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i. 

2. 

2.1 

2.1.1 

2.1.2 

2.1.3 

2.1.4 

2.1.5 

INTRODUCTION 

A re&tudy of the thermal peiformance of the Discoverer Mark 2 
vehicle has been made; documentation is presented herein.   Tempera- 
ture and char histories of the existing design, when exposed to the 
extreme thermal environments (hottest, coldest), are determined. 
Fixes are recommended and/or limitations are presented if expo- 
sure to the extreme environments indicates possible problems. 

A portion of the study (LMSD adapter and adjacent MSVD components) will 
be issued as a supplement.   Figure 1 gives the configuration of the 
Discoverer Mark 2 vehicle and the adjoining LMSD adapter section. 

INPUTS USED IN STUDY 

POWERED FLIGHT 

Initial Temperatures. Initial life cell temperatures at the time of 
launch were assumed to be between 60° F and 80° F in the analysis 
although the temperature specification is 65° F to 85° F.   This 
approach was used in the analysis because the maintenance of an 
average initial temperature between 60° F and 80° F appeared 
realistic since: 

a. 

b. 

In a similar program,takeoff temperatures between 60° F 
and 80° F were assured.   See reference 1. 

In a Mark 1 flight, Discoverer II, where the minimum 
specification temperature was to be 65°F, the temperature 
was below 60°F.   With ground air circulation provisions 
included in the design, the launch temperature can be con- 
trolled to the valued desired. 

Trajectories.  Powered flight trajectories of the hottest and coldest 
cases are shown in figures 2 and 3 respectively.    The powered 
flight trajectory of the hottest case, a trajectory which would inject 
a Discoverer vehicle into a nominal 98 statute mile perigee orbit, 
was originally obtained from digital printout sheets supplied by 
LMSD.   The Discoverer IT powered flight trajectory, reduced from 
data appearing in reference 2, is assumed to be representative of 
the coldest case.   The perigee altitude of the Discoverer II orbit 
was 158 statute miles, 8 miles higher than the predicted Mark 2 
maximum orbit altitude. 

Internal Heat Generation.   Internal heat generation during powered 
flight is presented in column A of table 1. 

Transition Reynolds Number (turbulent to laminar).   Based on flight 
test data appearing in reference 2, a transition Reynolds number 
expressed as a function of wetted length (Res), of 350,000 is used. 

Pressure Distribution.   The coefficient of pressure ratio (Cp/Cp max.), 
used for the powered flight portion of this study is shown in figure 4. 

¥ i 

i^PP^5?~~^ 



CONFIDENTIAL 

\ 
w 
Z 
w o 

a 

< 

w 
H 

w 

< 

Pi 

11 

W 

P 
u 

II 

as 

a   I 

Is 

s1 
ü
   ? 

Sa 

Wi 

O 

2< 

"8 

1 i 
o 
O 

in 

*M        •*< O <"• 

3 

S        M 

S5£ 

w PQ H 

s 

s 

85| 
UP 
0)  OJ  4) 

> 0) 

<u a) o> *j Ü      v 

_3 _J M   C   t* -w w on 

3 

I 
0) 

I 

■a 
S 
1 
I 
■8 

S    5 

I 
4) 

i 
00 

i 
5 

> 
B 

I 

a 
I 

— ** »• -M 

..; is £y..,sJi:c-.Ä=ti-v~:   :--S¥.-iS»=S:r--V':-: 



This curve represents modified Newtonian distribution over the nose 
faired into the Kopal value downstream. 

2.1.6 Thrust Cone Temperatur     Thrust cone temperature histories for 
calculating internal cc nponent temperatures forward of station 27 
are shown in figure 5.   These curves, obtained from a previous 
study, are actually for an explosive bolt which is mounted near the 
thrust cone. 

2.2 ORBITAL FLIGHT 

2.2.1 Trajectory Definition.   The perigee altitude - eccentricity envelope 
which defines the bounds of the Discoverer flights (reference 3) ij 
shown in figure 6.   The 3<7 capabilities of the Agena booster (reference 4) 
are also shown in figure 6. 

Perigee location is between 15° N and 45° N latitude (reference 4). 

2. 2.2 Adapter Equilibrium Temperatures.  Equilibrium temperatures of 
the adapter section for the hottest and coldest cases are calculated 
from data appearing in reference 5.   These temperatures are 540° R 
for the hottest case and 485° R for the coldest case.   For the analysis, 
it is conservatively assumed that these temperatures arc also the 
equilibrium temperatures of the thrust cone. 

2.2.3 Internal Heat Generation.   Internal heat generation during orbital 
flight is presented in column B of table 1. 

During orbital flight of the hottest case, sixty-four BTU's per hour 
are removed from the life cell by the water evaporator. 

2.2.4 Heat Fluxes.   Table II presents a breakdown of the orbital heat flux 
parameters: 

TABLE II. ORBITAL HEAT FLUX PARAMETERS 

Heat S.?urce Nominal Value Tolerance 

Snlar Radiation BTU 
Ft2-HR 

460 (Jan. 2) 
435 (Jul. 5) 

+ 3% 

Albedo Factor .36 + 0.16 (predominantly 
cloudy skies) 

- 0.16 (predominantly 
clear skies) 

Earth's Radiation .1™. . 
Fi2HR 

70.2 + 15% (predominantly 
clear skies) 

- 15% (predominantly 
cloudy skies) 

Free molecule heating Negligible (Re-entry 
vehicle at aft end 
during orbital flight) 
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2.3 RE-ENTRY FLIGHT 

2.3.1 Initial Trajectory Conditions.  A broadening of the orbital trajectory 
envelope at the initiation of this study also broadened the envelope 
of possible re-entry trajectories.   As a result, reference 6 estimated 
the initial re-entry conditions used in this study and then started an 
extensive parametric study to accurately determine the new range of 
re-entry conditions that could occur.   Results of the parametric study 
show that:  (1) 1.79° and 3.87° are the limiting path angles at 325,000 
ft. alt. (2) the originally estimated initial velocities are sufficiently ac- 
curate, (3) for an orbit probability of 85%   (see figure 6), the limit- 
ing path angles are 2.18° an'J 3.58°. 

Originally estimated initial conditions which are used to calculate 
trajectories are given in table III. 

TABLE in.   ESTIMATED INITIAL CONDITIONS FOR CALCULATING TRAJECTORIES 

Flight Parameter Hottest Case Coldest Case 

Path angle -deg. 
(down from local horizontal) 1.5 4.61 

velocity-ft/sec. 
(relative to air) 26,350 26,390 

weight-lb. 203 (heaviest) 188 (lightest) 

altitude-ft, 325, 000 325,000 

2.3.2 

2.3.3 

Internal Heat Generation.   Internal Heat Generation during re- 
entry is presented in column C of table I. 

Aerodynamic Characteristics.  The Cp/Cp m      <ü 
to calculate aerodynamic heat fluxes is shownTn fit 

  distribution used 
aerodynamic heat fluxes is showhTri figure 7.   This 

distribution was calculated by a digital program which uses tech- 
niques described in reference 7.) 

The coefficient of drag-mach number relationship used to calculate 
re-entry trajectories is shown in figure 8. 

The angle of attack convergence envelope used to calculate the 
effect of pitching motion on the aerodynamic heat fluxes is shown 
in figure 9. 

The base pressure ratios 

are shown in figure 10. 

as a function of mach number 
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2.4 

2.4.1 

2.4.1.1 

2.4.1.2 

2.4.1.3 

2.4.2 

PARACHUTE DESCENT AND AIR PICK-UP/WATER FLOTATION 

Parachute Descent Phase 

Trajectory. 
in figure 11. 

The parachute trajectory used in this study is shown 

2.4.3 

Atmospheric Model.   Atmospheric properties are based on the 
MSVD tropical atmosphere.   A comparison between the MSVD 
tropical and the ARDC 1956 model atmospheres is shown in 
figure 12. 

Int   nal Heat Generation.   Internal heat generation during para- 
chute descent is shown in column D of table I. 

Air Pickup Phase.   The assumptions of the air pickup phase are 
as follows: 

a. The altitude at air pickup is between 0-14,000 ft. (If the 
pickup occurs at a high altitude, presumably the airplane 
v/ill descend to an altitude of approximately 2,500 feet 
where the ambient air temperature is higher. 

b. The time required to pull the capsule into the airplane is 
20 minutes. 

c. The airplane speed will be a constant 194 ft/sec. 

Water Flotation.  The water temperature is assumed to be 535°R. 

.^s#^w1 
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3. 

3.1 

3.1.1 

3.1.2 

3.1.2.1 

cofraaum 
DISCUSSION OF METHOD 

POWERED FLIGHT 

Shield Performance.  Aerodynamic heat transfer coefficients and 
recovery enthalpies are calculated by a digital computer program 
for 30 body locations along one meridian of the Discoverer Mark 2 
re-entry vehicle.   The atmosphere is represented by the ARDC 
1956 model.   The ARDC 1959 model atmosphere officially replaced 
the 1956 model soon after the initiation of this study.   However, 
we think that the new model would have a negligible effect on the 
results of the powered flight portion of this study.   When Reg is 
less than 350,000, aerodynamic heat transfer equations based on 
Lester Lees's classical solution of the hypersonic heating problem 
(laminar boundary layer) are used.   When Res is greater than 
350,000, aerodynamic heat transfer equations based on the tur- 
bulent flat plate law are used. 

Heat transfer coefficients and recovery enthalpies at three body 
locations (stagnation point, beginning of skirt, end of skirt) com- 
bined with other pertinent data are used as input to a digital con- 
duction-ablation program.   A closed loop method uses the input 
and the self-generated surface temperature to calculate the instan- 
taneous heat flux.   Temperature histories of approximately 40 
points within the shield and the front face recession history are 
simultaneously calculated based on the self-generated instantaneous 
heat flux. 

Shield temperature calculations are based on an adiabatic back face. 

Calculated hot gas and solar radiations are small when compared 
with aerodynamic heating; consequently they are neglected. 

Temperature of Internal Components.   To facilitate computations, 
the internal problem is divided into two sections.   The first sec- 
tion considers only those components forward of station 27.   The 
second section considers only those components to the rear of the 
aft cover which is approximately at station 27. 

Forward of Station 27.   Temperature histories of the shield's back 
face and thrust cone during powered flight are used as input to a 
digital conduction-radiation program which calculates the tempera- 
tures of internal components forward of station 27. 

The thermal capacitance of each major component is determined. 
Major components are then "linked" by thermal radiating and 
conducting paths.   The physical thermal system is then expressed 
as an analogous electrical network of resistances and capacitances. 
The electrical network is then greatly simplified by replacing por- 
tions of the network with simple equivalent networks.   By this 
technique the complete system which thermally represents the 

12 



interior of the Mark 2 vehicle is simplified enough to be programmed 
on the IBM 704 digital computer. 

3. 2 ORBITAL FLIGHT 

3.2.1 Temperature of Internal Components .   As in powered flight, the 
internal problem is divided into two sections to facilitate computa- 
tions.   It is assumed that all components inside of and attached to 
«the life cell are at the same temperature as the life cell air tempera- 
ture unless otherwise noted.   This becomes apparent when considera- 
tion is given to the good conduction paths between components and 
the life cell housing.   In addition, the convection effect on the inside 
of the life cell tends to stabilize the temperatures.   Tests performed 
on the unit also bear out this effect. 

3.2.1.1 Forward of Station 27.   Representation of the thermal system of 
internal components forward of station 27 during orbital flight is 
fundamentally the same as that described in section 3.1.2.1. 
During orbital flight, however, a thermal boundary condition is 
imposed at the outside surface of the shield in lieu of the inside. 
Hence, it is necessary to insert additional network (representing 
the shield) between the driving outer boundary and the internal 
components. 

Instead of imposing a heat flux at the shield's outer surface, its 
equivalent in the form of a space sink temperature is used.   The 
space sink temperature is obtained by first determining the mean 
effective heat flux (with respect to both time and body location) 
and then determining the re-radiating (space sink) temperature 
of the mean effective flux.   An infinite capacitance node having 
the space sink temperature is then coupled by a radiation link to 
the shield of the thermal system. 

Past computer runs and simulation tests (reference 8), which used 
a programmed cyclic heat flux to the shield's surface, indicated 
that temperature oscillations will be damped out before reaching 
the capsule.   The tests also indicated that the circumferential 
temperature profile on the capsule will not be significant.   Hence, 
the space sink approximation is considered valid. 

From the time of orbit injection until equilibrium is reached, the 
thrust cone temperature is taken as the extrapolation of the thrust 
cone temperatures used during powered flight. 

3.2.1.2 Experimental Verification of the Discoverer Mark 2 Analytical 
Model.   Thermal-altitude tests were conducted at LMSD's Bemco 
facility to verify the Discoverer Mark 2 design for orbital flight. 
Good agreement between predicted and measured temperatures 
was obtained.   A comparison of analytical results with values 
which would be expected if test data were used is shown in some of 
the figures in this report.   See reference 8 also. 

. $4 *-****im 
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3.3 RE-ENTRY 

3. 3.1 Heat Flux to Shield.   Zero angle of attack convectivc heat fluxes 
based on point mass trajectories and a nonablating configuration 
are calculated by a digital trajectory-flux program for 30 body 
locations along one meridian of the shield's outer surface.   The 
atmosphere is represented by the ARDC 1956 model.   The recently 
published ARDC 1959 model atmosphere would have a negligible 
effect on the results covering the re-entry portion of this study. 

When Res is less than 100, 000, heat fluxes based on Lester Lees's 
classical solution of the hypersonic heating problem (laminar 
boundary layer) are used.   When Res is greater than 100,000, 
equations based on the turbulent flat plate law are used.   Flight 
test data of the WS 107A and WS 315A programs indicate that 
transition on a nonablating shape occurs when Res ^ 400,000. 
Our supressed value of transition (Re« = 100,000) accounts for 
the destabilizing effects of mass addition and surface roughness. 

Hot gas radiation heat fluxes are calculated by the trajectory - 
flux program.   A technique which relates the flux to the thickness, 
temperature, and density of the gas cap is used. 

The pitching motion correction factor is obtained by calculating 
the laminar convective heat flux at a body location for several 
angles of attack.   Care is taken to select angles of attack that 
permit the heat flux to be determined by standard techniques. 
For instance, when the angle of attack is 90°, the flow around 
the skirt region of the Mark 2 re-entry vehicle approximates the 
flow around a cylinder.   For a given radius, the convective heat 
flux to the stagnation line of a cylinder is 0. 707 times the heat 
flux to the stagnation point of a sphere (reference 9).    A plot of 
heat flux vs. angle of attack is made at peak heating for each 
body location of interest.   Mean effective heat fluxes between 
several angles of attack of equal magnitude and opposite sign are 
calculated for each body location of interest.   The mean effective 
heat fluxes are divided by zero angle of attack heat fluxes which 
are also calculated at peak heating.   The ratio thus obtained is the 
factor which is used to correct the computer calculated heat fluxes 
for pitching motion. ,. 

rWo' Pitching motion correction factors in dimensionless form I   
\qa = 0, 

are shown in figure 13 as a function of angle of attack for the thres 
body locations studied (stagnation point, beginning of skirt, end of 
skirt). 

Use of the above method assumes the following: 

a. Harmonic pitching motion 

b. Pitching in one plane only 

QJMCT 
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c. No spin 

d. All laminar heating 

e. The shield response to a cyclic heat flux can be approximated 
by an average of the cyclic heat flux. 

Although the angle of attack correction factor is developed specifi- 
cally for the convective heat flux, the correction factor is assumed 
to also apply to the hot gas radiative flux since qHGR - 1% of q conv. 
The error introduced by this approximation is insignificant. 

3. 3.2 Response of Shield.  Temperature and char responses of the basic 
shield at three locations (stagnation point, beginning of skirt, end 
of skirt) are calculated by a digital conduction-char ablation pro- 
gram.   Primary inputs consist of gross heat fluxes to the shield's 
external surface (extrapolated to alt = 400,000 ft) and thermal 
properties which are experimentally determined.   The first set 
of computer runs calculates the the temperature responses of 
both the basic phenolic-glass shield and the epoxy-polysulfide 
coating until the coating is removed.   The second set of computer 
runs calculates the temperature and char responses of the basic 
phenolic-glass shield from the time of coating removal until the 
gross re-entry heat flux becomes negative (alt = 100, 000 ft). 
Shield temperature histories are extrapolated during the cooling 
phase of re-entry. 

An adiabatic shield back face is assumed. 

3.3.3 Afterbody Environment and Temperature Response.   The heat 
flux to the aft cover and the simultaneous temperature responses 
of the aft cover, back-up insulation, and nylon parachute are 
calculated by a digital flux-conduction program.   Detached flow 
heat flux equations, based on flight test data from the WS 107A 
and WS 315A programs, are used.   Transition from laminar to 
turbulent flow on the aft cover is assumed to occur when Res 
at the end of the skirt reaches 100,000. 

Afterbody heat fluxes assume a zero angle of attack.   At altitudes 
above 310,000 feet however, the precessional motion of the 
vehicle exposes the aft. cover to a severer thermal environment 
than that predicted for a zero angle of attack.   It is estimated that 
the effect of the increased heating on the predicted parachute 
temperatures would be negligible because: 

1.    The duration of the increased heating is relatively small 
(approximately 40 seconds for the hottest case). 

CONFIDENTIAL 
2.    The magnitude of the net heat flux is small due to: 

a. High altitude. 

b. Concave profile of the afterbody. 

c. Increased amount of reradiated heat. 

15 
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3. 3.4 Temperature of Internal Components.  Internal component tempera - 

tures are calculated by a digital conduction-radiation program which 
uses as input the heat fluxes at the aft cover's outer surface and 
temperature histories at the shield's char line.   As already 
described in section 3.1. 2.1 for powered flight heating, the ther- 
mal system which represents the internal components is reduced i 
to a relatively simple analogous electrical network of resistances 
and capacitances. 

i 

3.4 PARACHUTE DESCENT AND AIR PICKUP/WATER FLOTATION 

3.4.1 External Environment After separation of the capsule from the 
shield, the convective heat flux to the surface is obtained from 
correlated data of spheres and cones. 

Solar, albedo, and earth's radiations are neglected. 

3. 4. 2 Internal Temperatures.   Internal temperatures are calculated by 
a digital conduct ion-radiation-convection program which, as in the 
other phases of flight, simulates conditions by an analogous electrical 
network.   Here, however, the network covers only the capsule. 
Boundary conditions are heat transfer coefficients and ambient 
temperatures imposed at the outer surface of the capsule. 

3. 5 WATER FLOTATION.   If air pickup is unsuccessful, water flotation 
is assumed. 

Internal temperatures are calculated by a digital conduction-radiation- 
convection program.   The capsule temperature is assumed to be the 
same as the water temperature (535°R). 

BHHBHW. 
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Ä*s=r§ äS-^^^^5^ 



CONFIDE.« Ulk 

4. TOLERANCES ON TEMPERATURE PREDICTIONS 

As can be Inferred from section 3 (DISCUSSION OF METHOD), tl*. 
study is broken into distinct work blocks which are joined in tin.*: 
and space by the interrelated boundary conditions.   In some cases 
the break-up is to facilitate computations.   In other cases the break- 
up is necessitated by the complexity of the problem (e. g. three 
dimensional heating with char formation). 

The work blocks used in this study are as follows: 

f. External environment, LMSD adapter, and internal com- 
ponents aft of station 27 during orbital flight. 

g. External environment and thermal shield forward of station 
27 during re-entry flight. 

h.    Wake region environment and afterbody during re-entry 
flight. 

i.     Internal components during re-entry flight. 

a. External environment and thermal shield forward of station 
27 during powered flight. 

b. Internal components forward of tütation 27 during powered 
flight. j 

c. External environment of the LMSD adapter during powered 
flight. 

d. Internal components aft of station 27 and the LMSD adapter 
section during powered flight. 

1 
5 

e. External environment, thermal shield, and internal com- 
ponents forward of station 27 during oribital flight. 

j.     External environment, capsule, and internal components 
during parachute descent and air pickup. 

k.    External environment, capsule, and internal components 
during parachute descent and air pickup/water flotation. 

I 
The predicted temperatures in each of these work blocks are for 
nominal values of thermal properties, thicknesses, etc.   Realistically, 
however, tolerances do exist on all of the nominal inputs.   Further- 
more, the techniques used to generate temperatures introduced 
additional tolerances.   As a consequence, a tolerance on predicted 
temperatures also exists. 

Table IV shows the recommended tolerances to be applied to the 
predicted temperatures. 

17 
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TABLE IV.   TOLERANCES FÜR PREDICTED TEMPERATURES 

FLIGHT PHASE 
TEMPERATURE 

TOLERANCE 
WORK 

BLOCK NUMBER 

1.    Powered Flight 

A. Shield 
B. Internal Components 
C. External environment 

of LMSD adapter 

±0.20(T-Tlnitlal) 
±0.20 (T-Tinitial) 
N.A. 

a 
b,d 
c 

2.    Orbital Flight 

A. Shield 
B. LMSD Adapter 
C. Internal Comp. 

±ö J9 (Tcomponent-Tspace sink) 
±0.10 (Tcomponent-Tspace sink) 
±0.10 (Tcomponent"TSpace sink) 

e 
f 

e,f 

3.    Re-entry Flight 

A. Shield 
B. Afterbody 
C. Internal Comp. 

±0.20(T-Tinitial) 
±0. 20 (T-Tinitial) 
±0.20 (T-Tinitial) 

g 
h 
i 

4.    Parachute Descent and Air 
Pickup/water flotation 

A. Internal Components 
B. External Environment 

±0.1 (T-Tinitial) 
N.A. 

j 
k 
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5. 

5.1 

5.1.1 

5.1.2 

5.1.3 

5.1.4 

RESULTS 

POWERED FLIGHT 

Analogous Electrical Model.   The simplified electrical network 
representing the conduction interaction between the internal com- 
ponents during powered flight is shown in figure 14. 

Heat Fluxes to External Surface .   Convective heat fluxes during 
powered flight are shown in figures 15 and 16 for the hottest and 
coldest cases at the stagnation point, the beginning of the skirt, 
and the end of skirt. 

Reynolds Number,   Reynolds numbers (Res) during powered flight 
are shown in figures 17 and 18 for the hottest and coldest cases. 

Temperature Histories .    Shield temperature and ablation histories 
of the hottest case are presented in figures 19 through 21 for the 
stagnation point, beginning of skirt, and end of skirt.   Histories of 
the coldest case for the same body locations are shown in figures 
22 thru 24.   Temperature histories of internal components for the 
hottest and coldest cases are presented in figures 25 through 28. 

5.2 ORBITAL FLIGHT 

5. 2. 1 Analogous Electrical Model and Space Sink Temperature.   The simpli- 
fied electrical network representing the conduction interaction between 
the internal component during orbital flight is shown in figure 29. 

Table V presents the space sink temperature used during orbital 
flight: 

TABLE V.   SPACE SINK TEMPERATURE DURING ORBITAL FLIGHT 

Item              1     Hot Case Cold Case 

Re-entry Vehicle 

LMSD Adapter 

522°R(62°F) 

540°R (80°F) 

476°R (16°F) 

485°R (25°F) 

5.2.2 Temperature Histories.   Temperature histories of internal com- 
ponents are presented in figures 30 through 32 for the hottest case. 
(Beacon battery and life cell heaters are not operating). 

Temperature histories of internal components for the coldest case 
are presented in figures 33 and 34.   (Life cell and beacon battery 
heaters are operating continuously.) 

PF^^fPOiPI 
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5.3 RE-ENTRY 

5.3.1 Analogous Electrical Model .   The simplified electrical network 
representing the conduction interaction between the internal com- 
ponents during re-entry flight is shown in figure 35. 

5.3. 2 Trajectories  Point mass trajectories based on a nonablating body 
are presented in figures 36 and 37 for the hottest and coldest cases. 

5.3.3 Heat Fluxes to External Surface .   Re-entry heat fluxes of the hottest 
and coldest cases for three body locations are shown in figures 38 
and 39.   Wake heat fluxes for both cases are presented in figure 40. 

5. 3. 4               Reynolds Number   Reynolds numbers (Res) are shown in figures 41 
and 42.       

5. 3.5 Temperature Histories.   Shield temperature and charring histories 
of the "Rottest case are presented in figures 43 through 45 for the 
stagnation point, beginning of skirt, and end of skirt respectively. 
Histories of the coldest case for the same body locations are shown 
in figures 46 through 48. 

Temperature histories of internal components are shown in figures 
49 through 58. 

5.4 PARACHUTE DESCENT AND AIR PICKUP/WATER FLOTATION 

5.4.1 Analogous Electrical Model   The simplified electrical network 
representing the conduction interaction between the internal com- 
ponents during parachute descent and air pickup is shown in figure 
59. 

5.4.2 Heat Transfer Coefficients.    The heat transfer coefficients used 
during parachute descent and air pickup are shown in figures 60 
and 61, respectively. 

5. 4. 3 Temperature Histories. 

5.4. 3.1 Parachute Descent .   Temperature histories of internal components 
for the hottest and coldest environments during parachute descent 
are given in figures 62 through 65. 

5.4.3.2 Air Pickup .   Temperature histories during air pickup are shown 
inTigure 66 for the coldest case.   Air pickup for the hottest case 
does not present any thermal problems. 

5.4.3.3 Water Flotation. The simplified electrical network representing 
the conduction interaction between the internal components during 
water flotation is shown in figure 67. 

Water flotation tests have indicated that at equilibrium the life cell 
temperature is 85°F when the water temperature is 75°F. 

    ■ -V:-;.e ■■-':--. ■■■• ■-■- '■•- 



In figure 68 the temperature histories of internal components for 
the coldest case are shown after water impact.   Since life cell temper- 
atures during parachute descent drop below the specification limit 
of 65°F, the effects of water flotation were studied to determined 
the total length of time that life cell temperatures would be below 
the specification limit of 65°F. 

5.5 CRITICAL COMPONENTS.     Certain components which have relatively 
stringent temperature limitations have been given special attention. 
Table VI presents the predicted temperatures of critical components. 

Note that the predicted maximum magnesium ring temperature 
exceeds the maximum allowable temperature. A special parametric 
study is made to determine the maximum ring temperature for the 
revised minimum path angle (1.79°) and the 85% orbit probability 
minimum path angle (2.18°).   An initial re-entry temperature of 520°R 
is assumed.   Magnesium ring temperatures at parachute ejection 
as a function of path angle are shown in figure 69. 

11 Ml 
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6. CONCLUSIONS 

6.1 Reference to Table VII indicates that the life cell temperature speci- 
fication of 75°F ± 10°F can be exceeded at either limit if all of the 
conditions which can cause a temperature extreme occur at the same 
time.   For example, the highest temperatures could occur if the 
firing was as late as 3:00 P. M. , the powered flight trajectory was 
the hottest extreme, the overall thermal resistance was the highest, 
etc.   The probability of all extreme conditions occurring at the same 
time is small but nevertheless possible. 

For the hottest orbit with an initial life cell temperature of 80°F, 
the maximum specification temperature of the life cell in orbit is 
exceeded for 16 hours.   Figure 70 indicates that lowering the 
initial temperature of the life cell to 70°F results in a maximum 
temperature of 89°F and a violation of the 85°F maximum temperature 
limit for 14 hours.   It is apparent that an initial life cell temperature 
of 65°F at launch would result in a maximum temperature of 85°F 
in orbit and hence satisfy the life cell temperature specification. 

During the re-entry, parachute descent and water flotation phases, 
specification temperatures are exceeded for relatively short times 
(table VII).   It should be noted that the ocean water temperature 
of 75°F was used in this report and in field tests.   During the 
summer months the water temperature could reach 83 F.   For this 
condition, if the capsule is not quickly recovered (within 2 hours\ 
the life cell temperatures omilri pyreeci the 85°F specification. 

To overcome the problems associated with the violation of the 
tempeiature specification the following alternatives are considered 
feasible. 

a.    For Orbit 

1. Require that the initial temperature of the life cell at 
launch be 65°F. 

2. Consider raising the maximum specification temperature. 

3. A combination of a-1 and a-2 as given above. 

b. For Re-entry and Parachute Descent for Hot Orbit 

1. Change in specification to allow a temperature in 
excess of 85°F for 20 minutes. 

2. Additional cooling capacity to keep the life cell temperature 
below 81°F at orbit ejection.   (Cooling requirement 
would be 73 Btu/hr.) 

c. For Re-entry, Parachute Descent and Water Flotation 
for Cold Orbit  

tJyliLliiiflfe a &k 



1. Change in specification to allow a temperature below 
65°F for 40 minutes. 

2. Addition of heaters and batteries in life cell to maintain 
temperature of life cell above 65°F during parachute 
descent. 

3. Addition of heaters to life cell to maintain temperature 
of life cell at 75°F at orbit ejection.   (An additional 
10 watts would be required.) 

It should also be realized that the Thermal-Altitude Test on Use 72 
resulted in an overall thermal resistance of . 325 ± . 06   J"nr'. Btu 
The large tolerance on this value is primarily the result of the 
failure of test instrumentation to function properly.   Since the 
temperature of the life cell during re-entry and parachute descent 
is dependent on the life cell temperature at orbit ejection, a reduction 
of the tolerance on the overall thermal resistance would result in a 
lower predicted life cell temperature for the hottest orbit and a 
higher predicted life cell temperature for the coldest orbit.   For 
example,if the nominal value of . 325 is used for the overall thermal 
resistance, the life cell temperatures at orbit ejection would be 
81°F and 75°F for the hot and cold cases respectively.   The 
temperature specification would then not be exceeded during re-entry 
or parachute descent. 

Temperature predictions indicate that the violation of the temperature 
specification under the worst possible conditions and assumptions is 
not excessive.   Consideration, however, should be given to testing 
the vehicle at the extreme conditions expected during powered flight, 
re-entry and parachute descent. 

As shown in figure 69,the temperature of the magnesium ring during 
parachute ejection is less than the maximum allowable temperature 
for all path angles greater than 2.15 degrees.   A major redesign 
would be necessary to guarantee the magnesium ring for the entire 
range of initial re-entry path angles predicted. 

With the exception of the life cell and the magnesium ring, all MSVU 
components are within specification. 
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Figure 1.   Discoverer Mark 2 Vehicle and Adapter Section 
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Figure 2.   Trajectory During Powered Flight, Hottest Case 
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Figure 4.   Coefficient of Pressure Distribution During Powered Flight 
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©   NOT ALL RADIATIVE RESISTANCES ARE SHOWN 
®   VALUES WITHIN CZ> ARE HEAT CAPACITIES OF COMPONENTS IN BTU/°F 
0   RESISTANCE VALUES ARE IN HR-°F/BTU 
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Figure 14.   Simplified Electrical Circuit Analogous to Thermal Conduction 
Between Internal Components During Powered Flight 
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Figure 15.   Convective Heat Fluxes During Powered Flight, Hottest Case 
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Figure 16.   Convective Heat Fluxes During Powered Flight, Coldest Case 
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Figure 20.   Shield Temperature and Ablation at Beginning of Skirt During 
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Figure 25.   Life Cell and Conditioner Temperatures During Powered Flight, 
Hottest Case 
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NOTE: © CONVECTION IS ASSUMED TO BE NEGLIGIBLE 
® NOT ALL RADIATIVE RESISTANCES ARE SHOWN 
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Figure 34.   Beacon Battery Temperature During Orbital Flight, Coldest Case 
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Figure 36.   Trajectory During Re-entry, Hottest Case 
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Figure 38.   Gross Heat Fluxes to Body During Re-entry, Hottest Case 
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Figure 58.   Thermal Battery Temperature During Re-entry, Coldest Case    «««»n jf| 

%1 It :• 

- - ... .-....„,,»-.,-.- ,-..,,,..;,.. L-,:..-^--:. j-W;.:-=.. p 



s 

NOTE.  © CONVECTION EFFECTS ARE INCLUDED 

® NOT ALL RADIATIVE RESISTANCES ARE SHOWN 
® VALUES WITHIN CZ> ARE HEAT CAPACITIES OF COMPONENTS IN BTU/*F 
© RESISTANCE VALUES ARE IN HR-°F/BTU 
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Figure 59.   Simplified Electrical Circuit Analogous to Thermal Conduction 
Between Internal Components During Parachute Descent and Air Pickup 
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Figure 60.   Heat Transfer Coefficients During Parachute Descent 
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Figure 61.   Heat Transfer Coefficient During Air Pickup 
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Figure 62,   Life Cell and Conditioner Temperature During Parachute Descent, 
Hottest Case 
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Figure 63.  Thermal Battery Temperature During Parachute Descent, Hottest Case 
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Figure 64.   Life Cell and Conditioner Temperatures During Parachute Descent, 
Coldest Case 
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Figure 65. Thermal Battery Temperature During Parachute Descent, Coldest Case 
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NOTE!  ©   CONVECTION  EFFECTS  ARE  INCLUDED 

(D   NOT ALL RADIATIVE RESISTANCES ARE SHOWN 

®   VALUES WITHIN CZ> ARE HEAT CAPACITIES OF COMPONENTS IN BTU/°F 
©   RESISTANCE VALUES ARE IN HR-aF/BTU 
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Figure 67.   Simplified Electrical Circuit Analogous to Thermal Conduction 
Between Internal Components Daring Water Flotation 
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Figure 68.   Life Cell and Conditioner Temperatures During Water Flotation 
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Figure 69.   Average Magnesium Ring Temperature at Explosive Bolt During 
Parachute Ejection 
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Figure 70.   Life Cell Temperature During Powered Flight, Hottest Case 
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