a, = Wrap angle of nth layer of RFG, degrees

Nﬁ = Number of wires
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LOADS AND SAFETY FACTOR

P.
i

P

F
z

= Internal pressure, psi

= Ultimate design maximum pressure. Equal to the initial ™

maximum hot operating pressuré“(including an assumed devia-
tion from nominal) multiplied by the appropriate safety
factor, psi.

Ultimate design pressure just prior to motor burnout.
Equal to the maximum hot operating pressure just prior to
burnout (including an assumed deviation from nominal)
multiplied by the appropriate safety factor, psi.

= Longitudinal load applied to a particular motor cross-

section due to flight acceleration, 1b

MF = Moment applied to a particular motor cross—section due to

Sg

Sp
u

flight or handling loads, in.-1lb

= Safety factor

= Ultimate safety factor

Glass Filament Wound Case

Poisson's ratio in circumferential direction

Composite tensile modulus of case along the direction of
the fiber, psi

Composite circumferential tensile modulus of case, psi
Composite longiudinal compressive modulus of case, psi

Critical buckling coefficient for axial compression loading
Allowable tensile strength of case along direction of
filament for circumferential (near 90°) wound thickness, psi

Allowable tensile strength of case along direction of
filament for longitudinal (low helical angle) wound
thickness, psi

89

B v 2

e E— -




6;
8
[5;
c
z

c

= Allowable composite circumferential strength, psi

= Allowable composite longitudinal strength, psi

Critical buckling stress for the case from any loading
condition of interest based on the composite thickness of
the case, psi

Wire Reinforced Grain

Poisson's ratio of RFG in circumferential direction

M =
%

Eg = Composite circumferential tensile modulus of RFG, psi
8

E = Composite longitudinal tensile or compressive modulus of
g, RFG, psi

0 = Maximum tangential tensile stress allowable in composite
& RFG, psi

Gg = Longitudinal grain stress, psi
z

€ = Maximum tangential tensile strain allowable in composite
& RFG

fw = Volume fraction of wire

3; = Allowable #easile stress of wire, psi

3; = Allowable shear stress of wire, psi
B

CALCULATIONS

P' = Pressure between case and RFG, psi

N2 = Total longitudinal tensile load in case from pressure,
‘T axial compression and bending, 1b/in.
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Total circumferential tensile load in :ase from pressure, psi

Composite circumferential stress in case, psi

Composite longitudinal tensile or compressive stress in case,
psi r

Maximum induced tensile stress in grain during pressurization
(at inside radius in circumferential direction), psi
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by M. E. Fourney and R. R. Parmerter

CONFIDENTIAL

(3) Core Grain

While the core grain is uot primarily a structural member, certain loads
are imposed and the structural integrity influences the motors' ballistic
performance. The imposed loads are due in part to motor cool-down after
cure, thermal cycling, and ignition pressurization. The core-grain siress
analysis serves to determine structural reliability under these loading
conditions. Analysis of the core grain is limited to a two-dimensional
axisymmetric configuration with elastic, isotropic material properties.
Since the actual motor does not fit this description, certain assump-
tions about the geometry and mechanical properties are required.

The Motor A requirements do not include a temperature cycling capabili’:,
so thermal loading results only from motor cool-down after cure. In
this section the motor geometries are described, and the methods and re-
sults of the analyses are presented. The analyses are discussed in
terms of motor performance; conclusions about the analyses and motor
design are drawn. A general description of the motor characteristics is
presented. This is followed by the method of analysis, and is concluded
by the calculated results.

(a) General Description

Motor A is a five-pointed star configuration in the core grain with a

wire-wound, RFG external to the core; the RFG is encased in a glass fila-

ment wound case. The first restriction on the analysis is that of a
two-dimensional capability. This is accounted for by analyzing a grain
cross-section assumed to be in plane strain. While plane gtrain can
exist only in a grain of infinite length, the length of the reinforced
grain motor makes it applicable and, in fact, slightly conservative.

The cross section analyzed is shown in Fig. 24. Since the exact
solution for this stress-analysis method applies to a simple cylindrical
grain, the star-point design was accounted for through the use of a
stress-concentration factor. This involves an experimental determination
of the factor by which local stresses are increased at the internal bore
due to the addition of the star point. For the present anslysis, the
stress concentration factors were determined from the data presented

5e) In addition, photoelastic tests

on grain models were performed to verify these values.

(5)Fourney, M. E. and Parmerter, R. R.: Stress Concentration Data for

Internally Perforated Star Grains, NOTS TP2728, NAWEPS 7758, December
1961.
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Configuration

Grain

A Core

Figure 24, Motor




The nature of solid propellant is such that the material properties are
dependent on applied loadings. The existing stress solutions are for
simple isotropic elastic materials. Therefore, the propellant is of
necessity represented as an isotropic elastic material; the analysis

is performed for a specified rate or strain over a narrow range of
temperatures, with the effect of these several small changes being ac-
cumulated to give the result of the total temperature change.

The material properties are given in Fig. 25, plotted as function of
reduced strain rate. The strain capabilities are displayed numerically
with the calculated strains as a function of temperature for the strain
rate (3 x 10-5 in./in./min) used in the thermal analysis.

(b) Method of Analysis

The equations used in the analysis of the grain cross sections are docu-
mented by J. D. Burton(6) These were programmed into a high-speed digital
computer to perform the analysis efficiently. The primary engineering

effort involved making the necessary assumptions to utilize the analysis.

The following conditions are requisite to implementation of the analysis:

Plane strain

Homogeneous, isotropic, elastic material properties

Simple cylindrical configuration

For the thermal analysis, a single grain with a thin-walled case
No allowance for stress relaxation in the propellant

Quite obviously the actual motor does not satisfy these conditions. As
mentioned before, the assumption of plane strain is applicable and con-
servative. The homogeneous, isotropic requirements are fairly easy for
the core propellant but are not applicable for the reinforced grain even
though the analysis required this assumption. The elastic property re-
quirement is satisfied by analyzing the grain for small temperature incre-
ments, using the properties at the indicated strain rate and temperature
representative of each increment. The resultant stresses and strains

are summed over the entire range of analysis to give a fairly accurate
representation of the viscoelastic propellant in an elastic analysis.

(6)Burton, J. D.: DDM 63-38, "Ignition Stress Analysis of Core Grain
Motor A."
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The simple cylindrical configuration is accounted for through the use of
the stress concentration factor described previously. Thus, the analysis
is made for a simple cylinder of the same web as the actual motor and

the results are increased by an amount equal to this factor. For the
thermal analysis, it was necessary to treat the part of the motor exter- !
nal to the core grain as a thin-walled case. The assumption was made that
the reinforced grain would be the main load carrier during thermal cy-
cling. Thus, the glass case was ignored in this part of the analysis.

The pressurization analysis is slightly more generalized; the RFG and
glass case were both included, though represented as homogeneous, iso-
tropic elastic entities. The relaxation of stresses in the propellant
with time were not accounted for, so strain was used as the criterion *
for failure. This is the gepncrally accepted failure mode for internal
bore loadings, e.g., pressurization or temperature cycling.

(¢) Calculations

The calculated strains are presented in Table IX below. .

TABIE IX i | :
RESULTS OF IGNITION PRESSURIZATION STRESS ANALYSIS {
FOR MOTOR A CORE GRAIN d
Calculated Strain, Allowable Strain, | MOS,
Type of Loading in./in. in./in. % ;
Pressurization 0.083 0.374 349 !
Thermal 0.037 0.259 601

Combined Leads - - 174 1
!
l
|

(C) Examination of these data reveals a 174% margin-of-safety for Motor A
at 60 F,

c. Components

The remaining components that were developed for the motor are discus-
sed next. The discussion is arranged as follows: polar boss, load rings,
nozzle, igniter, and restrictors, Within each component discussion, the
design and development of the individual component is presented.
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1 (1) Polar Bosses

The forward and aft polar bosses are composite metal-plastic structures
: (see Fig. 26) fitted into the end openings of RFG motors.

These bosses are composite constructed components consisting of 6Al 4V
& titanium ring closures, silica phenolic internal insulators, and glass
phenolic load ring supports.

The forward and aft titanium ring closures are utilized as the primary
structural components in the polar boss assemblies. The components sup-
port the hoop tension loads and retain the load ring support structures.
Additionally, the forward ring supports the igniter closure and the aft
ring is used to retain the nozzle.

’ Internal insulator components are fabricated from MX-2646 silica phenolic

molding compound. The insulator on the forward polar boss is used pri-
marily as insulation for the titanium ring closure. Additionally, this
insulator is designed to maintain a positive interlock with the igniter
closure. The insulator on the aft polar boss provides the entrance and
interface control for the nozzle, and also serves as the insulation for
the aft titanium ring. This component also provides a sufficient area
on which to cast the core grain.

The load ring supports are utilized as structural components in the
design of the polar boss. These supports are used to position the load
ring during grain winding and to react the longitudinal loads applied
through the polar boss into the load rings during motor firing. In
addition to the structural features indicated, this part functions as
an external insulator for the titanium ring closures. The material for
these components is MX-4600, a phenolic glass tape.

- Prior tc component testing, a requirement establishing a percentage of
the total load for each load ring step was assumed as follows., Comple-
tion of the compcnent tests indicated that each assumed load could be
met or exceeded.

Load Ring Load, %

1st 30

2nd 20

3rd 20

4th 20

5th 20

6th 12 I
7th 12

8th 12 ]

9th 12 . G

100
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(C) The Motor A mass fraction (0.96) dictates stringent weight control for
all components. Each polar boss component, load ring, closure, and all
insulation pieces are designed to the miniamum wcight consistent with
structural and thermal requirements.

(C) The effect of polar boss and load ring refinement on the mass fraction
of a motor can be demonstrated by the computation below:

Motor A Components, 1b i

Propellant weight 2483
Heavyweight polar bosses .. 55
Refined polar bosses "33
Heavy boss motor weight 2614
Refined boss motor weight 2592
Refined boss mass fraction 0.958

Hea .y boss mass fraction 0.951

The significance, then, of performing stringent weight control in polar

boss and load ring design can be observed by noting the difference in

mass fraction of the motors having bosses of heavy and refined weights. 1

(a) Background

The concept of the present polar boss design evolved directly from tﬁf 1
testing results in the 10-inch and 20-inch reinforced grain programs, 7)

The initial use of a polar boss as a structural component was on the
20-inch program. This design depicted the usage of a cone-shaped struc- 1
ture, and depended on the tapered surfaces of the polar boss and the |
wound grain to support the longitudinal loading during motor operation.
A 20-inch reinforced grain unit with this design was hydrotested and the
results revealed longitudinal ovtward movements of the polar boss with
respect to the reinforced grain. This movement was attributed to the
lack of a positive mechanical locking system between the interfaces of
the polar boss and the reinforced grain structure. The design solution
for this was to use the reinforced grain structure to support the loungi-
tudinal loads induced into the polar boss, through some method which

FiTey T oT

(7)contract AF 04(611)-8193
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The so-called random oriented fibrous materials will normally have fibers
oriented in one direction; that direction will be dependent upon the
manufacturing processes. Most important in this process is the method
of applying mold pressure.

The thermal properties are also especially important because aluminum

L load ring and RFG heating on the back side of the boss must be main-
tained at a low level. This requirement generally dictates the use of

plastic materials rather than metallics. In addition, the inside melting

and erosion must be maintained at a lower rate than provided by most

metals,

A polar boss design with the initial load ring integral was attempted
on the first 20-inch RFG polar boss and is depicted in Fig. 29 to
illustrate the problems with molded plastic polar bosses.

Mold
R_2 1 «l)— Pressure
——

Integral Load
Mold Ring

Pressure —im
ITI

Tensile Fracture

"A"

Figure 29, Polar Boss Design with Integral Load Ring
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The mold pressure was applied as shown per Fig. 29 causing a fiber
orientation normal to the mold pressure direction, or essentially in
the hoop (circumferential) direction. The integral load ring had the
} rotaticnal strength necessary to support the R, load, but the tension
strength across Plune "A" was less than required to support R, load.
Fracture occurred at Plane "A" under a load considerably less than re-
# quired.

Subsequent polar bosses were fabricated from a crossplied glaes cloth,
to be assured that tension strength in the longitudinal direction was
adequate. The flange could not be integrally fabricated using a cloth
wrap technique; thus, a ring seating surface was fabricated for an
additionul ring to be installed at the location, as shown in Fig. 30,

.

Figure 30. Revised Polar Boss Design '

When considering nozzle load design features, the aft polar boss on each
full scale RFG motor must support nozzle inertial loads, and in some

cases, vectoring loads. This requirement effects the following design
areas:

Vectoring Loads. The moments produced by nozzle inertial and
vectoring loads caused increased polar boss loads and stresses.
These are superimposed forces. Since nozzle moment loading
produces compression on one side of the boss assembly and
tension on the other side. These compression and tension
stresses are in addition to those stresses caused by chamber
pressure loading.

P

Rotational Stiffness ans Sealing. The moment loading, imposed
by the nezzle assembly causes rotational deflection and creates
difficulty with some sealing methods. One of the prime advan-
tages of the polar boss is in its ahility to support rotational
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The so-called random oriented fibrous materials will normally have fibers
oriented in one direction; that direction will be dependent upon the
manufacturing processes. Most important in this process is the method

of applying mold pressure.

L : The thermal properties are also especially important because aluminum
i load ring and RFG heating on the back side of the boss must be main-
tained at a low level. This requirement generally dictates the use of
plastic materials rather than metallics. In addition, the inside melting
and erosion must be maintained at a lower rate than provided by most
metals.

A polar boss Jdesign with the initial load ring integral was attempted
; on the first 20-inch RFG polar boss and is depicted in Fig. 29 to
illustrate the problems with molded plastic polar bosses.

MO ld |
L H.2 1 «sl}— Pressure
—-

Integral Load
Ring

Mold
Pressure —iia>

Ll

Tensile Fracture

"A"

Figure 29. Polar Boss Design with Integral Load Ring ‘
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The mold pressure was applied as shown per Fig. 29 causing a fiber
orientation normal to tiie mold pressure direction, or essentially in
the hoop (circumferential) direction. The<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>