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Abstract

In the Arctic Ocean the ice cover limits the usefulness of hydro-
phones because of the necessity to create or to locate openings in the
ice through which to lower a hydrophone. On the other hand, the ice
cover provides a convenient platform for seismometers, which are sensitive
to the ice motions induced by an underwater acoustic source, Seismometers
can be installed at almost any desired location on the Arctic Ocean, and
if air dropped, numerous transducers can be installed rapidly, Further-
more, the Arctic Ocean provides an acousticzl environment that permits
the long range propagation of sound at frequencies for which the common
exploration-type seismometer (gcophone) is most sensitive, 10 to 100 cps.
Because the wavelengths corresponding to these low frequencies are large
compared to the average thickness of sea ice, and because the acoustic
impedance mismatch between sea-water and sea-ice is small compared to
the mismatch between sea-water arnd air, the ice should have little
effect on the propagation of low-frequency acoustical energy through the
Arctic Ocean. Thus, as a first approximation we can assume that the
low-frequency particle velocities arising in sea ice from a distant
underwater source should be the same as on the surface of an ice-~free

ocean with the acoustical wroperties of the Arctic Ocean,

Two environmental aspects seriously affect the value of seismometers

on Arctic ice for detecting and locating an underwater acoustic source.

First, within the 10 to 100 cps bandwidth, dynamic variations of 30 to

40 dB in the ice particle velocity (noise) have been observed, Estimates
of signal amplitude have not yet been attempted, but these noise level
variations suggest that, at times, unfavorable signal to noise ratios will
be experienced. Second, as a result of the Arctic Ocean's veiocity

gradient, acoustical signals propagate dispersively, aad this effect

i
7
|
f

complicates the problem of locating the source.
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Nomenclature

seismometer voltage output

damping coefficient of moving-coil seismometer
resonant frequency of seismometer

displacement of seismometer case

intrinsic sensitivity of seismometer

velocity potential

mode number

maximum mode of importance

radial term of ¢; for guided waves

vertical term of ¢, for guided waves

range from sour:: to receiver

angular frequency

wave number

horizontal component of k, m-th mode

vertical component of k, m-th mode

angle of incidence of wave to surface, m-th mode
sonic velocity in the surface channel

source depth

receiver depth

particle velocity

vertical component of particle velocity

radial component of particle velocity

a function that depends on the physical parameter of

the accustical environment and frequency
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Nomenclature {Continued)
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mean energy tlux per cycle through a surface normal

to the wave guide

mean energy density between two vertical planes

one guide wavelength apart

group velocity

number of seismometers in an array
azimuth between source and array

a particular angular frequency

time

time increment

spacing between seismometers

n-th seismometer

phase velocity of an acoustic signal

phase velocity of an acoustic signal in the direction

of an in-line array of seismometers
sum of seismometer voltage amplitudes
voltage output from n-th seismometeor
phase velocity, m-th mode

phase shift between modes at a range R from the source
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Introduction

Passive detection of underwater acoustic disturbances has been a
subject of intense study and has led to various hydrophone dcsigns, The
conventional hydrophone is sensitive to acoustical pressure variations,
but there has been an attempt to use particle displacement hydrophones
(Libermann and Rasmussen, 1964), In the Arctic Ocean the ice cover
limits the usefulness of hydrophones because of the necessity to create
or to locate openings in the ice through whick to lower a hydrophone. On
the other hand, the ice cover provides a ccnvenient platform on which to
locate passive transducers that are sensitive to ice motions., Seismometers,
accelerometers, and strain gages can be employed for this purpose., Of
these, the common exploration type of seismometer, often called a geophone,
is particularly well-suited to the detection of an underwater acoustical

disturbance becasue of its adequate sensitivity at low frequencies.

Basic Theory of a Seismometer

The most common exploration seismometer is the moving coil type
(Fig, 1). These devices are small, rugged, and simple in principle,
When coupled to an elastic medium the transducer's case will muve in
response to the particle motion of the medium. This motion ceuses an
internal spring-supported mass and conducting coil to oscillate in the
field of a magnet fixed to the case., If we neglect phase changes,
hysteresis, eddy current, etc., the eiectromotive force (voltage) incuced
in the coil will be proportional to the time rate at which the coil cuts

the lizes of force, That is, the voltage output from the moving coil is




proportional to the velocity of the mass and coil, The expression for
the voltage generated can be derived from the ejuation of motion of a

damped linear oscillator and Faraday's law of induction:

¢+ 2h Wy & - L,{):Q, = "J’ G (1)

where e = the voltage output

= the case displacement

s <
l

N = the resonant frequency of the mechanical system = ZWfN

=
1

the damping term
G

the intrinsic sensitivity
The dots refer to differentiation with respect to time, G, the intrinsic
sensitivity, is proportional to the number of turns on the coil and the

magnet strength, among other things.

Two limiting cases of Eq. 1 are of interest. When the resonant
frequency is very small compared to the excitation frequency (i.e,,

frequency at which the medium is oscillating) Eq. 1 reduces to

= ,A%. (;
For this condition the voltage output is proportional to yarticle velocity

of the medium, This relationship is invalid when the resonant frequency

is very large compared toc the excitation frequency; then

£ = 7(1/@:

and the voltage output, although small, is proportional to the third
derivative of particle displacement, At the frequency of maximum
sensitivity, the resonant frequency, the voltage is proportional to a

combination of particle velocity and acceleration.

o o 1 S e -




Under all counditions if the electrical and mechanical characteris-

tics of the detection system are known from calibration tests, it is
possible to convert the observed voltages to displacements and velocities
of the medium. This is often done in experimental and earthquake seis-
mology. However, in the more applied field of seismology only the
occurrence of a signal is of iiterest and a seismometer is selected to
yield a maximum voltage output at tihe frequency of the expected ground

motion signal,
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FIG.1 COMMERCIAL MOVING COIL SEISMOMETER
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Figure 2 shows sensitivity curves for a seismometer with a 28-cps
resonant frequency and a 215-ohm coil resistance, Similar seismometers
can be obtained with resonant frequencies ranging from 1 to 4G cps.

With all these devices the sensitivity is sharply attenuated below the
resonant frequency and the Q, or sharpness, of resonance can be varied

by changing the load resistance, R, which in turn changes the total
damping coefficient. The damping coefficients indicated in Fig. 2 are

in percent of critical damping. For values of R near the coil resistance
the device can be made to have a rather fiat frequency response above the

resonant frequency.
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The common exploration seismometer was designed to be most
seasitive to low-frequency excitation. This feature is of definite
advantage if seismometers are to be used on Arctic ice because absorption
of acoustic waves in sea water is negligible at low frequencies, Turther-
more, low-frequency sound is not significantly scattered by ice keels
and ice-bottom irregularities. The disadvantage of the moving-coil
seismometer is that depending on its resonant frequency the signal output
can be a complicated function of the first two derivatives of ice motion,
In the following sections only particle velocities of Arctic ice will

be considered.

Ambier . Ice Noise

Arctic ice is dynamic: it is in continuous motion and there occurs
within it an irregular background of particle motion. Clearly, the value
of a seismometer to detect an underwater acoustic source is constrained

by the amplitude of the ambient particle velocities, the noise level,.

The frequency distribution of vertical ice displacements observed
by Hunkins (1962) and Prentiss, et al (1965) are shown in Fig. 3. These
data were calculated from observations made in April-May by Prentiss, et
al and at various times of the year by Hunkins., In general the ice
displacements decreased with increasing frequency of oscillation., At
extremely low frequencies, 15 to 20 minutes in period, the displacements
were of the order of centimeters. At frequencies above 1 cps the dis-

placements approached the dimensions of gamma-ray wavelengths,

Figure 3 also shows attributed causes of the noise and the band-
widths affected., Below 10™% cps the ice displacements have been attributed
to atmospheric pressure variations., The displacements may be further
enhanced by local wind action. Above 10~% cps the noise spectrum is
believed dependent on local wind (Prentiss, et al, 1965), but a definite

correlation between noise and wind is not always clear,

At frequencies between 1 ond 100 cps the noise is often transient
with a non-Gaussian distribution of amplitudes. Prentiss, et al (1965)

detected dispersive trunsient oscilliations with frequencies of 1 te 10 cps,
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which were thought to be from ice tremors. Milne and Ganton (1964)
studied ice noise by means of bottom-mounted hydrophones beneath the
Arctic ice cover and detected a significant amount of transient ncise
from the mechanical activity of the ice, The noise during late summer
was attributed to the relative motions of the floes and during the winter
to the cracking of the ice as a result of thermal stresses. These
resecrchers also detected an irregular background of noise above 1 cps
during the winter; this noise was tentatively attributed to wind-driven

snow across the ice cover,

Because we may assume that the seismometer output is a voltage
proportional to particle velocity, the displacement spectra were converted
to velocity spectra (Fig, 4). The particle velocity noise also decreased
with frequency, but the freguency dependence was not as pronounced as
in the displacement spectra. Still, most of the noise was below 1 cps,
and in the f}equency range of the exploration seismometer (10 to 100 cps)
the perticle velocity noise was often no more severe than at quiet
continental sites. There were periods, however, when the particle
velocities above 10 ¢ps were large in magnitude and might have interferred

with the detection of a distant acoustic disturbance.

Our information concerning particle velocity of the noise is by no
means complete, Yet, a sufficient effort has been made to study ice
noise to emphasize the fact that we cannot easily predict its amplitude.
There is evidence to suggest that a portion of the noise is caused by
wind action and that the resulting noise spectrum depends on the pro-
perties of the coupled ice-to-sea-water-to-sea-bottom acoustical system.
Thus, the noise spectrum will vary with water depth and acoustic impedance
of the sea-bottom sediments, There is also evidence that the particle
velocity of the noise in the bandwidth of interest (10 to 100 cps) has a
diurnal variation during the winter: the noise increases toward evening
when the air temperature drops and resulting tensile stresses cause
cracking of the surface. Furthermore, Milne and Ganton (1964) have stuted
that there is a seasonal variation of particle velocity noise, the average

noise level being larger in the winter than in the late summer,
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Propagation of Particle Velocities in the Arctic Ocean

In regard to hydrophone operation a considerable effort has gone
into determining the depth beneath the water surface at which the signal-
to-noise ratio might be maximized. A seismometer, however, is restricted
to operation either on the ocean bottom or on the ice cover above,
Fortunately, the ice cover provides a satisfactory location to observe
rarticle motion induced by an underwater source in the Arctic Ocean.

This fact will be developed from a consideration of the Arctic Ocean

acoustical environment.

The Arctic Ocean acoustical environment is inhomogeneous and shows

vertical variations of sonic velocity and density of the ocean and sub-
oceanic rocks (Fig. 5). For the ocean these data are based on vertical
temperature and salinity profiles and were given by Kutschale (1961), For
the sub-oceanic rocks these values are based on seismic refraction studies
off the coast of Alaska (Scror, 1962), Although the sub-oceanic data
were obtained from studies in the Bering Sea, our supposition is that

data from beneath the Arctic Ocean would not be drastically different.

Our knowledge of the acoustical environment beneath the Arctic Ocean will
be improved upon the completion of the analysis of recent refraction

surveys made on Arctic ice {Ostenso, personal communication).

The major feature of the acoustical system shown in Fig, 5 is that
directly below the surface there exists a low~-impedance channel bounded
above by air and below by higher impedance media. Let us ignore the ice
layer for the present., Although the lower boundary of the channel is
not sharply defined, the low-impedance surface channel behaves as a wave
guide. Thus, acoustical energy emitted within the channel will propagate
along particular ray paths, on which constructive phase interference
takes place upon reflection of the rays from the free surface and from
the higher impedance medium at depth. For a given frequency there
exists a multiplicity of ray paths that satisfy the co.adition for con-
structive interference. Fach path corresponds to a particular mode
(normal mode) of propagation, This kind of propagation is dispersive,
i.e., the wave guide velocity (phase velocity) depends on frequency and

the angle of incidence between the ray path and the reflecting surfaces.
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FiG. 5 VELOCITY AND DEN>TY VARIATION IN THE ARCTIC OCEAN

In seeking a solution for the particle velocities in the wave guide

we may begin by assuming a point source acoustical radiator located within

the low~velocity surface channel,

If the inhomogeneous ocean is divided

into N horizontal layers, each with a constant velocity and density, and

if we consider only the contribution from guided waves, i.e., waves

unattenuated by incomplete reflections at any interface, then the velocity
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potential in the near-surface channel is given by Tolstoy (1955, 1958) as

ot

4,5 - P DR FD) & @

Dm(R) is a term dependent on the horizontal range, R, between source and

receiver

Da®: R expl-i ChyR e TA))

where km is the horizontal component of the wave number, k, in the surface
channel that leads to the m-th normal mode of propagation., Expressed in
terms of angle of incidence

m sin ')(m

&~
&(l
where w = 2 nf

@, = sonic velocity in the surface channel

*n

the angle of incidence of the ray for which normal mode
propagation is possible

The term Fm(Z) in Eq. 2 depends on the source and receiver depth and the
physical dimensions and elastic parameters of the layers, Its exact

analytical expression is somewhat complicated but it is of the form

Fm(z>: Wm(Z) fjin(Fst) sin (G, Zr)

(&
vhere Zq = source depth
Z_ = receiver depth
r 1/
r=(k"’~k2) 2
m m
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From Eq, 2 the particle velocities in the vertical and radial directions

Ve V¢

are

2ot

L
v, = - Z (o C,O't(_rm Z.r) DmLQ) F‘-"LZ) ¢ (3a)

3

; 0 ‘?.('Ct
‘:m LZ) DM (,E)’ {.Z—l‘;\yl Ld L *31‘“ -‘Ia' (3b)

: L'\/Jz

3

Equaticns 3a and 3b are sufficiently general provided R is at least
several times the low-velocity channel thickness and M is large, particu-
larly at small R where the modal solution must approach the ray solution

for which an infinite number of ray paths exist.

Although the numerical evaluation of Eq. 3a and 3b are best
accomplished with a high~speed computer, useful qualitative information
can be derived from the expressions. For example, as the point of chser-
vation approaches the surface, VR approaches zero but VZ does not,
Moreover, for given ZS and R the modulus of the complex function VZ is
a maximum at the surface, Another feature of interest is that the atten-
uation due to spreading for VZ has only a R'/2 dependence; the waves
spread cylindrically. Lastly, the particle velocity VZ is frequency
dependent for a source whose power output is constant at all frequencies,
This is due to the term Wm which, as a function of the physical parameters
of the acoustical wave guide, indicates how well energy at any frequency
is permanently trapped in the low-velocity surface chaunel by continuing

total reflection.

If we know explicitly how Wm varies with frequency we can choose
a transducer with a maximum sensitivity in the frequency range for which
Wm is also & maximum. This is not & particularly straightforward task,

but we can examine the form of Wm qualitatively.

12
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A general theorem given by Biot (1957) states that the velocity of
energy transport is equal to the mean energy flux per cycle through a
surface normal to the wave guide (?) divided by the mean energy density
between two such planes one guide wavelength apart (E). If our source
is a harmonic oscillator, then the velocity of energy transport is the
group velocity U. Thus

kS
=

From this expression it can be seen that maximum energy densities will

U -

(4)

occur at minira of the group velocity, For the Arctic Ocean environment

(Fig, 5) the group velocities of the first four normal modes are shown in

Fig. 6 {(Kutschale, 1961). In this enviionment the group velocities decrease

with increasing frequency. If the calculations had been carried out for
frequencies higher than considered ir Fig., 6 then it could be observed
that the velocities oscillate somewhat and approach the velocity of the
surface channel at a sufficiently high frequency. At long ranges from
the source only the lowest modes are important because the higher modes
correspond to rays that undergo many more reflections and suffer a
greater attenuation, As a first approximation we can therefore assume
that the energy transported in the first mode will contribute most to

the surface particle velocities,

There is a suggestion that for the first mode a group velocity
minimum may occur somewhere in the 30 to 50 cps bandwidth. This is a
reasonable assumption for we know that U cannot decrease monotonically
with frequency; it must approach asymptotically the velocity of the upper
layer which in this case is 1440 m/sec. Thus on the basis of Eq. 3 we
can conclude that a maximum particle velocity should be observed above
30 cps. Experimental evidence (Kutschale, 1961; Greene, 1965) supports

this conclusion.

Therefor2, if we seek the particle velocity signal from distant
underwater source whose output spectrum extends above 30 cps, we might

employ a vertical-component seismometer with a frequency-dependent

13
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FIG. 6 GROUP-VELOCITY DISPERSION FOR THE FIRST FOUR
NORMAL MODES IN THE ARCTVIC OCEAN (after Kutschale)

sensitivity as shown in Fig. 2. Furthermore, a distinction between signal
and noise might be achieved on the basis of particle orbits because the
signal we seek has only a vertical componeni at the surface whereas the
noise from sources closer to us will have both horizontal and vertical

components,
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Effect of Arctic Ice on Low-Frequency Particle Velocities

Thus far we have ignored the effect of ice on the particle velocities
induced by a distant underwater source. In the Arctic Ocean the ice cover
does modify the acoustical system, and we cannot entirely dismiss the
effect of the ice and ite corrugaied bottom on the propagation of particle
velocities., At long distances from the source, Eq. 2 is only approximate
because the ice-bottom irregularities scatter the incident acoustic waves,
thereby increasing the attenuation. However, at low frequencies, where
the wavelengths are much greater than the ice thickness or the ice-bottom
irregularities, the ice should only slightly modify the pressure and
velocity fields in the ocean, To illustrate this, the reflection

coefficients for a plane acoustic wave incident from sea water onto a

flat ice layer 3 meters thick were calculated (Fig. 7). Incident angles
of 75, 80 and 85 degrees were taken because this angular range corresponds
to ray-path directions of the lower modes. As the reflection coefficients
are no longer -1, the introduction of the thin ice layer changes the free
surface boundarv condition, However, at low frequencies, at or below
perhaps 30 cps, the reflection coefficient is sufficiently close to -1,
and for these frequencies the free surface is a reasonable approximation.
Thus, we might suppose that the low-frequency vertical particle velocities

at the ice surface should be little affected by the existence of the ice.

There is some experimental evidence, however, to indicate that the
surface particle velocities at 30 cps are modified by the ice, Green (1965)
found that the vertical particle velocities irom a distant (330 nmi) under-
water explosion were 6 dB greater on ice 0.1 meter thick than on nearby
ice 4 meters thick., The marked difference was attributed to attenuation
by the ice, If this is true the material has a remarkably high attenuation
value of 1 dB/m. Absorption of sound in sea ice is apt to be high and
variable because of the fractures and pores containing air and liquid
brine, but the amplitude difference observed seems too large to be
exvlained by absorption alone because the ice thicknesses involved are

only a small fraction of a wavelength, Presently we have little exper-

imental evidence upon which to derive a quantitative relationship between
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FIG.7 REFLECTION COEFFICIENTS FOR A SOUND WAVE
INCIDENT FROM SEA WATER ON ICE 3 METERS THICK

ice thickness and signal amplitude. From *‘heory alone the low-Irequency
particle velocity amplitudes should be little affected by the ice unless

the ice is at least several times the average Arctic ice thickness,
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Seismometers Air-Dropped onto Arctic Ice

The use of seismometers on Arctic ice fer surveillance would achieve
maximum effectiveness if they, together with the associated electronics,
could be air dropped. Air dropping the electronics should pose no
special problem, but for the seismometer to be useful it must be both
well-coupled to the ice and properly oriented after impact, The
orientation is important because the seismometer will operate either at
a reduced sensitivity or not at all if the mechanical axis deviates by

more than about 10 degrees from the vertical.

Consideration of the problems of air dropping has prompted us to
conceive a number of simple systems that might overcome these difficulties,
Shown in Fig. 8 is a schematic representation of one such system. In
this example, gravity orients the seismometer after impact. Within the
enclosure containing the seismometer there is a low temperature alloy,
such as Wood's metal, or water premelted by the heating coils before the
air drop. Upon cooling, the alloy or water freezes the seismometer in
place; thus seismometer orientation is fixed and coupling is made to the

encicsure.

_BALL JOINT

SEISMOMETER INNER

ENCLOSURE

HEATING COIL

LOw
TEMPERATURE
ALLOY
TB-489522-2%

FIG.8 .AEMATIC OF A SEISMOMETER HOUSING FOR AIR-DROP
OPERATIONS
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Not shown in the figure is an outer casing that might have an
aerodynamic shape, guiding fins, and a nose spike to penetrate the sur-
face layers of ice and snow. If a low temperature alloy instead of
water is used the temperature of the outer casing would be significantly
increased due to the heat supplied within it. Although some of this
heat wouid be radiated into the air, it would also melt the surrounding
ice. Upon refreezing, the ice would be in good mechanical coupling to
the seismometer case. An engineering problem is to design the system so
that the ice surrounding the outer casing freezes before the seismometer

is frozen in place.

Use of Geophone Arrays

The problem of locating an underwater, continuous acoustic source
by means of seismometers poses difficulties that are not encountered in
other fields of applied seismology. The continuity of the signal
pracludes the use of first-arrival information that seismolecgists often
rely on for locating earthquakes and man-made seismic disturbances.
Moreover, particle velocity amplitude information has marginal value as
a guide to the source location. The near-surface, low-velocity channel
of the Arctic Ocean creates a phase velocity dispersion of the acoustic
signals, and, as a consequence, particle velocity intensities at fre-

quencies of 30 to 100 cps oscillate appreciably with range (Pederson and

Gordon, "1965, Tolstoy, 1966), Unless we were to cover & large region _

with a closely spaced network of detectors we could not hope to determine

the source location on the basis of seismometer voltage amplitudes alone,

With a limited number of seismometers the onlv certain means for
locating the source is an analysis of the phase characteristics of the
particle velocity signals from an array of seismometers. This will not
be a trivial processing procedure. As an example of one such array we
can think of a group of N seismometers arranged in a semicircle with an
additional seismometer, the reference seismometer, at the center of the
equivalent circle, If a continuous acoustic source is at a moderately

long range from the array, then the surfaces of equal phase will be
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planar, and these planes will continuously sweep past the array. The source
direction can be obtained by comparing the phase relationships of seismo-
meter outputs. That is, the seismometer whose output has the greatest
coherence with the reference seismometer output lies on a radius of the
semicircle that is parallel to the planes of equal phase. Hence, if a
number of such arrays are used the source position can be c¢gtimated by

a simple triangulation of the lines normal to the ra:ii of equal phase,
The physical limitation of this approach is that if we have no prior
knowledge of the source position we are obligated to use a very large
number of seismometers; otherwise our resolution of the source direction,
which varies as /N, will be poor, If an azimuth resolution of 5% is

desired, 36 seismometers would be necessary.

Good resolution with a smail number of seismometers requires an
array that is steerable. To illustrate the stecrable array and its
limitations we consider a method by which the angle, 6, betweer a line of
N detectors and the source can be determined. We again assume a contin-
uous source at a moderately large distance from the array so that the
surfaces of equal phase are planar, If the geophone outputs are narrow-

band filtered about a frequency wy and then summed, the resulting signal

will be
N-i
- _‘Z L N
S - A)‘L cCesH (,C—Uct 5 —C'_L<—'> (5)
AP
Nz c

where / is the distance between geonhones and ¢ is an apparent phase

A vy

Hrr .
velocity, the phase velocity of the wave fronts as seen in the direction

of the linear array. This velocity is related to the true phase velocity,
c, by the expression ¢ = cAPP(cos 8). Provided the true phase velocity
at frequency w, is known, the angle 6 can be found by mcans of delay
filtering the geophone signals prior to the summation, That is, if we
delay each signal by an amount t nity(n = 0 to N-1), we should find .
particular At, for which all the geophone outputs sre in phase and their

sum is therefore a maximm, The particular Aty that results in a
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maximization of S is simply related to © by

_K cos &

(6)
C

[+
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The plus or minus sign is carried to indicate that the direction of
increasing delay will depend on whether seismometer 1 or seismometer N
is closer to the source. Equation 6 is independent of N; however,
lar~er N's would help to reduce random noise effects that would other-

wise interfere with the determination of the At we seek,

To determine whether 6§ is to be measured clockwise or counter-
clockwise from the line, we require additional information which can be

obtained by means of other arrays,

The theoretical difficulcy of utilizing the technique just described
is that more than one mode can exist at frequency w,, and each mode of
propagation will have assnciated with it a different phase velocity,

For example, if the particle velocity is propagated in only two modes,

then Eq. 5 must be written as
@;j
S = ZJ A, ces(en b v2,) + B, cos (et r/LL,,) ()
n=ou

where An and Bn are the amplitude of the particle velocity in each of

the modes and

./"("n, = ' L(e) — )
G App
¢ = phase shift between the modes.
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Thus, a At might be found that maximizes Eq. 6 but i* will no
longer be simply related to the angle 6 because ¢, the phase shift
between modes, is dependent on the distance between the source and the
array. If we examine just the radial term, Dm’ of the particle velocity

(Eq. 2) it can be shown that the phase difference betweer the first two

modes is
(2) )
q;\ . @ ¢ "—-C
= i
() W (8)
¢ C
where c(l) and c(z) are the phase velocities of each mode and R is the

radial distance from the source.

Qualitatively, there exist two possible solutions to the multimode
difficulty as it affects the determination of 6. One solution is to
select a particular frequency, W, such that the excitation function for
the first mode is very much larger than these functions for all other
modes, The second solution is to select a particular frequency such
that the phase velocities in all modes are equal. Of these two approaches
only the first might be successfully employed, but a calculation of the
excitation functions for the Arctic Ocean environment would be necessary
to determine whether thc approach is feasible. The second approach is

unworkable from a quantitative standpoint because calculations made by

- Kutschale (1961) for the Arctic Ocean environment indicate that the

deviation between phase velocities for all modes becomes small at fre-

quencies well above a few hundred cps.

Conclusions

Particle motion transducers embedded on Arctic ice to detect man-
made underwater disturbances overcome a disadvantage of Arctic hydrophone
operation, which requires the lowering of hydrophones through a hole in
the ice cover. Seismometers can be installed at almost aany desired

location on the Arctic Ocean, and, if air dropped, many transducers can
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be installed in a short time. Furthermore, the Arctic Ocean provides an
acoustical system that permits the long range propagation of vertical
particle veloci.ties at frequencies for which the common exploration
seismometer {geophone) is most sensitive, 10 to 100 cps. In this band-
width the ambient ice noise is variable in amplitude, Experimental
evidence shows periods of quiescence occur during which the particle
velocity noise is no more severe than at quiet continental sites, A

few hours later, however, the ambient noise has been observed to
increase by a whole order of magnitude over the quiescent level., Although
limited, our present knowledge of the particle velocity noise amplitudes
suggests that the detectability of a submarine will be greatly dependent
on the local noise conditions., Just how unfavorable the signal-to-noise
ration will be under any given set of noise conditions is not known at
this time. However, a quantitative determination of the signal-to-noise
ratio in the Arctic environment will be one objective of the continued

analytical study.

To acquire quantitative information an in situ experiment would
be the preferred approach, but such an experiment in the near future
is unlikely. Hence, anticipated signal-to-noise ratio can only be
surmised from observed noise levels and calculated signal levels. A
computer program is now being written to provide us with the theoretical
signal (particle velocity) amplitudes from an underwater point radiating
an arbitrary acoustic power spectrum, Because the properties of the
propagation medium, the Arctic Ocean, and the characteristics of the noise
are variable in time and space, the calculated signal-to-noise ratios
can never be uniquely defined through analytic techniques. Nevertheless,
the calculated signal-to-noise ratios will be helpful for quantitative
identification of specific problems related to the usefulness of seis-

mometers on Arctic ice.

The ice layer presents a subject for concern not only because it
is a source of noise, but because uider some conditions it affects the
propagation of particle motion in the Arctic Ocean., However, it was found

than when the ice was less than 3 meters thick an acoustic wave whose
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frequency is less than 30 cps would be almost totally reflected, suffering
only a 180° phase change. Thus, under these ice conditions the ice layer
exerts a negligible influence on the incident wave, and the ocean sur-
face may be analytically treated as a free surface. Tais conclusion is
substartiated by Kutschale (1961) who found the observed phase velocities
of low-frequency acoustic waves in the Arctic Ocean to be insignificantly
different from the velocities calculated with the free suriace approx-
imation, At frequencies less than 30 cps, then, the particle motion at
the surface of the ocean should be modified little by a thin ice layer,
and there should be, effectively, a good coupling of particle motion to

the ice.

The study to date has not considered the coupling of acoustic wave
energy to the ice at frequencies greacter than 100 cps. For high-frequency
waves, whose wavelengths in sea water approach the dimensions of the
average ice thickness and the ice-bottom irregularities, we cannot ignore
the influence of the ice on the phase velocities and amplitudes of guided
wave propagation. In addition to the effect of the ice on their pro-
pagation, higher fregquency waves are sensitive to small spatial and
temporal variations in the oceanic density and compressional wave velocity,
and hence the particle motion of these waves cannot be accurately pre-

dicted from a numerical analysis,

The problem of locating an underwater sound source with seismometers
is basically no different from the location problem involving hydrophones.
A method is required that is independent of the source output power and
relatively insensitive to variations in the properties of the propagation
medium, Moreover, the method must be capable of resolving the source
direction to within a small percent of 2m radians. In this regsrd, the
characteristics of the Arctic Ocean work to both our advantage and dis-
advantage. The roughly bi-linear, positive velocity gradient in the
ocean causes the particle velocity radiated from a near-surface acoustic
source to attenuate approximately as the inverse of distance to the one-
lialf power. On the other hand, the velocity gradient produces a dispersion
of the radiated signal. As a consequence of this dispersion, a single

frequency propagates at a finite number of phase velocities; each phase
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velocity corresponds to a normal mode of propagation., Bscause the phase
relationships between the modes are functions of range, the signal
intensity is a complicated, multiple-valued function of range due to

the phase interference of the multiple modes, The complicated nature of
the signal makes it difficult to predict how best to process the outputs
of seismometers in arrays as a means for determining the direction to the
source. One technique that offers the possibility of good resolution

of the source azimuth is the steerable array of seismometers., This
technique will not yield interpretable results, however, unless there is
a frequency, within the frequency band of maximum acoustical radiation by
the source, at which the particle velocity signal is almost entirely
confined to a single mode. The computer program under development will

serve to answer the question of whether steerable arrays might be used.

Two areas of Arctic experimental work have not received adequate
attention. First, no thorough study of particle velocity noise in the
frequency range of 1 to 100 cps has been conducted, We have little
knowledge concerning the orbital motion of the ambient noise and the
diurnal and seasonal variation of noise intensities, Moreover, no
attempts, to our knowledge, have been made to experiment with arrays of
parallel connected seismowwters as opposed to single seismometers, to

determine whether the observed noise level might be decreased.

A second area of research that has not been given proper consider-
ation is a study of particle velocity signals induced in the ice from a
distant, submerged CW acoustic transducer. However, it is our under-
standing that the General Motors Research Defense Laboratories will
experiment soon in the Arctic with a low-frequency (40 cps) CW transducer.
In connection with this experiment we recommend a study of the following
problems: (a) the polarization of the orbital motion of the signal and
the signal intensity as a function of range, which could provide a com-
parison with theoretical calculations, and (b} the possible effect of

ice thickness on signal intensity.
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