UNCLASSIFIED

AD NUMBER

AD352577

CLASSIFICATION CHANGES

TO:

unclassified

FROM:

confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 03 AUG 1964. Other requests shall be referred to Office of Naval Research, One Liberty Center, 875 North Randolph Street, Arlington, VA 22203-1995.

AUTHORITY

31 Aug 1976 per Group-4, DoDD 5200.10, document marking; ONR ltr, 4 May 1977

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD352577

SENSITIVITY FUNDAMENTALS.

STANFORD RESEARCH INST MENLO PARK CA

03 AUG 1964

Best Available Copy

ANFORD S. T R E S E U A R C¹ucust 3, 1961 Lecture al Progress Report 61-3, Quarterly Street 15 to June 11, 1961 SENSITIVITY FUNDAMENTALS (U) Prepared for. OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY WASHINGTON 25, D.C. CONTRACT NO. Nor 3760(00) SPONSORED BY APPA-PROPELLANTS CHEWISTRY OFFICE ARPA OPDEP NO. 301, AMENDMENT NO 3

BY A. B ANSTER M. W. EVANS M. E. MILL " MILL

NRT Project No. PRU-1051

Reproduction in who close in partills bermittua for any purpose of the united States Government

PROFUSION SCIENCES CONSIGN

IPC 5.4 DCANGRADED AT 3.4 EAR NYERNALS, DECLASSIFIED AFTER 11 MEARS This accument contains internation attecting the notional defense of the united States within the meaning at the Esc night, united States within the Esc night, united States within the Sections 793 and 794, units transmission or the teve at on affilis contents in only marries to on unauthor ted person is promoted by few

Gaps No. 20

ŧ

10

1.1

SRI-64-2041

ABSTRACT

The failure diameter and shock sensitivity of 2, 2-DP were measured in lead tubes of 1-mm wall thickness and of IBA in tubes of 1 5-mm wall. The failure maneter of 2, 2-DP is less than 5 mm. In 9 5 mm I. D. x 2 mm wall cups the sensitivity is 87 ± 6 kbars. The diameter in which IBA propagates a detonation lies between 10 and 15 mm in 1.5-mm wall tubes. In 20 mm I. D. x 2 mm wall cups the sensitivity is 75 ± 6 kbars.

We are developing a test to be useful as a standard method for measuring sensitivity of liquids at extremes of temperature and pressure. The criterion for detonation is the measurement obtained for shock velocity. Two techniques are being explored: electronic and explosive witnes.. Preliminary experiments with the latter indicate that a modified Dautriche method can be used at ambient and cryogenic temperatures to measure detonation velocity and, therefore, detonability.

In lead confinement, the failure diameter of 1, 2-DP and 2, 2-DP was found to be less than 0.8 mm; that of IBA was 0.8 mm according to the work so far completed. This general range of failure diameters corresponds, under the assumptions made in the theory of failure diameter of homogeneous materials, to frequency factors between 10^{14} and 10^{15} sec⁻¹, and activation energies between 25 and 35 kcal/mole in the expression for the temperature variation of the first-order reaction constant.

Decomposition of 1, 2-DP in methanol is accelerated by HCl and LiCl to about the same extent; LiClO₄ also shows catalytic activity. The data suggest that anionic rather than acid catalysi. is an important mechanism for catalyzed elimination of HF from difluoroaminopropanes. 1, 3-DP decomposes at 176-200° by HF elimination giving a small amount of malononitrile and a major amount of nonvolatile residue. Chloroacetic acid catalyzes this decomposition at 176° markedly in nitrobenzene ad weakly in chlorobenzene.

CONFIDENTIAL

÷i.

TABLE OF CONTENTS

ABSTRACT
LIST OF ILLUSTRATIONS
LIST OF TABLES
1 INTRODUCTION
II DETONATION SENSITIVITY
III ADAPTATION OF THE JANAF BOOSTER TEST 5
A. Introduction
B. Experimental Program
C. Discussion
D. Future Work
IV PHYSICS AND CHEMISTRY OF DETONATION
A. Failure Diameter of Difluoroamino Compounds 15
B. Failure Diameters Predicted by Theory
C. Future Work
V THERMAL DECOMPOSITION OF NF COMPOUNDS 26
A. Introduction
B. Elimination of HF from 1, 2-DP
1. Base Promoted Elimination
2. Acid and Salt Catalyzed Elimination
C. Kinetics and Mechanism of Decomposition of 1, 3-DP . 28
1. Decomposition of 1, 3-DP in Nitrobenzene 28
2. Decomposition in Gas Phase
3. Effect of Solvent and Possible Acid Catalysis 29
D. Future Work
APPENDIX A ,

::i

LIST OF ILLUSTRATIONS

Fig. 1.	Detonation Velocity Apparatus 6
F 2	Test Assangereent
F.g. i	fypical Test Result - Witness Plate 9
Fig. 4	Test Components
F.g. 5.	Assembled Components
Fig. c.	Two-inc. lead cube, on the left. sectioned to show the inner surface of a 1'4-inch hole, on the right, a similar cube after detonation of 1,2-DP
F:ç. 7.	Diagram of 1.59 mm test lead billet ready for firing 19
Fig. 8	Lead collets sectioned after firing. The hole diameter was 0 81 mm the explosive 1,2-DP. On the left, the charges were boosted with 4.8 (diam) mm RDX at 1 e7 g/cm^3 The center billet was filled with sugar solution ($o = 1.20 g/cm^3$) instead of 1,2-DP. On the right, the RDX boosters were 3.1 mm x 3.1 mm at 1.07 g/cm^3 .
F1g 9.	Sectioned 0.81 mm lead billets after IBA was fired with 3.1 mm x 3.1 mm RDX boosters. Failures were recorded for Laif the shots
F1g. 10.	Sectioned 5.81 mm lead billets after 1,2-DP was fired with composite boosters whose action was somewhat weak and non-reproducible. Attention is directed to the billet on the extreme right which shows that the wave traveled in the weak mode for 64 diameters 23
F:g. 11.	Kinctic frequency factor and activation energy related with failure diameter and shock sensitivity

CONFIDENTIAL

LIST OF TABLES

Table I	Shock Sensitivity of 2, 2-DP
Table II	Shock Sensitivity of IBA
Table III	Results of Explosive Witness Sensitivity Test Evaluation
Table IV	Decomposition of 1, 3-DP at 176 ⁰ for 90 Min in the Presence of Chloroacetic Acid

CONFIDENTIAL

v

INTRODUCTION

The provious report¹ on the Stanford Research Institute program concerning the followertal sensitivity properties of diffuoroamino compounds reviewed and discussed the experimental information obtained with respect to thermal stability detonability, and decomposition kinetics of several bis(diffuoroamino)propane isomers and IBA — Specifically the program was divided into four interrelated parts:

- ter. The shock sensitivity to detonation of the liquid phase.
- (b): The relation of shock sensitivity and failure diameter to the flow and chemical reaction rate behind the shock front
- (c) The adiabatic self-heating of the liquid phase
- (d) The mechanism and kinetics of thermal decomposition.

Bee nning with this quarter the program is being modified and expanded to include new tasks relating to detonation and thermal decomposition phenomena. The detonation studies will include (a) measurement of the shock sensitivity of the difluoroamino compounds of interest; (b) determination of whether or not the compounds exhibit low-order detonation and. if so, the necessary conditions for initiation, (c) modification of the JANAF sensitivity test so that it will be more meaningful and adaptable to conditions of extreme temperature and pressure.

The theoretical study will include adjunctive experimental studies in the physics and chemistry of detonation. The objectives of this phase of the work are (a) to demonstrate the steady detonation of difluoroamino compounds (b) to establish failure diameters of difluoroamino compounds in metals and other materials. (c) to study events in the liquids as shocks of various magnitudes enter (d) to study, where possible, the Chapman-Jouguet velocity, equation of state of the unreacted materials, and the divergence of the reacting material in the wave.

¹SRI Technical Progress Report No. 64-2. Annual, "Relationship Between Decomposition Kinetics and Sensitivity," March 15, 1963, to March 14, 1964 Contract Nonr 5760(60)

CONFIDENTIAL

)

The study of the kinetics and mechanisms of thermal decomposition of diffuoroamino compounds will continue along lines previously established and will include, in addition, a study of the effect of acidic, basic, or neutral additives on their decomposition.

This quarterly report reviews the initial work on the modified JANAF sensitivity test, and the recent results from studies of detoration sensitivity, failure diameter, and decomposition of 1, 2- and 2, 2-bis-(difluoroamino)propane (1, 2- and 2, 2-DP) and 1, 2-bis(difluoroamino)-? methyl propane (IBA), the decomposition of 1, 3-bis(difluoroamino)propane was also studied.

CONFIDENTIAL

II DETONATION SENSITIVITY

(A 2. Amsier, D. M. McEachern, Jr.)

The shock sensitivities of 2, 2-DP and IBA have been measured using plasme anemators and the CRISP apparatus to detect detonation.¹ In one experiment the failure diameter of 2, 2-DP was found to be less than 5 mm in unslotted 1-mm wall lead cups. Sensitivity was measured in 9.5 mm I. D. lead cups with 2-mm walls. Table I summarizes these results:

Table I

SHOCK SENSITIVITY OF 2,2=DP

Shot #	Gap (inches)	. Result	
10298=1	Žero	0 ·	Ğo
10298=2	0.55	14.0	No go
102.96	0.46	i 11:6	Ĝó
10325=1	0.50	12.7	Ġ٥
10325=2	0.54	13.7	No gó

The measured sensitivity is thus 0.52 ± 0.02 inch or 87 ± 6 kbars initiation pressure.

Using cups of different diameters; the failure diameter of $\overline{1B}_{A}$ was found to lie between 10 and 15 mm in 2-mm -wall lead tubes and testing was done in 20 mm 1. D; x 2 mm wall lead cups. The results (Table II) indicate that the sensitivity of 1BA is 0.565 ± 0.01 inch of plastic of $\overline{75} \neq 6$ kbars:

Future plans are to conduct additional shock velocity measures ments in Plexiglas attenuators with the booster used in the sensitivity tests in order to define better the initiation pressure. Also the effectupon apparent sensitivity of replacing the "flowerpot" plane wave generator with a tetryl pellet will be studied, using standard acceptors such as tetryl, Composition B, and hitromethane.

3

1

Table II

SHOCK SENSITIVITY OF IBA

- -	Ğa		
Shot #	(Înches)	(mm)	Result
10327=1	0. ŠO	12.7	Ğo
10327-2	0.75	19.0	No Ĝõ
10327=3	0:62	15.7	Nō-Ĝo
10327-4	Õ:56 .	14.2	Go
10327-5	0.59	15. Q	No Ĝo
10327-6	0.57	14.4	No Ĝo

In addition: we will repeat the sensitivity tests on 1,2=DP=in=a larger diameter to study the shape of the diameter-sensitivity curve=

CONFIDENTIAL

III ADAPTATION OF THE JANAF BOOSTER TEST

(A. B. Amster, D. B. Moore, and J. Berke)

A. Introduction

ÿ

High energy liquids are often exposed to conditions, such as extremes of temperature, which may change their susceptibility to shock initiation. Moreover, certain high energy materials are liquid only at extreme conditions of temperature and pressure. There exists a need for a detonation sensitivity test applicable to these situations. This is the first report on a program to adapt the current JANAF test for use under the following conditions:

> $\tilde{7}\tilde{7}^{0}K < \tilde{T} < 3\tilde{7}3^{0}K$ 1 atm < $\tilde{P} < 10$ atm

An important aspect of the test where modification and improvement are indicated is the method of establishing whether detonation-has occurred. The present test prescribes the use of a witness plate, but it is becoming apparent that such damage-criteria are of limited value even at ambient conditions. Furthermore, experience at liquid nitrogen temperatures indicates that the witness plate and confining tube become so brittle as to render them valueless when so used. A test method for use at extremes of temperature or pressure or both would require additional packaging (as distinguished from confinement) within which to control the environment. It would not appear profitable to pursue asearch for a transparent package through which optical measurements might be obtained. Thus the test should be modified so that detonation is detected and confirmed by velocity rather than damage criteria = the velocity being measured by non-optical means:

One of the simplest and most reliable methods for measuring detonation velocity is that developed by Dautriche. An adaptation of the technique, shown schematically in Fig. 1, can yield results of a high degree of reliability and adequate precision while at the same time retaining considerable simplicity. The detonation detector is detonating

cord either directly in contact with the sample or separated from it by a thin membrane. When sample detonation initiates the cord, the ion gauges are activated, the time of activation being recorded oscillo= graphically: Knowledge of the detonation velocity of the cord and of the values of the distances a and b permits determination of the detona= tion velocity of the sample: The success of the method depends upon the reliability with which the cord is initiated by the acceptor. A similar arrangement which does not require the use of oscilloscopes will be described later. Two other methods are also available for the measurement of detonation velocity: ionization probes and continuous wire. We have tried the former at cryogenic temperatures and have experienced some difficulty, perhaps attributable to interactions between probes and confinement.

The continuous wire, as reported elsewhere, has performedreliably with some liquids at cryogenic temperatures; additional measurements might profitably be made to establish the conditions under which it is reliable.

The design of a test geometry for use at cryogenic temperatures and ambient pressure should prove to be straightforward. Emphasis should be placed upon the development of a test which is simple to

assemble and perform. Components should be readily available-or inexpensive to manufacture and should be interchangeable. The requirements of a test at high temperature and high pressure differ from those at cryogenic temperature and ambient pressure. It may therefore be necessary to provide for interchangeable modules useful under different circumstances.

In the development of a broadly applicable test the order-oftasks to be undertaken will be:

- 1. Evaluation of velocity measurement techniques at
 - a. Ambient and high temperatures
 - b. Cryogenic temperatures
- Definition of the limits of applicability and reliability <u>of</u>
 each method
- Design and testing of a suitable package unit or, if necessary, units
- 4: Integration of the sensor within the package
- Modification of the package; where possible, to make the test inexpensive and simple
- 6. Demonstration of the test usefulness by measuring the detonability of sample liquids such as: $\tilde{N}_2 \tilde{F}_4$; $\tilde{C}\tilde{H}_3 \tilde{N}\tilde{Q}_2$; and $\tilde{T}\tilde{N}\tilde{T}$.

B. Experimental Program

The first experiments were designed to develop a test for use where electrical power is unavailable. The method, shown schemätically in Fig. 2, is an elaboration of the Dautriche method in which the detonation tion velocity in a known material is compared with that in the sample under study. The tetryl initiates the detonating fuse, which in them initiates the explosive sheet at the "start" position. This detonation propagates further along each "finger" of the explosive sheet.

(B) REAR VIEW

FIG. 2 TEST ARRANGEMENT

A strong wave in the sample will also initiate the remaining pieces of fuse in order. Where the detonation waves collide within the fingers, dents are created in the witness plate deeper-than those leftby a unidirectional wave: The result of a typical shot is shown in Fig. 3: From the position of the dents and the properties of the cystem; the wave velocity within the sample can be calculated (see Appendix): For detonating samples at ambient temperature and pressure this method is known to work:

FIG. 3 TYPICAL TEST RESULT - WITNESS PLATE

For each shot a standard test cup is modified as shown in Fig. 4a and an aluminum witness plate prepared as in Fig. 4b.

Using a razor blade, five pieces of MDF, 20.00 inches long are cut on a piece of wood or Micarta. Five 1/2-inch-wide strips of sheet explosives are cut. One is about 4 inches long, the other 8.00 inches: Using precision scales and squares, the short strip is cemented parallel to the short edge of the plate with one end over the single hole. The long strips are cemented parallel to each other, one

(6) ALUMINUM WITNESS PLATE

_	 	
ĮĒ,		0
		0
ΪĘ		ं
등		

(c) SHEET EXPLOSIVE ON WITNESS PLATE

RA-405--97

FIG. 4 TEST COMPONENTS

end over each of the remaining four holes and the other end over and in contact with the short strip (see Figs. 4c and 5a):

The test cup and booster are assembled in prescribed fashion. and the witness plate secured nearby. One end of each of the 20 inch lengths of MDF is inserted through a hole in the plate until it contacts the explosive sheet (Fig. 5b). The other ends are put in place on the charge (no auxiliary booster is used) as shown schematically in Fig. 5c; four along the cup wall; one to the initiator. All ends are comented securely in place.

(c) TEST CUP, BOOSTER AND MDF

FIG. 5 ASSEMBLED COMPONENTS

The results of a series of tests to evaluate the method are presented in Table III. Shots 1, 4, and 5 established a useful withess plate thickness: viz: 1/2 inch aluminum. Shots 2, 3, and 6 conducted with liquid nitromethane demonstrated that detonation of a liquid in the test cup would propagate through the walls to initiate the MDF and that the plate dents could be used to calculate a velocity.

A number of control experiments were conducted. Using sheet explosive to line the cup (Tests 4 and 5) or unconfined Composition B; (Test 11); it was again demonstrated that a stable high velocity could be detected Fellably:

Tests 12 through 16 established that most reliable results white obtained using 20 grain per foot PETN, filled MDF, and Detasheet Del sheet explosive.

OF SULTS OF A VELOSINE & UNLOS SEASURINITY TEST EVALUATION										
							Shoek	Velo	aiy	-
			l		European Sheet	Watnie is Place	-1-1		12	Remarks
-5het No-	Sample	bouter	Attendator	Depotating Date	Experie and	1/4 · Atemirum				Plate severed
1-1-	flene	Norm	Nune	3 (2))*	C'bit., Detworder n		انت	1.8-	3.3	
. z	Natromethare	Terry) (2 pš_iets)	Nene	20 grain PETN	506-D	114. Viennen	ľ ľ			
, 100	Naromethare Naromethare	Terry: (2 perlets)	Nonz	20 grain PETN	50k-D [*]	- I/4ª Aluminum	4,9	3.4	56	plate severed at points
4	50(+D ⁺	Tertyl -1 pollet)	None	20 grain PETN	5¢6-D	1/4" Aluminum	1 ,			of convergence
	lini52 ≪∜P 306-D	Tetay] (I pellet)	None	20 grain PETN	506-D [*]	1/2' Aluminum			6.3	fragment
	lining cup Nutromethane	Telityi () pellet)	Nore	23 grain PETN	505+D	1/2" Aluminum	5.8	6.0	61	
	20°G	Tarry: 12 pelleta)	40 cards	20 grain PETN	536-D [®]	1/2" Alaminum	4.5	2,1	6.3	
1	20°C	miter 1 47 mälletäl	to cards	20 grain PETN	506-E	1/2" Āluminum	2:9	ž. 6		Ath intercept off plare
	20°C		50 cards	ZČ grain PETN	50ē- Ď	1/2" AlumInum	l			No record obtained (Human error)
-	20°G	Terryr (2 periess)	60	20 erain PETN	506-D	1/2" Aluminam	2:6	,		3rd and 4th intercepts off plate
10	11,0 20°C	Tetral (1 penco		M SOUN PETN	\$66-D	1/2" Alumiňuñ	6.9	: 7.3	175	Ideal velocity a
11	Comp. B 20°C	Terryl (1 pel'el)	Nore		106-B	1/2" Aluminun	ة.ذ	ι.	١.	MDF functioned properly
13	Nitroni-than 20°G	Tetryl (2 p-lleis)	40 card-	26 grain PETIN		1/2 * Älum.nur	. .	١.	١.	MDF did not faltiate
1	S Nitrométhán 20*G	- Tetryl (2 pellets)	40 cardi	20 grain RDY	506-17	1228 Aluminur		ſ		MDF Gid not initiate
1	Nirromethan	Tetry] (2 pellets)	40 CATO+	20 grain RDX	C-1				.	MDF did not initiale
	4 None	Tētīyl (I pollet)	Repe	TIO AND 20 Grain PETN	3 \$42" Dall Cheet" Dr1 (green)	1/2" Alaminai	1	Ì		estighter fattempted simultaneous Initiation of each length of MDF)
	e Name	Tariyi II pallati	Noër	10 and 20	0.042 ' Deta Sheet	172" Aluminu	m			Initiated reliably
	6 EL-506-D	Terry () peller)	None	20 grain PETN	0.042" Dela Sheel D-1 (red)	· 1/2" Alumios	m A1 11 16	témpi multa itiatié	ed nëouë m	Reliable initiation ercompliahed
and an under state	17 Noné	Total (1 pellos)	None	20 grain RDX in liquid Ny and ai 20°C	C. 042" Deta Sheet D- I	* 1/2" Aluñine	ín	MARKING STRATE	The party of the local division of the local	Results reproducible but temperature dependent
	Id None	Tetty: () polici)	N ate	20 grain FELS in liquid Ny am	0.042' Deta Stret B-1	1/2" Alwrin	m		NHA MANAGAMAN M	Results reproductive but temperal are dependent
104 Manual Andres	13 Nore	Tetryt (* Perfei)	N=-+	20 grain PEIN minster V2 an	a, cet: D-ta Swe a D-1	* 1/2" Alamin		and the second second	W , ALVER FROM THE	Results reproducible out cold les rid not mittate
- Printelije	20 Nº rométha) I:-m-	i at ecci. 20 grs = PETN	0 042" Dr.A Ser	دا الم	an Is Y	01 3 5 •1	stygéd	+II points obtaines -
h w eithichige	21 Frapix	artist (2 profes		i in ream pern i	0 C42" Dela Sure D-1	a* 172" Alumin	• •	1. March 1. March 1.	a himteria ta	No I Interestion ottained. All others off plate.
1	1	l	Ĩ.	Į		[1_		i.	

7408. M

di na ku

ė

1 Y Y

"Trade Mark E. I. raffest de Nerringes 255 Company

A failing (1. e., nonpropagating) detonation wave, should be detected by a decelerating wave velocity rather than by failure of the MDF to detonate. Shots 7 and 8, conducted on either side of the sensitivity limit from nitromethane demonstrated that the explosive witness met this requirement. Thus, using 40 cards, nitromethane detonates as confirmed by the approximately constant high-velocity calculated at each station. However, with 60 cards nitromethane does not propagate detonation as evidenced by the decreasing velocity recorded. This result can be compared with the results of shot No. 20. using water: the low velocity initially recorded decays rapidly so that no record is obtained at the third and fourth fingers. These measure= ments confirm that the lest is a high-velocity sensor rather than a detonation sensor; the desired result:

Low temperature behavior was examined by shots 17 through. 21, the performances of PETN and RDX MDF were found to be satisf factory in liquid nitrogen (78°K) and a reasonable velocity record was obtained using nitromethane at the same temperature. Using an empty cup, shot 21 attested to the desirable absence of a shock in the cup wall strong enough to initiate the MDF.

C. Discussion_

7

The modified Dautriche method described and tested functions reliably and is able to distinguish among the following situations:

- Shock deceleration through a nonreactive material such as water (shot No: 10)
- Shock deceleration and detonation failure in a reactive liquid (shot No. 8)
- Shock and detonation propagation in explosive liquids or <u>solids</u> (shots No: 2=7, 9, 11=13, 16; 20; 22)

The following test components perform properly:

 Test cup=-as specified by the LPIA test=-although at low temperatures leakage is a problem and thought is being

given to replacing the Teflon diaphragm with one of steel of other metal soldered to the cup.

- 2) MDF==20=inch lengths of 20 grain/foot PETN MDF
- Sheet explosive==several are satisfactory including:
 a) 42=mil thick C=1 Détasheet
 - b) 42-mil thick D-1 Detasheet (green)
 - c) 42=mil thick D=1 Detasheet (red):
- 4) Witness plates=2024 aluminum 6 x 10 x 1/2 inches:

Although discrimination between stable and unstable detonations is reliable, calculated velocities are not as precise as anticipated. This may not be cause for serious concern as precise values are not be requirement.

D. Future Work

Experimental work planned for the coming quarter includes test of the continuous wire under similar conditions both alone and in consultance under similar conditions both alone and in consultance under similar.

IV PHYSICS AND CHEMISTRY OF DETONATION

(Leslie B. Seely Marjorie W. Evans, A. J. Bartlett, and D. Tegg)

A Failure Diameter of Diffuoroamino Compounds

The failure diameter of liquid explosive--if it were large enough--could be of practical importance for the design of safe piping. Failure diameter is also of theoretical importance, since its magnitude is determined by competition between the chemical reaction rate and the flow divergence.² The results on 1,2-DP, 2,2-DP, and IBA in lead confinement are not quite complete, but the safety implications are evident: all three compounds will propagate in very small diameters in metal confinement.

The conditions used for test were chosen for theoretical simplicity. Lead was used¹ as the confining material because its sound velicity is very much lower than the detonation velocity of ar j of the three compounds; this simplifies the interaction at the explosive-wall interface. The lead was used in the form of blocks rather than tubing to give a very thick wall and avoid having to consider reverberations. These relatively large pieces of lead had the added advantage that they stayed in one piece under the disrupture force of the detonation, thus serving as their own witness blocks

Many of the difficulties in performing failure-diameter tests on liquids derive from properties that are quite general among homogeneous explosives but distinct from those of heterogeneous explosives For instance, failure diameter for liquids is anomalously large in glass confinement, and failure occurs by means of "dark way es."³ The failure diameter of a liquid explosive in metal, even a metal of very

²M. W. Evans, J. Chem. Phys. <u>36</u>, 193 (1962).

³A. W. Campbell, T. E. Holland, M. E. Malin and T. P. Cotter, Jr., Nature <u>178</u>, 38-9 (1956).

low dersity, will be much smaller than in glass, and dark waves will not make their appearance except at discontinuities in the metal confinement. These dark waves are not well inderstood. Thus, if we are to use failure diameter data to gain information on chemical reaction processes, it seems clear that we must limit studies to cases where failure occurs not via dark waves but rather via smooth-flow divergence.

An ideal failure diameter test would involve a very long charge so that the test section could be considered to be boosted by an identical section preceding it. The size of the booster would then be of no importance provided it was large enough. In practice, the length of hole that can be satisfactorily fabricated is limited, and it is therefore of great importance to use the correct booster in order to save charge length. If the booster is too small the explosive will fail no matter how large the diameter; if very much too large, the explosive will shoot below failure diameter through the limited length available. The preferred situation is to overboost slightly. This overboosting is a guarantee against "strange waves," which are of safety interest, of course, but for which no satisfactory theory exists. However, failure diameters for weak waves are reported to be larger than for full-strength waves, ⁴ so we are justified from the point of view of both theory and safety in concerning ourselves with the failure diameter of strong waves.

For failure diameter tests, we would suppose that holes in a confining medium must be fabricated with precision, since irregularities are expected to produce failures. For instance, with nitromethane an abrupt increase in pipe diameter is used to prevent propagation of detonation through practical piping systems. For the compounds of interest here, the exact quality of surface required for holes in lead is not known. However, it was found that holes could be made in lead with a mirror-like finish so that there was no reason to accept any visible irregularities. The process of fabrication consisted in forcing a roundended drill rod through the lead with a drill press. The flow of lead

16

⁴R. W. VanDolah, R. W. Watson, F. C. Gibson, and C. M. Mason, International Conference or Sensitivity (London, 1963), Session 1, Article VI

are the field during pressing apparently produced no density above the true density of lead, since there was no evidence of spring-back and the yield strength of lead is extremely low.

In Fig. b the sectioned 2-inch cube of lead shows the quality of the surface inside a 1/4-inch tube even though in this particular sample some oxidation took place before the photograph was taken. On the right is a similar unsectioned block after firing with 1, 2-DP.

A l x l x 2 inch block containing a 1.59 mm hole is diagrammed in Fig. 7. The bottom is closed with a Tedlar film 0.001 inch thick glued with epoxy cement. Care roust be taken that the glue does not occlude the hole. The booster is a 3.1 x 3.1 mm pellet of RDX pressed to a density of 1.67 gm/cm³. The detonator is a Dupont #311B. The tubes were carefully filled with liquid explosive by means of a micro syringe before the booster was attached. It was then possible to inspect over a light for entrapped air

Shots were fired with 1,2-DP with a variety of booster strengths (minimum size was that specified for Fig 7) at 6 35 mm, 3 16 mm, 1 59 mm, 1.14 mm, and 0.81 mm diameters. No failure was encountered. Figure 8 shows sectioned billets from 1,2-DP firings with two sizes of booster at 0.81 mm diameter.

Only three shots were fired with 2,2-DP. All were at 0.81 mm diameter and all fired. The billets were indistinguishable from the corresponding 1,2-DP shots.

Fourteen shots were fired with IBA at 0.81 mm using two sizes of booster. Fifty percent failed, all of them within 10 diameters of the booster. Sectioned tubes are shown in Fig. 9.

We have concluded from these results that the failure diameter of IBA in lead is very close to 0.81 mm while the failure diameters for 1,2-DP and 2,2-DP lie some distance below that value. Just how far below depends somewhat on the interpretation put on the two expansion diameters seen clearly in most of the billets.

17

ŝ

đ

7

B

RA-4051-104

FIG. 6 TWO-INCH LEAD CUBE, ON THE LEFT SECTIONED TO SHOW THE INNER SURFACE OF A 1 4-INCH HOLE, ON THE RIGHT, A SIMILAR CUBE AFTER DETONATION OF 1, 2-DP

18

12

CONFIDENTIAL

FIG. 8 LEAD BILLETS SECTIONED AFTER FIRING. The hole diameter was 0.81 mm, the explosive 1, 2-DP. On the left the charges were boostered with 4.8 (diam) mm RDX at 1.67 g cm. In the center the hole was filled with sugar solution = 1.26 g cm³⁺¹ instead of 1 2-DP. On the right the RDX boosters were 3.1 mm = 3.1 mm at 1.67 g cm³⁺¹.

۰.

20

CONFIDENTIAL

7

6,22#

FIG. 9 SECTIONED 0.81 nm LEAD BILLETS AFTER IBA WAS FIRED WITH 3.1 mm - 3.1 mm RDX BOOSTERS. Failures were recorded for one half the shots.

21

CONFIDENTIAL

ġ

6

The existence of two clamsion diameters might be a phenomenon of miliation, with the defonation forming at the rear surface and overtaking the shock at the point indicated by the expansion. However, there are several facts that contradict such an interpretation. First, unless the pressure is held on the initiating surface, continued reaction there is inlikel. We would not expect initiation to take place by that mode in this geometry even though it has been observed in plane-wave experiments. Second, in homogeneous initiation the pressure in the region near the booster is supposed to be very high and to fall after the overdriven wave breaks through the shock front. Thus this sequence would not be expected to lead to the observed form of the expanded billets.

The distance that the "low-powered" wave travels in the lead before transition is fairly reproducible for a given booster and seems to depend on the size of the booster. In Fig. 10 are shown some billets fired with inadvertently weak composite boosters. Here the distance traveled before the transition varied, an effect due to the variable strength of the boosters. It will be noticed that in one case the wave never made the transition to "high order." Although the distance traveled was only 50 mm. it amounted to 64 charge diameters.

Tests are also being run on nitromethane so that we will have the method illustrated on a fairly well-known material. At present it can only be said that the failure diameter of nitromethane in lead lies somewhere between 1.6 and 3.2 mm.

B. Failure Diameters Predicted by Theory

The theory of failure diameter has been demonstrated for these particular compounds in Ref. 1. At that time the failure diameter, even in lead, was thought to be considerably larger than present experimental results demonstrate. In Fig. 11, corresponding to Fig. 35 of Ref. 1, the constants in the equation for the reaction rate constant are plotted, the logarithm of the kinetic frequency factor v as ordinate, and the activation energy E_a as abscissa. The solid straight lines are for the indicated failure diameters and the broken lines are for the indicated shock sensitivities. Present information on the failure diameters and

22

CONFIDENTIAL

-1

FIG. 10 SECTIONED 0.81 mm LEAD BILLETS AFTER 1, 2-DP WAS FIRED WITH COMPOSITE BOOSTERS WHOSE ACTION WAS SOMEWHAT WEAK AND IRREPRODUCIBLE. Attention is directed to the billet on the extreme right which shows that the wave traveled in the weak mode for 64 diameters.

23

CONFIDENTIAL

-1

FIG. 11 KINETIC FREQUENCY FACTOR AND ACTIVATION ENERGY RELATED WITH FAILURE DIAMETER AND SHOCK SENSITIVITY

24

CONFIDENTIAL

7

.

In the shock sensitivity (see Section II) would place 1,2-DP, 2.2-DP and II A within the shaded trapezoid. There is still so much doubt about the reaction dimetics and the diameter effect for these explosives that it is impossible to say that predictions of the theory are confirmed. Howcherk the relationships between the various properties of the explosive pave been refined, and as the data become more precise the adequacy of the theoretical assumptions can perhaps be assessed.

C. Fature Work

Further work is planned on the failure diameter of nitroinethane and iPA in lead. This will consist of tests near the failure diameter to define more clearly the statistical nature of the % fire-vs-diameter curve and to confirm that the correct booster size is being used. For 1,2-DP a measurement of the velocity of the slow wave will be made. An attempt will be made to determine the failure diameter of these explosives in another material of low sound velocity. Finally, special tests will be made to determine the expansion angle, first in lead and later in whatever other material proves satisfactory.

THE ANAL DECOMPOSITION OF NF COMPOUNDS

(Theodore Mill, David Ross, and Marilynne Smart)

A. Introduction

Previous " it has solve that the bis(difluoroamino)propane isomers and IBA since go thermal decomposition by the elimination of HF. The elimination is markedly accelerated in the presence of heids (HF and HCl), neutral salts (KCl and KF), and even at room tempersture by bases (pyriding and sodium butoxide). Surface effects which were noted in the thermal accomposition reactions may also play an important role in some of the reactions involving additives. In order to define the mechanistic features of the acid, base, and salt promoted reactions, we have begun an examination of HF elimination in homogeneous systems with 1, 2-DP at or near room temperature.

B. Elimination of HF from 1, 2-DP

1. Base Promoted Elimination

The decomposition was investigated in bases of various strengths. An immediate reaction resulted upon addition of 1, 2-DP to 0.7 M sodiu: butoxide in n-BuOH. Thiration for remaining base immediately after the addition snowed that four equivalents (4-02 and 4.09 in two separate runs) of base were used per equivalent of NF compound. No products were identified. Upon acidification only water-soluble materials resulted.

The reaction of 1, 2-DP with triethylamine at room temperature was studied (via vapor-phase chromatography) with nitrobenzene as solvent. In an equimolar mixture (0.2 M) of 1, 2-DP and triethylamine, the NF compound slowly disappeared with simultaneous formation of 2-(N-fluoroimino) propionitrile (NFP). 1, 2-DP completely disappeared in twenty hours. The imino compound, accounting for more than 80% of the starting material, was unchanged after several days and apparently stable under these conditions

26

CONFIDENTIAL

-1

Since the components of HF must be eliminated from the starting NF compound to form NFP, the fact that <u>one</u> equivalent of base gives a high vieth of NFP must be explained. It is conceivable that the resulting truethylaminonium hydrofluoride is itself involved in the elimination reading. (As noted in the following section, neutral saits have been observed to cataly, eithe decomposition.) Alternatively, the intermediate immo-compounds I and/or II. formed through a single elimination, may easily undergo further HF (limination, either spontaneously or during vapor-phase chromatography, to give NFP Neither of these intermediate compounds has been detected by give.

In another experiment, three equivalents of triethylamine were added to 1, 2-DP (0.2 M) in nitrobenzene. All of the 1, 2-DP disappeared immediately. The integrated areas of the chromatogram indicated that NFP was formed in 93% yield (yield based upon starting NF compound). Six percent of the 1.2-DP remained unreacted. A chromatogram taken twenty hours after initial mixing showed no NFP remained. No other volatile compounds were detected; apparently the immonitrile reacts with triethylamine to vield nonvolatile materials. Sodium acetate in methanol (0.2 M), a much weaker base, effected a slower elimination and gave NFP v hich did not disappear on standing. The reaction of sodium acetate with 1, 2-DP nad a half-life of about 24 hours compared with less than a minute for an experiment with triethylamine at the same concentration of reactants

2. Acid and Salt Catalyzed Elimination

Although both HCl and HF catalysis have been observed with 1,2-DP, the mechanism of this catalysis is by no means clear inasmuch as both KF and KCl also catalyze the decomposition heterogeneously. Experiments in methanol at 50° with 0.055 M 1,2-DP and 0.2 M HCl gave a tentiold increase in rate of disappearance of 1.2-DP compared to

27

CONFIDENTIAL

-1

t similar solution without acta. The same concentration of p-toluenessimal activities without acta. The same concentration of p-toluenessimal acceleration similar to HCs, and LiCiO₄ showed some acceleration. Since percolorate ion is not nucleophilic, these results suggest that the catalysis observed here is associated in part with a medium effect and is part with anionic catalysis. The relatively slower reaction with the strong subonic acid tentatively indicates that acid catalysis is less important than either of the other effects. This conclusion is surprising in view of the observed and unique acid catalysis observed with alkyl and acvi fluorides. The didates that acid with alkyl and acvi fluorides. Additional, quantitative experiments using CF_2COOH are plaused

C. Kinet.cs and Mechanism of Decomposition of 1, 3-DP

1. Decomposition of 1.3-DP in Nitrobenzene

The rate of decomposition of 1, 3-DP in nitrobenzene was studied over the temperature range $176-200^{\circ}$ C. As in previous work, sealed glass capillary tubes lined with sodium fluoride were used as containers. These were held at the desired temperature for varying lengths of time, removed from the bath and cooled, and the contents analyzed by g.l.c. Difficulty was encountered in that the 1, 3-DP decomposes on most suitable columns under operating conditions, including the didecyiphthalate column used for the other NF compounds. However, fair reproducibility could be obtained with a DC-710 column.

If 1.3-DP decomposes by an HF elimination mechanism similar to that by which the other NF compounds decompose, an expected product would be maloronitrile $CH_2(CN)_2$. A small amount of malononitrile is in fact formed and was identified by g. l. c. However, the major products were a very volatile component with an elution time similar to that for air, possibly HF, and a dark brown tarry component. This latter product has not been identified, but it is not malononitrile dimer, CN-CH- $C-CH_2$ -CN, on the basis of the infrared spectrum. NC NH,

³C. G. Swain and R. E. Spalding, J. Am. Chem. Soc., <u>82</u>, 6104 (1960)

28

CONFIDENTIAL

2. Decomposition in Gas Phase

1, 3-DP was decomposed at 190°C in a dried pyrex bulb at a pressure of 50 mm. At this temperature, the half-life was about 3-5 hrs. The bulb was then broken open under vacuum and the volatiles pumped off for analysis of million deciration of the major gaseous products were 41.4% CO₂, 33.3% CO, 12.5% SiF₄, 4.2% N₂. This accounted for about 10% of the 1, 3-DP--the remainder having formed an adherent brown coating on the walls of the vessel. Elemental analysis of this brown solid gave: C, 16.47%, H, 3.86%; N, 17.3%; F, 41.3% Ash. 1.27%. All the fluorine is ionic in character. Formulas calculated from analysis and adjusted to correspond to the original nitrogen ratio give: $C_{2,2}H_{6,2}N_{2,0}F_{3,0}$. This formula is short 0.8 C and 1.0 F, part of which were observed in the form of CO, CO₂, and SiF₄. The data indicate that the residue results from complete dehydrofluorination of 1, 3-DP, iollowed by cleavage of a cyano group, possibly after condensation and hydrol.sis on the walls of the vessel.

3. Effect of Solvent and Possible Acid Catalysis

Various amounts of chloroacetic acid were added to solutions of 1, 3-DP (0.052 M) in both nit obenzene and chlorobenzene. These were then thermostated at 176° C for 90 min. The results are shown in Table IV.

Catalysis observed in nitrobenzene may be due to ch'o pacetate ion rather than acid catalysis, the effect being analogous to the acetate ion catalyzed elimination observed with 1,2-DP in methanol, discussed above. The striking difference in effectiveness of the acid in nitrobenzene and chlorobenzene is probably due to the greater degree of ionization of chlorobectic acid in nitrobenzene.

<u>Reaction With Base.</u> 1, 3-DP readily reacts with triethylamine, pyridine, and sodium butoxide. The major product, as in the case of the thermal decomposition, is a dark tar. Infrared spectra show that this tar is not malononitrile or its dimer. No volatile products in any quantity were detected by g-1.c.

29

CONFIDENTIAL

Table IV

DECOMPOSITION OF 1.3-DP at 179° FOR 90 MIN IN THE PRESENCE OF CHLOROACETIC ACID

Solvent	Concentration of Acia (mole/liter)	% 1, 3-DP Remaining
Nitrobenzene	0	90
Nitropenzene	0.11	12
Nitropenzene	0.42	0
Chlorobenzene	υ	91
Chlorobenzene	0.12	84
Chlorobenzene	0.3:	82
Chiorobenzene	0. 80	81

D. Future Work

7

In estigation on the effect of acids and bases on the decomposition of 1, 2-DP will continue with possible extension to similar systems containing 2, 2-DP.

30

APPENDIX A

Adaptation of the JANAF Booster Test: Data Reduction

The equation for reducing the data from the witness plates is derived as follows:

Assume the following:

- There is a small, finite, but reproducible time for a detonation to propagate across explosive interfaces. This is frequently referred to as an "induction time:"
- The time required for two detonations originating at a commonpoint, and meeting at a point x, is the same for two corresponding paths.
- The detonation velocity of explosives is a reproducible function of environment.

Our notation is as follows:

- P = lengths of MDF, the subscript denotes the particular branch
- P_o = length of MDF from tetryl booster that initiates the explosive on witness plate
 - V = detonation velocity of any P with corresponding subscript-
- $\dot{\mathbf{V}}_{s}$ = wave velocity within sample
- V., = detonation velocity of standard explosive used
 - L = distance between opposing points of initiation for each sheet explosive finger
 - x = point at which detonations meet: measured from MDF
- ds1 = distances between MDF on sample cup
- dw' = distances between corresponding strips of explosive on witness plate
 - ds = distance from tetryl pellet to first MDF
- dw = distance from the start to strip 1 on witness plate
- $\mu, \eta = \text{small}, \text{ unknown}, \text{ but reproducible delay or induction times}$ in transition from cup to MDF and MDF to EL=506=D.

A-1

The time required for the detonation to travel from the tetrifl through the sample cup, the first "finger" of \hat{MDF} and to point \hat{x}_i in the sheet explosive is:

$$t_{1} = \frac{ds}{ds} + \mu + \frac{P_{1}}{V_{1}} = \eta + \frac{X_{1}}{V_{y}}$$
(1)

The time required for the detonation to travel from the terryl through the "start" branch of the $M\overline{D}\overline{\Sigma}$ and to x_1 through the sheet explosive from the opposite direction is:

$$t_{i}^{i} \approx \frac{\bar{P}_{o}}{\bar{V}_{o}} + \bar{\eta} + \frac{\bar{d}\bar{w}}{\bar{V}_{w}} + \frac{\bar{L} \approx x_{i}}{\bar{V}_{w}}$$
(2)

Equating (1) and (2) and rearranging terms:

$$\frac{\mathrm{d}s}{\mathrm{V}_{s}} \doteq \frac{\dot{\mathbf{P}}_{o}}{\mathrm{V}_{o}} = \frac{\dot{\mathbf{P}}_{o}}{\mathrm{V}_{a}} + \frac{\mathrm{d}w}{\mathrm{V}_{w}} + \frac{\mathrm{L} = 2x}{\mathrm{V}_{w}} = \mu \qquad (3)$$

Similarly, by equating the times of travel from the tetry to point \tilde{x}_2 in the second finger of sheet explosive:

$$\frac{ds + ds'}{V_{s}} = \frac{P_{o}}{V_{o}} = \frac{P_{2}}{V_{2}} + \frac{dw + dw'}{V_{w}} + \frac{L - 2x_{2}}{V_{w}} = \mu$$
(4)

Subtracting (3) from (4) and noting that $\hat{P}_1 \neq \hat{P}_2$ and $V_1 \neq V_2$:

$$\frac{V_{\dot{s}}}{V_{\dot{w}}} = \frac{d\dot{s}^{\prime}}{dw^{\prime} + 2(x_{\dot{1}} - x_{\dot{2}})}$$
(5)

 $\hat{V}_{w}^{}$, ds', dw' are conditions of the experiment; $x_{1}^{}$ and $\dot{x}_{2}^{}$ are measured; therefore $\hat{V}_{g}^{}$ can be calculated:

