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1. INTRODUCTION

A restudy of the thermal peiformance of the Discoverer Mark 2
vehicle has been made; documentation is presented herein. Tempera-
ture and char histories of the existing design, when exposed to the
extreme thermal environments (hottest, coldest), are determined.
Fixes are recommended and/or limitations are presented if expo-

sure to the extreme environments indicates possible problems.

A portion of the study (LMSD adapter and adjacent MSVD components) will
pe issued as a supplement. Figure 1 gives the configuration of the
Discoverer Mark 2 vehicle and the adjoining LMSD adapter section.

2. INPUTS USED IN STUDY
2.1 POWERED FLIGHT
2.1.1 Initial Temperatures. Initial life cell temperatures at the time of

launch were assumed to be between 60° F and 80° F in the analysis
although the temperature specification is 65° F to 85° F. This
approach was used in the analysis because the maintenance of an
average initial temperature between 600 F and 80° F appeared
realistic since:

a. Ina similar program,takeoff temperatures between 60° F
and 80° F were assured. See reference 1.

b. Ina Mark 1 flight, Discoverer II, where the minimum
specification temperature was to be 65°F, the temperature
was below 80°F. With ground air circulation provisions
included in the design, the launch temperature can be con-
trolled to the valued desired.

2.1, 2 Trajectories. Powered flight trajectories of the hottest and coldest
cases are shown in figures 2 and 3 respectively. The powered
flight trajectory of the hottest case, a trajectory which would inject
a Discoverer vehicle into a2 nominal 98 statute mile perigee orbit,
was originally obtained from digital printout shzets supplied by
LMSD. The Discoverer I powered flight trajectory, reduced from
data appearing in reference 2, is assumed to be representative of
the coldest case. The perigee altitude of the Discoverer II orbit
was 158 statute miles, 8 miles higher than the predicted Mark 2
maximum orbit altitude.

2,1.3 Internal Heat Generation. Internal heat generation during powered
flight is presented in column A of table 1.

2.1. 4 Transition Reynolds Number (turbulent to la.ninar). Based on flight
test data appearing in reference 2, a transition Reynolds number
expressed as a function of wetted length (Reg), of 350, 000 is used.

2.1.5 Pressure Distribution. The coefficient of pressure ratio (Cp/Cp max. ),
used for the powered flight portion of this study is shown in figure 4.
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2.1.6

2.2

' 2.2.1

2.2.2

2.2.3

2.2.4

| <. 3¢

This curve represents modified Newtonian distribution over the nose
faired into the Kopal value downstream.

Thrust Cone Temperatur« Thrust cone temperature histories for
calculating internal cc nponent temperatures forward of station 27
are shown i figure 5. These curves, obtained from a previous
study, are actually for an explosive bolt which is mounted aear the
thrust cone.

©ORBITAL FLIGHT

Trajectory Definition. The perigee altitude - eccentricity envelope
which defines the bounds of the Discoverer flights (reference 3) is

shown in figure 6. The 3¢ capabilities of the Agena booster (reference 4)
are also shown in figure 6.

Perigee location is between 15° N and 45° N latitude (reference 4).

Adapter Equilibrium Temperatures. Equilibrium temperatures of

the adapter section for the hottest and ccldest cases are calculated
from data appearing in reference 5. These temperatures ara 540° R
for the hottest case and 485° R for the coldest case. For the analysis,
it is conservatively assumed that these temperatures are also the
equilibrium temperatures of the thrust cone.

Internal Heat Gereration. Internal heai generation during orbital
flight is presented in column B of table 1.

During orbital flight of the hottest case, sixty-four BTU's per hour
are removed from the life cell by the water evaporator.

Heat Fluxes. Table II presents a breakdown of the orbital heat flux
parameters:

TABLE II. ORBITAL HEAT FLUX PARAMETERS

Heat € rarce Nominal Value Tolerance

Solar Radiation BTU 460 (Jar. 2) +3%

Albedo Factor .36 + 0, 16 (predominantly

Earth's Radiation BTU 70.2 + 15% (predominanily

Free molecule heating Negligible (Re-entry

Fi?-HR 435 (Jul. 5) B

cloudy skies)
- 0. 16 (predominantly
clear skies)

th ~HR clear skies)

- 15% (predominantly
cloudy skies)

vehicle at aft end
during orbital flight)

-

R 8
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2.3.1 Initial Trajectory Conditions. A broadening of the orbital trajectory
envelope at the initiation of this study also broadened the envelope
of possible re-entry trajectories. As a result, reference 6 estimated
the initial re-entry conditions used in this study and then started an
extensive parametric study to accurately determine the new range of
re-entry conditi~ns that could occur. Results of the parametric study
show that: (1) 1.79° and 3. 87° are the limiting path angles at 325, 000
ft. alt. (2) the originally estimatedinitial velocities are sufficiently ac-
curate, (3) for an orbit probability of 85% (see figure 6), the limit-
ing path angles are 2.18° apn4 3. 58°,

2.3 RE-ENTRY FLIGHT

Originally estimated initial conditions which are used to calculate
trajectories are given in table III

TABLE III. ESTIMATED INITIAL CONDITICNS FOR CALCULATING TRAJECTORIES

Flight Parameter Hottest Case Coldest Case

Path argle-deg.

(down from local horizontal) 1.5 4,61
velocity-ft/sec.

(relative to air) 26, 350 26, 390
weight-1b. 203 (heaviest) 188 (iightest)
altitude-ft. 325, 000 325, 000

2.3.2 Internal Heat Generation. Internal Heat Generation during re-

entry is presented in column C of table I.

2.3.3 Aerodynamic Characteristics. The Cp/Cp distribution used
to calculate aerodynamic heat fluxes is shownai‘n figure 7. This
distribution was calculated by a digital program which uses tech-
niques described in reference 7.)

The coefficient of drag-mach number relationship used to calculate
re-entry trajectories is shown in figure 8.

The angle of attack convergence envelope used to calculate the
effect of pitching motion on the aerodynamic heat fluxes is shown
in figure 9.

P Pb
The base pressure ratios P rp ) asa function of mach number

CONFIDENTIAL
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are shown in figure 10.
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= 2.4 PARACHUTE DESCENT AND AIR PICK-UP/WATER FLOTATION
N 2,4.1 Parachute Descent Phase
\
2.4.1.1 Trajectory. The parachute trajectory used in this study is shown
in figure 11,
2.4.1.2 Atmospheric Model. Atmospheric properties are based on the

MSVD tropical atmosphere. A comparison between the MSVD
tropical and the ARDC 1956 model atmospheres is shown in

‘ figure 12,

1 2.4.1.3 Int. ‘nal Heat Generatiun. Internal heat generation during para-
chute descent is shown in column D of table 1.

' 2.4.2 Air Pickup Phase. The assumptions of the air pickup phase are

: as follows:

t

a. The altitude at air pickup is between 0-14, 000 ft. (If the
pickup occurs at a high altitude, presumably the airplane
will descend to an altitude of approximately 2, 500 feet
where the ambient air temperature is higher.

b, The time required to pull the capsule into the airplane is
20 minutes.

¢. The airplane speed will be a constant 194 ft/sec.

2.4.3 Water Flotation. The water temperature is assumed to be 535°R.

"

R
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3.1
3.1.1

3.1.2

3.1.2.1
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DISCUSSION OF METHOD
POWERED FLIGHT

Shield Performance. Aerodynamic heat transfer coefficients and
recovery enthalpies are calculated by a digital computer program
for 30 body locations along one meridian of the Discoverer Mark 2
re-entry vehicle. The atmosphere is represented by the ARDC
1956 model. The ARDC 1959 model atmosphere officially replaced
the 1956 model soon after the initiation of this study. However,
we aink that the new model would have a negligible effect on the
results of the powered flight portion of this study. When ReS is
less than 350, 000, aerodyna.mic heat transfer equations based on
Lester Lees's classical solution of the hypersonic heating problem
(laminar boundary layer) are used. When Reg is greater than
350, 000, aerodynamic heat transfer equations based on the tur-
bulent flat plate law are used.

Heat transfer coefficients and recovery enthalpies at three body
locations (stagnation point, beginning of skirt, end of skirt) com-
bined with other pertinent data are used as input to a digital con-
duction-ablation program. A closed loop method uses the input

and the self-generated surface temperature to calculate the instan-
taneous heat flux. Temperature histories of approximately 40
points within the shield and the front face recession history are
simultaneously calculated based on the self-generated instantaneous
heat flux.

Shield temperature calculations are based on an adiabatic back face.

Calculated hot gas and solar radiations are small when compared
with aerodynamic heating; consequently they are neglected.

Temperature of Internal Components. To facilitate computations,
the internal problem is divided into two sections. The first sec-
tion considers only those components forward of station 27. The
second section considers only those components to the rear of the
aft cover which is approximately at station 27,

Forward of Station 27. Temperature histories of the shield's back
face and thrust cone during powered flight are used as input to a
digital conduction-radiation program which calculates the tempera-
tures of internal components forward of station 27.

The thermal capacitance of each major component is determined.
Major components are then '"linked" by thermal radiating and
conducting paths. The physical thermal system is then expressed
as an analogous electrical network of resistances and capacitances.
The electrical network is then greatly simplified by replacing por-
tions of the network with simple equivalent networks. By this
technique the complete system which thermally represents the

s CONFIDENTIAL
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3.2

3.2.1

3.2.1.1

3.2.1.2

7 v,

2o
o,

interior of the Mark 2 vehicle is simplified enough to be programmed
on the IBM 704 digital computer.

ORBITAL FLIGHT

Temperature of Internal Components . As in powered flight, the
internal problem is divided into two sections to facilitate computa-
tions. It is assumed that all components inside of and attached to

the life cell are at the same temperature as the life cell air tempera-
ture unless otherwise noted. This becomes apparent when considera-
tion is given to the good conduction paths between components and

the life cell housing. In addition, the convection effect on the inside
of the life cell tends to stabilize the temperatures. Tests performed
on the unit also bear out this effect.

Forward of Staticn 27, Representation of the thermal system of
internal components forward of station 27 during orbital flight is
fundamentally the same as that described in section 3.1.2,1,
During orbital flight, however, a thermal boundary condition is
imposed at the outside surface of the shield in lieu of the inside.
Hence, it is necessary to insert additional network (representing
the shield) between the driving outer boundary and the internal
components.

Instead of imposing a heat flux at the shield's outer surface, its
equivalent in the form of a space sink temperature is used. The
space sink temperature is obtained by first determining the mean
effective heat flux (with respect to both time and body location)
and then determining the re-radiating (space sink) temperature
of the mean effective flux. An infinite capacitance node having
the space sink temperature is then coupled by a radiation link to
the shield of the thermal system.

Past computer runs and simulation tests (reference 8), which used
a programmed cyclic heat flux to the shield's surface, indicated
that temperature oscillations will be damped out before reaching
the capsule. The tests also indicated that the circumferential
temperature profile on the capsule will not be significant. Hence,
the space sink approximation is considered valid.

From the time of orbit injection untii equilibrinm is reached, the
thrust cone temperature is taken as the extrapolation of the thrust
cone temperatures used during powered flight.

Experimental Verification of the Discoverer Mark 2 Analytical
Model. Thermal-altitude tests were conducted at LMSD's Bemco
facility to verify the Discoverer Mark 2 design for orbital flight.
Good agreement between predicted and measured temperatures
was obtained. A comparison of analytical results with values
which would be expected if test data were used is shown in some of
the figures in this report. See reference 8 also.
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RE -ENTRY

Heat Flux to Shield. Zero angle of attack convective heat fluxes
based on point mass trajectories and a nonablating configuration
are calculated by a digital trajectory-flux program for 30 body
locations along one meridian of the shield's outer surface. The
atmosphere is represented by the ARDC 1956 model. The recently
published ARDC 1959 model atmosphere would have a negligible
effect on the results covering the re-entry portion of this study.

When Reg is less than 100, 000, heat fluxes based on Lester Lees's
classical solution of the hypersonic heating problem (laminar
boundary layer) are used. When Reg is greater than 100, 000,
equations based on the turbulent flat plate law are used. Fl1ght
test data of the WS 107A and WS 315A programs indicate that
transition on a nonablating shape occurs when Reg ¥ 400, 000.

Our supressed value of transition (Reg = 100, 000) accounts for

the destabilizing effects of mass addition and surface roughness.

Hot gas radiation heat fluxes are calculated by the trajectory-
flux program. A technique which relates the flux to the thickness,
temperature, and density of ihe gas cap is used.

The pitching motion correction factor is obtained by calculating
the laminar convective heat flux at a body location for several
angles of attack. Care is taken to select angles of attack that
permit the heat flux to be determined by standard techniques.

For instance, when the angle of attack is 90°, the flow around

the skirt region of the Mark 2 re-entry vehicle approximates the
flow around a cylinder. For a given radius, the convective heat
flux to the stagnation line of a cylinder is 0. 707 times the heat
flux to the stagnation point of a sphere (reference 9). A plot of
heat flux vs. angle of attack is made at peak heating for each

body location of interest. Mean effective heat fluxes between
several angles of attack of equal magnitude and opposite sign are
calculated for each body location of interest. The mean effective
heat fluxes are divided by zero angle of attack heat fluxes which
are also calculated at peak heating. The ratio thus obtained is the
factor which is used to correct the computer calculated heat fluxes
for pitching motion.

qa,‘-o

da =0
are shown in figure 13 as a function of angle of attack for the thre
body locations studied (stagnation point, beginning of skirt, end of
skirt).

Pitching motion correction factors in dimensionless form

Use of the above method assumes the following:

CONFIDENTL

a. Harmonic pitching motion

b. Pitching in one plane only
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3.3.2

3.3.3
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c. No spin
d. All laminar heating

e. The shield response to a cyclic heat flux can be approximated
by an average of the cyclic heat flux.

Although the angle of attack correction factor is developed specifi-
cally for the convective heat flux, the correction factor is assumed
to also apply to the hot gas radiative flux since g 2 1% of q conv.
The error introduced by this approximation is ingign icant,

Response of Shield. Temperature and char responses of the basic
shield at three Tocations (stagnation point, beginning of skirt, end
of skirt) are calculated by a digital conduction-char ablation pro-
gram. Primary inputs consist of gross heat fluxes to the shield's
external surface (extrapolated to alt = 400, 000 ft) and thermal
properties which are experimentally determined. The first set
of computer runs calculates the the temperature responses of
both the basic phenolic-glass shield and the epoxy-polysulfide
coating until the coating is removed. The second set of computer
runs calculates the temperature and char responses of the basic
phenolic-glass shield from the time of coating removal until the
gross re-entry heat flux becomes negative (alt ¥ 100, 000 ft).
Shield temperature histories are extrapolated during the cooling
phase of re-entry.

An adiabatic shield back face is assumed.

Afterbody Environment and Temperature Response. The heat

flux to the aft cover and the simultaneous temperature responses
of the aft cover, back-up insulation, and nylon parachute are
calculated by a digital flux-conduction program. Detached flow
heat flux equations, based on flight test data from the WS 107A
and WS 315A programs, are used. Transition from laminar to
turbulent flow on the aft cover is assumed to occur when Reg

at the end of the skirt reaches 100, 000.

Afterbody heat fluxes assume a zero angle of attack. At altitudes
above 310, 000 feet however, the precessional motion of the
vehicle exposes the aft cover to a severer thermal environment
than that predicted for a zero angle of attack. It is estimated that
the effect of the increased heating on the predicted parachute
temperatures would be negligible because:

1. The duration of the increased heating is relatively small
(approximately 40 seconds for the hottest case).

2. The magnitude of the net heat flux is small due to:
a. High altitude.
b. Concave profile of the afterbody.

c. Increased amount of reradiated heat.

SR

15

IR 10p, bitopiie o




16

3.3.4

3.4

3.4.1

3.4.2

3.5

= CONFIDENT

Temperature of Internal Components. Internal component tempera-
tures are calculated by a digital conduction-radiation program which
uses as input the heat fluxes at the aft cover's outer surface and
temperature histories at the shield's char line. As already
described in section 3.1. 2.1 for powered flight heating, the ther-
mal system which represents the internal components is reduced

to a relatively simple analogous electrical network of resistances
and capacitances.

PARACHUTE DESCENT AND AIR PICKUP/WATER FLOTATION

External Environment After separation of the capsule from the

shield, the convective heat flux to the surface is obtained from
correlated data of spheres and cones.

Solar, albedo, and earth's radiations are neglected.

Internal Temperatures. Internal temperatures are calculated by

a digital conduction-radiation-convection program which, as in the
other phases of flight, simulates conditions by an analogous electrical
network. Here, however, the network covers only the capsule.
Boundary conditions are heat transfer coefficients and ambient
temperatures imposed at the outer surface of the capsule.

WATER FLOTATION. If air pickup is unsuccessful, water flotation
is assumed.

Internal temperatures are calculated by a digital conduction-radiation-
convection program. The capsule temperature is assumed to be the
same as the water temperature (535°R).

CONFIDENTIAL
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TOLERANCES ON TEMPERATURE FREDICTIONS
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As can be inferred from section 3 (DISCJUSSION OF METHOD), ti.
study is broken into distinct work blocks which are joined in tin.<
and space by the interrelated boundary conditions. In some cases
the break-up is to facilitate computations. In other cases the break-
up is necessitated by the complexity of the problem (e.g. three
dimensional heating with char formation).

The work blocks used in this study are as follows:

a.

j’

External environment and thermal shield forward of station
27 during powered flight.

Internal components forward of station 27 during powered
flight.

External environment of the LMSD adapter during powered
flight.

Internal components aft of station 27 and the LMSD adapter
section during powered flight.

External environment, thermal shield, and internal com-
ponents forward of station 27 during oribital flight.

External environment, LMSD adapter, and internal com-
ponents aft of station 27 during orbital flight.

Externai environment and thermal shield forward of station
27 during re-entry flight.

Wake region environment and afterbody during re-entry
flight.

Internal components during re-entry flight.

External environment, capsule, and internal components
during parachute descent and air pickup.

External environment, capsule, and internal components
during parachute descent and air pickup/water flotation.

The predicted temperatures in each of these work blocks are for

nominal values of thermal properties, thicknesses, etc.

however, tolerances do exist on all of the nominal inputs. Further-
more, the techniques used to generate temperatures introduced
additional tolerances. As a consequence, a tolerance on predicted
temperatures also exists.

Table IV shows the recommended tolerances to be applied to the
predicted temperatures.

FINENTIAL
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TABLE IV. TOLERANCES FUR PREDICTED TEMPER/ATURES

TEMPERATURE WORK
FLIGHT PHASE TOLEKANCE BLOCK NUMBER
Powered Flight
A. Shield 40, 20 (T- =Tinttial) a
B. Internal Components +0, 20 {T-Tinitia)) b,d
C. External environment N.A. c

of LMSD adapter
Orbital Flight
A. Shield
B. LMSD Adapter
C. Internal Comp.
Re-entry Flight
A. Shield
B. Afterbody
C. Internal Comp.

Parachute D=scent and Air
Pickup/water flotation

A. Internal Components
B. External Environment

0,10 sTcomponent -Tspace sink)  ©
Tcomponent-Tspace sink)
£0. 10 (Tcomponent-Tspace sink) ,f

+0. 10

0. 20 (T-Tinjtial)
+0. 20 (T-Tinitial
+0. 20 (T-Tinitial)

+0. 1 (T-Tinijtial)
N. A.

[
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5.
5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.2

5.2.1

RESULTS
POWERED FLIGHT
Analogous Electrical Model. The simplified electrical network

representing the conduction interaction between the internal com-
ponents during powered flight is shown in figure 14.

Heat Fluxes to External Surface. Convective heat fluxes during
powered {light are shown in figures 15 and 16 for the hottest and
coldest cases at the stagnation point, the beginning of the skirt,
and the end of skirt,

Reynolds Number., Reynolds numbers (Res) during powered flight
are shown in figures 17 and 18 for the hottest and coldest cases.

Temperature Histories . Shield temperature and ablation histories
of the hottest case are presented in figures 19 through 21 for the
stagnation point, beginning of skirt, and end of skirt, Histories of
the coldest case for the same body locations are shown in fiqures
22 thru 24, Temperature histories of internal components for the
hottest and coldest cases are presented in figures 25 through 28.

ORBITAL FLIGHT

Analogous Electrical Model and Space Sink Temperature., The simpli-
fied electrical network representing the conduction interaction between
the internal component during orbital flight is shown in figure 29.

Table V presents the space sink temperature used cduring orbital
flight:

TABLE V. SPACE SINK TEMPERATURE DURING ORBITAL FLIGHT

5.2.2

e

-

Item I Hot Case Cold Case

Re-cntry Vehicle | 522°R (62°F) | 476°R (16°F)

LMSD Adapter 540CR (80°F) 485°R (25°F)

cop

TR

Temperature Histories. Temperature histories of internal com-
ponents are presented in figures 30 through 32 for the hottest case.
(Beacon battery and life cell heaters are not operating).

Temperature histories of internal components for the coldest case
are presentec in figures 33 and 34, (Life cell and beacon battery
heaters are operating continuously.)

19
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3.1

.3.2

.3.3
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RE-ENTRY

Analogous Electrical Model . The simplified electrical network

representing the conduction interaction between the internal com-
ponents during re-entry flight is shown in figure 35.

Trajectories Point mass trajectories based on a nonablating body
are presented in figures 36 and 37 for the hottest and coldest cases.

Heat Fluxes to External Surface. Re-entry heat fluxes of the hottest
and coldest caces for three body locations are shown in figures 38
and 39. Wake heat fluxes for both cases are presented in figure 40.

Reynolds Number Reynolds numbers (Reg) are shown in figures 41
and 42,

Temperature Histories. Shield temperature and charring histories

of the hottest case are presented in figures 43 through 45 for the
stagnation point, beginning of skirt, and end of skirt respectively.
Histories of the coldest case for the same body locations are shown
in figures 46 through 48.

Temperature histories of internal compcnents are shown in figures
49 through 58.

PARACHUTE DESCENT AND AIR PICKUP/WATER FLOTATION

Analogous Electrical Model The simplified electrical network
representing the conduction interaction between thie internal com-
ponents during parachute descent and air pickup is shown in figure
59,

Heat Transfer Coefficients. The heat transfer coefficients used
during parachute descent and air pickup are shown in figures 60
and 61, respectively.

Temperature Histories.

Parachute Descent . Temperature histories of internal components
for the hottest and coldest environments during parachute descent
are given ir figures 62 through 65.

Air Pickup . Temperature histories during air pickup are shown
in figure 66 for the coldest case. Air pickup for the hottest case
does not present any thermal problems.

Water Flotation. The simplified electrical network representing
the conduction interaction between the internal components during
water flotation is shown in figure 67.

Water floiation tests have indicated that at equilibrium the life cell
temperature is 85°F when the water te.nperature is 750F,
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In figure 68 the temperature histories of internal components for

the coldezt case are shown after water impact. Since life cell temper-
atures during parachute descent drop below the specification limit

of 65°F, the effects of water flotation were studied to determined
tre total length of time that life cell temperatures would be below

the specification limit of 65°F.

5.5 CRITITAL COMPONENTS. Certain components which have relatively
stringent temperature limitations have been given special attention.
Table VI presents the predicted temperatures of critical components,

Note that the predicted maximum magnesium ring temperature

exceeds the miaximum allowable temperature. A special parametric
study is made to determine the maximum ring temperature for the
revised minimum path angle (1.799) and the 85% orbit probability
minimum path angle (2. 18%), An initial re-entry temperature of 520°R
is assumed. Magnesium ring temperatures at parachute ejection

as a function of path angle are shown in figure 69.
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CONCLUSIONS

Reference to Table VII indicates that the life cell temperature speci-
fication of 750F + 109F can be exceeded at either limit if all of the
conditions which can cause a temperature extreme occur at the same
time. For example, the highest temperatures could occur if the
firing was as late 23 3:00 P, M., the powered flight trajectory was
the hottest extreme, the overall thermal resistance was the highest,
etc. The probability of all extreme conditions occurring at the same
time is small but nevertheless possible.

For the hottest orbit with an initial life cell temperature of 80°F,

the maximum specification temperature of the life cell in orbit is
exceeded for 16 hours. Figure 70 indicates that lowering the

initial temperature of the life cell to 70°F results in 2 maximum
temperature of 89°F and a violation of the 85°F maximum temperature
limit for 14 hours. It is apparent that an initial life cell temperature
of 65°F at launch would result in a maximum temperature of 85°F

in orbit and hence satisfy the life cell temperature specification.

During the re-entry, parachute descent and water flotation phases,
specification temperatures are exceeded for relatively short times
(table VII). It should be noted that the ocean water temperature

of 75°F was used in this report and in field tests. During the
summer months the water temperature could reach 83°F. For this
condition, if the capsule is not quickly recovered (within 2 hours),
the life cell temperatures conld exceed the 859F specification,

To overcome the problems associated with the violation of the
tempe. ature specification the following alternatives are considered
feasible.

a. For Orbit

1, Require that the initial temperature of the life cell at
launch be 65°F.

2. Consider raising the maximum specification temperature.
3. A combination of a-1 and a-2 as given above.

b. For Re-entry and Parachute Descent for Hot Orbit

1. Change in specification to allow a temperature in
excess of 85°F for 20 minutes.

2. Additional cooling capacity to keep the life cell temperature
below 81°F at orbit ejection. (Cooling requirement
would be 73 Btu/hr.)

¢. For Re-entry, Parachute Descent and Water Flotation
for Cold Orbit

%
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1. Change in specification to allow a temperature below
65°F for 40 minutes.

2. Addition of heaters and batteries in life cell to maintain
temperature of life cell above 65°F during parachute
descent.

3. Addition of heaters to life cell to maintain temperature
of life cell at 75CF at orbit ejection. (An additional
10 watts would be required.)

‘ It should also be realized that the Thermal-Altitude Testo on Use 72
resulted in an overall thermal resistance of . 325 + .06 —l%:xhn‘ 3

The large tolerance on this value is primarily the result of the

failure of test instrumentation to function properly. Since the
temperature of the life cell during re-entry and parachute descent

is dependent on the life cell temperature at orbit ejection, a reduction
of the toleraice on the overall thermal resistance would result in a
lower predicted life cell temperature for the hottest orbit and a i
higher predicted life cell temperature for the coldest orbit. For 1
’ example, if the nominal value of . 325 is used for the overall thermal
resistance, the life cell temperatures at orbit ejection would be

81°F and 75°F for the hct and cold cases respectively, The p
temperature specification would then not be exceeded during re-entry E
or parachute descent. i

Temperature predictions indicate that the violation of the temperature i
' specification under the worst possible conditions and assumptions is
' not excessive. Consideration, however, should be given to testing

the vehicle at the extreme conditions expected during powered flight,

re-entry and parachute descent.

As shown in figure 69,the temperature of the magnesium ring during
parachute ejection is less than the maximum allowable temperature
for all path angles greater than 2. 15 degrees. A major redesign
would be necessary to guarantee the magnesium ring for the entire
range of initial re-entry path angles predicted.

With the exception of the life cell and the magnesium ring, all MSVD
components are within specification.




BUitk imatia

REFERENCES:

1. Holser, A., LMSD, Private Communication

2. LMSD, "Use 92 Flight Data" LMSD 434371/62-61
Dated 6/18/59, Secret

3. Hart, J., LMSD, Private Communication

4. Ousley, J., LMSD

5. LMSD Outline of Use 38A Thermal - altitude test program

6. Maynard, L., Flight Mechanics Engineering, MSVD

7. Gravalos, F., Edelfent, I., Emmons, H., "The Supersonic Flow about a
Blunt Body of Revolution for Gases at Chemical Equilibrium, ' TIS R585D245
Dated 6/16/59

8. Use 38A - Thermal Altitude Test Report #60SD901 Dated 1/13/60

9. Lees, D., "Laminar Heat Transfer over Blunt-nosed Bodies ot Hypersonic
Flight Speeds.™

gﬁ\\%\\‘i&\x‘ﬁ\k\

26 j,,:,:,ﬁm e

ptistects e




[e— END OF SKIRT (X227 IN.}

BEGINNING OF AFT COVER

SKIRT {X=10.2 IN.) /—THRUST CONE

EPOXY-POLYSULFIDE
COATING

LIFE CELL ~__

RETRO
ROCKET

CAPSULE

PHENQLIC-GLASS
SHIELD

MAGNESIUM RING

PARACHUTE CONTAINER

Figure 1. Discoverer Mark 2 Vehicle and Adapter Section
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Figure 57. Beacon Battery Temperature During Re-entry, Coldest Case
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NOTE: @ CONVECTION EFFECTS ARE INCLUDED

@ NOT ALL RADIATIVE RESISTANCES ARE SHOWN

® VALUES WITHIN T ARE HEAT CAPACITIES OF COMPONENTS IN BTU/°F
(@ RESISTANCE VALUES ARE iN HR-° £/BTU
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Figure 59, Simplified Electrical Circuit Analogous to Thermal Conduction
Between Internal Components During Parachute Descent and Air Pickup
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Figure 67. Simplified Electrical Circuit Analogous to Thermal Conduction
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