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FOREWORD

The research work in this report was performec by North
American Aviation, Inc., Columbus, Ohio, for the Aerospace
Dynamics Branch, Vehicle Dynamics Division, Air Force Tlight
Oynanics Laboratory, Wright-Patterson Air Force Base, Ohio
under Contract AF33(615)-7770. This research is part of a
continuing effort to advance the aeroelastic state-of-the-art
for flight vehicles and is part of the Research and Technology
Division, Air Force Systems Command's exploratory development
program. This work was performed under Project No. 1370,
"Dynamic Problems in Flight Vehicles" and Task No. 137003,
"Prediction and Prevention of Aerothermoelastic Instabilities."
IMr., James J. Olsen of the Aerospace Dynamics Branch was Task
Ingineer, The research program was conducted by the Dynamics
Group of the Applied lMechanics Section, Research and Develop-
nent Division, of North American Aviation, Inc., Columbus,
Ohio. This work was performed by th=z Contract Project
Engineer, Mr. S. R. Murley and with the assistance of ir.

D. A. Brown.

The author wishes to express his appreciation to all
personnel. at the Columbus Division of MNorth American Aviation
who have contributed to the accomplishment of the work reported
herein. Additionally, mention should be made of the excellent
assistance and services provided by the personnel at Arnold
Engineering Development Center during the experimental phases
of this contract.

This report 1s classificd CONFIDENTIAL since it contains
experimental test data and significant results and conclusions
which are pertinent to the develcopment of military weapon systers,
the unauvthorized disclosure of which is considered to be pre-
Judicial to the defense interests of the United States.

This technical documentary report has been reviewsd and is

appreved. )
,/) \ / /ﬁ,.—
Vel 11 v
WATLTER 4 . M@gézgw

Asst. for Research & Technology
Vehicle Dynamics Division
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This abstract is ciassified CONFIDENTIAL

ABSTRACT

This report presents an experimental and analytical flutter
investigation of a low aspect ratio lifting surface with a 70°
leading edge sweep angle, and thickness ratios of 3%, 6%, and 9%
in the hypersonic speed range from M = 5,0 to M = 8,0. The 6%
thickness ratic models were tested at uncoupled fregquency ratios
of .60, .75, and .90. The models used were of the seml-rigid
type with a double wedge leading edge to 15% chord with constant
thickness from the 15% chord to a blunt trailing edge.

All experimental flutter configurations were analyzed using
an analog representation of a quasi-steady flutter solution, The
serodynamic representations investigated were experimentally
obtained static aerodynemic force coefficients and servdynemic
force coefflcients derived from steady-state, two-dimenslonal,
"shock-expansion” techniques with sweep angle corrections,
Additionally, the relative effect on the flutter characteristics
of inclusion of "piston theory” derived rate terms in the aeroc-
dynamics was investigated for several configurations.

The results indicave that some serodynamic flow disturbance
was generated by the splitter plate mounting system which in-
fluenced certain aercdynamic force coefficients. A pronounced
effect on the pitching moment coefficient was observed at M = 7,0
due to shock detachment and was reflected in flutter characteristices.
It was concluded that the "modified shock-expansion” theory pre-
dictions exhibit poor correlation with experiment in the case of
pltching moment ccoefficient, but excellent agreement with experiment
in the case of rolling moment coefficient. Increasing airfoil
thickness ratio and angle-of-attack result in depreciasting agreement
between experimental and "shock-expansion” aserodynamics.

A stabilizing effect in flutter velocity is noted at M = 7,0,
relative to M = 5, 6, and 8, The effect of increasing angle-of-
attack was found to be slightly destabilizing at all Mach numbers
over the experimental range invesiigated. For the modal frequency
ratios investigated, a slight destabilizing effect was ncoted with
increasing frequency ratio.

Abstract Continued on page iv

RTD~TDR-63-4219 iii
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ABSTRACT CONT'D

In general, flutter analyses using experimental aerodynamic
force coefficients are sufficiently accurate to predict flutter
speed trends for preliminary design purposes. The prediction of
flutter frequencies using this technique, however, is inadequate.

Flutter analyscs using "modified shock-expansion” techiniques
are a very inexpensive, simple preliminary design tool and re-
sultad in increased accuracy over results obtained from "piston
theory."

The effect of including aerodynamic rate terms, as derived
from "piston theory," in the theorctical studies performed was
negligible.

Certain improvements in similar experimental studies are
recormendad.
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vs, Angle-of-Attack; Basic Planform,
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Experimental Spanwise Center-of-Pressure
vs. Angle-of-Attack; Basic Planform,
t/¢c = .C6, Mach Number = 8.0
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Experimental Pitching Moment Cozfficient
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Experimental Rolling Moment Coefficient
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t/¢c = .03, Mach Number = 6,0

Experimental Lift Coefficient vs. Angle-
of-Attack; Basic Planform, t/c = .03,
Mach Number = 8.0

Experimental Pitching Moment Coefficient
vs. Angle~of-Attack; Basic Planform,
t/¢c = .03, Mach Number = 8.0

Experimental Rolling Moment Coefficient
vs. Angle-of-Attack; Basic Planform,
t/c = .03, Macn Number = 8.0

Experimental Chordwise Center-of-Pressure
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t/¢ = .03, Mach Number = 8.0
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Experimental Spanwise Center-of-Pressure
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Experimental Pitching Moment Coefficient
vs. Angle-of-Attack; Basic Planform,
t/c = .09, Mach Number = 2.0

Experimental Rolling Moment Coefficient
vs. Angle-of-Attack; Basic Planform,
t/c = .09, Mach Number = 8.0

Experimental Chordwise Ceunter-of-Pressure
vs. Apgle-of-Attack; Basic Planform,
t/c = .09, Mach Number = 8.0
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DescriEtion

Experimental Spanwise Center-of-Pressure
vs, Angle-of-Attack; Basic Planform,
t/c = .09, Mach Number = 8.0

Photograph of Model Excitation System

Comparison of Experimental and Shock
Expension Pitching Moment Coefficient

vs., Angle-of-Attack at Mach Number = 5,0;
Basic Planform, t/c = .06

Comparison of Experimental and Shock
Expansion Pitching Moment Coefficilent

vs. Angle-of-Attack at Mach Number = 6.0;
Basic Planform, t/¢ = ,06

Comparison of Experimental and Shock
Expansion Pitching Moment Coefficient

vs, Angle~of-Attack at Mach Nuwber = T.0;
Basic Planform, t/c = .06

Comparison of Experimental and Shock
Expansion Pitching Moment Coefficient

vs, Angle-of-Attack at Mach Number = 8,0;
Basic Planform, t/c = .06

Comparison of Experimental and Shock
Expansion Rolling Moment Coefficient vs,
Angle-of-Attack at Mach Number = 5.0;
Basic Planform, t/c = .06

Comparison of Experimental and Shock
Expansion Rolling Moment Coefficient vs.
Angle-of -Attack at Mach Number = 6.0;
Basic Planform, t/c = .06

Comparison of Experimental and Shock
Expansion Rolling Moment Coefficilent vs.
Angle-of ~Attack at Mach Number = 7.0;
Basic Planform, t/ec = ,06
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Comparison of Fxperimental and Shock
Expansion Rolling Moment Coefficient vs.
Angle-of-Attack at Mach Number = 8.0;
Basic Planform, t/c = .06

Comparison of Experimental and Shock
Expansion Pitching Moment Coefficient
vs. Angle-of-Attack at Mach Number = 6,0;
Basic Planform, t/c = .03

Comparison of Experimental and Shock
Expansion Pitching Moment Coefficient
vs, Angle-of-Atteck at Mach Number = 8,0;
Basic Plenform, t/ec = .03

Comparison of Experimental and Shock
Expansion Rolling Moment Coefficlent vs.
Angle-~of -Attack at Mach Number = 6.0;
Basic Planform, t/c = .03

Comparison of Experimental and Shock
Expansion Rolling Moment Coefficient vs.
Angle-of-Attack at Mach Number = 8.0;
Basic Planform, t/c = .03

Comparison of Experimental and Shock
Ex-ansion Pltching Moment Coefficient vs.
Angle-of~Attack at Mach Number = 6.0;
Basic Planform, t/c = .09

Comparison of Experimental and Shock
Expansion Pitching Moment Coefficient vs,
Angle-of-Attack at Mach Number = 8.0;
Basic Planform, t/c = .09

Comparison of Experimental and Shock
Expaension Rolling Moment Coefficient vs,
Angle-of-Attack at Mach Number = 6.0;
Basic Planform, t/c = .09
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61 Comparison of Experimental and Shock 101

Expansion Rolling Moment Coefficient vs,
Angle-of-Attack at Mach Number = 8,0;
Basic Planform, t/e¢ = ,09

62 Effect of Thickness Ratic on Pitching 102
Moment Coefficient vs. Angle-of-Attack;
"Shock~Expansion' Theory - Mach Number =
5.0

63 Effect of Thickness Ratio on Pitching 103
Moment Coefficient vs. Angle-of~Attack;
"Shock-Expansion” Theory - Mach Number =
6.0

6l Effect of Thickness Ratio on Pitching 104
Moment Coefficlent vs. Angle-of-~Attack;
"Shock-Expansion” Theory - Mach Number =

T.0

65 Effect of Thickness Ratio on Pitching 105
Moment Coefficient vs. Angle-of-Attack;
"Shock-Expansion” Theory - Mach Number =
8.0

66 Effect of Thickness Ratio on Rolling 106
Moment Coefficient vs. Angle~-of-Attack;
“Shock-Expansion” Theory - Mach Number =
6.0

67 Effect of Thickness Ratio on Rolling 107
Moment Coefficient vs. Angle-of-~Attack;
"Shock-Expansion" Theory - Mach Number =
8.0

68 Experimental snd Theoretical, Quasi~ 108
Steady (Using Experimental Aercdynamics)
Flutter Velocity Parameter vs. Mach
Number; Basic Planform, t/c = ,06,
“h fedy, = 460, o= 0°
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Experimcntal and Theoretical, Quasi- 109
Steady (Using Rape:imenial Aerodymomics)

Flutter Freguency Eatio vs. Mach Number;

Basic Planform, t/c = .06, “Wh /iy, =

.60, <, =0°

Experimental and Thcoretical, Quasi- 110
Steady (Using Experimental Aerodynemics )

Flutter Velocity Parameter vs. Angle-

of-Attack at Mach Number = 6.0; Basic

Planform, t/c = .06, “# /e, = .60

Experimental and Theoretical, Quasi- 111
Steady (Using Experimental Aerodynamics)

Flutter Frequency Ratio vs, Angle-of-

Attack at Mach Number = 6.0; Basic

Planform, t/c = .06, “M/fux, = .60

Theoretical, Quasi-Steady (Using Experi- 112
mental Aerodynamics) Flutter Velocity

Parameter vs, Angle-of«Attack at Mach

Number = 7.0; Basic Planform Nominal

Model, t/e = .06, “ i /ton, = 60

Theoretical Quasi-Steady (Using Experi- 113
mental Aerodynamics) Flutter Frequency

Ratio vs. Angle-of-Attack at Mach

Numt:er = T.0; Basic Planform, Nominal

Moacl, tfc = .06, “A /e, = 60

Experimental and Theoretical, Quasi- 114
Steady (Using Experimental Aerodynamics)

Flutter Velocity Parameter ve, Angle-

of -Attack at Mach Number = 8,0; Basic

Plantorm, t/c = .06, “% /wo, = .60

Experimental and Theoretical, Quasi- 115
Steady (Using Experimental Aerodynamics)
Flutter Frequency Ratio vs., Angle-of-

Attack at Mach Number = 8,0; Basic

Planform, t/c = .06, wﬁ,/w“, = .60
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Descrigtion

Experimcntal and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Velocity Paraemeter vs, Modal
Frequency Ratic at Mach Number = 6.0;
Basic Planform, t/c¢ = .06, oo = O°

Experiuwentul and Theoirstical, Quasi-
Steady (Using Experimental Aerodynemics)
Flutter Frequency Ratlio vs. Modal
Frequency Ratio at Mach Number = 6.0;
Basic Planform, t/c = .06; g = 0°

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Velocity Parameter vs. Mndal
Frequency Ratio at Mach Number = 8.0;
Basle Planform, t/c = .06, ag = 0°

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynemics)
Flutter Frequency Ratio vs. Modal
Frequency Ratio at Mach Number = 8 0;
Basic Planform, t/ec = .06, ap = 0°

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Velocity larameter vs, Mach
Number; Basic Planform, t/c = .09,

“hi /e, = 605 ao = 0°

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Frequency Ratio vs. Mach Number;

Basic Planform, t/e = .09, “"':/woc, = ,60;

0’0200

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynsmics)
Flutter Velocity Parameter vs. Thickness
Ratio at Mach Number = 6,0; Basic
Planform, “k, /we, = 60; 0p = 0°
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Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Freguency Ratio vs., Thickness
Ratio at Mach Number = 6,0; Basic
Planform, ‘dhuébg, = 6VU; ag = 0°

Experimental and Theoretical; Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Velocity Parameter vs. Thickness
Ratio at Mach Number = 7.0; Basic
Planform, “# /4, = .60; ag = 0°

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Frequency Ratio vs. Thickness
Ratio at Mach Number = 7.0, Basic
Planform, “4%/2¢,, = 60; &g = 0°

Experimental and Theoretical, Quasi-
Steady (Using Experimental Aerodynamics)
Flutter Velocity Parameter vs. Thickness
Ratio at Mach Number = 8,0; Basic
Planform, “%: /vy, = .60; @0 = 0°

Experimental and Theoretical, Quasi-
Steady {(Using Experimentsl Aerodynamics )
Flutter Frequency Ratio vs. Thickness
Ratio at Mach Number = 8,0; Basic
Planform, “%:/Jx, = .60; ap = 0°

Experimental and Theoretical, Quasi-
Steady {Using Shock~Expansion Aero-
dynamics ) Flutter Velocity Parameter vs.
Mach Number; Basic Planform, t/c = .06,
Wk, fad, = +60; 0g = 0°

Experimental and Theoretical, Quasi=
Steady (Using Shock-Expansion Aero~
dynamics ) Flutter Frequency Ratio vs.
Mach Number; Basic Planform, t/c¢ = .06,
a')ﬁl/a)w_, = .60, oy = 0°
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Experimental and Theoretical, Quasi- 130
Steady (Using Shock-Expansion Aero-

dynemics) Flutter Velocity Parameter vs.
Angle-of -Attack at Mach Number = 6.0;

Basic Planform, t/c = .06, “% /f, = .60

Experimental and Theoretical, Quasi- 131
Steady (Using Shock-Expsnsion Aero-

dynamics ) Flutter Frequency Ratio vs.
Angle-of-Attack at Mach Number = 6.0;

Basic Plenform, t/c = .06, “% /. = .60

n

Theoretical, Quasi-Steady (Using Shock- 12
Expansion Aerodynamics) Flutter Velocity
Parameter vs. Angle-of-Attack at Mach

Number = T7.0; Basic Planform, Nominal

Model, t/c = .06, @ f,, = .60

Theoretical, Quasi-Steady (Using Shock- 133
Expansion Aerodynamics) Flutter Freouency

Ratio vs. Angle~of-Attack at Huails

Number = 7.0; Basic Planform, t/c = .06,

“)ﬁf &J«', = .60

Experimental and Theoretical, Quasi- 13k
Steady (Using Shock-Expansion Aero-

dynamics) Flutter Velocity Parsmeter vs.
Angle-~cf~Attack at Mach Number = 8,0;

Basic Planform, t/c = .06, “% ,, = .60

Experimental and Theoretical, Quasi- 135
Steady (Using Shock~Expansion Aero-

dynamics ) Flutter Frequency Ratio vs.
Angle-of-Attack at Mach Number = 8,0;

Basic Planform, t/c = .06, “%'/éudu = .60

Experimental and Theoretical, Quasi- 136
Steady (Using Shock-Expansion Aero-

dynamics) Flutter Velocity Parameter vs.

Modal Frequency Ratic =t Mach Number =

6.0; Basic Planform, t/¢ = ,06, g = 0°
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Figure No. Description Page No.
97 Experimental and Theoretical, Quasi- 137

Steady (Using Shock-Expunsion Aero-
dynamics) Flutter Frequency Ratio vs.,
Modal Frequency Ratio at Mach

Number = 6,0; Basic Planform,

t/c = .05, ag = 0°

98 Experimental and Theoretical, Quasi- 138
Steady (Using Shock-Expansion Aerc-
dynamics) Flutter Velocity Parameter vs.
Modal Frequency Ratio at Mach
Number = 8.0; Basic Planform; t/c = .06,
&g =0

99 Experimental and ‘Theoretical, Quasi- 139
Steady {Using Shock-Expansion Aero-
dynamics} Flutter Frequency Ratio vs.
Modal Frequency Ratio at Mach
Number = 8.0; Basic Planform, t/c = .06,
ﬂ’o:O

100 Experimental and Theoretical, Quasi- 1ko
Steady (Using Shock-Expansion Aero-
dynamics) Flutter Velocity Parameter vs.
Mach Number; Basic Planform, t/c = .09,
“h Sk, = 605 ap = 0°

101 Expurimental and Theoretical, Quasi- 141
Steady (Using Shock-Expansion Aero-
dyramics) Flutter Frequency Ratio VS.
Mach Number; Basic Planform, t/e = .09,
wél/wd‘ = .60, ¥y = 00

102 Experimental and Theoretical, Quasi- k2
Steady (Using Shock Expansion Aero-
dynamics) Flutter Velocity Parameter vs.
Thickness Ratio at Mach Number = 6.0;
i a 2% = H =
Basic Planform Fh/a;d’ .60; g = 0
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Deseription

Experimental and Theuretical, Quasi-
Steady (Using Shock-Expansion Aero=
dynamics) Flutter Frequency Ratio vs.
Thickness Ratio at ﬁpch Number = 6.0;
Basic Planform “# /0., = .60; ag = 0°

Experimental and Theoretical, Quasi-
Steady (Using Shock-Expansion Aero-
dynamics) Flutter Velocity Parameter vs.
Thickness Ratic et Mach Number = 8.0;
Basic Planform “# /e, = .60; ap = 0°

Experimental and Theoretical, Quasi-
Steady (Using Shock-Expansion Aero=~
dynemics) Flutter Frequency Ratio vs.
Thickness Ratio at Mach Number = 8.0;
Basic Planform “%/u., = .60; oo = 0°

Theoretical, Quasi-Steady (Using Shock-
Expansion Aerodynamics) Flutter Velocity
Parameter vs, Modal Frequency Ratioc at
Mach Number = 7.0; Basic Planform,

t/c = .06, ag = 0°

Theoretical, Quasi-Steady (Using Shock-
Expansion Aerodynamics) Flutter
Frequency Ratic vs. Modal Frequency
Ratico at Mach Number = 7.0; Basic
Planform, t/c = 06, Og = 0°

Theoreiical Quasi~Steady Flutter Veloelty
Parsmeter vs. Product of Inertia (Using
Shock-Expansion Aerodynamics and Experi-
mental Aerodynamics) Mach Number = 8,0,
Basic Planform, t/c = .06

Shock Expansion Aerodynamic Areas of
Influence
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DescriEtion

Experimental Lift Coefficient vs.
Angle-of-Attack; Configuration #,
Mach Number = 6.0

Experimental Pitching Moment Coefficient
vs, Angle-of-Attack; Configuration #%,
Mach Nusker = 6.0

Experimental Relling Moment. Coefficlent
vs, Angle-of-Attack; Configuration #,
Mach Number = 6.0

Experimental Lift Coefficient vs.
Angle-of-Attack; Configurstion #,
Mach Number = 8.0

Experimental Pitching Moment Coefficient
vs, Angle-of-Attack; Configuration #,
Mach Number = 8.0

Experimentsl Rolling Moment Coefficient
vs, Angle-of-Attack; Configuration #,
Mach Number = 8,0

Experimental Lift Coefficient vs.
Angle~of-Attack; Configuration #5,
Mach Number = 6.0

Experimental Pitching Moment Coefficient
vs. Angle-of-Attack; Configuration #5,
Mach Number = 6,0

Experimental Rolling Moment Coefficient
vs. Angle-of-Attack; Configuration #5,
Mach Number = 6.0

Experimental Lift Coefficient vs. Angle~
of-Attack; Configuration #5, Mach
Number = 8.0
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Experimental Pitching Moment Coefficient
Vvs. Angle-of-Attack; Configuration #5,
Mach Number = 8.0

Experimental Rolling Moment Coefficient
vs. Angle-of-Attack; Configurstion #5,
Mach Number = 8.0

Experimental Lift Coefficient vs, Angle-
of-Attack; Configuration #6, Mach
Number = 6.0

Experimental Pitching Moment Coefficilent
vs. Angle-of-Attack; Conflguration #6,
Mach Number = b.0

Experimental Rolling Moment Coefficient
vs. Angle-of -Attack; Configuration #6,
Mech Number = 6,0

Experimental Lift Coefficient vs. Angle-
of-Attack; Configuration #6, Mach
Number = 8.0

Experimental Pitching Moment Coefficient
vs., Angle-of-Attack; Configuration #6;
Mach Number = 8,0

Experimental Rolling Moment Coefficient
vs, Angle-of-Attack; Configuration #6,
Mach Number = 8,0

Experimental Lift Coefficient vs, Angle-
of -Attack; Configuration #7, Mach
Kumber = 6.0

Experixzortel Pltching Moment Coefficient
vs, Angle-of-Attack; Configuration #7,
Mach Number = 6,0
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Figure No, Description Page No.
A21 Experimental Rolling Moment Coefficient N4

vs, Angle-of-Attack; Configuration #7,
Mach Number = 6.0

Az22 Experimental Lift Coefficient vs., Angle- 172
of-Attack; Configuration #7, Mach
Number = 8.0

A23 Experimental Pitching Moment Coefficlent 173

vs, Angle-of-Attack; Configuration #7,

A2 Experimental Rolling Moment Coefficient L7k

vs. Angle-of-Attack; Configuration #7,
Mach Number = 8.0
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SUMMARY

A series of semi-rigid flutbter models were tested in the Mach
nurber range 5,0 to 8.0 to evaluate the effects of:

1. Initisl angle-of-attack
2. Thickness ratio
3+ Modal frequency ratio

on the flutter characteristics of highly swept, low aspect ratio
lifting surfaces having roll and pitch degrees of freedom.

Correlative =snalog studies were performed using the quasi-
steady flutter analysis techniques in conjunction with

1. Experimentally determined total aerodynamic force
coefficlents

2. Aerodynamic force coefficients derived from "shock-
expansion” techniques, modified by sweep angle corrections
and an assumed elliptical spanwise 1ift distribution

Generalized aerodynamic trends are noted with certain devia-

tion phenomena occurring in the experimental coefficients. The analog

studies were concluded to predict flutter velcecities and trends
sufficient for preliminary design purposes, the use of "shock-
expansion” aerodymamics providing the least complex and inexpensive
tool,

Recommendations were made to initiate further research relative
%o the merodynamic representation in the interest of providing
further refinements to the techniques used during this investiga-
tion,
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LIST OF SYMBOLS

a Speed of sound, in!sec

AR Aspect ratio, :?35; » hon-dimensional

BC Bellcrank
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b Model span, inches
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CR Root chord, inches
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c Mean aerodynamic chord, inches

Cavg. Average chord, inches

Cn Pitching moment coefficient, measured about pitch
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Cf Rolling moment coegficient about root chord, non-
dimensional, positive tip up, nondimensional

Cf Rolling moment coefficient referenced to the roll
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CL6< Lift curve slope, per degree

dp Length of forward arms of pitch bellcranks, inches

dg Length of forward arms of roll bellcranks, inches

8hy Damping in first un-coupled mode, non~dimensional
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INTRODUCTION

The current and near future class of ultra-performance flight
vehicles such as missiles and re-entry vehicles with lifting
surfaces has produced an urgent need for advancing the state-of-
the-art relative to reliable prediction of the flutter characteristics
in the early design stages of such vehicles. Typical lifting sur-
faces of such vehicles tend to employ configurations having low
aspect ratios, large leading edge sweep angles and wedge type leading
edges, Each of these configuration characteristics amplifies the
difficulties encountered by the serocelastician in the mathematical
reprecentation of the unsteady aerodynamic forces experienced by
these gurfaces in the hypersonic speed range, A further complication
evolves from the fact that the vehicles under considerastion must
perform flight missions which include operation with the lifting
surfaces oriented at relastively largzs angles of attack,

Refercrcc 1 »oporis the results of an investigation made by
Mr. D, A, Brown relative to planform configurations identical to
those investigated in the study covered by this report. The inves-
tigation made by Mr. Brown covered the transonic and supersonic
speed range; evaluating the adequacy of "piston theory" flutter
analyses, "quasi-~steady" flutter analyses using experimentally
cbtained static serodynamic force coefficients, and "subscnic kernel
function" flutter analyses. The conclusions reached in Reference 1
state that "piston theory" is insdequate to reliably predict the
flutter characteristics of the conflguration investigated. In view
of this conclusion i% was appsrent that the mathematical limitations
inherent in "piston theory” would be more seriously violated as
Mach number incressed. It was therefore elected to investigate the
reliability of "shock-expansion” techniques as recommended in

Reference 1,

The theoretical methods evaluated in this report make use of an
analog computer simulation of the dynamic system using quasi-steady
flutter anelyses techniques based on

A. Experimentally determined static serodynamic force coeffi-
cients,

B, Steady-state, two-dimensional aerodynsmic forece coefficients
based on "shock-expansion" techniques with sweep angle
corrections and assumed spanwise variatbions.

Manuscript released by the author 1 April 1964 for publication
as an RTD Technical Documentary Report.
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C. The merodynamics defined in A and B, above, were also
jnvestigatod with ard without the inclusion of rate terms
derived from "piston theory" methods.

The parameter variations investigated during this study include
initial angle of attack, thickness ratio, frequency ratio, and Mach
number.

RID-TOR-63-4219
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SECTION I

MODEL DESIGN AND CONSTRUCTION

A, Environmental Conditions

The design and construction of wind tunnel models relative to
this study was radically different than the construction technigues
used during the study reported in Reference (1). These differences
were necessitated to obtain proper model life while subjected to
the high stagnation temperatures experienced in tunnel E-2 at the
Arnold Engineering Development Center., Test section stagnation
temperatures experienced were as high as 900°F.

B. Static Force Models

Static force models of all model configurabions were machined
from a solid plate of PHL5-TMO stainless sueel, "The geometry of.
the model configurations which were fabricated for use in the static
aerodynamic force tests is presented in Figures 1 and 2,

C. Semi-Rigid Flutter Models

The final construction technigues used for the semi-rigid flutter
models consisted of machining a basic root chord-tip chord-double spar
in one piece, using titanium stock (Comp 6AL-LV Cond STA) - see Figure

3 . Titenium skins, .005" thick, were then spot welded to the one
plece spars using a stabilizing core of ceramic foam (Eccofoam
1M-43A), The stabilizing core was bonded to the spar and skin using
a high tempersture bonding agent, A titanium cap on the trailing
edge, spot welded to the skin was eventually employed to prolong
model life, Tungsten and platinum balance welghts were used to obtain
the proper dynamic mass characteristics, The balance weights were
attached to the rear spar using press-fit locating pins and attach=-
ment screws, This construction technique proved to be very satis-
factory, making possible repeated usage of the same model while
retaining structural stability under the severe Lemperature and
dynsmic stresses experienced during the divergent flutter conditions.
Semi-rigid flutter models of the basic plantorm (double wedge leading
edge, blunt trailing edge) vere constructed for the 3%, 6% and 9%
thick coufigurations only.

RTD-TDR-63-4219 3
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SECTION II

SUSPENSION SYSTEM DESIGN ANl CONSTRUCTION

The suspension svstem used during this study was the identical
system described in Reference (1) with the addition of a minor
modification to the servo control electronics, This modification
provided the capability of sinusoidaliy exciting the model by super-
imposing a sinusoidal voltage on the pitch motor sensing clircuit
and causing a small sinusoidal motion of the model in the pitch
mode, the intention being to overcome the break-sway forces inherent
in the bearing system.

A diagram of the roll and pitch mechanism is presented in
Figures 4 @end 5 . In addition Figures 6 , T , and
8 are photographs of the actual suspension system used with the
ma jor functional components indicated. A more complete description
of the suspension system and its design considerations may be found
in Section II of Reference (1).

RTD-TDR-~63-4219 L
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SECTION TII

PRELIMINARY TEST PROCEDURES

A. Mass Characteristics

As described elsewhere in this report, the semi-rigid flutter
model design criteria required that the mass coupling parameter
of the models maintain & constant ratio of piteh inertia to product
of inertia about the pitch axis and roll axis. To accomplish Lhis
obJective the mass and inertia chasracteristics of the mschined spar
alone were determined experimentally. The inertia characteristics
of the appropriate suspension system components were determined
experimentally or mathematically. Mathematical equations were then
evolved to determine the size snd mass of appropriete mass balance
weights to maintain a constant_%}i and Ze . Subsequent to

<o P Zoe @
fabrication of the completed model, including the foam stabilizing
core, titaniwm skins, and mass balance weights, the model mass
characteristics were determined experimentally using a bifilar pen-
dulum,

B. Environmental Temperature Tests

During the static aerodynamic force tests, a thermocouple was
installed on the model-to-balance connecting link to determine the
maximum temperature to be expected, It was determined from this
test that the maximum temperature experienced in the model-to-
suspension system connecting link was 650°F.

It was decilded that any adverse temperature effects would be
limited to the roll and pitch bearings, such effects being important
only insofar as they would change the frequency asnd/or dauping
chaeracteristics of the system, A copper heat sink link was there-
fore fabricated to be placed between a simulated model and the roll
arm carry thru, This heat sink was subjected to intense heat from
a propane torch for aspproximately 5 minutes, during which time the
heat transfer from the heat sink to the end ¢f the roll arn adjacent
to the bearings attained a waximum tempersture of approximately
950°F, During this heating process system frequency and damping
rates were recorded at 30 second intervals, It was found that no

RTD~TDR-63-4219 5
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chauge in the system vibration characteristics was noted until
sejzure of the bearings at about the 5 minute elapsed time condi-~
tion. Since normsl flutter runs have a time duration of

about two minutes and the environmental temperature of the parts
involved attain maximum Zemperatures of only 650°F., it was con-
cluded that no adverse effects would be experienced by the system

during the actual flutter runs in the wind Luunel,

C. Prelimina;y Vibration Tests

Prior %o each wind tunnel flutter run, vibration tests were
performed to determine the following experimental valuest

a. Uncoupled roll frequency

Y. Uncoupled roll mode damping rate

c. Uncoupled pitch frequency

d. Uncoupled pitch mode damping rate

e, First coupled frequency

f. Second coupled frequency

It was determined during the study reported in Reference (1)
that the suspension system springs displayed linear rate character-
istics over the range of aerodynamic loads encountered in the wind
tunnel, but that the loads expected sbove X,= 10° at M = 6,0 and
o, = 15° at M = 8,0 would exceed the linearity range of the springs

used, Angle-of-attack runs greater than those mentioned above were
therefore not investigated,

RTD-TDR-63-k219 6
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SECTION IV

WIND TUNNEL TESTS

A. Genersl

All static force tests and semi-rigid flutter model tests were
conducted in the E«2 tunnel at Arnocld Engineering Development Center,
Tullehoms, Tennessee. The E-2 tunnel hes a 12" x 12" Lest section
and 1s an intermittent veriable density wind tunnel utilizing
manually adjusted flexible nozzle plates, Mach number was varisble
from 5 to & with maximum stagnation pressures from 400 to 1300 psia.
A more detailed description of the E-2 wind tunnel may be found
in Reference (2).

B. Static Aerodynamic Force Tests

Solid stalnless steel force models were used to obtain static
gerodynamic force data in the ¥-2 wind tunnel at A,E.D,C. A beanm
balance designed for sting mounting was used to messure the desired
serodynamic forces by modifying the mounting system to a sidewall
mount, A splitter plate was used to project the model outside the
boundary layer of the tumnel., All tests were made with the splittex
plate mounted 2,5 inches from the tunnel sidewsll., The beam balance,
splitter plate, mounting hardware and rigid force models are shown
in Figure 2 . The beam balance used was enclosed in a water-
cooled Jacket to prevent any thermsl effects from influencing the
strain gsge outputs, A closed vessel vented to the test section
ambient pressure was used to equalizc the pressure inside the splitter
plate pylon and the test section, thus minimizing airfiow thru the
clearance space around the model attachment carry-thru, During the
stutic force tests, pressure surveys were made to determine any
existing flow disturbances in the model occupancy area., A more
detailed discussion of the static force tests, installation, and
testing techniques may he found in Reference (3)s The results of
the tests are presented in Figures 10 thru UL snd in Appen-
dix A, A discussion of these results may be found in Section VII
of this report.

C. Flutter Tesls

The semi-rigid flutter model tests were performed as follows:

RTD-TDR-63-4219
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1., Based upon flutter boundaries determined during the course
of tests reported in Reference (1), an uncoupled system
plteh frequency wes assumed which would cause the model to
becone divergent near the mid~-rarge pri:ssure of the E-2
wind tunnel,

2. A set of roll and pitch spring systems was then chosen
and installed in the suspension system which would
produce the desired uncoupled freguencies while main-
taining a constant system inertia ratio,

3. Zero airspeed vibration tests were performed by exciting
the model with a set of opposing loudspeakers (8" diameter)
modified with a baffle plate allowing a pulsating Jet of
air to impinge upon the model, see Figure k5. The fre-
quency of this pulsating jet was varied menually using sun
audio oscillator to drive the loudspesker emplifier until
the uncoupled roll and piteh mode resonances were determined,
The system damping rate was then determined by disconnecting
the amplifier circult to the speaker system while recording,
on a direct-vriting oscillograph, the demped motion of the
model as sensed by the roll and pitch flexures. The coupled
roll and pitch resonsnt frequencies were determined in the
same manner described abhove,

4, The model and suspension system were then installed in the
wind tunnel in the desired roll and pitch attitude, With
the model ,etracted inside the splitter plate pylon section,
flow was then established in the test section, After stgbi-
iization of flow, the model was injected into the airstream
by sctuating the pneumatic injection system. The flow
was normally established zt a low Py value. Subsequent to
injection, sufficient time was allowed for the pitch and
roll attitude motors to react and stabilize the model at
the desired attitude, Py was then increased graduslly at
constant Mach number until & divergent flutter condition
was reached,

5. Mechanical amplitude limiting stops were incorporated
into the system which allowed an oscillatory response of
+ 10° from bthe equilibrium position of Lhe model., A5 soon
as these amplitude limits were reached, Py was rapidly
decreased to regain a stable condition, By using this

RTD-TDR-63-"1219
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procedure, the mpdel was subjected to the extreme environ-
mental and dynamic load conditions for the shortest possible
duration,

6. The data recording system used in conjunction with the
flutter runs resuited in a tabulation of pressure and
temperature readouts at 1.9 second intervals, A manuslly
activated flutter indicate switch was used to correlate
the time of divergence betwsen the pressure-tempersture
data recording system and the direct writing oscillograph
record which recorded the output of the response flexures.
Stagnation pressure and stagnation temperature conditions
were then determined at the time of divergence,

T. High speed motion pictures were taken during each flutter
run to verify the divergence. The E-Z wind tunnel was
equipped with & double window on the observation wall,
requiring a camera angle of approximately 30° with respect
to the pitch axis. As a result, the roll motion coverage
of the model was somewhat limited.

8, During the flutter runs, the model was cxcited sinusoldally
in the pitch dcgree oF freedom to overcome the bearing
starting friction torque, The amplitude of oscillation
vas approximately + 1.5° about the equilibrium position and
was held, as nearly as practical, constant for each run,

A tabulation of each experimental fluiter run and associated
characteristics is presented in Table I.

RTD-TDR-63-h219
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SECTION V

EXFERIMENTAL AND THEORETICAL RESULTS

A, Static Aerodynamie Forces

The static aerodynamic force coefficients determined experi-
mentally for all configurations are presented in Figures 10 thru
L end in Appendix A, The reference axis system, geometric
constants and non-dimensionelizing equations used to compute the
force couefficlents are presented as Figure 9 . It should be noted
that the rolling moment coefficients presented in Figures 10
thru 44 are computed about the model root chord,

The static aercdynemic pitching moment and rolling moment
coefficients as computed theouretically using a modified "shock-
expansion" theory are presented in comparison with experimentally
determined coefficients in Figures 46 thru 61 , These figures
present rolling moment coefficlents computed about the actual roll
exls and are the force coefficients used in conjunction with the
respective quasi~steady, analog, theoretical study, The details
of the "shock-expansion" theory techniques are presented in Section
VI. The effects of thickness ratio on pitching moment and rolling
moment coefficlient ure presented in Figures 62 thru 67.

B, Flutter Results

The resw.is of the experimental flutter tests are presented
in comparison with theoretical analyses results obtained from an
enalog study utilizing two types of aerodynamic representations,
(see Figures 68 thru 107).

RTD-TDR-63-4219
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SECTION VI

THEORETICAL ANALYSES

A, General

All theoretlcal, correlative analyses were performed on an
operational analog computer using quasi-steady flutter analysis
techniques., With the exception of the serodvnamic representations
investigated, the equations of motion and analog mechanization used
were identical to those used by Mr., D. A. Brown durling the study
reported in Reference (1), That section of Reference (1) which
is directly applicable to the current study is repeated briefly herein
for the convenience of the reader.

During this study, the two aerodynsmic representations used as
the system forcing function weret

1, Experimentally determined pitching moment and rolling
moment .

2. Pitching moment and rolling moment coefficients computed
from "shock-expansion" theory techniques, Reference { 6),
medified to reflect the effect of leading edge sweep,
Reference (7), and an assumed elliptical 1ift distribution
in the spanwise direction based on the two-dimensiocnal
root chord value,

B, Equations of Motion

The equations of motion which represent the two degree-of-
freedom system under consideration are as follows:

Lpé; + I«q,'é,, + G,,.,éR + Ko8, = G (Ege 1)
J;(ép + Ixo é;? + ,Gpé,:- + Ks QP = OP (Eq. 2)

It should be noted that the steady state aerodynamic term associated
with initial engle of attack, &y, is omitted from the right side of
equations 1 and 2, This omission is Jjustified by also omitting the
the corresponding motor force terms on the left side which is a

force term equal and opposite to the &, aerodynamic term. The
flutter solution of these equations is unaffected by these omissions,

RTD-TDR-63-4219 11
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The terms in Equations (1) and (2) are defined as3

I, = Total roll inertia about the roll axis
Ty = Total pitch inertia about the pitch axis
Iam = Tccal product of ineriis

K¢ = Roll stiffness

¥g = Pltch stiffness

Gp = Equivalent viscous damping in the roll mode = 8hy Yhy I¢
= B nt viscous damping in the pitch mode = I

Gp quivalent viscous damping in the pitch mode 8“1 q“l o

QR = Generalized amerodynemic force in the roll degree~of-freedom

Qp = Generalized aerodynamic force in the pitch degree-of -freedom
8p = Pltch angle, positive leeding edge up
8gr = Roll angle, positive tip up

The inertia, stiffness, and damping terms used in Equations (1) and

(2) above are defined as total system characteristics, including
contributions from all components in the suspension system.(bellcranks,
pitch and roll erms, connecting links, springs, etec,) which are sub-
Jected to any motion in space as the system experiences motion in
either of its two degrees of frecdom independently.

Since all system components do not necessarily exhibit motion
ratios of unity with respect to the model, it was necessary to
determine "cffective” values for =2l1l cowmponents as they function in
the systemn.

Considering the roll mechanism shown in Figure L, the effec-
tive roll inertia, Ty may be determined by eveluating the imertisl
components of the system as the mopdel is rotated one radian about the
roll axis. The effective system roll inertia may ilherefore be ex-
pressed asi

RTD~TDR-63-4219 12
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Zo= (1), v o)y + (L) [4me 4]+
2
* E/Mksz‘/éﬁ > /17.5», /%f + Ms”z’/;:

2
(-Z_{D)BJ + Mﬂc"4 (Eq. 3)

Similarly, the effective pitch inertis may be expressed as:

Qﬂw (Zoc)yy + (/)[;*%pff

£ < 2
+ 3 M, / + Ms:;, * /‘7.5'”, —l{ep

FSy-Tozp P
*‘2ﬁ@J] (Eq. )
vhere C[z )m = Experimentally determined inertia, in the itk

mode, of the model alone, inech-1b,~second.

( L ) = 1bh mode inertis of those suspensicn system
§§ parts vhich exhibit a motion ratio of unity
relative to the model, inch-lb,-second=.

MRS = Mass of upper roll spring, lb,-second®/inch,
]
M. = Mass of lower roll spring, lb,-second®/inch,
M = Mass of upper pitch spring, lb.-second®/inch.
Ps,
M = Mass of lower pitch spring, 1b,-second?/inch.
PS.
2
RTD-TDR-63-4219 13
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M. M. = Mass of upper snd lower spring hooks, 1b.~
54 3 T SH secondz/ inch,
(;TL) = Inertia of i'P® mode bellcrank about its axis
¢ Jsc of rotation, inch-lb./seconda.
f%;c = Mass of roll collaer and connecting cable, lb.,=

second®/inch.

Based on an energy analysis of & coil spring fixed at one end and
elongating axially, the effective mass in motion was found to be 1/3
of the total spring mass, as indicated in Equations (3) and (h).

The product of inertia of the model, {Iyp), was experimentally
determined as previously mentioned in Seetion III,

The "effective" roll and pitch stiffnesses, Ky and Kg used in
the anslog analyses were determined from the experimental uncoupled

frequencies and experimental/theoretical inertias indicated above as
followst

(;{}p;LFFZ N (;242;)2 Jrqp

(K)o leon,)” I

Rewriting Equations (1) end (2) in matrix form,

T T i
Lo Iipl| [& C% ks, 7o) o 9,27 ko), © |l
o[ T Lt )
_Z-orw ]o( ep o }c{, a)q’ I« QP o (Ko() 6P
L L il

_ 7 o] (e

(Eq. 5)
© / J Zf;5>

RTD-TDR-63-4219 14
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Considering Equation (5), it is apparent that uo atiffaess coupling
exists and that the mass coupling is a finction of only the relation-
ship between Zp, Lo , 81d T . Further, an examination of the
physical system reveals that Zo ¢ 1is fully defined by the product
of inertia of the model only, (7o @), - @bout the piteh and roll
axis. Tt shall also be poted that calculations of [ and Xez/p ,
as they are classically defined, are indeterminate relative to the
system under conslderation due to inclusion of the effective mass
properties of the suspension system components which de not have
motion ratios of unity relative to the model. However, as described
in Reference (1), if it is assumed that the total effective inertia
of the system is distributed along the exposed span of the model
such that the spanwise mass distribution is proportional to the square
of the local chord and the spanwise distribution of piteh inertia is
proportional to the fourth power of thé local chord, then:

2y _ Zo
(Kc )EFF_ /228 -[7 and
Xc‘ ) -‘-Totco
g = 29 + 24398 —F—
(C EFF. 2777 Lo

Computed values of fol

I and IT,

and 2’tg/c; are presented in Tables

Since the classicel definition of 4 is dependent upon the
implicit knowledge of total and constant mass, its value becomes inde-
terminate also) the effective mass in the roll mode being unequal to
the effective mase in the piteh mode., The following definition of
-4 vas used to reduce the flutter data presented herein and in
Reference (1):

7 Pl (7L @a.

RTD-TDR-63-4219 15
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where:
Io( = Total pitch inertia of the system, 3anh--11:~.-suac:ond2
2
/ = Density of air, }.Bi.t_'l%%w_nd /inch3
l,/w 2 = Volume of air contained within the frustum of a cone

with the msximum rsdius being the semi-root chord and
the minimum radlus being the semi-tip chord and the
height of the frustum equal to fhe model semi-span,
inches3
(K()qﬁ = Effective pitch radius of gyration for V,igp, inches
'/

Using the definition above, VATR is then given by:

- A GV, &6 . (&Y
e ° 3 G)[('zﬁ) i sz i (—Zr) Fa- T
The value of ( sz)em is given by:

2
(r;czlwe _ (Cﬂvz/g) (Eq. 8)

The terms remsining to be defined in the basic equations of
motion are the generalized aerodynamic forces, Gr snd Go . As
stated in Reference (1), the principle of virtual work results in

the following:

RTD~-TDR-63=4219 14
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Aerodynsmic rolling moment about the roll axis

it

QR
Qp
C. Quasi-~-Steady Flutter Analysis Methods

Aerodynamic. pitching moment about the pitch axis

n

The qussi-stcady flutter analysis techniques presented in Ref-
erence (4) state that displacements, rates and accelerations yield
all the serodynamic forces reguired in the solution of the flutter
equation using the guasi-steady technique. For the cese of the two
degree-of ~freedom dynamic system under consideration these force
generation parameters are:

QR eR 4 eR’ eP, QPDIéP

J

Neglecting the virtual mass terms associated with roll and pitch
accelerations, s8ll circulation lag effects, and static displacements
in roll, SR, the remsining force goneration parameters ares

bd

Opy Gn, ~wo é%’

greatly simplifying the serodynamic representation. The forcing
functions - rolling moment and pltching moment - may now be expressed
ast

RM. = 25,4 [Coe6p + Cia6sy # Cop Sp] (Ea. 9)

PM. 2(,,?5&/5 [C,P ép + CZIP éR # Cap 9,,] (Eq. 10)

RTD-TDR-63-4219 17
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Since no experimental peasurements of acro@ynamic moments due to
modal rate functions & and &, vere made, it was necessary

to utilize theoretically determinzd rate terms to fully represent
Equations (9) and (10)}. The rate term values were determined by
“"piston theory" techmiques. Since the details of the development
of these terms is fully described in Reference (1), they shall not
be restuted herein. Additionally, it was subsequently determined,
during the initial phase of the anslog snalyses, that the rate
dependent terms produced a change of less than one percent in the
flutter characteristics of the systems being anaiyzed. By estab-
lishing this conclusion in the early stages of the analog study, an
economy of operation was realized by eliminating all aerodynamic
forcing function terms dependent upon rates,

D. Quasi-Steady Flutter Analyses Using Experimental Aerodynsmics

The required foreing functions were, for the major portion of
the analog studies, generated by the relatively simple relationships:

I

Qr M. = fs;,/; Q; 6, = jsw,/; C;’ (Eq. 11)

QP = PM: :jSWZI“CBP Qp = ;SWE C/nz (Eq. 12)

r4
where C} is merely the experimentally determined rolling moment
coefficient referenced to the roll axis und C,, is the experimentally
determined pitching moment coefficient measured about the pitch saxis.
As evidenced by Figures 10 thru 44 , the aerodynamic coefficients
of conzern are non-linear functions of ©&p. Diode function generators
were utilized in the analog mechanization to simulate these non-
linear forcing functions,

E. Quasi-Steady Flutter Analyses Using Modified "Shnck-Expansion”
Aerodynamics

Quasi~steady flutter analyses were also performed during the
analog study using the aerodynamic forcing functions specified in
Equations (11) and (12) with () and (,n being obtained by modified
“Shock-expansion theory™ techniques.

RID-TDR-63-4219 18
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The basie theory used the technigues presented in Reference

(6) for two dimensional supersonic flow. This method esscutially

calculates the flow at the nose of the airfoil using oblique~shock
equations and progresses downstream of the nose using the Prandtl-
Meyer =quations. A basic assumption of the "Shock~expansion” method
is that disturbances incident on the nose shock, or on any other shock,
are glmost entirely consumcd in changing the direction of the shock.

The techniques presented in Reference (6 ) are as follows:

&2,

(a{x e
Sy, = /a{z,,\ - o,
v (Q’I /2’.—:0

(x) by - 7—2”
f% = [ftjzﬁ*' _X:E/ My (4(2’))2 !
2¥

( )( fﬁ:?fﬂ*)— “””’[C?JHH i’

The following relatlonships must then be solved to determine the
net pressure on the airfoils

”ﬂ——  G( Moy ) + ]/[4/%09,,] 1

v o_ /. ICCET (/400/9’) . Ol66 7
/ao
/\7;/ _ ’Mw /?'

I [2.+ (13 )"~ z]”[ 2 (Mo B IT%
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and

+ .2/%” (@U - 9”0)}7

vheres

Specific heat ratio = L.h0 = constant

= Free stream Mach number

The shock inclination corresponding to the turning
angle

= "Mean inclination" of the surface (at the nose) for
all fluid slabs

(6;60 - Eav)
= Distance aft of leading edge

= Pressure at the nose

LN
o N EE ég) .\thl és; AnY
n

A
I

= Free stream pressure

I

Mach number at the nose

X

Q\/ N
I

Quantity defined on the lower surface

Quantiby cefined on the upper surface

4 £
v

§§§ N N
Y
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L = Lift = ffd%(x, Y dA
R.M. = Rolling moment = qu ‘df(z’) a/ A
EM. = Pitching moment = IIXA/M A

A pressure coefficient sweep angle correction facbor was
applied to the pitching moment and rolling moment as follows, The
assumption was made that the flow condition acting upon the model
was predominantly flow existing outside the apex influence zone,
The sweep angle correction factor established in Reference (7) was
appl ied as follows:

, < el
- CKc¢
Co = Faris 2’_2 L B+ D A2 Ay b e 13)
4 Meo ' -fab 7

=/

where.
/(!' = Correction factor for leading edge sweep =
/
Zan AL 2 (2
/-
"I Moo" !/ ¥
oo = Free stream Mach number
/4,-, = Area of the nose section from leading edge to the
shoulder
/446 = Area of the airfoil between the shoulder and the

trailing edge

L

Leading edge sweep angle

* Ky 1s not valid when M—> 1 or as A —-90°,

RTD-TDR~63-4219
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The sirfoil was divided into eight aerodynamic areas as
indicated on Figure 109 . The serodynamic rolling moment and
pitching moments for all Mach numbers and configurations studied
were calculated by the method Indicsiea ebove, The techaigue
proved to be relatively simple and easily adsptable to calcula-
tions by small Kecomp II computers.

F, Anslog Anaslysis Technliques

As stated previously, the generslized aercdynamic forcing
functions of interest were found to be non-linear functions of
angle-of-attack, For this reason, and in view of the number of
system parameter varistions to be investigated, it was elected to
utilize an analog computer to solve the system equations.

The acrodynamic forcing functions were reproduced by use of
diode function generators, Since the equations of motion do not
include terms representative of the static load compensation motors,
it was necessary to eliminate the static aerodynemic forces result-
ing from initial angle-of-attack. This was accomplished by blasing
the diode function generstor output such that only those forces
generated by time dependent motion were realized as the forcing
function,

Execution of the analog analyses was performed in the following
manters

1, The particular experimental system characteristics were
simulated on the analog computer,

2. Appropriate aerodynamic functions were entered on the
diode function generators and all static airloeds were
biased to zero.

2
SiritD
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3. With the aerodynamic forces removed from the system,
the dynamic system was sinasoldally excited at a frequency
nesr one of the expected modal frequencies, A record
of the damped sinuscidal motion was recorded for the
following:

(a) Roll motion, Op, with no coupling terms - gave
uncoupled roll frequency and damping.

(b) Pitch motion, C?p , with no coupling terms - gave
uncoupled pitch frequency and damping.

(¢) Roll motion, ©x, with coupling terms in ~ gave
first coupled modal frequency and damping.

(a) Pitch motion, &p , with coupling terms in - gave
second coupled modal frequency and damping.

k. The coupled system was then subjected to the unsteady aero-
dynamic forces, generated as indicated by the generalized
force equations previously presented, at some nominal dynemic
pressure,

5. The dynamic pressure associated with the aerodynamics was
then increased at a constant rate equivalent to the actual
rate used experimentally in the wind tunnel.

6. The system was subjected to a constant sinusoidal forcing
function representative of that used experimentally. The
smplitude of response to this sinusocidal excitation was
held constant, (i 1.5°%), for all analog solutions.

T. The dynamic pressure existing at the time of model diver-
gence was noted as the flutter dynemic pressure, E;F-.

8. The flutter frequency was computed from the model response
records at the tlme where 5: gp .
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A brief iunvestigation was made to determine the effect of
excitation amplitude on the system flutter characteristics,
It was concluded that response amplitudes up to + 5° were rela=-
tively ineffective in changing the flutter characteristics of the
system,

It was further determined during the zero airspeed vibration
analyses that the coupled frequencies resulting from matching the
uncoupled experimental frequencies and using the experimental/
theoretical system mass characteristics did not match the experi.
mental coupled frequencies in all cases., The product of inertis,
L« > was varied to match the experimental coupled frequencies
within + 10%., The uncoupled analog frequencies matched the un-
coupled experimental frequencies within + 1,0%. The practice of
varying I« was determined to ceuse very small changes in the
flutter characteristics, ae evidenced by Figure 108 , which
indicates that the nominal inertie ratio studies coincidentally
correspond to the relatively constant, minimum portion of the
curve, In addition, the mccuracy of the experimental determination
of J[aAp was compromised somewhat by the relatiively small inertias
being measured. The determination of coupled experimental fre-
quencies was subject to certain inaccuracies by reason of the
relatively broad band resonance of the system in its coupled modes.
The adjustment of L@ was therefore considered to yield the most
reasonable representation of the dynamic system being analyzed.

Analyses were conducted for all conditions, except frequency
ratio variations, using a constant nominal model. The experimental
model used in run number 17, (see Table I ), was chosen as the
nominal model, The results of analyses made using the nominal
model are presented in Table 1I.
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SECTION VIT

DISCUSSION OF RESULTS

A. Evaluation of Flow Characteristics in the Vieinity of the
Splitter Plate

An evsluation of the flow characteristics associated with the
splitter plate used during the investigation reported in Reference
(1) with a 1.5" projection indicated undesirsble disturbances in the
E-2 wind tunnel. Extension of the splitter plate plane to 2.5 and
elimination of certain surface irregularities reduced these distur-
bances to ar acceptable level. The results of this investigation
are competently presented in Reference (3) by Mr. J. L. Burk of
Arnold Engineering Development Ceunter, It was concluded that a flow
disturbance did exist in the model-occupancy space. As indicated
by Mr. Burk, a varistion of approximately 5% in Mach number over a
rarrow zone of the model existed., The magnitude and location of this
disturbance is considered to have negligible effect upon the flutter
characteristics investigated, due to the very small surface area
irfluenced by the disturbance,

B, Bxperimental Static Aerodynamic Force Coefficients

The results of the static aerodynamic force tests are presenbed
in Figures 10 thru &4 as well as in Reference {3). The purpose
of ovtalning static force coefficients during this investigation was
to provide experimental aerodynamic forcing functions compatible with
the quasi-steady flutter analysis study. Experimeuntal flutter tests
were conducted only on the double wedge leading edge - blunt btrailing
edge configurations number 1, 2, and 3 of Figure 1. The discussion
of the force coefficients shall therefore be limited to those three
configurations. Data relstive to the additional configurations is,
however, included In Appendix A for informstion,

It should be noted that at M = 6.0 and M = T.,0, (see Figures
10 and 15), & loss of 1ift is experienced near wg = 20° with a
negligible corresponding influence on the rolling moment and pitching
moment, as cvidenced by Figures 11, 12, and 16, The aercdynamic
center of pressure in this angle-of-attazgk region is seen fo
shift outboard and art, indicating that the 1lift loss occurs
in the area neer the root chord and leading edge.
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It is believed that at these relatively high angles-of~gttack and
high pressures, some flow between the root chord and splitter plate
is established, causing a loss of 1ift in the indicated area. As
evidenced by Figure 20 , this phenomenon is not observed at M =
8.0. This is believed to be due to the boundary layer growth at the
higher Mach number which reduces the flow at the root chord gap.

In general, for configurations 1, 2, and 3 aerodynamic force
trends are as follows!

1. With the exception of the 1lift loss at M = 6,0 and 7.0
already noted, the 1lift curve slope in general decreases
with increasing Mach number,

2. The pitching moment coefficient for configurations 2 and 3
was measured only at small angles-~of-attack since flutter
tests for these configurations were performed only at
oo = 0°, The available data was sufficient to define the
force coefficients only over the expeeted flutter-definition
amplitudes, but insufficient to resolve aercdynamic trends
as functions of oy with any degree of reliasbility. Con-
figuration 1, however, was investigated over s relatively
wide range of og. The results presented in Figures 10
thru 2k may be discussed as follows!

a., The pitching moment coefficient data indicates smsall
slope veriations at approximately 2° and 6° at M = 6.0
and M = 8.0, respectively. At M = 7,0, & significent
change in slope is noted, Figure 16 , at approximately
4L° angle-of-attack. It 1s expected that a more intense
investigation at M = 6.0 and 8.0 with increased accuracy
and sensitivity would also disclose a rather pronounced
slope change at the angles Indicated above, This pltch-
ing moment slope change is believed due to a shock
detachment condition occurring at the leading edge ss
angle-of-attack is incressed beyond the values indicated.
As & matter of interest., observations were made during
the wind tunnel Tlutter tests which indicated a condition
of neutral stability et dynamic pressures below the actual
divergent condition, Visual estimates of the neutral
stability condition indicate amplitudes of + 3-5° which
ngy indicate a stabilizing influence due to the shock
detachment condition explained sbove.
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b. Tne pitching mowent coefficient shows a decrease in
slope with increasing Mach number,

c. Since considerable data scattzr was unavoldable in the
measurcnent of rolling moment using the avallable force
balance, all centers of pressures, Xh@ﬁf and Vzag »

were calculated from the faired curves of Cy, Cp, and C
rather than using direct point by point data values.

The centers of pressure require 1ittle discusslon, other
than to point out the center of pressure shift mentioned
previously in discussing thz 1ift loss experienced at

M = 6.0 and 7.0 at the high angles-of-attack.

C. Comparison of Experimental and Shock Expansion Aerodynamic Force

Figures 46 thru 61 present the pltching moment and rolling moment
coefficients obtained from the modified shock expansion methods, as
functions of engle-of-attack, in comparicson with those obtalned experi-

mentally.

In general the comparisons show that "shock~expansion" predic-
tions indicate rather poor correlation with experiment in the case
of the pitching moment coefficient. Since the "shock-expansion"
method used is a two~dimensional theory, and does not include viscous
effects, errors of this nature are %o be expected in the chordwise
pressure distribution. Additionally, due to the large leading edge
sweep angle and blunt trailing edge effect, rather poor corrclation is
expected to exist in the pressure predictions on the area near the
tip, trailing edge; thils area having a large influence on pitching
moment ,

The comparison of rolling moment coefficient predicted by "shock-
expansion” techniques with experimental results 1s considered very
good for the t/c = .03 end t/c = .06 configuration. The comparison
of rolling moment coefficient for the t/c = .09 configurstion is
somewhat poorer. This condition is due primarily to the fact that a
detached shock condition exists for the 9% thickness configuration at
all Mach numbers snd angles-of-attack investigated.

Figures 62 thru 65 present the effect of thickness ratio on the
pltching monent coefficlent as predicted by the modified "shock
expansion" theory. It should be noted that, in the case of pitch-
ing moment coefficient, the slope changes from negative values
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to positive values as thickness increascs. Again, ke deteched
shock involved is belleved to cause large errors in the pressure
distribution in the ares of the trailing edge. It is concluded
that the modified "shock-expansion” theory does nct accurately
predict pitching moment, the error being greatly magnified when
spplied to relatively thick airfoils, Additionally. the error is
further amplified with increasing Mach number.

Figures 66 thru 67 present the effect of thickness ratic
on the rolling moment coefficient &s predicted by the modified
"shock-expansion” methods. The slope of rolling moment versus angle-
of-attack increases somewhat with increasing thickness.

The remalning static aerodynamic force data has heen briefly
described in Reference (3), and shall, not be discussed in further
detail.

D, Experimental and Theoretical Flutter Characteristics

1. PFlutter tests werec performed only on the "basle” planform
and thickness variaticns, Configurations 1, 2, and 3. The
parameter variastions investigated were:

1. Mach number

2. Angle-of-attack

3. Uncoupled modal frequency ratio
4, ‘Thickness ratio

2. The results obtained fOf/;onfiguration number 1 - basic

planform, t/c = .06, “*“¢uxf.60, o = 0° - at wvarying Mach

number are presented in Figures 68 and 69 . It should
be noted thai these figures present the flutter velocity
parameter and fiubter frequency parameter as functions of
Mach number, The experimental results indicate that the
flutter velocity exhibits a pronounced increase at M = 7.0
and decreases again at M = 8,0, It is believed that this
radical increase in flutter velocity st M = 7.0 is due to

the very smsll pitching moment coefficient slope observed

in the range of 0° to about L4° angle of attack and previously
discussed as being caused by shock detachment at the leading
edge. Figure A8 also shows the analog results obtained
by using quasi-steady analyses with experimental statiec force
coefficients for the sctuwl model used and for a nominal
model having constant mass and dynsamic characteristinz, The
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anglog results in Lhis case agree very well with experiment
and produce a similar trend with Mach number, indicating
that a relatively good representation of the aerodynamics
was used, It is felt that further investigastion of the flow
characteristies in this low angle-of-attack reeicn is
necessary to more completely understend the phenomena ob-
served at M = T.0. Although some experimental scatter is
obviously present, it is felt that the faired curve shown
on the figure is a relatively sccurate indication of the
Mach number trend of the basic plenform investigated. Figure
69 presents the non-dimensionalized flutter frequency
trend with Mach number., Again, at M = 7.0, & noticeably
nigher level of flutter frequency is observed relstive to
the other test Mach numbers,

3. The flutter velocity perameter andé flutter frequency parameter
as a function of angle-of-attack are presented as Figures
70 and 71 for configuration number 1, t/c = .06,
&LE/Q%M, = .60, and Mach number = 6.0. As previously dis-

cussed, the system linearity limits precluded the attainment
of experimecntal data at angles-of-attack greater than 10°

The effect of angle of attack within the experimental range
investigated was slightly destabilizing., As Indicated, a
similar destabllizing effect was exhibited in the quasi-steady
analog results which were about 22% conservative in the pre-
diction of flutter velocity. The flutier freguencies obtained
theoretically were in this case generally higher than those
obtained experimentally, with rather large scatter noted in
the experimental results,

4, Figures T2 and 73 present the variastion of flutter
velocity and frequency with angle-of-attack at Mach number =
7.0 for the nominal, basic planform with t/c = .06 and
¢“@/4Q,,= .60, Since angle-of-attack varistions were not

made at M = 7,0, the curve presented is for the nominal model.
Only the @p = 0° experimental data is noted. The general
theoretical trend for this configuration is destebilizing .
between Oy = 0% and 5°, relatively constant between ag = 5°
and 129, with the destabilizing trend reestablished above

12°., The frequencey trends indicate a gradusl increase to
about 15°, at which point a decreasing frequency trend is
noted to exist to the limits investigeted.
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5. Pigures b and 775 vpresent the flutter characteristics
of the basic planform with t/c = ﬁbﬁzkg .60 at

M = 8,0 as they vary with angle~of-attack. Excellent agree-
ment between experiment and theory is observed for this
case., As indicated by the differences bectween actual model
results and constant nowinal model results, the increase in
flutter velocity indlicated at o = 10° is believed due pri-
marily to varietions of model mass and modal damping
character]stics relative to the models utilized at @y = 0°
snd ©, - c®. It is therefore concluded that a general
desbabilizing effect is to be expected between ¢g = 0° and
15° with a possible stabilizing effect occurring between
ag = 15° 8nd @y = 20°. A relatively large decrease in the
slope of the aerodynamic rolling moment is indicated in
Figure 22 Ybetween 15° and 20° which may be the cause of
the above described stabilizing trend in that range of ap.
The analog predictions for this case are very close to the
experimental results, but sllghtly conzorvative. Figure

75 presents the variation of flutter frequency with angle-
of-attack., It will be noted that the flutter frequency
observed at oo = 10° and 15° indicates a radical increase
in flutter frequency with the ratio a%?&%x, exceedling unity.
This frequency increase may be due to change in the flutter
mode occurring at the higher angles-of-attack,

6. Figures T6 end 77 present the flutter charascteristics
of the basie planform, configuration number 1, M = 6.0
t/c = .06, ap = 0°; as they vary with modal frequency ratio,
The modal frequency ratios investigated were .60, .75, and
«90. The nominal, constant model was not analyzed for varying
frequency ratio; therefore, the data presented consists only
of experimental data and model by model quasi-steedy snalyses.

For the configuration in question, the variation of modal
frequency ratio over the range investigated reflects a neg-
ligible effect on the flutter velocity, but a nearly linear
increase in flutter frequency with increasing modsl frequeucy
ratio. The results of the analyses indicate very good agree-
ment with experiment in the case of flutter velocity, dut
rather large error in predicting flutter freguency.

7. Figures T8 and 79 present a comparison of experimental
to theoretical flutter characteristics for the basic plan-
form, configuretion number 1, tf/e = .06. Cn = 0° at Mach
number = 2.0, as they vary with modal frequency ratio. Both
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experiment and theory indicate a very small destabllizing

effect with increasing modal frequency ratio over the

angle-of =attack range investigated, At this Mach number,
aéuxlis less then unity and indicstes a small increase

in flutter fregquency with increasing modal frequency ratic,

8. Figures 80 &and 8l present the flutter characteristics
of the basic planform, configuration number 3, t/c = ,09,
‘qﬁféég,z .60, g = 0% as they vary with Mach number, The

experimental trend observed indicates that as Mach number

is increased from M = 6,0 to M = 8.0, a destabilizing effect
is observed. The decrease in flutter speed between M = 6.0
to M = 8.0 is approximstely 17%. The quasi-steady anslyses,
using experimental serodynamic coefficients, however, in-
dicate a stabilizing effect with increasing Mach number,
This stabilizing effect in the case of the quasi-steady
analyses is believed due to the decreasing pitching moment
slope with increesing Mach nuwiber cobserved in the experi-
mentally derived aerodynemics used in the analyses. The
trend observed relative to flutter frequency may be seen in
Figure 81.

9. The variations of flutter velocity and flutter frequency
with airfoil thickness ratio using the basic planform at
M = 6.0, ““Véda, = .60 and oy = 0° sre presented as Figures

82 and 83 ., 1In general, the experimental results in-
dicate that the 3% snd 9% thickness ratio configurations are
slightly less stable than the 6% thickness ratio configuration.
As noted in Table I , very large differences in modal
damping existed between the particular configurations tested.
As reported in Reference (1)}; the modal damping rates have
large influences on the flutter characteristics of the con-
figurations under investigastion; however, 1t is believed that
the destabilizing effect noted as thickness ratio is increased
from 6% to 9% is due primarily to a shock detachment condition
occurring in this region.

The theoretical analysis results associated with this varia-
tion indicate a general destabilizing effect over the entire
thickness range investigated.
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10. In sddition to anslyzing all cxperimentel flutter config-
urations using experimentally obtained static aerodynamic
force coefficients in conjunction with a quasi-steady
analysis, addiiional studies were made using static aero-
dynsmic force coefficients obtained from s modified "shock-
expansion” theory technigque. The details of the modified
"shock-expansion” techilyue have been previously discussed,

Figures 88 thru 107 present a comparison of experi-
mental and theoretical flutter charascteristies obtained
from a guasi-steady flutter anaslysis using "shock-expansion
aerodynamics. In general, it is concluded that the use of
this very simple serodynamic theory shows good agreement
with the experimental results for the parameter variations
presented, with the exception of the variation shown in
Figure 88 , which shows a relatively large difference in
flutter velocity at M = 7.0, As previously explained, and
shown in Figure 16 , the serodynamic pitching moment
coefficient at M = 7.0, oo = 4° exhibits & shallow slope
with angle-of-attack. The effect of this condition is
stabilizing., The modified "shock-expansion” technique does
not predict the aerodynamic phenomena experienced by the
model at the Mach number and angle-~-cf-attack region in
question. As previously stated, a shock detachment condition
is believed to induce the non~linear behavior of the aero-
dynemics of this configuration.

With the above exception, "shock-expension” theory generally
is conservative in predicting flutter velocities of the
system investigated.

E. Effect of Variations In System Product of Inertia

A Dbrief investigation of the effect of variations in product of
inertia on the flutter velocity parameter was made during the analog
study. The need for this study was predicated by the cxtremely small
model scale used which in turn compromised the cxperimental accuracy
nf determining the product of inertia of the models.

Figure 108 presents the flutter velocity parameter as a func-
tion of the ratio ~Lxcyciﬂqﬁqu, vwhere oo is the veriable product of
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inertia and I“GNOM s 1s the actual product of inertia of the nominsl

constant model, All other system characterist1Ca were those rep-
resenting the constant nominal model at o = 0°, 44 Zu,, = .597

and M = 8.0. Both experimental aerodynemic coefficients end "shock-
expansion” sercdynsmic coefflcients were used in the study.

The results of the study indicate that variations of Igg of
+ 25% result in negligible changes in the flutter velocity predictions.
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SECTION VITI

CONCLUSTONS

A. The following conclusions msy be drawn relative to the statie
serodynamic force coefficients obtained during this investiga-
tion for the double wedge leading edge~blunt trailing edge
configurations

1.

2.

3.

5.

6.

At M = 6,0 and M = 7.0 a loss of 1lift is experienced
between dg = 20° and ap = 21° with a negligible corres-
ponding influence on pitching moment and rolling moment,
This phenomena is believed to be a function of the finite
space between the model and splitter plate,

The 1lift curve siope, reliative o the configurations
tested, indicates a geneciral decrease with increasing Mach
number,

The pistching moment coefficients suggest relatively small
slope deviations at M = 6,0 and 8.0 as the shock detaches
from the lesding edge. These slope deviations occur near
the theoretically predicted shock detachment angles of
ebtack.

A rather significant inflection in the pitching moment is
ohserved at ag =~ 4°, Mach number = 7.0. This inflection
may also be concluded to be caused by shock detachment,

The "modified shock-expansion" aerodynamic predictions
indicate poor correlation with experiment in the case of
pitching moment coefficient, but excellent agreement with
experiment in the case of rolling moment coefficlent.

"Shock-expansion”" techniques indicate that the correlation
between theory and experiment depreciates with increasing
airfoll thickness ratic and Increasing angle of attack.

B. The following conclusions may be made relative to the flutter
characteristics of the configurations investigated.
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The variation of flutter velocity with increasing Mach number
from M = 5,0 to M = 8,0 indicates an increase at M = 7.0,
This increase is due to the very smgll pitching moment slope
observed in the og ~ 4° range., This phenomena 1s apparent
not only in the experimental flutter velocity variation, butb
also in the trends predicted by the guasi-steady flutter
analyses using experimental aerodynamic coefficients,

The effect of increasing initlal angle-of-attack was slightly
destabilizing at all Mach numbers over the experimental range
investigated.

For the range of modsl frequency ratios investigated, both
experimental and theoretical flutter velocltles reflect very
small destabilizing effects with increasing modal frequency
ratio.

For the 9% thick model, the flutter velocity decreased with
increasing Mach number experimentally; but increased with
increasing Mach number theoretically.

The experimental results indicate that the 3% and 9% thick-
ness variations investigated are less stable than the 6%
thickness variation at og = 0°, due primarily to the detached
shock associated with the 9% configuration. Theoretical
analyses, howcver, indicate & general destzbilizing effect
with increasing thickness ratio over the entire range investile
gated,

In general, the quasi-steady flutter gnalysis technique,
using experimentally obtained aerodynasmic force coefficients,
is consildered sufficiently accurate in predicting flutter
trends for rnreliminary design purposes. The prediction of
flutter frequencies using this technlique, however, is con-
sidered Inadequate.

The guasi-steady flutter analysis technique using modified
“shock~expeusion” aerodynamics is considered a reliable,
inexpensive method for prcdicting flutter velocities and
trends in the preliminary design stagcs of vehicle develop-
ment, within the range of parameters investigated. Flutter
frequencies are not accurately predicted by this technigue.
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8. In the case of the two aerodynsmic forcing functions
investigated, the effect of including the rate terms
derived from "piston theory” techniques is insignificant.

9. The effect of moderste varistions in system product of
inertia for the 6% thick configuration at M = 8,0 is
negligible,
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SECTION IX

RECOMMENDATIONS

During the course of this investigation and in consideration

of the obJectives znd results, the following recommendations are
made

A,

The primary difficulfies experienced during the experimental
portlicon of this investigation were amplified greatly by the small
scale models and assoclated adaptations of the suspension system
to the extremely small splitter plate pylon section. It is there-
fore recommended that any continuation of this study be made using
a much larger scale and larger wind tunnel. It is expected that
with less restrictive space requirements, considerably better
control over system damping, frequency range, ease and speed of
operatinn, and improved parameter constancy would be obtained.

It is recommended that sdditional research be initiated to further
develop the use of the basic "shock-expansion” aercdynsmic theory
in conjunction with quasi-steady flutter mnalyses, It is believed
that chordwise pressure distribution data relative to practical
airfoil configurations could be used to evolve reasonable empiricsal
corrections to the two-dimensional results in order to more nearly
predict the pltching moment coefficient. The modified theory used
in this study proved to be very accurate in predicting static aero-
dynamic rolling moment coefficients.

It is recommended that research be done to specifically determine
shock detachment effects on eirioil pressure distributions, both
statically and dynamically.
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FIGURE 7 PHOTOGRAPH OF SUSPENSION SYSTEM UNIT
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AXTS SYSTEM

DATA REDUCTION EQUATIONS

Normel Force
Cy = —2IB. 0TS
g5y
Cm = FPitching Moment , Positive leading edge up
qSyC
o = ROllinngome“t , Positive tip up - about model root chord
q Sy /2)
Cy
Te.p. = &
XCPs L oom
T ' Cn

FIGURE 9  AXIS SYSTEM AND DATA REDUCTION EQUATIONS FOR STATIC
AERODYNAMIC FORCE DATA
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FIGURE 109 SHOCK EXPANSTION AERODYNAMIC AREAS OF INFLUENCE
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APPENDIX A

The static serodynamic force coefficients in piteh and
roll are presented herein for configurations k, 5, 6, and 7.
These configurations were not investigated with respect to
their associated flutter characteristics due to program re-

orientation.

RTD-TDR-53-4219 150

UNCLASSIFIED



CONFIDENTIAL

.04

.03

O/

AN

-z -+ -z c 2z # ¢

/ e, ~ DEGREES

-.02

- O

FIGURE Al  EXPERIMENTAL LIFT COEFFICIENT VS, ANGLE-OF-ATTACK;
CONFICURATION #4, MACH NUMBER = 6,0
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ATTACK; CONFIGURATION #4, MACH NUMBER = 6.0
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FIGURE A5 EXPERIMENTAL PITCHING MOMENT COEFFICIENT VS, ANGLE-OF-
ATTACK; CONFIGURATION #4, MACH NUMBER = 8.0
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FIGURE A6 KXPERIMENTAL ROLLING MOMENT COEFFICIENT VS. ANGLE-OF-
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FIGURE A7 EXPERTMENTAL LIFT COEFFICIENT V5. ANGLE-OF-ATTACK;
CONFIGURATION #5, MACH NUMBER = 5.0
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FIGURE A9 EXPERIMENTAL ROLLING MOMENT COEFFICLENT VS, ANGLE-OF-
ATTACK: CONFIGURATION #5, MACH NUMBER = 6.0
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FIGURE A11 EXPERIMENTAL PITCHING MOMENT COEFFICIENT VS. ANGLE-OF-
ATTACK; CONFiGURATION #5, MACH NUMEER = 8.0
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