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ABSTRACT

This report preseats la\'s‘urvey of the various phases of calculations which led to the quan-
titative prediction of the important unde:r water explosion parameters for Operation ngwam.‘\ \ v

The—tsqruition of- State-for Water. The analysis of the explosion pheromena requires a
kaowledge of the thermodynamic properties of water over an extreinely wide pressure range,
1.e., frem infimty down to the iow pressures of an acoustic wave, No equation oy state is
known which satisfactorily covers this range; therefore five separate pressure ranges were
consideredy

Rogiwbi-r—ﬁ. HETS twecis the molecules of water are com-
pletely dissqciated and 10nized. The gas is ideal and lyhatomlc it t}\g small efiects of'rad’la-
tion pressur}ﬂ and electrostatig forces are excluded. k !

Region gl. For somewhat lower pressares and }emperakures the )Qedmm 18 only par'lially
dlSS()(‘laled]lnd iomzed. Laborwous equilibrium ;?culauons were mada to determine the

thermodynZinic data in this reéion. The p-v-T relation necessary for this purpose was op-
tained frgfn the detonation theoiy of high explosjves, in particular from the explosive hydrazine
nitrate A ich forms H;0 as its principal reactifn product.
on i1, At still lower prdssures ani témperatures the water molecule remains /Antact.
thig range, calculations usim.{he Tho -Fermi-Dirac thecry were ma:gi\u/
1 725,000 psi down to accustic values, ct ex-

f.egrons IV and V. For pressurds [r

wman® and Carnevale and Litovitz! were used.

Shock Ware Phenomena.  Thess-caloulatione-were also weparaitad uto several-parés.
For extremely high pressures the solution of the point blast problem of Taylor”‘]/s applicable.
For lower pressures the three partial differential equations of the spherical fluid motion were
integrated. The method was not tractable below a shock pressure of about 450,000 psi (corre-
sponding to a shock radius of 81 ft in Operation Wigwam),
low pressures by means-of the Smay-Matthiad! shock-waje theory. At very low pressures
asymptotic relations; simijar to those first deriy

Bubale. Phenomena ®WThe energy dissipation (e Converelemrtromemeshonisal Jalowihers
~ratrreray) at the front of the intense shock wave from a puirt explosion produces the heat
which vaporizes the water and furms a steam-{illed cavity. This bubble pulsates in 2 manner
similar to that observed for bubbles produced by high explosives. The analysis ylelded the
maximum bubble radius and the pariod of the first pulsation as well as the total mass of water
evaporated up to the moment of the first bubble maximum, né'nTi’!T'ﬂ:lﬁ-“—
clwding the rapid uppard migration,-can be.cals or high-explosiye'gas bubbles.
This establishes ax upper limit for the periods and jer igration of a steam bubble, The
actudi behav:?a( Atvam dmbbles tag been studiedWith tests using electric sparks as

encrgy sourcey. The results of these tests werf used tv obt ln(ormatl,oﬁ on the amount of ,
condensatingAwhich occurrad 1in Wigwam. It ost all the vapor must have |
been cond:Z‘Zed before the hubble reached 't

somg resemblance to the “breakthroygh”.
-."\,_. B -

e surface phenomena which lnd

-od hy. Lhe-violent wpwell




of the water which previously surrounded the bubble and which acquired the latter’s upward
momentum.

In summazy, 1t was found that, in the region where pressures are lesc than 3000 psi, the
calculated pressure-distance curve is similar to one from ‘FNT hav‘ ., about 89 per cent as
much erergy. In this sime reglon the calculated shock-wave energy flux-dis.anes curve is
similar to one from TNT having about 82 per cent as much energy. The maximum bubble
radius was calculated to be 376 fl with a first bubble period of 2.88 sec. This period corre-
sponds to that from TNT having 81 per cent as much energy. The amount of water evaporated
wa3 calculated to ozcupy the same volume as a 30-kt INT sphere{\

4
SECRET - RESTRICTED DATA




PREFACE

Projcct 1.1 of Operation Wigwam wae one of four projects (1.1, 1.2, 1.4, and 1.5) for
which the Naval Ordnance Laboratory was responsible, Its objective was to determine the
principal underwater explosion phenumena to be expected from the explosion, at a depth of
2000 f{t in deep water, of an atomic device having a nom!nal yield of 30 metric kilotons. The
successful achlevement of this objective enabled at least two extremely finportant practical
results to become available: (1) the determination of proper locations for the targets and
instrumentation during the Operation and (2) the development of methods for predicting under-
water explosion phenomena from other yields and firing geometries.

This summary report not only gives the predictions which were used in helping to deter-
mine the experimental corfiguration but makes comparisons of these predictions with the actuat
measurements obtained. The good agreement between theory and experimeat indicates that the
methods used describe the important phenomena with satisfactory accuracy.

In thts report the important equattons which have becn used in Frofect 1,1 are summarized
and explained. Only simple derivations are given. For a complete aaalyeis the fuilawing re-
ports, which describe the subject matter more thoroughly, should be consulted:

NAVORD Report 4181: An Equation of State for Water, by Hans G, Snay and John F. Butler
(1in preparation).

NAVORD Report 3847: An Equation of State for Water at Extreme Pressures, by J. H.
Rosenbaum.

NAVORD Report 4182; A Theory of the Shock Wave Produced by a Point Zxplosion, by
Hans G. Snay {in preparation).

NAVORD Report 41183; An Analysis of Solutions of the Point Blast Prublem, by André N,
Gleyzal (in preparation).

NAVORD Report 4184: Numerical Analysis of the Underwater Point Blast Problem, Dy
John F. Butler (in preparation),

NAVORD Report 4185: Underwater Explosion Phenomena II: The Parameters of Migrating
Gas Bubbles, by Hans G, Snay (in preparation).

‘The reader who is not interested in mathematical details is invited to read the introduc-
tory and summary paragraphs of each chapter of this »eport, as well as Sers, 3.3 through 3.5.
This, together with 4 study of Tabie 3.1.the figures, and the glossary (Appendix A), will pro-
vide a fair idea of the methods used and the results obtained in this project,

5-6
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CHAPTER

EQUATION OF STATE FOR WATER

1.4 INTRODUCTION

An analysis of the explosion phennmenn following the firing of an atnmic device under
water requires the knowledge nf the thermodynamic properties of water over a range extending
from the extremely high pressures and temperatures occurring immediately ulter the explosion
almost deon o the conditions exiating in an acoustic wave. No satisfactory equation of siate is
kno wn which covers the whole range of interest.

In the initfal phase, subsequently called Region I, the temperature is so high that the atoms
are completely stripped of all their electrons.

At somewhat lower temperatures (Region 1I), the medium consists of a mixture of the

following:
. Diatomic molecules and radicals formed from hydrogen and oxygen (OH, H,, O,, etc.).
2. Monatomic hydrogen and oxygen, "

3, Hydrogen and oxygen tons (0%, O*2, H™, etc.).

4, #ree clectrons,

b, lonized moleculus and radicals (0f, OH™, ete.).

The ealeulation of the thermodynamic properties of such 2 mixture requires a knowledge
of the concentration of the varfous constituents of the mixture. The Halford-Kistiakowsky-
Wilson (HKW) equation of state is used in this region,

At still lower pressures and temperatures the water molecule remains intact (Region 11I),
but the pressures are still far above the range where direct experimental measurements are
pussible, In this region the Thumas-Fermi-Dirac (TFD) theory may be used. However, this
theory yields acceptable results only at the high~pressure end of this region. There{:re, (o
obtain data for Reglon 111, interpolations must be made between these calculated high pressures
and Reglon 1V, for which measurements by Bridgman are available (up to 728,000 psi), Since
the Rankine-Hugoniot curve has little curvature in a In p - In v plot, the shock-front data can be
readily interpolated graphically.

Reglon IV has been treated in several publications, Thermodynamic data behind the front
are obtained by using a mudified form nf the isentropic Tait equation and adjusting the constants
in thix equation in such fashion that the isentropics fit the data at the shock front (Rankine-
Hugonlot curve) and at the saturation line,

In the reglon of relatively Jow pressures (Region V), where the shock wuve behavrs nlmnst
like an acoustic wave, the thermodynamic properties of water may be inferred from experi-
ments on the velocity of sound in water as a function of pressure,

SECRET
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1.2 KEQUIRED DATA

For any shock-wave calculation the Rankine-Hugoniot parameters must be known for the
mcdlum {n question. The Rankine--Hugoniot conditions are:

the Rankine-Hugoniot a dialatic

+2
Ex-E:"*E’—f-& (vo—vy), 1.1

the propagation velocity U

(U- uo)z = Vgpi

14.2)
Vo— Vi’ b
2no tha particle valoeity u,
{uy = ug)? = pylve — vy). (1.3)

The subscript 1 designates the state directly behind the shock {ront, and the subscript 0 refers
to the state ahead of the front, E i3 the internal energy per unit mass, p is the excess pressure
above the static pressure Pg, and v, the specific volutic, 1s the reciprocal of the density p.

The Rankina-Hugoniot adiabatic gives the p-v relation for the ther modynamic change of
state at the shock froat. To evaluate this, one must know the interrelation between internal
energy, pressure, and volume & fnrmal simplification can be made by introduction of the
‘“reduced internal energy”

J = dlp,v) = §3-v_1“;o.. (1.4)

This term will be frequently used in our calculations, It is a dimensionless magnitude related
to the heat capacity. For an ideal gas at high temperature the following simple equation holds:

e E_Sv 1
J pv-R—;“:—t’ (1.5)

where the superscript 0 indicates the ideal-gas state, ¢, is the heat capacity at constant volume,
R 18 the Gus constant, and ¥’ is the ratio of the heat capacities at constant pressure and at
constant volume,

The Rankine-Hugoniot adiabatic is generally giver by

Yoo Vi fy, 2Pg)
3+ B (1+p’) 19

After rearrangement, we obtain with the use of Eq, 1.5

zedt
Y'i_!"o“’l o
PERy T~ B .

'ZB—IVs—Vo

¥y -

This simple relation holds for ideal gases only. For real gases J must be evaluated from the
inteinal energy,

E-E= f: 2 meb T+ [ [T(g—‘;-.)v ~(p+ Po)]dv. (1.8

12
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where ng is the number of moles of the 1th constituent in the mediun;, c}’,l is ite ideal-gas henat
capacity, ar.d T is the absclute temperature. The subscript v on the partial differential

quotient in the second integral means “al constant volume.” A corresponding notation referring,
fer instance, to constant temperature, entropy, etc., is used in this report. In order to evaluate
the first integral, the composition of the medium must be known, This informsation will be ob-
tained from the equilibrium calculations. The second Integral accounts for the imperfect-gas
behavior. For its evaluaticn, we need an equation of state for the imperfect medium, The lower
limit of this integial refers to the specific volume &t the idesal-gas otate,

In considerirg a nonideal medium, attention must be given to the use of the symbol y. The
customary definition of this symbol ts y = cp/cv. However, in the hydrodynamic literature y
stands for the logarithmic slope of an isentropic. in generai, ihe specific heat ratio is equal to
thie logarithmic slope only for the case of an ideal gas. In this report the symbol y will mean
the logarithmic slope of an isentropic, i.e.,

. 3lnp _c2
e (3e) 2

where ¢ sound velocity and S = e¢ntropy.
The general expression for this isentropic exponent* is

2
L 6Inp) .'p(alnp) (E)
Y (alan*T ainv/y / BT/, (1.10)

The isentropic exponent , is related to the reducec internal energy J by the following simple
equation:

_1p+ Py (aan)_
¥ e +1+ 5 v)s (1.11)

For constant J this 2quation is equivalent to the ideal-gas relation 1.5. However, in the general
case of an imperfect gas, Eq. 1.11 is of little help. 1t is simpler to calculate y and J Inde-
pendently using Eqs. 1.10 and 1.8,

The behavior of the Rankine-Hugontot adlabatic can be expressed in the follcwing concise
form:

dinp; _dlnp

YRH dinv, dinps

(1.12)

Thls definition is anxlogous to that or the 1aentroplc exponent ;- exnept that the differential
quotient is taken along the Rankine-Hugoniot adiabatic instead of the isentropic. This magnitude
wiil be widely used in the hydrodynamic equations of this report,

The equation for the entropy increment, which is also needed in the hydrodynamic calcu-
lations, s

oT: dT fh"o 3v)
= -85 A —adad b~ . .
AS =8, - &, Jr. 2.-:‘0',!,1, s (aT pdp (1.13)

3\

The dissipated enthalpy increment h is defined by

h=Bwrv) - [T vips=5) op. (1.14)
2 0

- *The werd “exponent” is used loosely here, For constant y, Eq. 1.9 can be integrated, and
it yields the familiar relation pvY— vonst, This, however, does not hold for a variable y.

13
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Zhi- magmtude gives the increase of enthalpy after the passage of the shock front when the
mediam has iseitropically returnad to the initial pressure P;. Another expression for h is

h= (" TiS,p - 0) ds
3 (1.15)

= \,rpTo(eAsllF-:— 1),

where Ty is the temperatuce of the water before the explosion and

T
_ .rT, cpdT T 4T

D S 4T
=g T % * m/T, -[r, Cp F (1.16)

For water c—p,'é_p' differ only very slightly from the vaiue of the actual heat capacity cp.

1.3 REGION OF EXTREMELY HIGH TEMPERATURES AND PRESSURES (REGION 1)

The equation of the: Rankine-Hugonlot adiabatic for an ideal gas, Eq. 1.7, shows that the
pressure becomes infinite for a finite value of vy, Although this relation holds for i:leal gases
only, it Is gennrally true for shock waves in any medtum that vq remains finite when pressure
ard temperature approach infiiitely high values. At such conditions, namely, moderate den-
sities but infinitely high temperatures, the medium is completely dissociated and ionized, i.c.,
the atoms are stripped of all their electrons. The medium consists only of such smail particles
as electrons, protons. and nuclei, Bach of these has but three degrees of freedom; thecrefore
3 = 3, The small particle size precludes gas-imperfection effects, and such a plasma would
behave hike an ideal ¢as save for the effects of radiation pressure and electrostatic torces. For
our purposes it seeme permissibic to neglect these effects in this region and to assume that
the medium behaves ike an ideal monatomic gas. From Eq. 1.7 we cbtain

0

Yy =1 _Ve
Hin vy = vy p—= = —-
,.,J.,‘ 99V 4+ 1 g

The shock-front data calculated by the methods described in the following paragraphs were
extended to infinite pressures by considering the trend of ygy as a functien of v,. The magnitude

1 _ _diny

YRH din &

vanishes at v, = vy ‘4 according to the above-discussed behavior of v;. The simple technique
used s deseribed i MAVORD Report 4481,

1.4 EQUATION OF STATE IN REGION II

To evaluate the thermodynamic functions discussed in Sec. 1.2, we need a p-v-T relation
from which the necessary differential quotients raay be determined. No nompletely satisfactory
equation of state is known for media in Reglon 1I, where digsociation and ionization occur,
Closest to this range are the thermodynamic states of detonating high explosives whose reaction
products attain pressures up to 4.3 million psi, temperatures up {2 3000°K, and densities above
2 g cc. Several attempts have been made to describe such thermodynamic conditions by means
cf an equation of state. All these equations have objectionable feaisres from a theoretical point
of view, However, the theory of the detonation process permits a determination of the arbitrary
constants in such equotions from experimentally measured detonation rates, These rates in-
crease with increasing loading density of the explosive, an effect which is solely due to the
imperfect-gas behavior of the reaction products. Therefore this is a gensitive method of de-
termining imperfection terms of high-pressure equations of state,

14
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For this project we have chesen the HKW equation of state because this equation has been
tested arainst detonation data of 2 great number of explosives with good success.® Ir particular,
this equatien predicts the detonation rate of the explosive hydrazine ritrate with satisfactory
accuracy. The dominant reaction product of this explosive is Hy(). Hence one should expect
that this equation is applicable to our problein within the limits of its validity.

The HKW equation of state has the form:

ngRT
(p+ Pyv - ZE22 1+ xef®)
p o) ™;
X = 37 k..‘ v (1.17)
Wiz

k Znk ng=Zlm a=02 =03,

where n, is the number of moles of the ith component in My weight units of gas and k; is its
covolunie factor, A few covolume factors have been determined from the measured detoaation
rates. For our problem it was necessary to estimate the additional covolume factors which
could not be determined by this method. A complete account of this is given in NAVORD Report
4181, where a list of the numerical values is found, A few of the more important components
are quoted herc:

Compori2nt ki Component k¢
H,0 285 (o] 100
0, 300 d 20
H, 60 o* 80
o} 255 ot? .13
OR 200 H* 0

" The tmits of valldity of the HKW equation are given by the Imperlestion term x. Good
results were obtained in the study of detonation phenomena for values of x hetween 1.7 and 4.2.
This range is determined by the experimental data available, It is not unreasonable G assuine
that acceptable accuracy may be obtained for much lower values of x, since Eq. 1.17 reduces
to the perfect-gas law for small x.

If, within these limits of x, the HKW equation 1s aplied to water, higher pressures and
temperatures result than those usually obtained for explosion reaction products witi. the same
X. This is due to the iow molecular welght of water and the rclatively high number of particies
in the dicsociated state.

The covolume factors ncted abov2 hold for {he comparatively low temperatures orcurring
in the detenation of high explosives, One riay saiily assume that ihe constituen! molecules and
2tms are in the #round electronic state under these conditions. This ralges the question of
whether these covolume factors are applicable to the much higher temperatures occuiring in
Reyrion 11, where appreciable excitation and fonization are encountered.

It is well known {hat the partition function for an ideal gas diverges at high temperatures,
However, it is possible to show,¢ that convergent serles for the partition function are obtatned
for imper{cet gases. If we consider a HKW gas consisting of only one component and regard the
various excites states as separate species, the partition function is given by

3, .
P 27mk’T\™ 1-efx € ok \
TR [(T) “°]°‘ Y men(gp-nighe”) .18

where k'’ = Boltzmann cunstant
h  Planck’s constant
m - particie mass
gy statistical weight of the itk excited state (l.e., of the ith 8pecies of the mixture)

15
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€; - excltation energy of the 1th excited state

ki = covolume factor for the 1th excited state

n{ = numher of moles of atomsg which are in the ith excited state

ng = .I‘; nj = total number uf moles of particles in M, grams of the mixture
K* = 3 niki = total covolume factor for the mixture.

(The asterisks are used here to emphasize the fact that we are now considering a gas consist-
ing of only one component, for instance O, and are regarding the various excited states of this
componcnt as separate gpecles). For x = 0, Eq. 1.18 reduces to the familiar partition function
of an ideal gas. In thiz rase, the sum in Eq, 1.18 is replaced by IE g1 exp (€;/k’T), which is
diverzent since, although the Boltzmann fartors exp (€;/k'T) become smaller with increasing i,
the statisti~al welghts 24 become arhitrarily lurge, For the HKW gas, however, the last factor
in the sum in Eq. 1.18 ensures rapid convergence,

Tn determine how many terms are required in the evaination of the partition function.
Eq. 1.18, we xssurme that the covolume factor for a given excited state of an atom or ion is
propoe *“ir =1 to the effective atomic or ionic volume cf the atom or ion when in this excited
3 <« then yossible (NAVORD Report 4181) to derive the following expression:

Y_ . Vy ko x)
W THERS ‘Ev g‘e‘p( SR el
& Vi K
' E Bt exp(k,T " xe”‘)

where V, = effective womic or lonic volume of the component when !n its ground state
Vi = effective atomic or ionic volume of the component when in its itk excited state
g = covolume factor for the component when in its ground state.

(1.19)

An evaluation of this equation yielded the interesting result that, for all conditions where the
HXW equation ot state 18 applicable, only those excited states which have effective atomic -
voluues equal to or near that of the ground state contribute significantly to the partition func-
tion. Higher terms were found to be entirely negligible, even for a value of x as low as C.2,
The ideal-gas aroperties for the high temperatures needed in the calculation of the i:ternal .
enerity, tha adinbatic exponent, and the entropy were calculated from statistical thermodynamics
on this basis, A complete des~ripticn 18 given in NAVORD Report 4181, where extensive tables
of the pertinent thermodynamic data can 21so be found.
With the use of the HKW cquation of state, the thermodynamic functions of interest to us
take the foliowing form:

s 2 nyet
- 1 1 T 15vy —ndX ”
I = Iy xeRx ('r -f;‘ a;:n, *+aze™ ). (1.20)

_ 9 In ng 1+
7_1_(aln v).r+(1+xe5*)xeﬂx [l (

?
9 1nng 1+ 8lnk
+ (e xem {‘ ’ (8 InT )v (1 +xe& xe&‘[ 51n T)v]} (1.21)
> n;cv elnk ’ '
i ool mfe-(), )

1 .
~se= [ Yl - I k_L )
S-8 _Lo 4 ney, T angR In ,ro%r.,;Rln Rgh gha)}

- n.R(lnx-—i-

BAx
- nxe“) + o (1.22)
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The change of ng and k with temperature T or with the specific volume v-—as well as the con-
centrations ny of the various constituents—are deteriuined by equilibrium calculatfons.

1.5 EQUILIBRIUM CALCULATIONS

The equilibrium constant for an HKW gas is

Iy Ax
- Y e Mov).* _( )e -1 Bx
K, ”nl K")(—'RT exp[ ‘Evi 3 ?xe lzlqkﬁb , (1.23)
h J22408 53 oNGS 1 a1)® = Debye-Htckel 1,
where AN T (. { )\' ng ) = Debye-Hilickel ¢correcticn
or
2.589 x 108 2 M2t "3
= P 2 l% = Unsold correction,
T v

i=

where Kf,j = {deal-gas equilibrium constant for the j/k5 reaction
D = dlelectric constant
Z4 = valency of the ith component
Zj = valency of the jtk reaction which must be of the type x = xZy+ Zje (e denotes the
{ree electron),

The vi's are the coefficients of the 1¢h component in the j¢h reacticn equation; those on the
rignt-hand side are covnted positive, and those on the left-hand side, negetive, The sums con-
taining vy run cver the terms of the reaction equation, To illustrate this, assume the following
reaction:

0=0%+ 2e.
Here
vo+t = +1
Vo = +2
Vo =_—__
? vy=+42
and

no* n
Hnly":o e

t no

where no*t is the number of moles of O*? fons, n, is the number of moles of electrons, and
no 18 the number of moles of oxygen atoms in M, grams of the mixture. Z; for O*! s 2, and
for e, ~1. Hence T »;Z} = 6. %y of this reaction is 2.

The total number of moles of ail hydrogen nuclei in or+ mole of dissociated and ionized
water must be equal to 2, and that of ail oxygen nuclel must be equai to unity. This can be
written as follows:

¥i *;Tﬂ“l =2

V2 +>T“, rang =1, (2.29)
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whoere ryy s the number of hydrogen nucley tn the igh compound, vy is the number of oxygen
nuclei (2 - for OH. ry  {andr, 1), and where.

¥y rumber of moles of hydrogen atoms in My grams of the mixture

yp  cmber of ainles of un-iomzed oxygen atoms in M, grans of the (1.29)

mxtur.
These two magnitudes are » eference values. They are by nature the same as certain ny’s for
which ry 1s unity, aid they serve as independent variables. A third reference value of this kind
is
¥s = numbet of moles of electrons in My grams of the mixture = ¥ ngZ (1.26)
Ther: the concentration of the §th compound is

ny Ky yhe y'fn_ (1.21}

There are as many <uch equations as there are reaction equations. For our caiculations, we
have considered the followinr reactions:

‘l
3 Reaction Z') Iy Z‘; viKj Z: vz} E i Ty T 2y
1 0-0"+e 1 -20 2 1 0 1 1
2 0- 0%, 2 2 ~35 6 2.5876 0 1 2
3 0O 07+ 3e 3 -48 12 4.6670 0 1 3
1 O- 0"+ ge 4 ~55 20 7.4872 0 1 1
5 0=0""5¢ 5 -62 30 10.4113 0 1 5
6 0- 0% 6e 6 —-100 42 13.4128 0 1 6
7 0 -0 e 1 -100 56 17.0724 0 1 7
8 0o 0.3 H -100 72 21.0724 (] 1 8
9 H H':ieo 1 -20 1 2 1 ] 1
10 20 O, 1 100 0 0 0 2 0
11 20 O} e v 55 2 1 0 2 1
12 2H H, -1 20 G 0 2 0 0
15 H H re 8 13 2 1 2 9 1
14 24+ O - },0 -2 145 0 0 2 1 0
18 0-H OH -1 80 ] 0 1 1 0
16 O-t+e ORH- -2 110 0 0 1 1 -1
17 O+H-OFK +e 0 50 2 1 0 1 1
18 20 + 2K : K,0, -3 0 0 2 2 0
19 O+e=0" -1 15 0 0 -1 0 -1
20 H+e H -1 5 v ) -3 1 -1
21 20 = 0%+ 2¢ -1 40 8 2,586 1 0 2

1t will be noted that the reaction equations are arranged in such a way that the first constituent
on the right-hand side is that one for which the concentration n; is given by Eq. 1,27. (For this
constituent, ! is equal to j.) There are no such equations for O, H, and e, since these are de-
termined by Eqs. 1.24 and 1.26. In all, we have 24 equations for the concentrations of 24
compounds.

Solving these equations numerically is extremely difficult because the equilibrium constant,
Eq. 1.23, depends Hn k and ng {as delined in Ey. 1.17) whichk can be enumerated only if the ny’s
are known, The problem was coded for a fast eiectronic computer using an iteration process,
but. owing to operational difficulties, only a small part of the computations planned could be
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completed. s particular, 1V was not possible to obtain results for very high iemperatures, and
the correction for the clectrostatic forcee, ¢ in Eq. 1.23, was not applied.

Mevertheless, it was possible to obtain reswl*s L. the most important reglon as illustrated
m Fig. 1.4, ‘The machine calculations gave J, ()'; n‘cf,li/(m[: n), ng k, and S — Sy directly as
functions of p, v, and T. y was computed by hand from Eq. 1.21 after graphical differentiation
of ng and k. The shock parameters py, vy, and ¥; = 74(vy) are ceadily obtaired by graphical
interpolation. The results are Jisted in Table 3.1.

1.6 CALCULATIONS USING THE THOMAS-FERM!-DIRAC MODEL, REGION Iil

For temperatures lov er than those considered in the previous section, the water
molecule remains undissociated. The HKW equation of state is stiil valid under these condi-
tions, but 1n ~ntirely different approach is possibie here, namely, the use of a statistical model
for the H,O molecule,

The statistical model repla. es the distinct electron orbitals of an atom by a continuous
electron cloud which is treated as a degenerate Fermi gas,

This model is particularly suited for the description of extremely dense matter, and it has
been used to obtain information applicable to astrophysical problems. By interpolations be-
tween Bridgman’s experimental data and the results of theories using this mode;, it was also
possibie lu ubtain information of interest in geophysics.

The same approach was made by J. H. Rosenbaum for water in a calculation made spe-
cifically for this project. The following highly idealized structure was assumed for water: Each
oxygen molecule is surrounded symmetrically by a certain number of hydrogen molecules, M.
Two of these belong to the molecule consldered; the rest belong tc the nearest neighbors. The
medium is thus represeated by means of polyhedrons, each having an oxygen ~.ucleus at its
center an¢ M hydrogen nuclei on its surface, Each polyhedron is approximated by a sphere, and
the hydrngen nuclel are smeared over the surface of this sphere, To be electrically neutral,
surch a sphere must contain 10 electrons, eight corresponding to the nuclear charge of the
oxygen atom and two to that of the two hydrogen atoms. If the radius of this sphere is @i, the
sprcific volume is

v. I gaNay (1.28)
3 m

where Ny, Avogadro’s number and 1 = molecular welght, The pressare was found from the
virial theorem to be:

kA s b K )
41 (G5 R A

where ¢ charge of the electron
n - Thomas-Fermi unit
x reduced radwus = p®
v - exchanue correction - ,3(2)
Z - charpe of the oxygen nucteus at the center = 8
N - charge of the hydrogea nuclel on the surface of the sphere = 2
¢ ~ a slowly changing function of M (see Table I in NAVORD Report 3847)

The potential, W, of the electron gas is determined by the TFD equation

e 3

with the following boundary conditions

P 3
+ ,;ol (1.30)
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\!(0) -1

N (1.31)
w(x) = x¥'(x) - 7  atthe surface of the sphere

The primes indicate differentiation with respect to x. the firat boundary condition yields the
potential due to “he oxygen nucleus at the center; the second condition ensures that N positive
charges are distrihuted over tie surface of the srirere and that the whole sphere is electrically
neutral, i.e., has Z + N electrons inside the sphbere. A more complete discussion is found in
NAVORD Report 3847, where an exhaustive 115t of references is given, The results of these
calculrtions can be summarized as f{ollows:

v, P, atm P, atm
ce/g (for M = 8) (for M = 12)
0.0988 4.52 < 10' 4.55 x 10
0.153 1.78 x 107 1.80 % $67
0.269 5.04 x10¢ 5.15 x 10*
0.700 4.44 ¥ 10° 4.13 x :Gb

it appoars that the pressure is relatively insensidve to the choice of M, which depends on the
numoer of nearest neighbors, This {5 fortunate because the actual structure of water at the
high temperatures and, therefore, M are unknown.

The pressures given above refer to absolute zero temperature. For higher temperaiures
the “thermal” pressure p must be added. In NAVORD Report 3847 the {o}owing expreseion is

derived:
_ KT [vfov a%p 1
Pr77% l‘(s;)'rzo(av )1-::0 l 5] (.32)

This can be evaluated easily for the degenerate electron gas and l2ads to the simple formuls

T
pr=21.357 (1.33)

This equation of state (namely, Eqe. 1.28, 1.29, and 1.33 combined) is valid only for extremely
Ligh pressu-es. Data {iw Region III can be obtained by interpolations between thase extremely
high pressures and fiegion IV, for which experimental data exist, Figure 1.2 shows such an
interpolation. It is now possible to derive the shock-front parameters as well as the other data
by the methods described in the previous paragraphy. These data apply only for those tempera-
tures where no substantial dissoclation of the water molecule takes place. The final results are
shuwn in Fig. 1.1; p; and ¥, as obtained {rom the TFD model are lower by a small amount than
those obtained from the calculations with the HKW equation. But, in general, the agresment is
as good as can be expected, considering the approximate nature oi botn approaches, Gi par-
ticular interest is the agreement in the temperature; because, according to a theory of Jones,
even a crude evaluation of detonation rates is exyected to give results of fair accuracy for the
p-v data, whereas good resuits ‘or the temperature can be obtained only if the form of the
equation of state is correct, Our regults may, with a certsin reservation, indicate that the
form of the HKW equation is approximately correct.

1.7 INTERMEDIATE -PRESSURE RANGE, REGION IV

The equation of state at pressures of about 100 kb and below has been treated in various
publications (see, for insiance, references 6 to 8). We have used the isentropic Tait equation
as proposed by Kirkwood and Bethe, Eq. 2.2 of reference 9, to map out v and J in the region
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between the shock front and the saturation line, It was necessary to uee variable coefficients
and exponents 1n this equation, This Tait equaticn falled completely in and near the region
where the HKW eqguation was used. The results are shown in Figs. 1.3 and 1.4,

1.8 RANGE OF VERY LOW PRESSURES, REGION V

For the sake of completeness, the relations which hold for low pressures, where the shock
wave behaves almost like an acoustic wave, are given below. I the sound velocity c changes
lirearly with pressure, i.e.,

¢ = cift + {p), (1.34)

the following relations can be derived:

Vo=V _ P i

v -_o_czl«ugp (1.35)
y R l-g4gp (1.30)
ooV, +( + D . .37
y =5 1+1¢ e 1 (1.37)

For very low pressures the following first-order aprroximations can be derived for the shuck
front:

1= P\ _ (P:-Pa)_ (m-m)
Um )= lim oy )= a2 (1.38
or'p-ym'( P ) o '\ P "o )
Py Po\ _ Py~ Py ‘.
Hmy/—— =1+ 2y 2 2,38
owpe T\ PG ) z( Po )' ¢33
where
ag=§Po°3
(1.40)
2= 1+ 24.

Using these first-order approximations, we obtain for the dissipated enthalpy increment h (see
definition in Eq. 1.14)
2
=3 [P1= Pe
lm poh = A 1.44
U peh = Pi( be ) (1.41)
In these equations we have used the relation v, = 1/p;.

Strictly speaking, the magnitude ; as defined by Eq. 1.34 refers to the change of sound
velocity along an isentropic. For low pressures, however, it is permissible to use values of {
which are obtained by mcasuring sound velocities as functions of pressure at conutant tempera-
ture. Experiments recently completed at the Naval Ordnance Laboratory®® give

£ =0.106 kb1,

This value holds for sea water as well as for {resh water over a wide temperaturc range (0 to
40°C) which includes the range in which we are interested, For a, we have used
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4= 2,376,

" This value holds for {resh water at 20°C and also for sea water at about 8°C, The lalter cise

correcponds to the conditions at Wigwam, whereas the former case is that for which the
thermodynam!c calculations were made, It scems reasonable to assume that, {nr high pres-
sures where the pertinent information {s lacking, our calculations which were made for fresh
water at 20°C hold adequately for sea water at a temperature of 8°C, Since in the shock-wave
calculations only the ratlo py/py occurs and the absolute value of the density of the amblent
medium does not appear, these calculations are relatively insensitive to the ambient tempera-
ture,

1.8 RESULTS

The final results for the shock-front parameters are listed in Table 3.1 and ure shown in
Fig. 1.1. The isentropic exponent ¥ and the reduced internal energy J for the whole region of
our interest are presenied in graphical form in Figs. 1.3 and 1.4,

In general, thermodynamic functions obtained from equilibrium calculations are not smooth.
With increasing temperature, different dissociation and iunization levels are reached, and
therefore the number of particles changes discontinuously; this results in irregularities in the
graphical represeatation of such functions. For practical reasons we have used smoothed data
in the hydrodynamlic calculations, and Table 3.1 gives such data with these irregularities elimi-
nated. In the region where there is an overlap in the data given by the TFD model and the HKW
cquation, we have given the latter full preference (except for the isentropic exponent 3), al-
though the differences are not very large. The HKW p-v data are in excellent agreement with
the experimental results of Walsh and Rice,!' who measured propagation and particle velocitles
of strong shock waves in water. Their results are indicated in Fig. 1.1,

The results of our equilibrium calculations of the isentropic exponent ¥ show a greater
scatter than that obtained for the other thermodynamic variables. This scatter in y may be
atiributed io varlations caused by the inclusion of excited states and to uncertainties introduced
by the graphical differentiations required (see Eq. 1,21). For y to vary smoothly from the low-
pressure reglon to the value 1,686 at infinite pressure, it wae necessary to use an average be-
rween the data obtained from the TFD model anu the HKW values (see Fig. 1.1).

v varies {rom the value 1.666 (at infinite pressure) to infinity (in the limit of zero excess
pressure). Atteinpts were made to introduce new variables so that a more well-behaved func-
tion could be used in place of v, It was not possible to obtain substantially simplified relatlnns,
and thus It was r cessary to use the calculated values of ¥ in tabular or graphical form.
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CHAPTER 2

CALCULATION OF SHOCK-WAVE PHENOMENA

2.4 INTRODUCTION

The calculations of the shock-wave phenomena produced by an atomnic buret were based on
the idealizing concept of a point explosion, i,e,, an infinitely amall explosive charge delivers a
finite amount of energy instantaneously. At the {irst moment, such a concentrated energy dis-
charge produces infinitely high pressures and temperatures. An instant later, these become
finite and subsequently run through the range which would occur in an atomic explosion. It i
this later range which we shall try to calculate here, since iuitially the model of a poini ex-
plosion is unrealistic even for atomic explosions, which produce high but finite temperatures
and do not release their energy at a single point,

An impoi iant consideration for atomic explosions is the question of the energy fransport by
raalation. A study of this question by Weber'? showed that, for underwater explosions, radiation
phenomena are much less important than for air bursts, In our calculations we have neglected
radiation entirely and have assumed that the energy of the burst is transmitted from one par-
ticle to the next by pressure forces only, This {8 a satisfactory assumption once the shock
frunt has traveled a certain distance, 2ithough it i8 a pcor assumption for the eurly stage of the
explusion and for the region near the center for later stages. Since we are not concerned with
these phenomena here and since they do not affect the results of interest to us, the neglect of
radiation seems appropriate,

The calcuiations described in this chaptcr deal with the task of integrating the sphericat
blast-wave equations with variable isentropic exponent y, They had to be carrled out without the
benefit of an electronic computer, and so certain approximaticns were necessary. However,
none of the approximations made seem to be of a serious nature. The greatest advantages in
tractability were achieved by the intrcduction of reduced variables and a corresponding trans-
formation of the hydrodynamic equations,

2.2 ENERGY EQUATION AND PRESSURE-DISTANCE RELATION

The total energy contained within the sphere bounded by the shock front is constant and is
equal to Q, the hydrodynamic yleld of the weapon, All particles within this sphere have kinetic
as well as internal energy. The law of conservation of energy may be written:

1, H
Q= 4r } ! ["%’- +p(E - z,)] r?dr = constant, (3.1)
()
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where E denotes the internal energy per unit mass for particles inside the sphere of radius r,
and E, denotes the internal energy per unit mass of the ainbient water, We transform this
eauation by introduction of the following reduced variables:

i} - pressure =P
¢ = reduced pressure = e Ak pressure b
~ Ay o eloclty  _u
@ = reduced particle velozity peak velocity
_ - __density _p
x = reduced density peak density  p,
¢ = reduced distance = radial distence =

radlal distance of shock front r,

J =reduced internal encrgy = E_p—E" P (see Eq. 1.4).

With these new variables and with the use of the Rankine-Hugoniot conditions given in Egs. 1.1
and 1,3, Eq. 2.1 takes the form

._._ﬂ 3. Py~ Do
Q 3 TPy 2p° M, (2.2)

where 1 is the reduced total energy defined by

m=3 f (m X+ szp, )g’ d. (2.3)

Since p, i& a function of py, Ey. 2.2 provides a convenicnt relation for the peak pressure p; as
1 function of distance r; for any given yleld Q, once 5 is known.

2,3 HYDRODYNAMIC EQUATIONS

To determine 5; we have to find solutions of the partial differential equaticns of the
spherical fluld motion

Uy +uup + é Pr= (2.4)
29

QFupy tpup + == =0 (2.5)

P, *upr = ¥(p,p0) (py + upy) (2.0)

and their boundary conditions, which are the Rankine-Hugoniot conditions, Eqs. 1.1 to .3, In
the above equations, p denotes the excess pressure above the hydrostatic pressure P,, y is the
isentropic exponent discussed in Sec. 1.2,

By introduction of tli» reduced variables ¢, x, and ¥ and the Rankine-Hugoniot conditions,
the hydrodynamic equations, Egs. 2.4 to 2.8, can be brought into the following form:

W1 e G‘““‘P
@ _@ 3 oxpy-py 3 In p, @.m
85 ¢ Py _fP
Pr~py &
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o9, 20 2inx
ox 18T O G
£ ¢ Mm__9
Pi=pPs &
%, 2¢ Iny
P_w=iy(8£' §)+H'+G'81np
£ ¢ o _9
pi—=py &
where
_3( Py )
r;dl =
H, = Hilpy,8) = 3* :tp' 1~ Py
! 1+ L 1+p
YRHPl—pO
- =r,dlnp.=_1_
Gy = Gy(py, A i H;
rydlinu, _H i »
L, = L =-_l.__l=.._’(1+_—.—L_)
1= Lilpy,A) 5, at 3 Ve P1—Pe
Y = v(pyyx,¥) Yau = YRy 0y
=Pi-podlnmy
py dlnp,

(2.9)

(2.9)

(2.10)

(2.11)

(2.12)

(3.13)

(3.14)

It will be noted that the time variable has been oliminated from these equations and may be

regarded as replaced by the peak density p;. The boundary eonditions are simply

¢=“| o=01
x=1ie=1 a¢_°}e=o.
$=1! [

(The latter two boundary conditions are obtained from symmetry considerations at the center of

(2.15)

the sphere and from the hydrodynamic Ey. 2.4.) It follows that the derivatives of ¢, x, and ¥

with respect to py vanish for £ = 1. Thus, for ¢ = 1, Eqs. 2.7 to 2.9 become

‘o,_(aq:) _ 2y +Hy+ L
1= (o= =T h T
=t

12 Po__
Pi=Po "
, = 9% —P1—=Pe
4= i‘; = E.‘;E!
wl (BE) {31 Po [Yl(wi + 2) + El]'

(2.16;

(2.17)

(2.18)

These differential quotients are fuactions of p; and 5, where gis an as yet undetermined func-

tion of p,, as indicated by Eq. 2.14.
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2.4 NATURE OF THE SOLUTION

In ordex to see how J is related to the solution of our probiem, we use the following con-
stderation: If y(p,p) is an analytic function at the shock front, we can calculate the higher
dertvatives @, @7, v X0y X'y o000 45 475 ... . All are functions of p, and 8. Assuming o,
x, and ¥ to be analytic, we can make a Tayler expansion around £ =~ {:

oltond =t-oit-0 G- -Lu-pis... (2.19)
xous) = 1-xitt =) + Al ig - X -, (2.30)
Heoud =t-yu-p+da-p-Lu-ge .. (2.2

Introduction of these expransions into the integral, Eq. 2.3, for the reduced total energy n;
ylelds n, as a function of p, and 8. This, by virtue of Eq. 2.14, is an ordinary differentisl equa~
t{on of the first order for 7;. Therefore this approach has reduced the three partial differential
«quations to one ordinary differential equation,

For practical calzulations this method is not suitable because the coefficients of the high-
crder terms in the expanaions, Fqs. 2.19 to 3,21, are too complicated, Therefore a combination
of expansions around £ = 0 and £ = { was used in this project, as will be described in the follow-
ing sections. The differential equation for n; was solved graphically by the method of isoclines.

2.5 TAYLCR CASE

In Sec. 1.3 we have seen tlat, for infinitely high pressures, the density p; directly behind
the shock front approaches a finite value, p; = 4p,. We also have ¥ = ¥; and 1/7qy = 0. In this
case the three partial differential equations, Eqs. 2.7 to 2.9, become ordinary differential
equations. This is the well known Taylor!? solution for strong point blast waves,

We shall assume that the Taylor solution gives the density, velocity, and pressure distri-
bution within the infinitesimal sphere at t = 0. This is an idealizing approximation because
aciual explosions, even from concentrated energy sodrces, canno. .ave such distributivns from
the veginning. However, it sezms safe to assume taat the actual distributions converge quickly
to those which are calculated with the assumption of an initial Taylor solution.

Since infinitely high temperatures are assumed to prevail throughout the aphere of dis-
turbance at t = 0, the isentropic exponent y is constunt within this sphere and equals Y. For
constant y the differential equations can be solved in closed form (see NAVORD Report 4183).
The solution is shown in Fig. 2.1 in the curves lateled p; = 4p,. It is interesting that the
density vanishes at the center of the explosion. The same holds true at later times when the
shock front has traveled to larger distances.

2.6 TXDANSIONS AROUND £ =0

The Taylor solution can be given not only in closed form (which is discusced in NAVORD
Report 4182) but also in the form of Infinite series:

2m+5 +

e=C+Ct™ 1 Cpf
X = Bet™ + Bit?™ 2 4 mdmedy (2.3)

T Agt AE™2 4 ATy
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Fig. 2.1 —Reduced velocity, pressure, and density.
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where

3

m _;'-o—':-i =45

Explicit expressions for the first few coetficients are also given in NAVORD Report 4182, ‘'he
numerical values are A = 0.306, A, = 0.320, B, = 0,343, C, = C.800, and C, = 0.229.

In NAVORD Report 4183 it is shown that such expansions niay be used to express the
desired solutions of the partial differential equations, Eqs. 2.7 to 2.14. For this general case,
that is, 1/ygy = 0, the coefficlents in Eq. 2.22 are functions of py, Substituting these expansions
into the partial differential equations and equating like powers of ¢ ylelds a set of ordinary
ditferential equations in the coefficients A;, Bj, and Cy, The first three of these are

dl
37,Co + Hy + Gy Fo :‘: =0 (2.23)
4] d In By
m{-LL -\ ~3C,- G- G =0 2.24
l(ﬂl-ﬂo "/ o ! 1dIn Py ( )
Ppm+2 [0 dinCo _ <
—— ——— A+ L~ +Co+ Gy =——=0. 2.25,
=1 BeCo ' VT py=pe 0 'dinp, (2.25)

These ara three equations in the four unknowns Ay, A,, By, and Cy. For each additional differen-
tial equation added to this system, one more unknown is introduced. Thercfore the expansion
around £ - 0 is undetermined unless additional information is incorporated.

As described in NAVORD Report 4184, this may be accomplished in several diffrrent
ways. The most successiul method tried uses Eq. 2.7. After solving for 83/dt and Integrating
from! Otof 1. we obtain

R L P = b ’(3_10 81n¢)
ro t-pt [T g ae e BT L g Tt G gy, ox db (2.26)

2./ POLYNOMIALS

Since the solutions can be expressed by means of expansions around £ = 1 (Egs. 2.19 to
2.21) and around £ = 0 (Eq. 2.22), one may construct approximate solutions by using relatively
few terms of cach and merging these together in the intermediate range. One of the simplest
ways to do this 1s to use the cspansion a~ound ¢ = 0 for the entire range of £, but to determine
a certain number of the coefficients in such a way that the boundary conditions, Eq. 2.15, are
fulfilled as well as the behavior near £ = 1, as given by the first-order derivatives, Eqs. 2.16
to 2.18, and any higher order derivatives which one may wish to include.

If only first-order terms are used, we employ a four-term polynomial for x and a three-
term polynomizl for ¢ and ¢:

@ Coi + Ce™M*y €, p2me5,
v 2Bot M + Byg2MeZ 4 Byg Imed 4 pyg Ami6, (2.27)
CmAgt AR 4 A2,
There are then 10 coefficients to be deterinined, for which we have the following conditions:
1. Three bounlary conditions, Eq. 2.15.

2. Three {irst-order derivatives at £ = 1, Eqs. 2.16 to 2.18.
3. Two first-order differential equations, Eqs. 2.23 and 2.24.
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One further condition can bc obtained from the fact that the mass of the sphere which is

bound by the shack front is equal to that of an equally large sphere containing water at normal
density:

4mpr f xg* d£~—3- oy (2.28)
or

By B, B. By Po

m+3 Im+5 dm+7 Am+d  3p;

The tenth condition is the relation given as Eq. 2.26. Introducing the polynomials in Eg. 2.27
into Ew. 2.28 yields, with the use of the abbreviation

J

By =
8.5by = 2 T 1=1,2,3,..., (2.29)
the follow:ng relation for A,
P: Po b’
Ao i+ L] Co(l); - 2b2 + b,) + (14 ’1) + b,]
bs
- c.(b, ~ 2b, +by) + (14 - .p,) +hy
+ -‘lp'—p" [Clb, + 8.5C,Cyby + (1.5C3 + 15C,Cy)by + 21.5C,Cyb, + 14Cibs)
0
Pi=Pop | 9C o _ _dgi (Dz-bx) . 0
* Po Gt |Fm p,“" 2240~ g p o\~ 6.5 (2.30)

This is an ordinary di/ferential equation for C, as a function of p;. Thus we have three simul-
taneous ordinary differ ential equations which determine A,, 13;, and C;, namely, Eqs. 2.23,
2.24, and 2.30, The other coefficients are given as follows:

A’=2—2A° -L"’|/6.5
A1=1-A°-I'|

B, = - 5.6B, + 3t 5“ - 7.3728 + 0.1857x;

B, = 8.2B; - 31—’19 + 18,4379 - 0.4852y] (2.31)

B; =- 3.680 +

3°':°° - 10.0851 + 0.3195y;
1

C“L—2C°—¢|/85

Cy=1-Cy~Cy.
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The accuracy of these polynomials has been tested for the Taylor case, where the exact
solution is known. There was agreement up to the third decimal place, which showed that it is
not necessary tc Include any more terms in the polynomials. This seemed particularly justified
in view of the faci that we are not =0 much interested in the reduced functions ¢, x, and ¢ as in
the integral n, formed from them. Small inaccuracies or approximations used under such an
integral usually have only a minor influence on the accuracy of the final result,

2.8 DETERMINATION OF 8

In all relaticns derived so far, 3, defined by Eq. 2.14, occurs as an unknown function of
pi. Only those ©'s, x's, and {’s which involve a 3 satisfying equation, Eq. 2.14, are solutions of
our problem.

The niethod used in this project determines 8 by means of an interpolation, First some
arbltrary and constant values are assumed for 8. Then ¢, X, and ¥ sre determined by the
methods described akove, Subsequently, n; 18 calculated using Eq. 2.3. When In 7 is plotted vs
In (py — o)/ py, the inelination of the 7y curve we seek must huve the value of 8 which was used
to calculate this curve. Such a curve is readily found in the same way ss the graphical snjution
of differential equations by the method of isoclines, Figure 2,2 illustrates the procedure,

Since it turned out that 7, was not sensitive to the value assumed for 8, an interesting con-
cluslon may be made on the nature of the solution, If 7, were assumed to be entirely Independent
of the assumed value of 8, Fiq. 2,14 would not be needed at all to arrive at a solution, and this
would eliminate the arbitrary integration constant of this differential equation, i,e., we would
have a singular solution, independent of the initial condition, It appears that this situation is
approximately true for the solutions we have obtained. 1t therefore seems possible to start the
calculation with different imtial Taylor distributions, i.e., with different values of ¥° such as
1.4, 1.66, or 7, and still obtain almcst the same result for the shock-wave parameters at dis-
tances where pressure measurements can be made,

2.9 LOW-PRF¥SSURF RANGE

When the shock {roni has propagated to large distances and the pressure is low, the wave
behavzs nearly like an acoustic wave. The peak pressure of such waves decreases approxi-
mately proportionally to the distance. For instance, Kirkwood and Bethc! have found the
following asymplulic behavior uf the weak shock waves:

- QO
Pi ry (In ry/ro)'s (2.32)

where ¢ s a constant and ry is the reference radius. From this we obtain

_dlmp, 1 1
dlnry 2Inry/r,

(2.3%)

This magnitude approaches unity slowly as the shock-front distance increases to infinity,
Goling back to Eq. 2.10, we find

|t=-

Inp, _ U -3

=g = 2,34

Inry, vy, ! 14__1__"_1__(14,‘3) ( )
YRH P1=Po

a.

or for icw pressure, with the use of the approximation, Eq. 1.38,

- llmdlnp'=1+‘_3

+
meved in Ty 3

cee (2.35)
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Compartson of Eqs. 2,35 and 2,33 shows that, for low pressure, ;3 must slowly approach unity.
From the defimtion of 3, Eq. 2.14, it can be seen that 7, must tend to zero. Thir gives us
qualitative information on ¢ and .: they must tend to varish for most values of £ for very low
shock pressures, ur clse the integral for 7;, Eq. 2.3, could not become zerc. y does not vanish,
as can be seen from the averayge density conditicn, Eq. 2.28; in fact, x approactes unity when
17" Py

Since

for t-1

aad
x =0 for £=0,

we obtain in the imit for zero shock pressure:

lime=lim: =0 0=¢g<i
[Thad ] 1 "Ps

Himy =1 0<g=1,

N~k

There is a discontinucus drop of @ and ¢ from 2t to 0 at ¢ =1 and alsofor x at £ = 0.
This implies that the derivatives «} and §{ increase to infinity when py — p,, but x}
vanishes. Indeeu, Egs. 2.16 to 2.18 become, with the use of Eqs. 1.38 and 1.39,

2{!0 11-4
limg¢j=lim{}= ot = —
o T N P —pe A 2+ 8
(2.36)
21-4
hm y. = — - 0.
PN Y

Thus (¢ ~ B)/(p, - p,) approaches = as p, approaches p,, It is difficult to evaluate the integral n;
for these conditions, because J increases rapidly with decreasing £ for low values of py. Basi-
cally, this is becaucc the bubble and shock-wave phenomena become spatially separated. Most
of the chock-wave eicrgy 18 concentrated near the shock front ard can be casily accounted for
by the methods described above. But this is only 2 fraction of the total energy, since an appre-
clable amount of energy is found as intern2l energy near the center. This latter energy pro-
duces the phenomenz of the pulsating bubble and is not conveniently accounted for by the method
described in Secs. 2.7 and 2.8,

Therefore, to obtain *., we may calculate the shock-wave energy and try to find a relation
between total energy and shock-wave energy.

At the shock front, energy is dissipated because of the irreversible shock process «nd is
converted into thermul energy. The shock-wave energy Qg 12 reduced correspondingly. Kirk-
woud and Brinkley, Eq. 4.29 in reference 14, have formulated this phenomenon as follows:

995 - _ snpehrt, (2.37)
d!‘l

where Qg = 47 I, [r(©) up dt and h = dissipated enthalpy incremnent. The integral for the
3hock-wave energy has to be carried along the path of the fluld pa.-ticle which is reached by the
shock front at t = t(ry) and r = r;. The upper limit corresponds to a long t{me ccmpared with
the duration of the shock wave hut must be chosen in such a way that secondary pulses are not
included,
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In NAVORD Repurt 4182 the shock-wave energy Qg is expressed by & volume integral.
Defining the reduced shock-wave energy g in the same way as the reduced total energy, the
{following expressions have been found

4
Q= 3 7ripy —-'zp—p-!r]s (2.38)
and
lim ng=3 f (Dx + %) £ dg (2.39
nTh
3 3

=2¢;+x§+3+2u',+3' (2.300)

where the derivation of Eq. 2.39a is explained in NAVORD Report 4182. With Eq. 2.36, this
becomes

o
’_l
>
-l
i+
=i

Hm (2.40)

x"hszzpo

This equation is of little help yet, since it relates the reduced shock-wave energy with 8, the
derivative of the reduced total energy. Another expression for ng can be obtained from Eq.
2.37. Introducing Eq. 2,38 yields after a few manipulations

1
- 2hn§ 1+ YRH Pl (1 A (2.41)

ng =
£ plpy—pe) _1
YRH Pl po (Bs A

and, with the use of Eqs. 1.38, 1.39, and 1.44,

A p 2+ B
u [P Ty cFE 2.42

mirPlOnb 3 pp Bs- 3 ( )
where

dIn

‘)s - .—-—h—.

dlIn P1= Do
ﬂo

Combination of Egqs. 2.40 and 2.42 gives tiie following differential equation for ng (the limit sign
is umitted):

332 ﬂ‘ £o (4/3) +ﬂs 2,43
$°7 h 1-7s @49

Its golution is

3a, p. — (7 Cp, Polls )
= —2 in ~In f (2.432)
TS=7Z ps \3 " pr-pe Py~ Pe

where C Is the integration constant. Combination of this solution with Eq. 2.40 yields the de-
sired agymptotic expression for 3:

1
lmg=1-~ e = (S0 ", (2.44)
[ nd ] +x [ 1%l
57
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The werit of this sinpie expression is that it shows how 8 can be extended into the low-
pressure region where the calculation of 7y becomes inconvenient, The integration constant ¢
s determined by the resuits for 3 obtained in the biigh-pressure region;  must merge smoothly
from one region into the other.

2.10 PLCAK APFRORIMATION

Another, uicre elaborate, treatment of the low-pressure range is dore hy the use of the
neal annroximation. By “peak approximation” we reter to the sttempts of va fous authors to
describe the shuck-wave propagauon in terms of shock parameters only. This cun be done by
making certain idealizing assumptions, for instance, assuming 2 simiiarity restraint on the
wave shape. Kirkwood and Bethe as well as Kirkwood and Brinkley have precented such chock-
wave theories, and in their application to underwater erpiosions they assumed an éxponential
wave shape. These theories have been success{ul, and they would be quite appropriate for our
case. We have used the more recent theory by Snay and Matthias.!

The Snay-Matthlas theory gives an interrelation between peak pressure, time constaat, and
the profile of the wave which is characterized by the shape factor i This magnitude is defined

as follows:
. rp(afn/at‘\]
= l YR - (2.45)

4

where { is unity for an exponential wave shape and zero for a triangular wave shape. The theory
leads to the following differential aquations:*

dp, , P ,
Fi" +Hepya=0 (2.46;
9 P B pat (g tpy =0 (247)

where x = reduced distance = ry/r,
ry = reference length (will cancel in this analysis)
a = time factor = ry, tey
@ = time constant = — p/(apsat)
¢y = sound velocity atp=0

The variable ccefficiente Py of these differential equations are obtained {from the three hydro-
dynamic partial differential equations and are functione of the peak pressure p, only.

Introducing 8 and p,, these two equations can be transformed, with the use of Eqs, 2.34 and
1.12, to:

_ 3 P = pe
8= m YRH T 1 {2.48)
and
dlnaox _ -1 (W _
R A w.fax), (2.49) .
dlIn e
"

*See ret;ence 1, Eqs. 1.6 and 2.7, where the symbol ay/a® instead of { is used to desig-
nate the shape factor.
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v P
where w = — P11t

YREPI=PO 1
,= P _Pu
YRH P1— Pe Py
wy=1-Fy
w,=Py
Wy = Py
Wo = PygPy¢
and
ax=2L. (2.50)
h

The variable coefficients w; are listed in Table 2.1. They are nuw functions of p,.

Table 2.1 —VARIABLE COEFFICIENTS OF EQS. 2.48, 2.49, AND 2.56

£1/Po L) w2 w3 " wg wg
1.60 0.3523 0.0375 1.211 4.45 -0.0187 0.098
1.50 0.3947 0.0468 1.262 3.32 -0.0182 0.114
1.40 0.4578 0.0807 1.240 2.33 -0.0158 0.128
1.30 0.5182 0.0756 1.190 1.50 0.0000 0.140
1.20 0.5874 0.0877 1.124 0.810 0.0300 0.142
1.15 0.6454 0,0931 1.092 0.533 0.0750 0.12¢9
1.10 0.7326 0.0921 1.067 0.312 0.0813 0.110
1.075 0.8005 0.0820 1.052 0.220 0.0770 0.0952
1.050 0.87589 0.0634 1.038 0.143 0.0585 0.0753
1.040 0.8980 0.0544 1.032 0.112 0.050¢ 00842
1.030 0.9281 0.0420 1.024 0.0830 0.0420 0.051%
1.020 0.9501 0.0298 1.0372 €.0535 0.0309 0.0356
1.010 0.9744 0.0159 1.6065 0.0255 0.0175 0.0198
1.n005 0.9858 0.0087 1.0042 0.0122 0.0025 0.0097

Equations 2.48 and 2.49 would yield g as a function of (p; — py)/py, if the shape facter {
were known as a {unction of n; 1In the high-pressure region, however, we have already ce-
termined  as described abcve. Here Eqs. 2.48 and 2,49 can be used to calculate the shape
factor. The result is shown in Fig, 2.4. Also, for the low-pressure range, the asymptotic
relations in Eq. 2.44 can be used to find the shape factor. The value of { in the intermcdtate
range can then be approximated by interpolation.

In the actual calculations, we used a combination of the two methods described a2bcve.
First, the integration constant ¢ in the asymptotic expression, Eq. 2.44, was approximately
determined by merging the two parts of the 8 curve graphically, as shown in Fig. 2.3. Once
this integration conitant {s known, the shape factor can be criculated {or the Inw pressursa
and interpolated in the intermediate range. Now Eqs. 2.48 and 2.49 can be used to find 8 and,
subsequently, an improved Integration constant ¢, The prucedure is repeated until satisfactory
ccavergence is obtained. It turns out that the shape factor has & maximum and a2 minimum in
the range of our interest and varies between 1.65 and 0,53 (see Fig. 2.4). These calculations
yield 8 over the entire range of our project. Subsequently n; can be determined by integration.
This concludes the major part of the shock-wave calculations since now the peak pressure-~
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distance curve as well as other shoch parameters can be readily computed, as will be do-\
scribed in the next sectwon,

2.11 SUMMARY AND RESULTS

For the benefit of the reader who is less interested in mathematiral developments, the
salient points of the analysis are summarized here.

The main objective is to calculate the shock-wave peak p: essure as a function of distance
for » .oint explosion. A convenient expression for the pressure-distance relation may be ob-
tained from the fact that the total energy of the spherical disturbance caused by the explosion
must be constant and equal to Q, the hydrndynamic yield of the explosion. The matnematical
expression of this statement is

4 -
Q=3 7rip, P-‘EB;Q? 7, = constant, (2.54)

where p; = shock-wave peak pressure
py = peak density
py = density of the undisturbed water
ry = distance of the shock front from the center of the explosion
7y = reduced total energy as defined below (see Eq, 2,53)

According to the Rankine-Hugoniot conditions, the shock pressure p, i8 a function of
p1/po and is given by the Rankine-Hugoniot adiabatic, Eq. 1.1. In the thermodynamic part of
the calculations this function has been numerically determined and is presented in Table 3.1.
{t will be noted that p, varies between 4p, and p,. The latter value corresponde to p, = 0; the
first, to p, = «; hence to the instant of explosion: t=0andr, =0,

It was found advantageous in the analysis to use the magnitude p,/p, as the principal ju-
dependent variable, (For simplicity, we write p, inst2ad of the above ratio, assuming py .8 &
constant and known magnitude.) A glance at Table 3.1 will show that it is possible, once p; 18
specified, to determine any other variabole of interest, such as pressure, radius, or time,

Tne reduced total energy 7, depends on the shock strength; hence

N = nylpy). (2.52;
Once this relation between 7, and p, is found, the corresponding distance of tre shock frcat ry

is easily found from the energy equation, Eq. 2,51,
1y is defined by

wes 2

oy R Y

2
+ 200 ] (1) a (r)
g1 Fo ) \ry ry

! 2Jpo 2
=3 LV el d
j;(wx*rp‘_pod)i £

Do

(2.53)

where u, is the particle velocity directly behind the shock {front; the symbols without sul-
scripts refer to points between the front ind the center; ¢ is the reduced velucily, x 1s the
reduced density; ¢ is the reduced pressure; and ¢ is the reduced distance., These reduced
variables take values oniy between zero and unity, Figure 2.1 shows the behavior of these
magnitudes for various values of p;. J is the reduced internal energy discussed in Sec. 1.2.
1t is z function of three variables, namely, py, ¥, and x. These data are directly obtained by
the thermodynamic calculations outlined in Chap. 1 and are shown in Fig. 1.4. Obviously the
material p12sented in Figs. i.4 and 2.1 provides all the {nformation necessary to calenlate 7
by means of Eq. 2.53, However, to obtain ¢, x, and ¢ as functions of ¢ and py, one must solve
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the three partial differential equations of the fluid motion, In NAVORD Report 4164 several
methods are proposed which provide approximate solutions of reasonable accuracy.

One of the interesting features is that simple equations exist for the inclination of the ¢,
X, and ¥ curves at £ = 1 (Eqs. 2.16 to 2,18). This means that the behavior of the reduced
variables near £ = 1 can be found in a relatively simple manner, which is most important for
the finding of 1, by means of the integral, Eq. 2,53, Since the factor E’ oceurs in the integrand,
values for small ¢ contrihute littie to the total value of the integral and hence do not need to be
known precisely. (This holds for high pressuree only. In the intermediate- and low-pressure
ranges J increasee 1apidly with decrrasing £. Hence, other methods are used in these ranges.)
For greater accuracy in the evaluation of #; in the high-pressure range, we huve derived series
for the reduced varlables which deacribe their behavior around ¢ = 0. Combination of both
treatments by means of polynomials, which inzorporate the information available at £ = 0 as well
as at ¢ = 4, resuited in the expressions in Eq. 2.27. Their accuracy is excellent in the one
inatance where a comparison with the rigorous solution was possibie,

However, thers 18 one difficulty ' these otherwise simple calculations; they involve* an
unkrown parameter, namely,

SPi=pody _ dlnm (2.54)
Pollt Bt gunPi—Po
(] ]

This magnitude is the inclination cf the n; curve, when plotted vs (ry ~ pg)/py in a logarithmic
scale. Figure 2.2 shows such a plot,

Actually ¢ 18 the magnitude of principal concern, because, once B(p;) is known, the im-
portant magnitude 0y can be readtly ohtained by integration. Therefore the greatest part of the
analysis is devoted to the task of finding 8. A differcnt method was used in each of the three
pressure regions consldered,

The hign-prersure region corresponds to py between 4p, and 1.4py and to pressures hetween
« and 484,000 pel. Here, 7, was calcu’ated from E 3. 2.53 with various arbitrarily assumed
values of 8, The= 1 is plntted v8 (p; — pa)/py and an 5, curve i construcied which has an incli-
nation equal to the assumed 8, Along this curve the condition in Eq. 2.54 is satisfled, and this
B is ihe solution nf our problam, The interpolation wieihod used to select 8 is llustrated in
Fig. 2.2,

The low-preszure region extends from p; = 1.01p, down to p, = p,y and corresponds to
pressures between 3260 pst and zero. For this reglon, the foliowing asymptotic relation can be
derived:

%
A
B=t- s xe"=(p—fﬂ°—m> (2.55)

Thig determines f as a function of p; and an integration constant ¢ which 18 to be determined.
Figure 2.3 shows the form .t the g curve wher plotted va the logarithm of (pg — pg)/py. A change
of ¢ moves thia curve horizontally either to tha laft or to the right without changing the ordi-
natz8., This shows how the 8 curve can be appreximately deawn for both the low-preseure and
the latermediaie-pi essui e ranges: The asymptotic pressure curve is moved into such a posi-
tic~ thal a gmooth curve is obtained from the high-pressure down to the low-pressure range.
The curve thus obtained corresponds to the fine line in Fig, 2.2, (The figure actually shows not
this crude intermedlate apprcximation but the {inal resuit obtained with the use of the subne-
quentiy described methed.)

The irtermediate-pressure range has been calculated by means of a “peak approximation.”
With this term, we refer to the theorles in which an atiempt 18 made to describe the shock-
wave nropagation in termn of shock parameters, such as peak pressure, time constant, or re-

*Compare Egs. 2.16 to 2.18, 2.10, and 2.14 of this report.
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iated magmtudes. This is oaly pussible 1f assumptions as to the shape of the wave proiiie are
made, and they are appreximations for that reason, Examples are the highly successful
Kirkwood-Bethe and Kirkwoud-Brinkley theories. We have used in this project the mare recent
theory of Snay and Matthias.! Adapted to ovr problem, this theory vields:

-3 P1L=Po
b SrTwax a1

dlnax _ -1 (2.56)

dlnﬂ-i‘-’—w‘+w’ax
Po

w, ~
Wy — —4 - wiox - wlax
(a ax W o )'

where wy (v wg - funclivas of py, ilsted in Table 2.1
ax = time factor = ry/cy8
cg = sound veloclty at p, = 0
6 = time constant = p = (8p/et)
{ — shape factor, see Eq. 2.45 ({ is unity for an exponential wave, zero for a
triangular wave)
Yup = {d In p{d In py), listed in Table 3.4.

At the end of the high-pressure range, p,/py = 1.4, we know all three magnitudes involved in
Eqs. 2.56, namely g, ax, and {. The latter two are the initial conditions for the above diffcren-
tial equation. To integrate this equation, { must be known as a function of p;. Assumption of a
constant f would have been a good approximation, We went even further by estimating f as a
function of p,, as described in Sec. 2.10 and shown in Fig. 2.4. Finally, integration of Eqs.
2.58 yields g8 as well as ax from which the time constant 6 can be obtained. The results are
glven in 'fable 3.1.

Subsequent stratghtforward calculations yleld ny, Eq. 2.54, and the shock-front distance ry,
Eq. 2.51. This vields the desired pressure-distance relation, The other shock-wave param-
eters, such as time constant and shock-wave energy, can now be calculated without difficulty.
This will be explizined in the following paragraphs, together with the presentation of the
numerical resvles,

The peak pressure—distance curve for a point explosion with a yield of 30 kt of TNT is
presented 1»n Fig. 2.5 together with the experimental evidence obtained in Operation Wigwam,
as given in the preliminary verslon of reference 15. Also shown are the results of the pre-
lininary calculations submitted prior to the test as “predictions.” The two curves differ in the
range of interest by very minor amounts, and either one is in good agreement with the experi-
mental results,

The pressure-distance relation for any other yield Q can be easily calculated from the
values of r;/Q"> which, together with the peak pressure, are given in Table 8.1, Fnr low pres-
sures (3000 psi and below), this reialivn can be approximated as follows:

KLt
by = 4.608 x 10* (L) (2.57a)
§’
1 113
- 18,800 (%) (2,57
t

where py 18 in pounds per square inch; r, 18 in feet; Q is in kilotons of ‘TNT, where 1 kt is 10"
g-cal (~4.20 ~ 10" ergs); and W is in pounds of TNT (1 kt = 2.205 10% 1b).* Comparison of

* A detonation energy of 107 cal g has been assumed for TNT. Previously published values
whizh are up to 10 per cent higher than this are based on theorctical calculations which are
supercaded today, A reliable value is not known, and there are Indications that even 103 cal/g
is too high. This shows cleatly thas the choice of kilutons of TNT as an energy unit is in un-
fortunate one,
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Eq. 2,57b with the corresponding formula for the shock-wav2 peak pressure produced by a TNT
explosicn,
Wl’ 1.1

p, = 21,600 (-;) . (3.58)

shows that for a point explosion an energy equivalent to that of 1.446 1b of TNT Is necessary
to produce the same shock pressure as does 1 1b of exploding TNT. Or, in other words, the
shock-wave peak pressure of a point explosion with a yield of 1 kt of TNT is equal to that of
an exploding 0.692-kt TNT charge. .

The shock-wave peak pressures observed at Wigwam correspond to those produced by a
THT explosion of 46.2 x 10° Ib charge weight.!* The actual yleld of the Wigwam explosion is
not accurately known, The followiag values were quoted at the Wigwam Project Officers’
Conference at the Naval Radiolugical Defense Laboratory, San Francisco, in October 1955;

Radiochemical yleld:
Los Alamcs Scientific Laboratory, 33 = 3,2 kt of TNT
Naval Research Laboratory, 35— 2.5 + 10 kt of TNT
Hydrodynamic yiela:
Armour Research Foundation, 30.5 £ 1 kt of TNT.

Using the LASL value, it is found that according to the exnerimental evidence of Operation
Wigwam, an atomic underwater explosion with a yleld of 4 kt of TNT would produce the same
shock-wave peak pressure as a TNT explosion of 0.65 x 8,123 kt charge weight. Theé caiculated
value (0.692 kt) is within the limits of the experimental error. This error appears to be
large, because expressing the shock-wave peak pressure in terms of energy amplifies the
errors of the pregsure measurements by the power 3/1.13 = 2,655, For the same reason it is
more difficult to predict accurately the energy equivalent than the shock-wave pressure,

If the calculated curves in Fig, 2.5 were drawn for a yleld of 32 kt of TNT instead of 30 kt
of TNT. the pressures would b2 2.5 per cent higher —a change which would hardly affect the
agreement with the experimental points shown, 8ince the question of the actual yleld was not
settled at the time of this writing, all data in this report are presented for 30 kt of TNT, the
yleld for which the calculations were originally made.

The time constant is defined by

. p _rg i
T @ x| (2.59)
Calculated numerical values of 6,Q" as well as 8 for 30 kt of TNT aras lsted in Table 3.1.
Figure 2.6 shows a cumparison with the test results: the calculated time constant is about 10
per cent toc high. Stnce most shock-wave theories give poor results for the time constant, the
agreement may be coasidered ratisfaciory.

The arrivai {ime for the shuck front at a point at a distance r, is given by

¢ -[n dr, (2.80)

where U is the propazatian valocity of the shock front

v (20" .60

Introduction of the variables s and n, ylelds

P1—Pe
. 1+ +
- AT f‘ s (ﬂ)y'dp.. (2.62
I(pot's (ym)'s (Pl"ﬂo * (n)'a(p) % P '
O e N Hpy)
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Numerical results for t as well as t Q'* are uiven in Table 3.1. For high pressures and smatl
distances, the arrivat timc wain be obtained by means of the Taylor solution (reference 13, Eqs.
7 and 8). In our notation,

L]
av3 AN
LeYe [/ AR LT
U 53 W= b ( p,) Q"
(r)”
=€ -0
£.588 x 1074 T (2.63)
~ (r)” ’
= 0.830 -

where the numerical values apply to p, = 4p,, t in milliseconds, Q in kilotons of TNT, W in
pounds of 'TNT, and r, in feet.

For moderate and large distances Eq. 2,62 gives good agreement with the test ~esults re-
ported in the preliminary version of reference 16 (see Fig. 2.7). However, for cloge-in dis-
tances both Egs. 2.62 and 2.63 1re in poor agreement with the test results (Fig. 2.7). This
disagreemant is probably due to the dealizing assumption of a point explosion with an isentropic
exponent of %, For real explosions this value may be higher.

The shock-wave energy flux (commonly called shock-wave erergy) is, for low pressurcs,

‘ -
£ow = —om f ? g, 2.64
sweos ), Pat (2.64)
This magnitude is equivalent to the integral Qg in Eq. 2.37 and can be expressed as fullows:

2
_ns Q" (Q") -
Egn ° 77_: - T, . (2.63)

where 75 1s the reduced shock-wave energy defined by Eq. 2.38. The ratlo (1/47)(ns/my) 18
listed in Table 3.1 1t is 2 slowly varying function of p; or, what amounts tc the same thing, of
QY./ry. For pressures below 3000 ps1 we have approximately

0,06

)
L1945 x40 (E) : (2.66)
47 r
and, by combination with Eq. 2.65,
1.y 2,08
Egw = 5.522 x 10° Q" (3_”) (2.67a)
. 2,08
)
= oe3w (2] (2.67b)
Ty

whers Fgw i8 in inch-pounds pe: square inch, ry 18 in feet, Q is In kilotons of TNT, and W is in
pounds of TNT, It should be noted that these theoretical Jormulas apply to the total shock-wave
energy. In the empirical formula for TNT,
t 2,08 *
Egy = 2410W" (“r'—) . (2.68)
1

the integration in Eq. 2,84 is carried up to 89 ard not to intinity. However, for all practical
purposes this is equivalent to the total shock-wave energy. The experimental values shown in
Fig. 2.8 are obtained by integrating up to the time of tae surface cutolf only; this occurred at
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about t = 16 to t = 30, They represent only fractions of the total energy, although very large
fractions. Considering these factors of uncertainty, the agreement between theory and experi-
n.ent I8 fairly good.

An explosion of 45.76 x 10* 1b of TNT, which would give thc same shock-wuve peak pressure
as a 30-kt TNT point explosion, would not produce the same shock-wave energy (see Fig. 2.8),

An explosion of 54.06 x 10* Ib of TNT would be necessary to do this, as can be found from Eqgs.
2.88 and 2.67h.

61

SECRET - RESTRICTED DATA




S e

CHAPTER 3

BUBBLE PHENOMENA

3.4 INTRODUCTION
' The nature of the bubble formation bv a point explosion differs in some respects from that
of conventional explosives, In the latter case the reaction products of the explosion expand and :

push the water aside, thus forming a gas sphere which then performs the well-known bubble
pulsations, The bubble interface always consists of the same particlies, namely, thosc whicli
were in contact with the charge before the explosion, Vaporization of the water is entirely
unimpnrtant,

In the cage of a point exploation, the water ig pushed aside by expanding steam. The heat
which vaporizes the water stems from the energy discipated at the shock front and is that
energy which the shock wave leaves behind in the form of thermal energy after the medium has
roexpanded to the initial pressure. Consequently, the water has a higher temperature in this
state than it had before the passage of the shock. This temperature increment decreases with
increasing distance from the center. Near the center it is high enough not only to vaporize but
actually to decompose the water. At greater distances this tecmperature increment eventually
drops to a value which corresponds to the bolling point of water, This condition determines the
bubble radius. Since the boiling point is a function of pressure as well as temperature, the
mass of water which is evaporated dependz nn the prevailing pressure, which changes durinyg
the expansion of the bubble. Thus the interface is not formed by the same layer of water but is
transferred from one set of particles to another. At the moment of the bubble maximum the
greatest mass of water is in vapor form, The radius of this maximum bubble is the parameter
of primary interest, All the other bubble parameters, such as the first period and the bubble
energy, as well as the numerical values of the energy partition, are readily deduced onco this
magnitude is found, '

3.2 DETERMINATION OF MAXIMUM RADIUS

The energy which has been imparted to the water by the explogion can he subdivided into
three portions:

1, Shock-wave energy, Qsw.

2. Dissipated enerpy, Quisa- .

3., Bubble energy, Qg.

The bubble energy is most convenlemly found from the difterence of total enorgy and the
first two energy terms noted above: o

Qp=Q-Qsw - Quips: (3.1)
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The shock-wave energy {raction is, according to Eqs. 2.38 and 2.2,

Q ]
—SW = 23, 3.2
Q M ®.2)
This magnitude is a function of distance and has been calculated in the previous chapter.
Numerical results can be obtained {row: Table 3.1.

According to Eq, 2.37, the dissipated energy for a shock wiich has traveled from the
distance ry tor} is

f‘
Quies = 4700 fp' hridr, (3.3

where h is the dissipated enthalpy increment, Eq. 1.14, and r, is the distance of the shock front
from the center of the explosion. With the use of Eqs. 1.42, 2.2, 2nd 2.34, we obtain for the
dissipated encrgy fraction

Quiss . 91 2h [ (P1 =P
o = [" = s |ae v+ 8dpy (3.4
) f Pl"h(p,p.p’) \ P )

Vi

The lower limits of the integrals in Egs. 3.3 and 3.4 refer to the point 2t which ths shock-wave
energy, Eq. 3.1, is calculated. The upper limits of these integrals must be chosen in such a
way that the integral covers only those particles which are in the liquid state at the moment cf
the bubble maximum, since any particle which vaporizes belongs to the interior of the bubble
and its energy is counted as bubble energy. Therefcre ¢} derignates the layer of particies
which forms the in'erface of the bubble at its maxtmum expansion, and the sphere having this
radius contains the mmass of water evapcrated. When the shock front has traveled to the
distance ty, it encompasses 2 sphere of average density p,, the normal density of the water
before the explosion. Later, this sphere, consisting of the same particles, has expanded from
the radius ry to the maximum bubble radius Ay. Of course, the mass of these two spheres is
the same, and therefcre

r

A
m _,(, ¥ dm - 41‘;" pridr

.« R 4 . (3.5
= 4% L perydry = stp.(r}) A
The volume of the bubble at it5 maximum is then
;:u\’.“ - fok“ vdm
(3.6)

4x [ pyulrir}dr,,

where v is the specific volume of the steam inside the bubblc at the mu.nent of the maximum
expansion, We assume that at this moment the presscre Py, is constant throughout the bubble,
Since the bubble interface consists of saturated liquid, ths pressurs is the saturation pressure Pg
of water in the thermodynamic state prevatling at the interface, The pressure Pg and the

specific volume vg of the saturated liquid are functions of the entropy S only and can be readily
obtained {from the steam tables, such as in reference 17. Thus

Pa 7 PslSa,) 3.7
v(AM) = vg(Sa,, ).
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A1so listed in the sieam tables is the specific volume of steam at constaut pressure as a func-
tion of entropy. Therefure we have

v(r) = v[S(r),P,,]
(3.8)
= v[8(r),8{Ap) ],

Since the entropy 13 constant alosg the path ¢t a particle, once the shock has passed over it, we
have

S(Ay) = &(ry)

S(x) = S(ry) e
and

v(r) = v[S(ry),8(r{)).

This shows that v(r) can be determined with the use of thu steam tables and Table J.1. (The
steam tablas glve tie entrcpy increment above 0°C, whereas Table 3.1 gives that ahove 8°C.
Therefore 8(8°C) — S(0°C) must be added to the latter values {o bring them on an equal basis.}

The exact evaluation of the integral in Eq. 3.8 is difficult because v increases to infinity
when r; approaches zero, A rather crude approximstion was empioyed, using Simpson’s rule
for the evaluation of this integral. The result is shown in Fig. 3.2 (the curve marked Eq. 3.6},
where the dimensionless magnitude Ap/vy is plotted vs py/po.

To obtain & solution of our problem, we need another independent expression {or the
magnitude A »/r. According to basic bubble theory (Eq. 8.3 of reference 14), the maximum
bubble radius and *he bubble energy are related by

3
A=y, (3.10)

where P, I8 the absolute hydrostatic pressure at firing depth and apg s a factor which accounts
{or the internal energy within tne bubble. {Jn the bubblc theory, absolute energles are usually
used, whereas the encrgier Q, Qgw, ancd Qpare excess energies, These must also be accounted
for by ayg.)

Introduction of Eq. 2.2 into Eq. 3.10 yields

(A - e o P1— P Q
(_r‘f‘) = 16,284ay Tt 2P 20, (@.11)

where Z, s the total hydrostatic head in feet and p, is in kilobars. Figure 3.2 (the curve
marked Eq. 3.11) showa the resuito obtained {rom this equation togetber with Eqs, 3.1 to 3.3.
The curve holds far Z; - 2033 ft and oy = 0.8. The lower iimit of the integral in Zq. 3.4 was
set at p¥ = 1,64p,. From Table 3.4, one finds the corresponding shock-wave energy fraction
Qsw/Q = 0.20.

The two curves for A+y/1¢ Intersect at tue poirt

P1.4507 and M -ean (3.12)
Po ry

Thie establishes the solutiun of our 2roblem 2nd detormines immediately the following magni-
tudes, as illustrated in Figs, 3.1 and 3.2:
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Fig. 3.1 — Dissipated energy, bubble energy, énd entropy.
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o5,

;=115
S{Ay) = 0.415 + § (0°C) (3.13)
% =
Q 0.380.

3.3 BUBBLE PARAMETZES AND ENERGY 2ZARTITION

From the results ir Fqs. 3.12 and 3.13 we flud the maximam bubble radius ior Q = 30 kt of
THT and 7, = 2033 t:

An =373 1t 3.14)

ihe corresjonding period of the first bubble pulsation T {s readily ohtained from the ex-
perimental evigence that the ratic of the period constant K and the vadius constant J are al-
most the same for 211 high cxplosives tested so far.’ Using the vaiue 8,345, which holds for
TNT, we have

K = 0.34%J

(3.15)

This yields the ficst bubble period for a 30-ki TNT point 2xnlosion at 2 depth of 200 ft:
T = 2.86 sec. (3.15a)

Kere the question acrises waetner corrections to the period for rurface or vottom effects
should Le made, {The maximuin radius is rot changed by these effects.) An approxi:sate
formula for susi* a correction i3 (s2e Eq. 16, p. 5% of reference 19):

T, (x -0.2 '-‘DM +0.2 %M) . (3.16)

witers T, = free water perind as calculated above
Ay = maxinium bubble radius
D = depth of erplosion below water suriace
B = dzpth of hottom below center of explosion.

This and simllar formulas found in the literature b;d!y overcorrect the hottom effect,
They also overcorrect the surface effect for large high-explosiva charges once the bubbis ie
several maximum radii below the surface, Thz latter eifect is not so wel: established at the
first one and is not mentioned in the litcrature, but it is evident from Fij;. 8.21 of refe-ence 14.
For configurations similar to that considered here (depth about 6’/', rmaximum radii), the un-
corrected equatior seems lo give tlie more accurate result, The period corrected for bottom
and surface effects would be 2.79 sec, i.e., about ? per cent ameller.

In Sec. 3.2 the partition of the three energy terms has been calculated; see also Fig. 3.1.
We summarize:
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Frergy balance:
Bubble energy. 39 por cent ¢f Ui total energy
Dissipated anergy, 41 per cent of the total energy
Shock-wave energy, 20 per cent of the total energy.

The last two terms depend on the distance to which the shock has traveled, They hold for
6y = 1.01p, (which 18 the value of the lower 1imit used in the calculation of the integrai, Eq. 3.4).
This corresponds to the shock-{ront distance

ry = 612.4Q"
or
ry = 1803 f for o 30-kt TNT point explosion.

At larger distances the shock-wive energy decrenses as shown in Table 3.1, whereas the
diseipated energy increases corrsspondingly.

3.4 BUBBILE PRESSUKE AND TEMPERATURE, MASS OF WATER VAPORIZED

In Sec. 3.2, we have found the entropy on the bubble interface at the moment of the maxi-
mum expansion. From the steam tables we can find the corresponding pressure and tempera~
ture of the saturated liquid, The first magnitude is equal to the bubble pressure at the moment
of the bubble maximum, and the latter r .crs to the temperature on the bubble interfz2ce at iisc
same momsnt, From the steam tables we find

Py = 52.4 psia
(3.17)

T{Ay) = 284°F,

At the maximum bubble radius the bubble pressure has therefore dropped to '/,,., of the
hydrostatic pressure and i constant throughout the inside of the by Lule, The temperature is
constant only within the shell, adjacent to the bubble interface, which contains moist steam,
¥rom this point on, tho temperature increases rapidly with decreasing distance from the
center and, thecretically, reaches infinitely high values at the center.

The density of the med.am instde the oubbie is, at the interface, that of the saiurated liquid
(about 0.925 g/cc). The density decreases rapidly with den=easing distance and vanishea at the
centar,

Waen the shock irunt nus iraveled to the digtance ¢}, it has reached the layer of particles
which will be on the bubble interface at the moment of the maximum expansion. The interior
of the spher2 of radius r} will be, thevefore, the interjor of the bubble, Rence, the mass of
water evaporated is

4 o
m-=3 polr )

We have found in Sec. 3,2 that, for a firing depth of 2000 ft,
r} = 17.6Q".

This corresponds to a radius
r{ = 54,7 ft for Q = 30 k¢ of TNT.

With a density for sea water of 1,025 g/cc, we find
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Maximum mass of water evaporated* = 19,0 metric kt.

It in interesting that the ball of water which is evaporated has just the sizse of a 30-kt TNY
sphere. (The radius of the latter is 55 ft for & loading density of 1.52 g/cc.)

At the moment of the bubble maximum ths greatest amount of water is evaporated. When
the bubble contracts, the pressure increases and steam condenses at the interface, Thus the
interface is transferved to particles which were previously inside the bubble. The condensa-
tion will cease when the bubble pressure and temperature have increased to the critical point
of waicr, Beyond this point no condensation is possible, and the mass of the bubbie remains
constant during any furiher contraction, This mass will always remain in the vapor state as
long as the flow pattern of the bubble pulsation is irrotational, i.e., a2 long as thers i no
mixing between the steam and the surrounding cold water. This maas of steam is easily cal-
culated from the entropy-distence retation which can be obtained from Table 3.1. We must
determine that shock distance ry fur which the entropy behind the front is equal to the entropy
at the critical point, The latter is S8cr = 1.058 + 8 (0°C). The corresponding shock rzdius is
found to be 36 ft, and the mass of water which theoreticaily always remsins in the vapor phase
is 5.87 metric kt.

Actually, there will be 2 strong mixing cf d1¢farant watar and sieam lavers near the
bubble mintmum for two different reasons. The first is the instability of the interface during
the period of time when tiie bubble is near its minimum, This produces the disintegration of
the interface into a spray which 18 thrown into the irtsrior of the bubble. Obviously, this brings
about a thorough mixing of the steam with the surrounding, cooler water., The second phenom-
enon causing mixing is the distortion of the bubble shape in the gravitational fieid. When the
originally sphorical bubble contracts, its lower boundary moves inward faster than the other
points of its suriace, The cross section of the bubble assumes the shape of a kidney, and {inally
the lower boundary impinges upon the upper boundary, causing a vast amount ot turbulence
inside and outside of the bubble. It is for these reasons that the concept of the mass of water
which remains in vapor form is misleading and that considerable condensation must be expected
at the bubble minima,

3.5 BUBBLE MIGRATION AND LATER BUBBLE PHASKS

NAVORD Report 4185 describes a method for the calculation of the bubble oscillation and
migration for the second and later cycles. The essential part of these calculations is the de-
termination of the bubble energy for the subsequent cycle, At each minimum the bubble energy
is reduced owing to the emission of the bubble pulse and an energy dissipation which is not
entirely understood at the present time, Probably it is closely connected with the phenomena
described at the end of Sec, 3,4, In NAVORD Report 4180 these energy losses are determined
by a semiempirical method which uses sxperimental data obtained with high explosives, Obvi-
ously, these czlculations are not valid for steam bubbles. Steam bubbles suffer tho samis snsrgy
losses as gas bubbles do, but in addition there is condanaation which damps the osciliation even
more. Thereifore, the calculations for gas bubbles may be considered as an upper limit for the
periods and maxinium radii of steam bubbles.

The following results were obtained for gas bubbles:

Second cycle: “
Maximum radius, 388 ft
Period, 3.40 sec
Bubble energy, 84 per cent of the bubble energy of the first cycle
Migration between first and second bubble maxima, 675 {t (There is no sppreciable
migration up fo the moment of the {irst bubble maximum,)

*The Lbubble coata:ns a large ariount of “wet” steam, Wance, strictly speaking, only 2
fraction of this mass is in the vapo: phase,
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Third cvete:
Maximum radius, 330 1t
Period, 4.38 sec
Bubble energy, 18 per cent of the bubble energy of the firat cycle
Migration between second and third hubble maxima, 793 {t.

The gas bubble reaches the water surface shortly after the third minimum, about 10.7 sec
after the explosion. These results are graphically illustrated tn Fig. 3.3. It will be noted that
the periods of the later cycles are increased, although. the bubble energies are smaller. This
is because the bubble has migrated into shallow water where the lower hydrostatic pressure
causes the bubble to pulsate more slowly,

Very similar data were .btained experiac..tally in the vacuum tank. 22! In cne of these
experiments,?! clectric sparks were used to deliver the energy of explosion. The bubbles
produced in this way are steam bubbles which should behave very much like the bubbles from
atomic underwater explosions. Unfortunateiy, condensarion phenomena are not correctly
scaled in such tests. To scale gravity, the pressure above the water surface must be reduced
=0 far that the vapor pressure of water is almost reached, However, for stmilarity of con-
densation phenomena, the ratio

Total pressire at firing depth
Vapor pressure

must be the same in full scale as in the model test, Since it is not possible to reduce the vapor
pressure of water by the same amount as the total hydrostatic pressure in the tank, condensa-
tiun cannot be scaled. The conditions in the vacuum tank resemble explosions in almost boliing
water, and little condensation is expected under such circumstances. In fact, the test results
obtained with sparks and with high-explosive charges are similar and are in good yuatilative
agreement with the calculated data above.

If in a model experiment which employs electric sparks the air pressure above the water
surface is not reduced, gravitational phenomena are not scaled and we have the case of a non-
migrating bubble, The scaling of condensation processes, however, is much improved but still
not perfect. Such tests showed strong condensation effects In tie second and third cycles. The
later periods were substaatiaily less than thuse of corresponding high explosives, which indi-
cates strongly reduced bubble energies. (The bubblc energles of nonmigrating bubbles are
proportional to the cubes uf the periods.) The pulsations virtually ccased after the third cycle,
and, apparently, most of the vapor was condensed.

The following figures give a summary of the results of these tests as weli as data re-
ferring to TNT explosions:

Periods relative to the period cf the first cycle

Cycle 1 Cycle 2 ' Cycle 3
(a) *lonmigrating TNT bubble 1 0.72 0.59
{b) Nenmigrating steam bubble 1 0.45 0,214
(¢) Migrating TNT bubble (Wigwam conditions) 1 1.18 1.52
{d) Crude cstimate for migrating steam 1 0.74 0.54

bubble: (d) = () x {(b)"(a}]

sources: {a) refercnce 22, (b} preliminary evaluation of Hudson’s tests described in refer-
ence 21, (¢) calculations based on NAVORD Report 4185 as described in this section.

The first period observed in Operation Wigwam was 2.87 sec, the second, 2.6 sec, and the
third, 1.9 sec (reference 15). The ratios of these latter periods to the first period are C.91 and
0.686, respectively. These values are higher tpan the above-menticned crude estimatea for the
migrating steam bubble but considerably lower than those for the migrating gas bubble. Thnis
indirates that substantial condensation must have vccurred in Wigwam, althiough not quite so
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nurh as tn the ease of Hudson's nonmigrating bubble, Actually, however, this model test as
well as approximatica (d} ave much tco crude to allow apy quantitative conclusions.

Ustne the concept of the average bubble rise mentioned below, it can be estimated that the
third bubble minimum occurred at a dep*h of about 700 {t, Ii the bubhle would continue to
oscillate (which It does {f there is still uncondenaed vapor), it would have to run through sev-
aral more cycles before it would reach the water surface. At each minimum more vapor would
be condensed, and it scems unlikely that any substantial amount of vapor would be left when the
bubble reached the water surface,

This may seem 1o be In contradiction to tne observed surface phenomena which began about

10 see after the explosion and whick showed quite a resemblance to the “breakthrough” of a gas
bubble,? These phenomena, however, are not necessarily caused by the venting of a steam
bubble., At the moments of the {irst and second butble maxima, the mass of water near the
butble acquires an upward momentumn which produces a flow directed upward. This momentum
will be cunserved, and the fiow winu continue even when all the steam is condensed. The violent
upwelling of thin moving mass of water probably produced the plumes and the surface phenom-
ena of Wigwam,

Figure 3.3 shows that all butible maxima and minima lie approximately on a straight line.
This means that the bubble rises with the same avarage velocity in each cycie. Condensation
wuould reduce the periods of the osciliation, but the bubble maxima and minima would be ap-
proximately on the some line, and the bubble or the water surrounding it would reach tie
water surface about the same time as the gaa bubble. Hence the fact that the plume formation
began at the time predicted for a TNT explorion does not necessarily indicate a “TNT-ltke”
bubble behavior.

1f al! the vapor were condensed, the water would move upward at a constant rate, namely,
the abute-mentioned average veleclty, which 13 found to be 216 ft/scc, Disrcgarding air drag,
the water would rise 725 ft above the water surface, whick is mwuch less than the obeerved
1400-ft maximum piume helzht.” The latter corresponds to a velocity of 300 ft/sec, which is
40 per cent hipgher than the average rate of rise. This again is not a pruct that the plumes are
driven up by expandinz gases or vapor, because some portions cf the moving mass of water
can have hizher velacities than its rate of rise. For instance, a suitable hydrodynamic model
of surh a moviniz mass of water is a vortex ring. (Vortex rings have been actually observed
with high explosives {ired at great depth.) The tutal kinatic energy of sucii a vortex ring is
larger than its translational kinetic energy. When reaching the water surfuce, some of its
particles will rise much higher than the avarage calcuiated from the translational energy.

‘These conaideratiors show that the phenomena observed in Wigwam are no' {n contradic-

{on 0 the possibility that all the steam is condeneca 1in the later bubble dSscillations. Complete
condensation, however, must not be expected, For instance, all the gases dissolved in the
evaporated water will remain, and combined witk these will be 2 certain amount of water vapor,
This is clearly visible in the madel tests, but an estmate of its magnitude is difficult and has
not been attempted. For practical purposes this amount is probably negligibly small, and it
seems safe to state that cssentially all the vapor was condensed in Wigwam before the hubble
reached the surface.

3.8 SUMMARY

The babble period of an atomic explosion of 30-kt yield at 11 depth of 200C f* under water
was caiculated to be 2.88 sec, A 24,35-kt TNT charge datonated at sthe aame depth would have
the same period. ,

The measured bubble perind in Wigwam 1s 2.87 sec. In view of the spproximations made
in the calculations, such goud areement was not expected.

At the bubble maximum, 19.9 kt of water are in the vapor form, The liquid producing this
would make a sphere »f the same size as a2 30-kt TNT sphere.

Data for a migzrating bubble of 2 24.35-kt TNT oxplosion arc presented in Sac. 3.5 and are
Hilustrated ia Fig. 3.3, The zas bubble reaches the water suriace about 11 sec after the detona-
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tion, Comparison with model tests using electric sparks as energy sources indicates that the
steain bubbles produced by atomic explosions must behave somewhat differently. There will be
condenaation of vapor at the hubble minima, Very little vapor is expected to reach the water
surface, The plumes observed in Wigwan: about 10 sec after the explosion are probably pro-
duced by the vioient upwelling of water whish originally surrounded the bubble, This water
keeps 2n moving upward even when ail steam ic condenzed.
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APPENDIX A

GLOSSARY OF SYMBOLS

¢y

an e

L-J —'3

3

Mmmo e .

m
L7
=

Abbreviations defined by Eqs. 1.38 aad 1,39

ifir coeflicient in the expansivn of the reduced pressvre about the céenter
Maximum bubble radius

ith coeffictent in the expanslon of the reduced density about the center
Depth of bottom below the center of the expiosion

il coefficient in the expansion of the reduced velocity abou: the center
Integration constant in Eq. 2.4%%

Velocity of sound; parameter in TFD theory; constant in £q. 2.32
Velecity of sound i~ the undisturbed medium

Ideal-izas heat capacity at constant voiume tor the ik constituent
Ideal-gas heat capacity at constant oressurc {for the ith constituent

Average heat capacities defined by Eq. 1.16

2.71828...; electron'c charge

Depth of exploston below water surface

Internal energy per umt mass

Internai energy poa unit mass directly behing the shock {ront
Iulernai encrgy wer unit niass in the undiswurbed medium

Sho *k-wave eneryuy flux

Shape factor

Statistical wetyht of the 12/ excitect state of an atom, lon, or molecule
Decay [actor of the shock-wave peak density, Eq. 2.1
Dissipated enthalpy increment; Planck’s constant

Decay factor nf the shock-wave peak pressure, Eq, 2,10
Reduced internal ¢nercy

Reducdd Internal eneray directly behind the shock front

Reduced imernal eneray of an ideal gas

Covolume factor for the ik constituent

Covolume factar for a component when in its ground state

Total covolume factor

Boitzmann's constant

Equiliorium constant for the j% chemical reaction

Ideal-gas equliibrium constant for the jii chemical reaction
Natural logarithm

Togarithm to the base 10

Decay factor for the shork-wave peak particle velocity, Eq. 2,12
= 3 139 3); particle mass; total mauss of the sphere encompassed by the shock front
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ny
g
Nav

P:
Pr

Pyj
Py

Quiss
@n
l'“

Molecular welght of water

Number of hydrogen nuclei ver cell in the TFD theory

Number of moles of the 114 constituent in M, grrms of the mixture

Total number of moles i M, grams

Avogadro’s number

Excess pressure

Shock-wave peak pressure

Thermal pressure

Absolute presaure in the undisturbed medium

Coefficients in Eqs. 2.46 and 2.47

Pressare in the steam bubble at the moment of the maximum radius

Pressure of the saturated liquid

Energy yield in kilotons of TNT; partition function

Dissipated energy

Bubble energy

Coefficients in Eq, 1.24

Radius

Radius of shock front

Radius of the layer of particles which forms the bubble interfuce at its maximum
expansion

Reference radius

Gas constant

Cell radius in TFD theory

Entropy per unit mass

Entropy per unit mass directly behind the shock front

Entropy per unft mass in the undisturbed medium

Entropy per unit mass at the bubble maximum

Entropy per unit mass at the critical point

Time

Tempcrature; first bubble eriod

Free-water bubble perloc

Particie velocity

Particle velociiy directly behind the shock froat

Particle velocity in the undisturbed medium

Propagation velocity of the shock front

Specific volume

Specific volume of the saturated liquid

Eifective atomic or lonic volume of & component in its ground state

Effective atomic or ionic volume of a component when in its 1tk excited state

Coefficients in Eq. 2.49

Energy yleld in pounds of TNT

Imperfection factor in the HKW equatton of state, Xq. 1.17; r.ucad radius in TFD and
Snay-Matthius theories

= (py = no)/py

Number of moles of hydrcgen stoms in M, grams of the mixture

Numoer of moles of oxygen atoms in My grams of the mixture

Number of moles of {ree electrons in M, grams c! the mixture

Charge of the oxygen nucleus

Valency of the tth component

Valency of the jth reaction

Total hydrostatic head in feet

ime {actor; parameter in HKW equation of state

Factor which accounts for the internal energy within the bubble

Logarithmic decay fac'or for the reduced totel enargy; parameter in HKW equation 0f
tate
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Exchange correcticn

Logasilamic decay factor for the reduced shock-wave energy
Isentropic exponent, Eq. 1.9

Isentropic exponent directly keaind tha shock {ront

Isentropic expunent for an ldeal eas

Logariti.mic derivative of the peak pressure with respect to the peak density
Excitation energy of the itk excited state of an atons, ion, or niolecule
Reduced total energy, Eq. 2.3

Reduced shock-wave energy

Reduced radius

Stoichiometric coefficlent of the {¢h compnaent in a chemical reaction
3.141585,.,.

Density

Density directly behind the shock front

Denaty ol the undisiurbed medium

Thomas-Fermt unit

Coeticient In Eq. 1.34

Electrostatic correction, Eq. 1.23

Reduced particle velocity

nth derivative of @ with respect to £, evaluated at £ =1

Reduced density

Reduced pressure

TFD votential

Time constant
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Secretary, The Antfafrcraft Artitlery and Guidea Missile School, Ft, Blss, Tex. ATTHN: Maj Giregg D,
Breftegan, Nept. of Taztics and Combined Arms

Commanding General, Army Medical Setvice School, Brooke Army Medical Center, Pt Sam
Houston, Tex.

Director, Special Weapons Development Office, Headquarterns, CONARC, Ft. Bliss, Tex. ATTN:
Capt T, E. Skinner

Commandant. Walter Reed Army Institute of Research, Walter Reed Army Medical Center,
Washington 25, D, C,

Superintendent, U5, S. Miudtary Academy, West Point, N. Y, ATTN: Prof. of Ordnance

Commandant, Chcemical Corps School. Chemnicai Corps Training Command, Ft. McClellan, Ala.

Commanding General, Reszarch and Engineering Command, Army Chemical Centry, J4d. ATTN:
Deputy for RW and Non-Toxfc Materist

Cemmanding General, The Etgineer Lenter, Ft, selvair, Va. ATTN: Aut, Commandsat, Enginee.
Schoo!

Commanding Officer, Engineer R h and Develcp Lab Yy, Ft. Belvasr, Ve, ATTN:
Chief, Techni~al lntelligence B:anch
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Comanurding Ofticer, Ptestirny Arenal, Dover, N, Jo ATTN: ORDBB-TK

Commaading Officer, Artmy Medleal Researcl Laboratory, Fi. Knox, Ky,

Commandlng Officer, Chemlcal Ccrps Chemical and Radiological Laboratory, Army Chemicsl
Center, Mde ATTN: Tech. Libray,

" Commanding Officer, Transportation RAD Station, P, Bustls, Va,

Dircetor, Technical Documents Center, Evans 3ignal Laboratory, Belmar, N, J.

Diiector, Waterways £xperiment Station, PO lox 631, Vicksburg, Miss. ATTN: Libeary

Dircctor, Armed Forces lustiwte of Pathcingy, Walrer Reed Army Modical Center, 6826 16th Street,
N.W,, Washington 26, D, C,

Director, Operations Rescarch Office, Johns Hopkins University, 7100 Connecticut Ave., Chevy Chase,
Md., Washington 15, D, C.

Commanding General, Quartcrmaster Research and Development Command, Quartermaster Research
and Development Center, Natick, Mass, ATTN: CBR Lialson Officer

NAVY ACTIVITIES

Chief of Naval (perations, D/N, Washington 28, D. C. ATTNs OP-38

Chief of Naval Opcrations, D/N, Washington 26, D, C. ATTN: OP-03EG

Director of Naval Inweliigence, D/N, Washingtor. 26, D. C. ATTN: OP-922V

Chief, Bureau'of Medicine and Surgery, D/N, Washington 26, D, C. ATTN: Specizl Weapons
Defense Div.

Chief, Bureau of Ordnance, D/N, Washington 26, D, C,

Chlel, Bureau of Ships, D/N, Washington 28, D. C. ATTNs Code 348

Chief, Bureau of Yards and Docks, D/N, Washington 28, D, C, ATTN: D~440

Chief, Bureau of Suppliet and Accounts, D/N, Washington 26, D. C.

Chief, Bureau of Aeronautics, D/N, Washingon 26, D, C.

Chief of Naval Rescarch, Department of the Navy, Washington 26, D, C, ATTNt Code 811

Commander-in~-Chief, U. S. Pacific Fleet, Fleet Post Office, San Francisco, Calif,

Commandet-in-Chief, U, S. Atlantic Fleet, U, §, Naval Base, Norfolk 11, Va,

Commandant, U, S. Marine Corps, Washington 26, D, C, ATTN: Code A03H

" Tresident, U, S, Naval War College, Newport, R L.

Superintendent, U. S. Naval Pontgraduate School, Monterey, Calif,
Commanding Officer, U, S, Naval Schools Command, U, 5. Naval Station, Treasure lsland,
San Prancisco, Calif.
Commanding Officer, U. S, Fleet Tralning Center, Naval Base, Norfolk 11, Va. ATTN: Special
Weapons School
Commanding Offices, U, S. Fleet Tralming Center, Naval Station, 8an Diego 36, Calli, ATTN:
(SPWP School)
Commanding Offlcer, U, S. Naval Damage Control Training Center, Naval Rase, Phils celphia 12,
Pa. ATTN: ABC Defense Course
Commanding Officer, U. S. Naval Unit, Chemical Corps 8chool, Army Chemical Tralaing Canter,
Pt. McClellan, Als,
Commander, 'U, 8. Naval Ordnance Laboratory, Silver Spring 19, Md, ATTN: BE
Commander, U, S, Navai Orduance Labozatory, Stiver Spring 19, Md, ATTM: EH
Commander, U. §. Naval Ordnance Laboratory, Siiver Spring 19, Md, ATTN: R
Commandet, U, 5, Naval Ordnance Test Station, Inyokern, China Lake, Caltf.
Officer-in-Charge, U. S. Naval Civil Engineering Res. and Cvaluation Lab., L. S. Naval Coumtruction
Battalion Center, Port Hueneme, Calif, ATTN: Code 153
Commanding Officer, U, §, Naval Medica! Research lnst., National Naval Medical Center, Bethesda
14, Md.
Director, Naval Alr Experimental Station, Afr Matetial Center, U, 8, Naval Base, Phlladelphla, Pa,
Director, U, §. Naval Research Laboratory, Washington 35, D, C, ATTNi Mns, Katherine H, Cans
Commarding Cificer and Director, U. S, Navy Electronict Laboratory, San Disgo 88, Calif.
ATTN: Code 422
Commanding Officer, U, 8, Naval Radiological Defense Laboratory, 8an Francisco 84, Calil,
-ATTNs Technical Information Division
Commanding Officer and Ditector. David W. Taylor Model Basin, Wllllnm 7, D. C. ATTN:
Library
Commander, U, 8. Naval Alr Development Center, Johnsville, Pa,
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Comaninding Ofticer, Pieatlrny Arenal, Dover, N, J. ATTN: ORDBB-TK

Commaading Officer, Army Medical Researcls Laboratory, Fi. Xnox, Ky,

Commandlug Officer, Chemlcal Ccrps Chemical and Radiological Laboratory, Azmy Chemical

~ Center, Mde ATTN: Tech, Libra'y,

Commanding Officer, Transportation RAD Statlon, Pt. Eustls, Va,

Dircctor, Technical Documents Center, Evans $ignal Laboratory, Belmas, N, I,

Diiector, Waterways £xpctiment Station, PO Box 631, Vicksburg, Miss, ATTN:

Dircctor, Armned Forces Datiwe of Pathcingy, Walrer Read Army Modical Center, 6626 16th Steet,
N.W,, Washington 25, D, C,

Director, Opetations Rescarch Office, Juhns Hopldns University, 7100 Connecticut Ave., Chevy Chase,
Md., Washington 18, D. C,

Commanding General, Quartcrmaster Research and Development Command, Quastermaster Ressarch
and Development Center, Natick, Mass, ATTN: CBR Lialson Officer

NAVY ACTIVITIES

Chief of Naval (3perations, D/N, Washington 28, D, C, ATTN: OP-36
Chief of Naval Operations, D/N, Washington 28, D. C. ATTN: OP-03EG
Director of Naval Inwlligence, D/N, Washingto:. 26, D. C. ATTN: OP-922V
Chief, Bureau'of Medicine and Surgery, D/N, Washington 25, D, C, ATTN: Specizl Weapoms
Defense Div,
Chief, Bureau of Ordnance, D/N, Washington 26, D, C,
Chiel, Bureau of Ships, D/N, Washington 28, D. C. ATTN: Code 348
Chicf, Bureau of Yards and Docks, D/N, Washington 28, D, C, ATTN: D-440
Chief, Bureau of Supplies and Accounts, D/N, Washington 28, D. C.
Chief, Bureau of Aeronautics, D/N, Washington 26, D, C.
Chief of Nava) Rescarch, Department of the Navy, Washington 26, D, C. ATTNt Coic 811
Commander-in-Chief, U. S. Pacific Fleet, Fleet Post Office, San Francisco, Calif,
Commander-in-Chief, U, S, Atlantic Fleet, U, §, Naval Base, Notfolk 11, Va.
Commandaant, U. S, Marinz Corps, Washington 28, D, C, ATTN: Code A03H
" Tresident, U, S, Naval War College, Newport, R L
Superintendent, U, S. Naval Postgraduate School, Monterey, Cailf,
Commanding Officer, U, S, Naval Schools Command, U, 5. Naval Suation, Treasure lsland,
San Prancisco, Calif.
Commandlng Officer, U. S, Fleet Training Center, Naval Base, Notfolk 11, Va, ATTN: Special
Weapons School
Cainmanding Offices, U, S, Flcet Tralming Center, Naval Station, San Diego 36, Calli, ATTN:
(SPWP School)
Commanding Officer, U, S. Naval Damage Control Training Center, Nanl Base, Phils celphia 12,
Pa. ATTN: ABC Defense Course
Commanding Officer, U. S. Naval Unlt, Chemical Corps 8chool, Army Chemical Tralaing Center,
Pt. McClellan, Als,
Commander, 'U, 8. Naval Urdnance Laboratory, Silver Spring 19, Md, ATTN: RE
Commander, U, S, Navai Orduance Laburatory, Stiver Spring 19, Md, ATTM: EH
Commander, U. 5. Naval Ordnance Laboratory, Silver Spring 19, Md. ATTN: R
Commandet, U, 5, Naval Ordnance Test Station, Inyokern, China Lake, Calif.
Officer-in-Charge, U. S. Naval Civil Engineering Res. and Tvaluation Lab., L. S. Naval Coumtruction
Battallon Center, Port Hucneme, Calif, ATTN: Code 783
Commanding Officer, U, §, Naval Medica! Research Lut., National Naval Medical Center, Bethesda
14, Md,
Director, Naval Air Experimental Station, Alr Matetial Center, U. 8, Naval Base, Philadelphia, Pa,
Director, U, §. Naval Research Laboratory, Washington 28, D, C, ATTNs M, Kathering H, Cans
Commarding Cificer and Director, U. S, Navy Electronict Laboratory, Sau Disgo 88, Calif.
ATTN: Code 422
Commanding Officer, U, 8. Naval Radiological Defense Labotatory, S8an Prancisco 24, Calttf,
-ATTNs Technical Information Division
Commanding Officer and Ditector. David W, Taylor Model Basin, Wliunm 7, D. C. ATTN:
Librar
(;ommnzder. U, 8. Naval Alt Development Centet, Johnsville, Pa,
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ATOMIC ENIRGY COMMISSION ACTIVITIZS

U, $. Atomic Energy Commission, Clamified Techalcal Library, 1901 Consticution Ave,, Washington
25, D, C. ATTNi Mrs, J, M, O'Leary {for DulA)
Los Alames Scicntific Laboratory, Report Library, PO Nox 1663, Los Alamos, N, Mex, ATTVs Helen

Redman
Sandta Corporadion, Classified Document Divislon, Sand!a Nass, Albuguergue, N, Mex, ATTH,

Martin Lucero
Univensity of California Radiation Laboratocy, PO Box 808, iivermore, Calif. ATTM; Clovis G,

Craig '
Weapon Data Section, Technical Information Setvice Extansion, Osk Ridgs, Teon,

Technica! Information Service Extension, Oak Ridge, Tenn, Gurplue)

ADDITIONAL DISTRIBUTION

Commander, Operational Developmeut Force, United States Atlantic Pleet, United Gtates Naval
Baw, Norfolk 11, Va,
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