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ABST1RACT

This roport preseats A,;urv,,y of the various phases of calculations which led to the quan.
titative prediction1 of the important ,jndei water explosion parameters for Operation Wigwam:,

7!4--qnYMfn prnttrfar Water. The analysis of the explosion phenomena requires a
kaowledge of the thermodynamic properties of water over an extremnely wide pressure range,
i.e., frvnm infinity down to the low pressures of an acoustic wave. No equation oi state is
Imown whic~h satisfactorily covers this range; therefore five separate pressure ranges were
coniadercd%

~~twi the olacideai Lmwter ae81
pletly diss ciated and ionized. The gas is Ideal and m/atomic if t Ie small effects orradia-
tion pressu 4' and electrostatli forces are excluded..

Region it. For somewlipt tower pressares and ptmperatures the iedium is only- par~kally
dissociatedtnd ionized. Laborious equilibrium c 'ulaions were mad6 to determine the~
theim d~ 'inie data in this re~on. Thie p-v-T rjration necessary for t s8 purpose was 0
tamed fr I the detonation theoky of h.igh explospes, In particular from Ike explosive hydrazine

ntrse ich forms H.,0 as its k ncipal react npout

.onad t sill'oer prsue S.~ mpratures the water molecirmisnat
Ft tI range. calculations usinig'the Thon& -Fermni-Dirac theory were ma

zj.ion IVtri V or arssurh _fr a 725,000 pisi down to acoustic values, d~ct ex-

1 41ri tat mesurements notably by Nfman' &Md Carnevale and Ltovitz" were insed.

4 SIho1- WareIPenomena. T "~u'nalu'aiooot.. r .. also wpiads41nzegXaaL4Ari4.
ror extremely high pressures the solution of the point blast problem of Taylor"Yls applicable.
For lower pressure,, the three partial differential equations of the spherical fluid motion were
integrated. The method was not tractable below a shock pressure of about 450,000 psi (corre-
sponding to a shock radiu.; of 81 ft in Operation Wigwa .feSs&~~-e i ded4o
low pressur es bYjUsas f therffy-M-atthIfas iiockSwa theory. At very lowpressures
symrpt-flc relatiom; sin) ar to those first derly kwood &Md Dot ,*,! we'e used.

B"&U4.'jwPA&ow.ja.!The tenergyedissipaon .. ,cn,..L . .

.as w at the front o~f the intense shock wave from a poin~t explosion produces the heat
wich'I vaporizes thet water anad fin ab a steamo-fllled cavity. This bubble pulsates in a manner
similar to that observed for bubbles produced by high explosives. The analysis yielded the
maximum bubble radius and the pa-rio>d of the first pulsation as well ats the total mass of water
evaporated up to the moment of the first bubble maximum. n6Fe1i
ciuding the rapid upyltwd nugratlonrcan be..ca or high- explosive'g as bubbles.
This establishes ax upper limit for the periods ad)r e igration of a steamt bubble. The
actuAl behavior 4 StrA m i,,Ibles l'ac beean studiee&WItl od tests using electric sparks as

energy siource The results of these tests wer used to obt informatiai~ on the amount of
condensatinryiwtch occurre^d in Wigwam. It 9uncd nut tht 11 l the vapor must hve
ben condePsed b~efore the bubble reached Ke surface and tha e surface phenomena wich Id

srcefuuhlanre taa the "breakthro ola-a s-lil ---- AbyJ.M~i~leltpWHlig



ofUthe-water which previously surrounded the bubble and which acquired the latter's upward
momentum.

In sumn.at y, it was found that, in the region where pressures are less than 3000 psi, the
calculated pressure-dlstance curve is similar to one from TNT has' I. about 69 per cent as
much energy. In this sime region me calculated shock-wave energy flux-dE,,%ne'r: curve is
•milar to one from TNT having about 82 per cent as much energy. The maximum bubble
r'dus was calculated to be 316 ft with a first bubble period of 2.88 sec. This period corre-
sponds to that from TNT having 81 per cent as much energy. The amount of water evaporated
w 3 calculated to occupy the same volume as a 30-kt TNT sphereh

4
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PREFACE

Projcct i.1 of Operation Wigwam was one of four projects (1.1, 1.2, 1.4, and 1.5) for
which the Nasal Ordnance Laboratory was responsible. Its objective was to determine the
princIpal underwater explosion phenomena to be expected from the exploslon, at a depth of
2000 ft in deep water, of an atomic device having a nominal yield of 30 metric kilotons. The
successful achievement of this objective enabled at least two extremely important practical
results to become available: (1) the determination of proper locations for the targets and
instrumentation during the Operation and (2) the development of methods for predicting under-
water explosion phenomena from other yields and firing geometries.

This summary report not only gives the predictions which were used in helping to deter-
mine the experimental configuration but makes comparisons of these predictions with the actual
measurements obtained. The good agreement between theory and experiment Irdicatee that the
methods used describe the important phenomena with satisfactory accuracy.

In this report the important equations which have been used in Prlet 1.1 are summarized
and explained. Only rimple derivations are given. For a complete agalyeis the fuilr.wing re-
ports, which dcscribe the subject matter more thoroughly, should be consulted:

NAVORD Report 4181: An Equation of State for Water, by Hans G. Snay and John F. Bitler
(in preparation).

NAVORD Report 3847: An Equation of State for Water at Extreme Pressures, by J. H.
Rosenbaum.

NAVORD Report 4182: A Theory of the Shock Wave Produced by a Point Zxplosion, by
Hans G. Snay (in preparation).

NAVORD Report 4183: An Analysis of Solutions of the Point Blast Problem, by Andr6 N.
Gleyzal (in preparation).

NAVORD Report 4184: Numerical Analysis of the Underwater Point Blast Problem, "ay
John F. Butler (in preparation).

NAVORD Report 4185: Underwater Explosion Phenomena 11: The Parameters of Migrating
Gas Bubbles, by Hans G. Snay (in preparation).

The reader who is not interested in mathematical details is invited to read the introduc-
tory and summary paragraphs of each chapter of this "eport, as well as Sees. 3.3 through 3.5.
rhiis, together with a study of Table 3.1. the figures, and the glossary (Appendix A), will pro-
vide a fair idea of the methods used and the results obtained in this project.

5-8
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C HAPTIE 11 1

EQUATION OF STATE FOR WATER

IA1 INTRODUCTION

An analysis oif thp extplosic'n phenrnmeno. following the firing of an atomic dev~ce under
witer requires the knowledge of the thermodynamic properties of water over a range extending
front thp extreinely high pressures and temperatures occurring immediately after the explosion
;iimm &-in~ to 1hp eonfli onx PlclMnIrg in ani acoustic wave. No satisfactory equation of state is
kip, ;n which covers the whole range of interest.

In the Initial phase, subusequently called Region 1, the temperature Is so h'igh that the atoms
are' comlietely stripped of all their electrons.

At somewhat lower temperatures (Region 11), the medium consists of a mixture of the
fliloiwing:

I. Diatomnic molecules and radicals formed from hydrogen and oxygen (OH, H1, O2, etc.).
2. Monatomrni hydrogen and oxygen.
3. Hydrogen and oxygen ions (0+, 0+2 H-, etc.).
4, F'rve electrons.
b. Ionized molecules and radicals (02", OH-, etc.).
Trhe calculation of the thermiodynamic properties of such a mixture requires a knowledge

(if the- conenitration of the various constituents of the mixture. The Halford-Kistiakcnwidcy-
Wilson (11KW) equation of state is used In this region.

At still lower pressures and temperatues the water molecule rentains intact (Region 111),
but the pressures are still far above the range where direct experimental measurements are
possible. lit this region the Thomas- Fermi-Dirac (TFD) theory may be used. However, this
theory yields acceptable results only at the high-pressure end of this region. Thereff.-ru, to
obtain data for Rcgion 1l1, Interpolations must be made between these calculated high pressures
and Region !V, for which measurements by Bridgman are available (up to 725,000 psi). Since
the Ibinkine-Hugoniot curve has little curvature in a In p - In v plot, the shock-front data can be
reaudily interpolated graphically.

lrigion IV has been treated in several publications. 'Thermodynamic data behind the front
are obtitned by using a modified form of the isentropic Tait equation and adjusting the constants
in this, equation In such fashion that the isentropics fit the data at the shock front (Rankine-
Hugoniot curve) and at the saturation line.

lin the region of relatively low pressures (Region V), where the shock wave behavv.is nnat
like an acoustic wave, the thermodynamic properties of water may be Interred from experi-
ments on the velocity of sound in witter as a function of pressure.

- SECRET
RESTRICTED DATA



1.2 REQUIRED DATA

For ary bhock-wave calculation the Rankine-Hugonlot parameters must be kinown for the
mcdium in question. The Rankine..Hugonlot conditions are:

the Rankine -Hugonlot a iabatic

E, -E = p1..- 2P0  ( ()

2i- (vO - vO)

the propagation velocity U

(U - u) 2 - VOP
VC - V1,

ano tho nartirl, vplocitv u,

(u1 - u) - pI(v - vI). (1.3)

The subscript I designates the state directly behind the uhock front, and the subscript 0 refers
to the state ahead of the front. . 13 the internal energy per unit mass, p is the excess pressure
above the static pressure P0 , and v, the specific volunic, is the reciprocal of the density p.

The Rankina-Hugoniot adiabatic gives the p-v relation for the thermodynamic change of
state at tho shock front. To evaluate this, one must know the interrelation between internal
enercy, pressure, and volume A fnrmal simplification can be made by introduction of the
"reduced internal energy"

J " J(p,v) = E - F0  (1.4)pv

This term will be frequently used in our calculations. It is a dimensionless magnitude related
to the heat capacity. For an ideal gas at high temperature the following simple equation holds:

J© ~ 
= 
RCv t(1.5)

pv R y'-I'

where the superscript 0 indicates the ideal-gas state, cv is the heat capacity at constant volume,
R is the s, constant, and yo is the ratio of the heat capacities at constant pressure and at
constant volume.

The Rankine-Hugoniot adiabatic is generally given by

2v P/1 P,

After rearrangement, we obtain with the use of Eq. 1.5

zo + 1
= - ' vO - V t

4'-i v1 -
v O

This simple relation holds for ideal gases only. For real gases J must be evaluated from the
internal energy,

T f0
E-E 0 =fT nic e,,dT+ I" [T(T) - (p+PI) dv, (1.8)

12
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where nf Is the number of mois of the ith constituent in the medium. cV )a itE ideal-gas beat

capacity, ar.d T is the absolute temperature. The subscript v on the partial differential
quotient in the second integral means "at constant volume." A corresponding notation reierring,
for Instance, to constant temperature, entropy, etc., is "ased in this report. In order to evaluate
the first integral, the composition of the medium must be known. This informstion will be ob-
tained from the equilibrium calculations. The second integral accounts for the imperfect-gas
behavior. For its evaluation, we need an equation of state for the imperfect medium. The lower
limit of this integral refers to the specific volume at the ideal-gas otate.

In considerirg a nonideal medium, attention must be given to the use of the symbol y. The
customary definition of this symbol is ? = ep!cv. However, in the hydrodynamic literature y
stAnds for the logarithmic slope of an Isentropic. in general, Hie Upecific heat ratio is equal to
this logarithmic slope only for the case of an ideal gas. In this report the symbol V, will mean
the logarithmic slope of an isentropic, i.e.,

a In p c2( a 'n- c (1.9)

where c sound velocity and S - entropy.
The general expression for this isentropic exponent* is

a- In" "VT + a8 In  v E/(.10

The isentropic exponent / is related to the reduced internal energy J by the following simple
equation:

1p P 0  (alnJ S(j ..... + 1 + \a-Tnv S. (.)

For ctistant J this equation is equivalent to the ideal-gas relation 1.5. However, in the general
case of an imperfect gas, Eq. 1.11 is of little help. It is simpler to calculate y and J inde-
pendently using Eqs. 1.10 and 1.8.

The behavior of the Rankine-Hugonlot adiabatic can be expressed in the following concise
form:

d In Pj dIn p,
'RH- n d In P (1.12)

Tluis definition is an:dogous to tat oi the L.entropic exponent v- except tO'at the differential
quot)ent is taken along the Rankine-Hugonlot adiabatic instead of the isentropic. This .nagnitude
will be widely used in the hydrodynamic equations of this report.

The eqiation for the entropy increment, which is also needed in the hydrodynamic calcu-
lations, is

AS - S, -SO - " niP T -e P W)dp. (1.13)

The dissipated enthalpy increment h is defined by

h 2-:l(Vo +v.) - v(p,S = Si) dp. (1.14)

'The word ",xponent" is used loosely here. For constant y, Eq. 1.9 can be integrated, and
it yields the familiar relation pv'y- onst. This, however, does not hold for a variable y.

13
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-ht, magnitude gives the increate of cnthalpy after the passage of the shock front when the
medium has ise,tropicall returned to the initial pressure P0. Another expression for h is

h = T(S,p- 0) dS

= ~ 1), 1.15)= ,.l)Tole lit F-' )

where To ,s the temperature of the water before the explosion and

T
T CPdT - j JrdT

S T(1.1)

For water c-,p differ only very slightly from the value of the actual heat capacity Cp.

1.3 REGION OF EXTREMELY HIGH TEMPERATURES AND PRESSURES (REGION I)

The equation of the Rankine-llugonlot adiabatic for an ideal gas, Eq. 1.7, shows that the
prwsure bccomes infinite for a finite value of vp Although this relation holds for ideal gases
only, t is generally true for shock waves in any medium that v t remains finite when pressure
arA temperature approach infii.itely high values. At such conditions, namely, moderate den-
sities but infinitely high temperatures, the medium is completely dissociated and ionized, i.e.,
the atoms are strippe.t of all their electrons. The medium consists only of such small particles
as electro, s, protonz. and nuclei. Each of these has but three degrees of freedom; therefore
) = s%. The small particle size precludes gas-imperfection effects, and sue. a plasma would
behave like an ideal gas save for the effects of radiation pressure and electrostatic iorces. For
our purposes it seemed permissible to neglect these effects in this region and to assume that
the medium behavLs like an ideal monatomic gas. From Eq. 1.7 we obtain

Itn ,ov = Vo y '0 '"

The shock-front data calculated by the methods described in the following paragraphs were
extended to infinite pressures by considering the trend of YRH as a function of vi. The magnitude

I d In vi
VRH d In pi

vanishes at v, = v0 '4 acrordin, to the above-discussed behavior of v,. The simple technique
used is des,.r'bed ii: M'AVORD Report 4181.

1.4 EQUATION OF STATE IN REGION II

To evaluate the thermodynamic functions discussed in Sec. 1.2, we need a p-v-T relation
from which the necessary differential quotients may be determined. No '.ompletely satisfactory
equation of state is known for media in Region I, where dissociation and ionization occur.
Closest to this range are the thermodynamic states of detonating high explosives whose reaction
produrts attain pressures up to 4.3 million psi, temperatures up to 3000*K, and densities above
2 g cc. Several attempts have been made to describe such thermodynamic conditions by means
of an equation of state. .Al these equations have objectionable fea*'ires from a theoretical point
of view. However, the theory of the detonation process permits a determination of the arbitrary
constants in such equations from experimentally measured detonation rates. These rates in-
crease with increasing loadIng density of the explosive, an effect which is solely due to the
imperfect-gas behavior of the reaction products. Therefore this is a sensitive method of de-
termining imperfection tet ms of high-pressure equations of state.

14
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For this project we h:ve chosen the HKW equation of state because this equation has been
tested against detonation data of a great number of explosives with good success., It particular,
th,. equativia predicts the lt.tonation rate of the explosive hydrazine ritrate with satisfactory
accuracy. The dominant reaction product of this explosive is H20. Hence one should expect
that this equation is applicable to our problem within the limits of its validity.

The iKW equation of state has the form:
ngit (T

(p + P0)v -" 0- (I :xelPA

X k (t. f )

k nnki ng = nl a = 0.25 /3=0.3,

where n, is the number of moles of the lith component in Me weight units of gas and k is Its
covolume factor. A few covolume factors have been determined from the measured detoaAtion
rates. For our problem it was necessary to estimate the additional covoluime factors which
could not he determined by this method. A complete account of this is given in NAVORD Report
4181, where a list of the numerical values is found. A few of the more important components
are quoted here:

Component ki  Component kt

H20 285 0 100

0 300 H 20H2  60 0+  80
255 0+2 65

OH 200 H+  0

The lints of validity of the HKW equation a,- given by the impezi:e."on term x. Good
rcsults were obtained in the study of detonation phenomena for values of x between 1.7 and 4.2.
This range is determined by the experimental data available. It is not unreasonable to asuine
that acceptable accuracy may be obtained for much lower values of x, since Eq. L47 reduces
to the perfect-gas law foi small x.

It, within these limits of x, the HKW equation is aepied to water, higher pressures and
temperatures result than those usually obtained for explosion reaction products wit;. the same
x. This is due to the low molecular weight of water and the relatively high number of particles
in tho dsociated state.

The covolume factors noted above hold for ?',e comparatively low temperatures occurring
i the detonptiun of high explosives. One rnay sk-L.y assume that Ine constituent molecules and
atoms are in the Iround electronic state under these conditions. This raises the question of
whether these covolume factors are applicable to the much higher temperatures occui ring in
Region II, where appreciable excitation and ionization are encountered.

It i- well known that the partition function for an ideal gas diverges at high temperatures.
Howtver, it is possible to show, 3 4 that convergent series for the partition function are obtained
for imperfcct gases. If we consider a HKW gas consisting of only one component and regard the
various excited states as separate species, the partition function is given by

Q2nmk'T vole(I'ee)/3 gi exp -n; e (1.18)

where k' = Boltzmann constant
h Planck's constant

n - particle mabs

gi stat!stical weight of the ith excited state (i.e., of the ilth species of the mixture)

15
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E, eicitatlon energy of the ith e.cited state
k covolume factor for the zith excited state
n= number of moles of atoms which are in the ith excited state
n;= : nt = total number uf moles of particles in M# grams of the mixture
k, ; n k, = total covolume factor for the mixture.

(The asterisks are used here to emphasize the fact that we are now considering a gas consist-
ing ef only one component, for instance O, and are regarding the various excited states of this
component as separate species). For x - 0, Eq. 1.18 reduces to the familiar partition function
of an ideal gas. In thie *'ase, the sum in Eq. 1.18 is replaced by f gi exp (it/k'T), which Is
divergent since, although the Boltzmann factors exp (ci/kIT) become smaller with increasing 1,
the statiqtl,.a weights g1 become arbitrarily large. For the HKW gas, however, the last factor
in the sm in Eq. t.18 ensures rapid convergence.

To dete-mine how many terms are required In the evutation of the partition function:
Eq. 1.18, we assume that the covolume factor for a given excited state of an atom or ion is
propo "Ir -J1 to tho effective atomic or ionic volume of the atom or ion when in this excited
s'; hn ,.,ssible (NAVORD Report 4181) to derive the following expression:

L' g ex noVi Ito xAx

where V0 = effective atomic or ionic volume of the component when in Its ground state
V1 = effective atomic or ionic volume of the component when in its ith excited state

= covolume factor for the component when in its ground state.

An evaluation of this equation yielded the interesting result that, for all conditions where the
U/-W. equation ot state is applIcable, only those excited states which have effective atomic
voluanes equal to or near that of the ground state contribute significantly to the partition func-
tion. Higher terms were found to be entirely negligible, even for a value of x as low as 0.2.
The ideal-gae properties for the high temperatures needed in the calculation of the I:wernul
enercv, the aR41.batic exponent, and the entropy were calculated from statistical thermodynamics
on th!s basis. A coz- !r- 4es-riptiun Is given in NAVORD Report 4181, where extensive tables
of the pertinent thermodynamic data can also be found.

With the use of the HKW equation of state, the thermodynamic function of interest to us
take the following form:

T = niCv, a(e ) (1.20)

Y 8 n ng k+ONxepxi [I_(0I

(I +xe~x) 1+(8In ns(I + ;bcxeP4G8 In k l
(0I T) -(_+jvPX' In i

s- = T  nic, a.ngR In ;F nglt In I k I\

JJ. IV

- nRlnx- Z--o Ixe (1.22)
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The change of ng and 1. with temperature T or sith the specific volume v-am well as the con-
centrations n! of the various consttuits-are deteru ned by equilibrium calculations.

1.5 EQUILIBRIUM CALCULATIONS

The equilibrium constant for an HKW gas is

Kj = rnv =Kp(M-V)exp ,- I)-- xe'X Pik,+ '1 . (1.23)
RT 0

2.23 x I s  /

where 2 .23 (x v1iz)( - niZl) 1 = Debye-HUckel correction

or

T 2.589. x 0'( ,, l = Unsold correction,

where Ko, = ideal-gas equilibrium constant for the Jih reaction

D = dielectric constant
Zi= valency of the ith component
Z= valency of the Jth reaction which must be of the type x = xZj + Zje (e denotes the

free electron).

The vi's are the coefficients of the ith component in the ith rea'tion equation; those on the
right-hand side are cotnted positive, and those on the left-hand side, negative. The sums con-

taining vi run over the terms of the reaction equation. To illustrate this, assume the following

reaction:

o = 0+2 + 2e.

Here

VO+2 = +1

v. = +2

'0 = -I

vi = +2

and
P1 nl . no*-'

| no

where no+' is the number of moles of 0+2 ions, ne is the number of moles of electrons, and
no is the number of moles of oxygen atoms in M0 grams o the mixture. Zi for 0. is 2, and
for e, -I. Hence I viZ2 = 6. Zj of this reaction is 2.

The total number of moles of all hydrogen nuclei in ori molle of dissociated and Ionized
water must be equal to 2, and that of all oxygen nuclei must be equal to unity. This can be
w-itten as follows:

Yl +  riln, = 2

Y2 + r 21n, ' t,
17
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wh.-re r., is tl' riundei of hydiogen nuclei in the it;h compound, ri is the number uo oxygen

nutlei (., . , for Off. r, I anI r'z I), anrd where.

Yui ru'.ber (,f moles of hydrogen atoms in MO grams of the mixture

52 .rmiber of ,,lu.ts of un-iomzed oxygen atoms in M0 grams of the (1.25)
miXtur,,

These two magnitudes are . eft.eirce values. They are by nature the same as certain ni's for
which r, is unity, aid they sorve as independent variables. A third reference value of this kind
is

y3 - nuibei of moles of electrons in MO grams of the mixture = nlZ (1.28)

Ther. the conce-itration of the ith compound is

nI K jyr, y
r ~j yz,. (1.27,1

There are as npny ,erh oqmitions as there are reaction equations. For our calculations, we
ha'e consi'lercd the follonin, reactions:

ieaction -' I v Xi , viZ/ i
2

/ ri r2l Zl

0 OW + e 1 -20 2 1 0 1 1
2 0- 0

+
' 2e 2 -35 6 2.5876 0 1 2

3 0 0'3 3e 3 -46 12 4.6670 0 1 3
0 0- 0 * 4e 4 -55 20 7.1872 0 1 4

5 + 5c 5 -62 30 10.13 0 1 5

6 0- 0*6 0e 6 -100 42 13.4128 0 1 6
7 0 -

T 
+ 7e 7 -100 56 17.0724 0 1 7

8 0 0+  &- -100 72 21.0724 0 1 8
9 H H * e 1 -20 1 2 1 0 1

10 20 0, 1 100 0 0 0 2 0

It 20O. 0, 55 2 1 0 2 1
12 2H It. -1 20 0 0 2 0 0

15 PH H.- 0 2 i 9 9 1
14 211 O- 0 -2 145 0 0 2 1 0
! 0- H OP -1 80 0 0 1 1 0

16 0-ile OH- -2 It0 0 0 1 1 -1
17 0+ H -Or +e 0 50 2 1 0 1 1
18 20+ 2H : 11202 -3 0 0 2 2 0
19 0+e 0

-  -1 Is 0 0 -1 0 -1
20 H+c H- -1 .5 U - 1 -1

21 '.0 =O - - 2e -1 40 6 2.5876 1 0 2

It will be noted that the reaction equations are arranged in such a way that the first constituent

on the right-hand side is that one for which the concentration n. is given by Eq. 1.27. (For this
constituent, I is equal to j.) There are no such equations for 0, H, and e. since these are de-
termined by Eqs. 1.24 and 1.26. In all, we have 24 equations for the concentrations of 24

compounds.
Solving these equations numerically is extremely difficult because the equilibrium constant,

Eq. 1.23, depends m k and ng (as defined in E4 . 1.17) which can be enumerated only if the ni's
are known. The problem was coded for a fast electronic computer using an iteration process,

but. owing to operational difficulties, only a small part of the computations planned could be

18
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comp!eti. 1; particular, 0i was not pos-oble to obtain results for very high iemperttures, and
the correction for the electrostatic force2, 4, in Eq. 1.23, was not applied.

Nevertheless, it was possible to obtain resltz ,. the most important region as illustrated
ii Fig. 1.!. The machine calculations gave J, ( nic, 1/(R n,), ng k, and S -S 0 directly as

functions of p, v, and T. y, was computed by hand from Eq. 1.21 after graphical differentiation
of ng and k. The shock parameters Pl, v1, and ),; = 1(vl) are ceadily obtained by graphical

interpolation. The results are listed in Table 3.1.

1.X CALCULATIONS USING THE THOMAS- FERMI-DIRAC MODEL, REGION III

For temperatures lov er than those concilered in the previous section, the water
molccule remains undissociated. The HKW equation of state is still valid under these condi-
tions, out "n ntirely different approach is possible here, namely, the use of a statistical model

for the H20 molecule.
The statistical model repla, as the distinct electron orbitals of 2n atom by a continuous

electron cloud which .s treated as a degenerate Fermi gas.
This model is pArticularly suited for the description of extremely dense matter, and it has

been used to obtain information applicable to astrophysical problems. By interpolations be-
tween Bridgman's experimental data and the results of theories using this mode., it was also
possible tu obtain information of Interest in geophysics.

The same approach was made by J. H. Rosenbaum for water in a calculation made spe-
cifically for this project. The following highly idealized structure was asumed for water: Each
oxygen molecule is surrounded symmetrically by a certain number of hydrogen molecules, M.
Two of these belong to the molecule considered; the rest belong te the nearest neighbors. The

medium is thus represented by means of polyhedrons, each having an oxygen ,ucleus at its
center and M hydrogen nuclei on Its surface. Each polyhedron is approximated by a sphere, and
the hydrogen nuclei are smeared over the surface of this sphere. To be electrically neutra!,

su'h a sphere must contAin 10 electrons, eight corresponding to the nuclear charge of the
oxygen atom and two to that of the two hyrirogen atoms. If the radius of this sphere is 61, the
specifiv volume is

v. 4 .. (1.28)

where NAy Avogadro's number and in molecular weight. The pressare was found from the

virial theorem to be:

e ' 1' 4( 4() 1 + -(1 N21.9

where e charge of the electron
i - Thomas-Fermi unit

x reduced radius -% po
,%- exchange correction - 0(Z)
Z charge oi the oxygen nucleus at the center = 8
N charge of the hydrogea nuclei on the surface of the sphere = 2
c - a slowly changing function of M (see Table I in NAVORD Report 3847)

The potential, ,!,, of the electron gas is determined by the TFD equation

= (±) + 0o (1.30)

with the following boundary conditions
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,;( - I

N
'(x) = x*'(x) - j at the surface of the sphere

The prines Indicate differentiation with respect to x. The firett boundary condition yields the
potential due to 'he oxygen nucleus At the center; the second condition ensures that N positive
charges are distributed over the surface of the srhere and that the whole sphere is electrically

neutral, i.e., has Z # N electrons inside the sphere. A more complete discubsion is found in
NAVORD Report 3847, where an exhaustive I1A of references is given. The results of these
calcuIrtinns can be summarized as follows:

v, P, atm P, atm
cc/g (for M = 8) (for M = 12)

0.0988 4.52 < 10' 4.55 x 10'
0.53 1.78 x 101 1.80 10'

0.269 5.04 x 10' 5.15 x i0'
0.700 4.44 - 10s 4.73 x !G1

It app.,ars that the pressure is relatively insensitive to the choice of M, which depends on the
number of nearest neighbors. This is fortunate because the actual structure of water at the

high temperatures and, therefore. M are unknown.
The pressures given above refer to absolute zero temperature. For higher temperatures

the "thermal" pressure pT must be added. In NAVORD Report 3847 the 1ollowing e.predsion is
derived:

PT -v-- ka'4 T , i(1.32)

This can be evaluated easily for the degenerate electron gas and leads to the simple formuh,

PT 
= 27.35 1 (1.33)

This equation of state (namely, Eqs. 1.28, 1.29, and 1.33 combined) is valid only for extremely
h'gh pressu-,es. Data f,,; Region II can be obtaincd by interpolations between these extremely
high pressures and hegion IV, for which experimental data exist. Flgure 1.2 shows sueh an
interpolation. It is now possible to derive the shock-front parameters as well as the other data
by the methods described In the previous paragraphi,. These data apply only for those tempera-
tures where no substantial dissociation of the water molecule takes place. The final results are
shuwn in Fig. 1.1; p, and yj as obtained from the TFD model are lower by a small amount than
those obtained from the calculations with the HKW equation. Bt, In general, the agreement is
as good as can be expected, considering the approximate nature oi oa approaches. Of par-
ticular interest is the agreement in the temperature; because, according to a theory of Jones,$

even a crude evaluatlon of detonation rates Is expected to give results of fair accuracy for the
p-v data, whereas good results for the temperature can be obtained only if the form of the
equation of state is correct. Our resulta may, with a certain reservation, indicate that the
form of the HKW equation is approximately correct.

1.7 INTERMEDIATE-PRESSURE RANGE, REGION IV

The equation of state at pressures of about 100 kb and below has been treated in various
publications (see. for instance, references 6 to 8). We have used the isentropic Tait equation
as proposed by Ki.kwood and Bethe, Eq. 2.2 of reference 9, to map out -Y and J In the region
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between the shock front and the saturation line. It was necessary to use variable coefficients
and exponents ir this equation. This Tait equation failed completely in and near the region
where the HKW equation was used. The results are shown in Figs. 1.3 and 1.4.

1.8 RANGE OF VERY LOW PRESSURES, REGION V

For the sake of completeness, the relations which hold for low pressures, where the shock
wave behaves almost like an acoustic wave, are given below. If the sound velocity c changes
line-rly with pressure, I.e.,

c = c0( + tp), (1.34)

the following relations can be derived:

Vo-V_ p 1 (1.35)
v poC 1 7 5

v0 - v I + p(1.36)

' v - I+ + = . (1.37)

For very low pressures the following first-order approximationR can be derived for the shock
front:

Jim YRH IeL2!'ps lim =.,P1- ps + alt' 4 (1.38)

+ a/2 - P.\lira v(/PIP° = j zBt) ( .32)

where

at = poo
(1.40)

az = I + 1..

Using these first-order approximations, we obtain for the diuipat6d enthalpy increment h (see
definition in Eq. 1.14)

/im ph P - Pc\ (1.41)if=po"= - ,,-- /

In these equations we have ustod the relation v, = I/pl.
Strictly speaking, the magnitude V as defined by Eq. 1.34 refers to tMe change of sound

velocity along an isentropic. For low pressures, however, it is permissible to use vAlues of C
which are obtained by -casuring sound velocities as functions of pressure Rt constant tempera-
ture. Experiments recently completed at the Naval Ordnance Laboratoryl give

= 0.06 kb- .

This value holds for sea water as well as for fresh water over a wide temperature range (0 to
400C) which includes the range in which we are interested. For al -we have used
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2.376.

This value holds for fresh water at 20C and also for sea water at about Sc. The latter cise
corrceponds to the conditions at Wigwam, whereas the former came Is that for which the
thermodynamic calculations were made. It seems reasonable to Assume that, for high pres-
sures where the pertinent information is lacking, our calculations which were made for fresh
water At 20C hold adequately for sea water at a temperature of 8*C. Since in the shock-wave
calculations only the ratio pi/po occurs and the absolute value of the density of the ambient
medium does not appear, these calculations are relatively insensitive to the ambient tempera-
ture.

1.9 RESULTS

The final results for the shock-front parameters are listed in Table 3.1 and are shown in
Fig. 1.1. The Isentropic exponent v and the reduced internal energy J for the whole region of
our interest are presested in graphical form in Figs. 1.3 and 1.4.

In general, thermodynamic functions obtained from equilibrium calculations ar, not smooth.
With increasing temperature, different dissociation and ionization levels are reached, and
therefore the number of particles changes discontinuously; this results in irregularities in the
graphical representation of such functions. For practical reasons we have used smoothed data
in the hydrodynamic calculations, and Table 3.1 gives such data with these irregularities elimi-
nated. In the region where there is an overlap in the data given by the TFD model and the HKW
cquatlun, we have given the latter full preference (except for the isentropic exponent I), al-
though the differences are not very large. The HKW p-v data are in excellent agreement with
the experlmental results of Walsh and Rice,11 who measured propagation and partt,;le velocities
of strong shock waves in water. Their results are indicated in Fig. 1.1.

The results of our equilibrium calculations of the isentropic exponent v show a greater
scatter than that obtained for the other thermodynamic variables. This scatter in v may be
attributed Lo variations caused by the Inclusion of excited states and to uncertainties introduced
by the graphical differentiations required (see Eq. 1.21). For v, to vary smoothly from the low-
pressure region to the value 1.666 at infinite pressure, it wab necessary to use an average be-
tween the data obtainod from the TFD model anu the HKW values (see Fig. 1.1).

, varies from the value 1.666 (at infinite pressure) to infinity (in the limit of zero excess
pressure). Attempts were made to introduce new variables so that a more well-behaved func-
tion could be used in place of y. It was not possible to obtain substantially simplified relations,
and thus It was r, Cessary to use the calculated values of y in tabular or graphical form.
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CHAPTER 2

CALCULATION OF SHOCK-WAVE PHENOMENA

2.1 INTRODUCTION

The calculations of the shock-wave phenomena produced by an atomic burst were based on
the dealizing cnncept of a point explosion, i.e., an infinitely small explosive charge delivers a
finite amount of energy instantaneously. At the first moment, such a concentrated energy dis-
charge produces infinitely high pressures and temperatures. An instant later, these become
finite and subsequently run through the range which would occur in an atomic explosion. It is
this later range which h. shall try to calculate here, since hditially the model of a point ex-
plosion is unrealistic even for atomic explosions, which produce high but finite temperatures
and do not release their energy at a single point.

An impoi iant consideration for atomic explosions is the question of the energy transport by
radiation. A study of this question by Weber 2 showed that, for underwater explosions, radiation
phenomena are much less important than for air bursts. In our calculations we have neglected
radiation entirely and have assumed that the energy of the burst is transmitted from one par-
ticle to the next by pressure forces only. This is a satisfactory assumption once the shock
trunt has traveled a certain distance, although it is a poor assumption for the early stage of the
explosion and for the region near the center for later stages. Since we are not concerned with
these phenomena here and since they do not affect the results of interest to us, the neglect of
radiation seems appropriate.

The calculations described in this chapter dcal with the task of integrating the spherical
blast-wave equations with variable isentropic exponent V,. They had to be carried out without the
benefit of an electronic computer, and so certain approximations were necessary. However,
none of the approximations made seem to be of a serious nture. The greatest advantages in
tractability were achieved by the intrcduction of reduced variables and a corresponding trans-
formation of the hydrodynamic equations.

2.2 ENERGY EQUATION AND PRESSURE-DISTANCE RELATION

Thc total energy contained within the sphere bounded by the shock front is constant and is
equal to Q, the hydrodynamic yield of the weapon. All particles within this sphere have kinetic
as well as internal energy. The law of conservation of energy may be written:

Q = 41r [L. + p(E - Ec) r2 dr = constant, (2.1)
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where E denoteR 'be internal energy per unit mass for particles inside the sphere of radius r,
and E0 denotes the internal energy per unit mus of the ambient water. We transform this
eauation by introduction of the following reduced variables:

= reduced pressure = pressure p
shock-wave peak pressure p,

= reduced particle velocity = .velocity = upekvelocity u1

X = reduced density = density- p
peak density p,

= reduced distance = radial distance r
radial distance of shock front r t

J = reduced internal energy = E-E, p (see Eq. 1.4).

With these new variables and with the use of the Rankine-Hugontot conditions given in Eqs. 1.1
and 1.3, Eq. 2.1 takes the form

3 2po

where ih is the reduced total energy defined by

1 f13 (,X + JPo) t d4. (2.3)

Since Pt is a function of pt, Eq. 2.2 provides a convenient relation for the peak pressure p, as
q function of distance r, for any given yield Q, once ,l is known.

2.3 HYDRODYNAMIC EQUArIONS

To determine r'i we have to find solutions of the partial differential equations of the
spherical fluid mntion

u, + Uur + i Pr = 0 (2.4)

Pt + UPr + pur + 2p1 = 0 (2.5)r

Pt + upr = "(P'P)(Pt + upr) (2.6)

and their bourdary conditions, which are the Rankine-Hugoniot conditions, Eqs. 1.1 to 1.3. In
the above equations, p denotes the excess pressure above the hydrostatic pressure P0. y is the
isentropic exponent discussed in Sec. 1.2.

By introduction of tic! reduced variables qp, X, and 0 and the Rankine-Hugonlot conditions,
the hydrodynamic equations, Eqs. 2.4 to 2.6, can be brought into tle following form:

80 Lp- +L +G, ln'
al f it 8 ~XPI-P0  L, G n P, (2.7)

P,
P1 - P0
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!LP + + I OI X
8 x..x8 t= 8 In p , (2.8)
at Pt

Pl -
PI-Pe

where

- dIn , 3( PI

HI r;dlnp _ _______=_L__ (2.10)H, =H,(l,- "-d"- + -L P (I +
YRH P1 - PO

G. = GI(Pt,) = L  d InH 111 (2.11)ut dt VRtH

Lr=L,(pP=r'dlnut-H'( + 1  Ps (2.12)
ul dt 2 pRH ,PO.

Y= Y(P,X,O) VRH = V'pj (PI) (2.3)

8 P -P d In 71 . (2.14)
Pt d In p,

It will be noted that the time variabl, hu been eliminated from these equations and may bu
regarded as replaced by tha peak density Ps. 'T.e boundary conditions are simply

=10

I i=0. (2.15)

(The latter two boundary conditions are obtained from symmetry considerations at the center of
the sphere and from the hydrodynamic Eq. 2.4.) t follows that the derivatives of P, X, and t
with respect to Pt vanish for t = 1. Thus, for 1 1, Eqs. 2.7 to 2.9 become

=a(VN = 2y, + H + L, (2.16

PV-P= _ PO, -p, +.

X ) 1-P (r GI) 1(2.17)

13A P- PO[,i(+, + 2) + iH,]. (2.18)

These differential quotients are functions of P, and , where Is an as yet undetermined func-
tion of pi, as indicated by Eq. 2.14.
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2.4 NATURE OF THE SOLUTION

In ordei to see how J is related to the solution of our problem, we use the following con-
sideration: If y(p,p) is an analytic function at the shock front, we can calculate the higher
derivatives p , v'...t XT, Xr, .... v, olr .... All are functions of p, and 3. Assuming V',

, and 4 to be analytic, we can make a Taylor expansion around - i:

(04,pJ,,0 = t - (P -- - (1 - 4)1-  (1 - 4), +..

(2.22)

Introduction of these exprnnsions into the integral, Eq. 2.3, for the reduced total energy iti
yield4 i/ as a function of p, and 0. This, by virtue of Eq. 2.14, is an ordinary differentil equa-
:Ilon of the first order for 77. Therefore this approach has reduced the three partial differential
etquations to one ordinary differential equation.

T'cr practtc.l calculations this method is not suitable because the coefficients of the high-
order terms in the expanslons, Fqs. 2.19 to 2.21, are too complicated. Therefore a combination
of expansions around = 0 and 4 = I was used in this project, as will be described in the fo!low-
ing sections. The differential equation for /i~ was solved graphically by the method of isoclines.

2.5 TAYLOR CASE

In Sec. 1.3 we have seen tlat, for infinitely high pressures, the density p, directly behind
the shock front approaches a finite value, p, = 4p§. We also have , = %Is and i/VRl = 0. In this
case the three partial differential equations, Eqs. 2.7 to 2.9, become ordinary differential
equations. This is the well known Taylor13 solution for strong point blast waves.

We shall assume that the Taylor solution gives the density, velocity, and pressure distri-
bution within the infinitesimal sphere at t = 0. This is an idealizing approximation because
actual explosions, even from concentrated energy soirces, canno. ave such dlstributluno front
the beginning. However, it seems safe to assume that the actual distributions converge quickly
to those which ate calculated with the assumption of an initial Taylor solution.

Since Infinitely high temperatures are assumed to prevail throughout the aphere of dis-
turbance at t = 0, the isentropic exponent y is constant within this sphere and equals %. For
constant y the differential equations can be solved in closed form (see NAVORD Report 4182).
The solution is shown in Fig. 2.1 in the curves labeled pt = 4p,. It is interesting that the
density vanishes at the center of the explosion. The same holds true at later times when the
shocx front has traveled to larger distances.

2.6 EXP.N.S-IONS AROUND 4 = 0

The Taylor solution can be given not only in closed form (which is discusced in NAVORD
Report 4182) but also in the form of Infinite series:

4'=Co +C14m+ 3 + C22m+5 +

X=Bt
n + Bl 

2
m4

2 + m4 +.. (2.22)

= A0 - AJ
m +2 + A 2F,' 4 + ....
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whert:

3
mn 3. . 4.5

)'0-i

Explicit expressions for the first few coeificients are also given in NAVORD Report 4182. The
numerical values -are A = 0.306, A, = 0.320, BO = 0.343, C, = 0.800, and C, = 0.229.

In NAVOID Report 4183 it is shown that such expansions may be used to express the
desired solutions of the partial differential equations, Eqs. 2.7 to 2.14. For this general case,
that is, 1 /'YIH A 0, the coefficients in Eq. 2.22 are functions of pi. Substituting these expansions
int') the partial differential equations and equating like powers of 4 yields a set of ordinary
dilferential equations in the coefficients At, Bi, and Cl. The first three of these are

d In p,
3 -0C0 + H -+ - n = 0 (2.23)

-t - , o (2.24)

PO m +2 A,+ LI -PI + C + G, d In C 0  (2.25)
$I - ,0 loC PI - PO d In p,

These are three equations in the four unknowns AO, Ai, Fi, and Co. Foi each additional differen-
tial equation added to this system, one more unknown is introduced. Therefore the expansion
around 4 z 0 is undetermined unless additional information is Incorporated.

As described in NAVORD Report 4184, this may be accomplished in several diffrrent
ways. The most succepsful method tried uses Eq. 2.7. After solving for 80/3t and Integrating
from t 0 to t 1. we obtain

POo J-., at, +p -PO~ o 08_+ t G In pi)I'o ,, X, ' d , Po 8 Ol-. pt / d .(2.268)

2.1 POLYNOMIALS

Since the solutions can be expressed by means of expansiono around I = (Eqs. 2.19 to
2.2i) .ud around 4 = 0 (Eq. 2.22), one may construct approximate solutions by using relatively
few terms of each and merging these together in the intermediate range. One of the simplest
ways to do this is to use the CApansion a-ound = 0 for the entire range of 4, but to determine
a certain number of the coefficients in such a way that the boundary conditions, Eq. 2.15, are
fulfilled as well as the behavior near 4 = 1, as given by the first-order derivatives, Eqs. 2.16
to 2.18, and anly higher order derivatives which one may wish to include.

If only first-order terms are used, we employ a four-term polynomial for X and a three-
term polynomial for 0P and J.:

o c0 - C 1 4tn+, C2 42m +
5.

S-.B0 f" m + Bit2m+2 + B2 3m+ 4 + B$44m+6. (2,27)

AO + Atrm+2 + ASt
2m +4 .

There are then f0 coefficients to be determined, for which we have the following conditions:
1. Three boun,!ary conditions, Eq. 2.15.
2. Three first-order derivatives at 4 = 1, Eqs. 2.16 to 2.18.
3. ITw, first-order differential equations, Eqs. 2.23 and 2.24.

32

SECRET- RESTRICTED DATA



One further condition can bc obtained from the fact that the mass of the sphere which is
bound by the shock front is equal to that of an equally large sphere containing water at normal
density:

4ripir', CXt dt - or (2.28)

or

B0 B: + B3  _po
m + 3 2m+5 3m+7 4m+9 3p,

The tt-nth condition Is the relation given as Eq. 2.26. Introducing the polynomials in Eq. 2.27
into Eqi. 2.26 yields, with the use of the abbreviation

the followng relation for AO:

A0 I+ tZP0L, 0(,- 2b 2 +b 3 ) +(H4 - ,.i) b2 -b + b,1

+ P. ..e0 [Co'b, + 8.5CoCib2 + (7.5C' + 15C6C2)b3 + 21.5CC 2 b, + 140~5
P0 

15

+ .Leo G, dC '(,-2b s d't O2 - b3\1 (2.30)
P0 dn~(b b 3  dlnp1 ( 6.5 1]

711s is in ordinary differential equation for C, as a function of pl. Thus we have three simul -
taneous ordinary differ ential equations which deptormine A,,3, and Ca, namely, Eqs. 2.23,
2.24, and 2.30. The other coefficients are given as follows:

A, = 2 - 2AO -01/.

A2 = I - A0 -

B, = - 5.GBO + L268- 7.3728 + 0 .1657 xi

B, = 8.213,.- '*18.4379 - 0.4852X, (2.31)
P1

B, = - 3.6B, + 3058-10.0651 + 0.3195XI
Pt

C,= 14 - 2C0 - (pl/6.5

C2 = I- Co - C1.
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The accuracy of these polynomials has been tested for the Taylor :se, where the exact
solution is known. There was agreement up to the third decimal place, which showed that it is
not necessary tc, include any more terms in the polynomials. This seemed particularly justified
In -'iew of the fact that we are n't so much interested in the reduced functions (, X, and e as in
the integral 17 formed from them. Small inaccuracies or approximations used under such an
Integral usually have only a minor influence on the accuracy of the final result.

2.8 DETERMINATION OF f

In all relaticns derived so far, 03, defined by Eq. 2.14, occurs as an unknown function of
Pi. Only those w's. X's, and 's which Involve a 0 satisfying equation, Eq. 2.14, are solutions of
our problem.

The method used in this project determines $by means of an interpolation. First some
arbitrary and constant values are assumed for 0. Then (p, X, and 0 are determined by the
methods described above. Subsequently, 17 is calculated using Eq. 2.3. When In 1i is plotted vs
In (p, - pa)/po, the inclination of the i curve we seek must have the value of 0 wdch was used
to calculate this curve. Such a curve is readily found in the same way as the graphical nlution
of differential equations by the method of Isoclines. Figure 2.2 illustrates the procedure.

Since it turned out that il was not sensitive to the value assumed for t, an interesting con-
clusion may be made on the nature of the solution. If ,t were assumed to be entirely Independent
of the assumed value of 03, Eq. 2.14 would not be needed at all to arrive at a solution, and this
would eliminate the arbitrary integration constant of this differential equation, i.e., we would
have a singular solution, ;ndependent of the Initial condition. It appears that this situation is
approximately true for the solutions we have obtained. It therefore seems possible to start the
calculation with different initial Taylor distributions, i.e., with different values of v0. such as
1.4, 1.66, or 7, and still obtain almc.st the same result for the shock-wave parameters at dis-
tances where pressure measurements can be made.

2.9 LOW-P4R'SSURF RANGE

When te shock front has propagated to large distances and the pressure Is low, the wave
behavc. iearly like an acoustic wave. The peak pressure of such waves decreases approxi-
mately proportiona~ly to the distance. For instance, Kirkwood and Bethc have found the
following asy,,ptutic behavior uf the weak shock waves:

p r _ (2.32)

r, (In rl/ro):

where c is a constant and r0 is the reference radius. From this we obtain

dlnpi + 1 (2.33)
d In r, 2 In r/r"

This magnitude approaches unity slowly as the shock-front distance increases to Infinity.
Going back to Eq. 2.10, we find

d u-3(2.34)d In r, ul I P, + +

YRH Pt - PO

or for l.w pressure, with the use of the approximation, Eq. 1.38,

- d Inpii I + L- + (2.35)
, 1-',d In r, 3
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Comparison of Eq-;. 2.35 a'nd 2.33 shows that, for low pressure, i mubt slowly approach unity.
From the definition of .1, Eq. 2.14, it can be seen that t~l must tend to zero. Thlr gives us
qualitative information oil v an .:, they must tend to vaish for most values of 4 for very low
shock pressures. ur else the integral for -.7, Eq. 2.3, could not become zerc. X does not vanish,
as can be seen from the average density condition, Eq. 2.28; in fact, X approaches unity when

Since

for 4 -

aad

X= 0  
for 4 O,

we obtain in the lim"t for zero shock pressure:

lim (o= lira 0 0 < I

lhrnx 1 0 < -".

There is a discontinuous drop of ( and ; from I to 0 at = I and also for X at = 0.
This implies that the derivatives (o and l, increase to infinity when pi - pa, but xf

vanishes. Indeea, Eqs. 2.16 to 2.18 become, with the use of Eqs. 1.38 and 1.39,

S04", iim 4 -2f, I 1 -
AL-Pe PI-0 P PO TZ F-70",

(2,36)

rn - 0.91pt a2 2+

Thus (I - il)/(p, - p)) approaches 'o as p, approaches p0, It is difficult to evaluate the integral 171
for these conditions, because J inereases rapidly with decreasing t for low values of pl. B3asi-
rally, this is becausc the bubble aad shock-wave phenomena become spatially separated. Most
of the chock-wave e torgy is concentrated near the shock front ard can be easily accounted f'r

by the methods described above. But this is only a fraction of the total energy, since an appre-
ciable amount of energy is found as internal energy near the center. This latter energy pro-

duces the phenomenm of the pulsating bubble and is not conveniently accounted for by the method
described in Sees. 2.7 and 2.8.

Therefore, to obtain -:., we may calculatr the shock-wave energy and try to find a relation
between total energy Pnd shock-wave energy.

At the shock fron!t, energy Is dissipated because of the irreversible shock process trd is
converted into thermal energy. The shock-wave energy QS Is reduced correspondingly. Kirk-
wood and Brinkley, Eqi. 4.29 in reference 14. have formulated this phenomenon as follows:

dAs = _ 4nPohrI '  (2.37)
dr,

where QS = 4v (, [r(tI' up dt and h -- dtssipated enthalpy increment. The Integral for the
shock-wave energy has to be carried along the path of the fluid pa.'ticle which is reached by the
shock front at t "= t(r t) and r = rf. The upper limit corresponds to a long time compared with
the duration of the shock wave but must be chosen in such a way that secondary pulses are not
included.
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In NAVORD Repurt 4182 the shock-wave energy QS is expressed by a volume integral.
Defining the reduced shock-wave energy i1S In the same way as the reduced total energy, the
following expressions have been found

3r p * 1 S (2.38)

and

Urnms3 f I ox+ )4 d4 (2.391

3 3 ___ (2.39a)2 (p +x It7;3 2+ T3

where the derivation of Eq. 2.39a is explained in NAVORD Report 4182. With Eq. 2.369 this
becomes

li q'3a2pi-p 2 +13 (2.40)

This equation Is of little help yet, since it relates the reduced shock-wave energy with 0, the
derivative of the re'duced tota! energy. Another expression for 18can be obtained from Eq.
2.37. Introducing Eq. 2.38 yields after a few manipulations

17,. =RIP Z . (2.41)
pp, - PO) P1 P (0$1)

YRH PI'Pe

.%nd, with the use of Eqs. 1.38, 1.39, and 1.41,

lrn 1s .3 -P 2 +0 (2.42)

wheredi

P0

Combination of Eqs. 2.40 and 2.42 gives the following differential equation for iaS (the limit sign
is Gmitted):

3a2 p, - po (4/3) +I~s(243
17 - , - (2.43

Its coltition Is

17 a2P. - P(ZIn CPO -Iln )O7 (2.43a)

where C is th~e Integration constant. Combination of this soution with Eq. 2.40 yields the de-
sirpd asymptotic expression for 'I:

AIp +i V7P2-p
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The a,erit of this siniple exprebsion is that it shows how 13 can be extended Into the low-
pressure region where the calculation of S71 becomes inconvenient. Thie integrationl constaint c
is determined by the results for jJ obtained In the high-pressure region; jl must merge smoothly
from one region into the other.

2.10 PEAK APiPRCXlMATiO4

Another, mecre elaborate, treatment of the low-pressure range is dore 'hy the use of the
en prcoximation. i3y "peak approximation" we reter to the attempts of va:ious authors to

describe the shock-wave propagation In terms of shock parameters wnly. This can be done by
making certain idealizing assumptions, for instance, assuming a simiarity restraint on the
wave shape. Kirkwood and Bethe as well as Kirkwood and Brinkley have precented such chock-
wave theories, and in their application to underwater erplosions they Otsaumned an exponential
wave shape. These theories have been successful, aiid they would be quite appropriate for our
case. We have used the more recent theory by Snay and Matihias.1

The Snay-Matthias theory gives an interrelation between peak pressure, time constant, and
the profile of the wave which is characterized by the shape factor i This magnitude is defined
as follows:

j= I q/a~ (2.45)

where f is unity fur an exponential wave shape and zero for a triangular wave shape. The theory
leads to the following differential equations:*

dp, + PS+ P12 = (2.461

dii x

where x = reduced distance = /r
r= reference length (will cancel in this analysis)

a = time factor = ro/ Vc@

8 time constant = - p.'(ap/ at)
c= sound velocity at p =0

The variable ccef!clentz P1 of these differential equations are obtained from the three hydro-
dynamic partial differential equations and are functionst of the peak pressure p, only.

Introducing 0 and p I, these two equations can be transformed, with the use o'f Eqs. 2.34 and
1.12, to:

W,wiCjiX RH pte (2.48)

and

d In cx = -1 (W ,!-sxwa~(.9

d In~ P SC=W 1 + W2aXk W3-aX- O -W '),(.9

O.ee referencp 1, Eqs. 1.6 and 2.7, where the symbol at/a' Instead of fIis used to desig-
nate the shape factor.
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where w =- P1 pi
YRH PI PIP P1

W2 = - -1PI

VRH P1 - P1 P1

WS = I - pl4

W4 = P13

we = p1 sl

ax LL.(2.50)
c40

The variable coefficients w1 are listed In Table 2.1. They are now functions of pl.

Table 2.1 -- VARIAZILE COEFFICIEMT OF EQS. 2.48. 2.49, AND 2.56

PlP t W: W3 W4  Ws W

1.60 0.3523 0.0375 1.211 4.45 -0.0187 0.098
1.50 0.3917 0.0468 1.282 3.32 -0.0182 0.114
1.40 0.4578 0.0507 1.240 2.33 -0.0158 0.128
1.30 0.5182 0.0756 1.190 1.50 0.0000 0.140
1.20 0.5874 0.0877 1.124 0.810 0.0300 0.142

1.1g. 0.6434 0.0931 1.092. 0.533 0.0750 0.129
1.10 0.7326 0.0921 1.047. 0.312 0.0813 0.110
1.075 0.8005 0.0820 1.052 0.220 0.0770 0.0952
1.050 0.87169 0.0634 1.038 0.143 0.0585 0.0753
1.040 0.8980 0.0544 1.032 0.112 0.050e 0.0642

1.030 0.Ml8 0.0420 1.024 0.0830 0.0420 0.0511
1.020 0.9501 0.0298 1.0172 0.0535 0.0309 0.0356
1.010 0.9744 0.0159 1.0065 0.0255 0.0175 0.0198
1.005 0.9E58 0.0087 1.0042 0.0122 0.0025 0.00397

Equations 2.48 and 2.49 would yield 13 as a function of (p, - p.)!',, if the shape factc'r f
were known as a function of n.: In the high-pressure region, however, we have already ee-
tei mined 13 as described above. Here Eqs. 2.48 and 2.49 can be used to calculate the shape
factor. The result Is shown in Fig. 2.4. Also, for the low-pressure range, the asymptotic
relations in Eq. 2.44 can be used to find the shape factor. The value of fIIn the intermcdiatc
range can then be approximated by interpolation.

In the actual calculations, we used a combination of the two methods described 2bove.
First, the integration constant c in the asymptotic expression, Eq. 2.44, was approximately
determtned by merging the two parts of the 13 curve graphically, as shown in Fig. 2.3. Once

his ntegration ccn!itant is krown, the shape factor can be calctuated fir the l-w pressurosA
and Interpolated in the intermediate range. Now Eqs. 2.48 and 2.49 can be used to find $ and,
subsequent~ly, an improved Integration constant c. The procedure is repeated until satisfactory
convergence Is obtained, It turns out that the shape factor his a maximum and a minimum In
the range of our interest and varies between 1.65 and 0.53 (see Fig. 2.4). These calculations
yield 13 over the entire range of our project. absequently ll can be determined by inttgration.
This concludes the major part of the shock-wave calculations since now the peak pressure-
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dis!ance curve as well as other shock parameters can be readily computed, as will be de-
scribed in the next section.

2.11 SUMMARY AND RESULTS

For the benefit of the reader who is less interested In mathematical developments, the
salient points of the analysis are summarized here.

The main objective is to calculate the shock-wave peak pi essure as a function of distance
for .uint explos!on. A convenient expression for the pressure-distance relation may be ob-

tained from the fact that the total energy of the spherical disturbance caused by the explosion
must be constant and equal to Q, the hydrodynamic yield of the explosion. The mathematical
expression of this statement is

= r 1p1 P'-o "2 constant, (2.51)

where pi = shock-wave peak pressure
Pi = peak density
P0 = density of the undisturbed water
rl = distance of the shock front from the center of the explosion
itl = reduced total energy as defined below (see Eq. 2.53)

According to the Rankine-Hugoniot conditions, the shock pressure Pi is a function of
Pl/Pa and is given by the Rankine-Hugonilot adiabatic, Eq. 1.J. In the thermodynamic part of
the calculations this function has been numerically determined and is presented in Table 3,1.
It will be noted that p, varies between 4p, and pe. The latter value correspond& to p, = 0; the
first, to Pi = -'; hence to the instant of explosion: t = 0 and rl = 0.

It was found idvantageous in the analysis to use the magnitude Pl/P as the principal fn-
dependent variable. (For simplicity, we write Pi lnstzal of the above ratio, assuming p0 ;s a
constant an0 known magnitude.) A glance at Table 3.1 will show that It is possible, once P, Is
specified, to determine any other variable of interest, such as pressure, radlus, or time.

Tne reduced total energy 'qi depends on the shock strength; hence

' = 7(o). (2.52;

Once this relation between il and p, Is found, the corresponding distance of tt.e shock freet rl
is easily found from the energy equation, Eq. 2.51.

il is defined by

= 3 -'- [ -u) P , r) ( )

(2.53)

_3f ( 402x+ 2 0qJPo)/1dt

where ul is the particle velocity directly behind the shock front; the symbols without sub-
scripts refer to points between the front and the center; 0' Is the reduced velocity, x Is the
reduced density; 4 is the reduced pressure; and 4 is the reduced distance. These reduced
variables take values only between zero and unity. Figure 2.1 shows the behavior of these
magnitudes for various values of Pl. J is the reduced Internal energy discussed In Sec. 1.2.
It is a function of three variables, namely, pl, iz, and X, These data are directly obtained by
the thermodynamic calculations outlined in Chap. I and are shown In Fig. 1.4. Obviously the
material ptzsented in Figs. i.4 and 2.1 provides all the information necessary to calculate u7
by means of Eq. 2.53. However, to obtain i, X, and as functions of t and pl, one must solve
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the three partial differential equations of the fluid motion. In NAVORD Report 484 several
methods are proposed which provide approximate solutions of reasonable accuracy.

One of the interesting features is that simple cquntions exist for thc inclination of the V,
X, and 4 curves at t = I (Eqs. 2.16 to 2.18). This means that the behavior of the reduced
variables near 4 = I can be found in a relatively simple manner, which is most important for
the finding of ill by means of the integral, EQ. 2,53. Since the fector t2 occurs in the integrand,
values for small contribute little to the total value of the integral and hence do not need to be
known precisely. (This holds for high pressuree only. In the intermediate- and low-pressure
ranges J increasee z apidly with decreasing t. Hence, other methods are used in these ranges.)
For greater accuracy in the evaluation of '7 in the high-pressure range, we have dorived series
for the reduced variables which de3cribe their behavior around 4 = 0. Combtnation of both
treatments by means of polynomials, which inzorporate the information available at t = 0 as well
as at 4 = I, resulted in the expressions in Eq. 2.27. Their accuracy is excellent in the one
inatance where P. comparison with the rigorous solution was possible.

However, there is one difficulty in these otherwise simple calculations; they involve* an
unknown parameter, namely,

pi -PC dt, _ d In il (2.54)
PO'71 do t d In L:±!

N PQ

This magnitude is the inclination of the 17 curve, when plotted vs (JI - po)/Po in a logarithmic
scale. Figure 2.2 shows such a plot.

Actually 0 is the magnitude of principal concern, because, once 3(ps) is known, the im-
portant magnitude il can be readily obtained by integration. Therefore fhe greatest part of the
analysis is devoted to the task of finding 3. A different method was used In each of the three
pressure regions considered.

The hign-prersure region corresponds to P, between 4po and 1.4p, and to pressures between
• and 464,000 psi. Here, 7, was calcu'ated from IE4. 3.53 with various arbitrarily assumed
values of 3. Then It Ps plotted vs (p, - Pal/Po and an j7 curve is construcied which has an incli-
nat~on equal to the assumed ft. Alone this curve the condition in Eq. 2.54 is satisied, and this
3 Is the solution of our problam. The interpolation weitod used to select 3 is illustrated in
Fig. 2.2.

The low-pres.ure region extends from p, = i.01po down to p, = PC and corresponds to
pressures between 3260 psi and zero. For this region, the following asymptotic relation can be
derived:

I3=-+; -=Po) (2.55)

This letermines ( a s a function of pi and an integration contant c which is to be determined.
FIgure 2.3 shows the form it the p curve when plotted vs the logarithm of (p, - po)/po. A change
of c moves this curve horizontally either to th, left or to the right without changing the ordi-
na!, s. This shows how the 1 curve can be approximately drawn for both the low-presture and
the littermedlate-pi essuze ranges: The asymptotic pressure curve is moved into such a post-
tic- that a croooth curve is obtained from the high-pressure down to the low-pressure range.
The c rve thr:s obtained corresponds to the fine line in Fig. 2.2. (The figure actually shows not
thiR crude intermediate apprcximation but the final result obtained with the use of the subme-
quently described method.)

The ir.termedlate-pressure range has been calculated by means of a "peak approximation."
With this term, we refer to the theories in shich an attempt is made to describe the shock-
wave propagation in termc of shock parameters, such aF peak prossure, time constant, or re-

"Compare Eqs. 2.16 to 2.18, 2.10, and 2.14 of this report.
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iated nagintudes. This ib oa i ptssible if assumptions as to the shape of the wave profie are
made, and they are anproximatl ns for that reason. Examples are the highly successful
Kirkw,)od-Bethe and Kirkwood-Brinkley theories. We have used in this project the more recent
theory of Snay and Matthias.' Adapted to oir problem, this theory y!elds:

+= 3 01 -P I

d lnax .-1 (w 4 _ w jf) (2.66)
d In xPt 0w + wCX OX

where w, to w5 - functlu ts v Pt, Ilsted in Table 2.1

ox = time factor - rt/c00
co = sound velocity at p, = 0

= time constant = p 4 (8p/et)
f - shape f.ctor, see Eq. 2.45 (f is unity for an exponential wave, zero for a

triangular wave)
y11 - 1.1 In p1),/d In pl), listed in Table 3.1.

At the end of the high -pressure range, p,/po = 1.4, we know all three magnitudes involved in
Eqs. 2.56, namely ;J, ax, and f. The latter two are the initial conditions for the above differen-

tial equation. To integrate this equation, f must be known as a function of Pi. Assumption of a
constant f would have been a good approximation. We went even further by estimating f as a
function of PI, as described in Sec. 2.10 and shown in Fig. 2.4. Finally, integration of Eqs.
2.56 yields 11 as well as ax from which the time constant 9 can be obtained. The results are
given in 'fable 3.1.

Subsequent straighttforward calculations yield qit, Eq. 2.54, and the shock-front distance ri,
Eq. 2.51. This yields the desired pressure-distance relation. The other shock-wave param-
eters, such as time constant and shock-wave energy, can now be calculated without difficulty.
This will be explained in the following paragraphs, together with the presentation of the
numerical results.

The peak pressure-distance curve for a point explosion with a yield of 30 kt of TNT is
presented I-, Fig. 2.5 together with the experimental evidence obtained in Operation Wigwam,
as given in the preliminary version of reference 15. Also shown are the results of the pre-
lintinary calculations Ruhmitted prior to the test as "predictions." The two curves differ in the
range of interest by very minor amounts, and either one is in good agreement with the experi-
mental results.

The pressure-distance relation for any other yield Q can be easily calculated from the
values of rl/Q" which, together with the peak pressure, are given in Table 3.1. Fnr low pres-
sures (3000 psi and below), this relation can be approximated as follows:

Pt = 4.608 < 10' r' 3 (2.57a)

S18,800 (L' L)1 (2.57b)

where Pt is in pounds per square inch; r , is in feet; Q is in kilotons of TNT, where 1 kt is 1011
g-cal (-4.20 \ 101 ergs); and W is in pounds of TNT (I kt = 2.205 x 101 lb).* Comparison of

*A detonation energy of i0 cal g has been assumed for TNT. Previously published values
which are up to 10 per cent higher than this are based on theoretical calculations which are

supcrcded today. A reliable value is not known, and there are Indications that even iO cal/g
is too high. This shows cleat ly that the choice of kilotons of TNT as an energy unit is an un-
fortiunte one.
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Eq. 2.57b with the corresponding formula for the shock-wave peak pressure produced by a TN"T
explosiun,

p, = 21,600 MT, (2.568)

shows that for a point explosion an energy equivalent to that of 1.446 lb of TNT is necessary
to produce the same shock pressure as does 1 lb of exploding TNT. Or, in other words, the
shock-wave peak pressure of a point explosion with a yield of I kt of TNT is equal to that of
an exploding 0.692-kt TNT charge.

The shock-wave peak pressures observed at Wigwam correspond to those produced by a
TNT explosion of 46.2 x 10' lb charge weight."$ The actual yield of the Wigwam explosion is
not accurately known. The followhig values were quoted at the Wigwam Project Officers'
Conference at the Naval Radiological Defense Laboratory, San Francisco, in October 1955:

Radiochemical yield:
Los Alamos Scientific Laboratoi y, 32 = 3.2 kt of TNT
Naval Research Laboratory, 35 - ?.5 + 10 kt of TNT

Hydrodynamic yiela:
Armour Reapareh Foundation, 30.5 * I lt of TNT.

Using the LASL value, it is found that according to the experimental evidence of Operation
Wigwam, an atomic underwater explosion with a yield of i Id of TNT would produce the same
shock-wave peak pressure as a "INT explosion of 0.65 :k 0.12 kt charge weight. The caiculated
value (0.692 kt) is within the limits of the experimental error. This error appears to be
large, because expressing the shock-wave peak pressure in terms of energy amplifies the
errors of the pressure measurements by the power 3/1.13 = 2.655. For the dame reason it Is
more difficult to predict accurately the energy equivalent than the shock-wave pressure.

If the calculated curves In Fig. 2.5 were drawn for a yield of 32 kt of TNT instead of 30 kt
of TNT. the pressures would b- 2.5 per cent higher-a change which would hardly affect the
agreement with the experimental points shown. Since the question of the actual yield was not
settled at the time of this writing, all data in this report are presented for 30 kt of TNT, the
yield for which the calculations were originally made.

The time constant is aefined by

- (ap/at)r = ax (2.59)

Calculated numerical values ..f ON', as well as 0 for 30 kt of TNT are listed In Table 3.1.
Figure 2.6 shows a c.omparison with the test results: the calculated time constant is about 10
pr ccnt too high. Since most shock-wave thi orles give poor results for the time constant, the
agreement may be considered atisfacLory.

The arrivAi iime for the shuck front at a point at a distance r, is given by

t dr (2.60)

where U is the propg-tio. wloclty of the shock front

o -- 'No/ "(2.61)

Introduction of the variables 13 and 711 yields

4 1 +P1 pf #/H 1p,\
~ .4- () dp1. (2.62)
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Numerical results for t as well a~s tQ' are 1given In Table 3.1. For high pressures and small
distanccs, thc arrival tinu -a. be obtained by means of the Taylor solution (reference 13, Eqs.
7 and 8). In our notation,

=5.588 X 10' ,2 (2.63)

=0.830 il.

where the numerical values apply to pt 4po, t in milliseconds, Q In kilotons of TNT, W in
pounds of TNT, and rl in feet.

For moderate and l.arge distances Eq. 2.82 gives good agreement with the test results re-
ported in the preliminary versi-in of reference 16 (see Fig. 2.7). However, for close-in dis-
tances both Eqs. 2.62 and 2.63 %re in poor agreement with the test r'esults (Fig. 2.7). This
disagreement Is probably due to the Idealizing assumption of a point explosion with an isentropic
exponent of %., For real explosions this value may be higher.

The shock-wave energy flux (commonly called shock-wave energy) is, for low pressures,

FSW=-7 7  fp'dt. (2.64)

This magnitude is equivalent to the integral QS in Eq. 2.37 and can be expressed as follows:

Esix Q Q(2.65)
ill 41; r,

where ils is the reducedt shock-wave energy defined by Eq. 2.38. The ratio (1/4n)(?%/flt) is

listed in Table 3.1 It is a slowly varying function of p, or, what amounts to the same thing, of
Q'),'rj. For pressures below .3000 psi we have approximately

2.15 10-(2.866

and, by combination with Eq. 2.65,

:.05

= 1963W" T ;)' , 2.67b)

wher" 's is in inch-poundii pe: square inch, r1 is in feet, Q is In kilotons of TNT, and W is In
pounds of TNT. It should be noted that these theoretical *ormulas apply to the total shock-wave
energy. In the empirical formula for TNrl,

E,~ 2410W" (~)~(2.68)

the Integration In Eq. 2.64 is carried up to el? arcs not to infinity. However, for all practical
purposes this is equivalent to the total shock-wave energy. The experimental values shown In
Fig. 2.8 are obtained by Integrating up to the time of the surface cutoff only; this occurred at
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about t -- 10 to t = 30. They represent only fractions of the total energy, although very large
fractions. Considering these factors of uncertainty, the agreement between theory And experi-
n.ent is fairly good.

An explosion of 45.76 x IO lb of TNT, which would give the same shock-wave peak pressure
as a 30-kt TNT point explosion, would not produce the same shock-wave energy (see Fig. 2.8).
An explosion of 54.06 x 10' lb of TNT would be necessary to Jo this, as can be found from qs.
2.68 and 2.67h.
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CHAPTER 3

BUBBLE PHENOMENA

3.1 INTRODUCTION

The nature of the bubble formation by a point explosion differs in some respects from that
of conventional explosives. In the latter case the reaction products of the explosion expand and
push the water aslde, thus forming a gas sphere which then performs the well-known bubble
pulsations. The bubble interface always consists of the same particles, namely, those which
were in contact with the charge before the explosion. Vaporization of the water is entirely
uni Pnnrtant.

In the ease of a point explosion, the water il pushed aside by expanding steam. The heat
which vaporizes the water stems from the energy disnipated at the shock front and is that
energy which the shock wave leaves behind in the form of thermal energy after the medium hasreexpanded to the Initial pressure. Consequently, the water has a higher temperature ii, this

6tate than it had before the passage of the shock. This temperature increment decreases with
increasing distance from the center. Near the center it is high enough not only to vaporize but
actually to decompose the water. At greater distances this temperature increment eventually
drops to a val,.e which corrosponds to the boiling point of water. This condition determines the
bubble radius. Since the boiling point is a function of pressure as well as temperature, the
mass of water which is evaporated depend.- on the prevailing pressure, which changes during
the expansion of the bubble. Thus the interface is not formed by the same layer of water but Is
transferred from one set of particles to another. At the moment of the bubble maximum the
greatest mass of water is in vapor form. The radius of this maximum bubble is the parameter
of primary interest. All the other bubble parameters, such as the first period and the bubble
energy, as well as the numerical values of the energy partition, are readily deduced once this
magnitude is found.

3.2 DETERMINATiON OF MAXIMUM RADIUS

The energy which has been imparted to the water by the explosion can he subdivided into
three portions:

i. Shock-wave energy, QsW.
2. Dissipated energy, Qdts.m
3. Bubble energy, Qu.
The bubble energy Is most convenlently found from the difterence of total energy and the

first two energy terms noted above:

Q n = Q - QNW -Qd, (3.1)
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The shock-wave energy fraction is, according to Eqs. 2.38 and 2.2.

QM = "§.(3.2)
Q 17,

This magnitudc Is a function of distance and has been calculated in the previous chapter.
Numerical results can be obtained from Table 3.1.

According to Eq. 2.37, the dissipated energy for a shock wa,7ch has traveled from the
distance r' to r* is

Qd, 4 = 4sP fIn' hrdr;, (3.3)

where h Is the dissipated enthalpy increment, Eq. 1.14, and r, is the distance of the shock front
from the center of the explosion. With the use of Eqs. 1.'2, 2.2, znd 2.34, we obtain for the
dissipated energy fraction

Qdis. , h , dps-p. (34

Pt; \ PO) e

The lower limits of the integrals in Eqs. 3.3 and 3.4 refer to the point at which th,, shock-wave
energy, Eq. 3.1, is calculated. The upper limits of these Integrals must be chosen in such a
way that the integral covers only those particles which are in the liquid state at the moment of
the bubble maximum, since any particle which vaporizes belongs to the Interior of the bubble
and its energy is counted as bubble entergy. Therefore r* designates the layer of particles
which forms the Ilez face of the bubble at its maximum expa.sion, and the splere havin.k this
radius contains the mass of water evaporated. Wh.en the shock front has traveled to the
distance r*, it encompasses a sphere of average density pe, the normal density of the water
before the explosion. Later, this sphere, consisting of the same particles, has expanded from
the radius r; to the maximum bubble radius AM. Of course, the mass of these two spheres- in
the scume, and therefore

m fAM dm - 4 jA. pr
z

dr

14v. p~r2 dr, 4 s~t)

The volume of the bubble at its maximum is then

3 fA,, v dm

(3.6)
4. jr' p~v(r~r21 dr i ,

where v is the specific volume of the steam inside the bubble at the mL,nent of the maximum
expansion. We assume that at this moment the press:re PM Is constant throughout the bubble.
Since the bubble interface consists of saturated liquid, this pressure is the saturation pressure PS
of water in the thermodynamic state prevailing at the interface. The pressure Ps and the
specific volume vs of the saturated liquid are funct!ons of the entropy S only and can be readily
obtained from the steam tables, such as in reference 17. Thus

PM 
= PS(SA )  ((3.7)

v(,M) = VS(SA,,).
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to listedi in the. -team tables is the -pecific volume of steam at constaitt pressure as a func-
tion of entropy. Therefore we have

v(r) =v[S(r),P-,

(3.8)

Since~ the entropy is COnistant aio!.g the path 01 a particle, once the snocK has passed over It, we
have

S(AM%)= r)

5(r) = (r3)(39

and

v(r) = v[S(rj),S(r')J.

This shows that v(r) can be determined with the use of thi; steam tables and Table 3.1. (The
steamn tables give tWe entrcpy increment above 0T, whereas Ttble 3.1 gives that above 80C.
Therefore S(80C) - S(0*C) must be added to the latter values to bring them on an equal basib.)

The exact evaluation of the integral In Eq. 3.6 is difficult because v increases to Infinity
when r, approaches zero. A rather crude approxcimation was employed, using Simpson's rule
for the evaluation of this integral. The result is shown in Fig. 3.2 (the curve marked Eq. 3.6),
where the dimensionless magnitude AM/rj' is plotted vs pt/Pt.

To obtain a solution of our problem, we need another independenit expression fox the
magnitude Am/r*. Accordig to basic bubble theory (Eq. 8.3 of reference 14), the maximum
bub'ble radius and *he bubble ernergy are related by

Am a QB 3 0
M v P.M~ (.0

where PO Is the absolute hydrostatic pressure at firing depth and am is a fattor which accounts
for the internal energy within tne bubble. (In the bubbic theory, abzolute energies are usually
used, whereas the energier' Q, Qsw, and QB are excess energies. These must also be accounted
for by a,,,.)

Introductior of Eq. 2.2 into Eq. 3.10 yields

()=16,284a.4 mP P - p QR (3. 11)
(r, . Z.. Po

where Z0 Is the total hydrostatic head In feet and pt is in kilobars. Figure 3.2 (the curve
marked Fq. 3.11) shnws the resuito obtained from this equation togetl'er with Eqs. 3.1 to 3.3.
The curve holds fcar Z, - 2.'i33 ft aad am= 0.8. The lower limit of the integral In Zq. 3.4 was
bet at 00 - 1.0ipo. Frrm Table 3.1, one finds tl'e corresponding shock-wave energy fraction
QSW/Q . 0.20.

The two curves for Aq1/i tintersect at tWe poii.t

P1 1.597 and &= 6.87. (3.12)
PO 1

TIs establishes the solution of our -roblem Pnd drto3rmines immediately the following ntagni-
tudes, as illustrated in Figs. 3.1 and ',.2:

54

SECRET - RESTR;C!ED DATA



0.6

0. 0 EQUATION 3.1)

0 0.50.4

9L Q - (EQUATION 3.)

0.3

S (p*) SMON)

0 -P - - " /

1.4 1.5 p 1.6 17
P0

Fig. 3.1 - Dllpated energy. bubble energy. &rm entropy.

55

SECRET- RESTRICTED OATA



AM FROM EQUATION 3.6

25 70
25\ -s-FROM EQUATION 3.11 Au

- . 6.87

r*AML

Q 1 /3 r1
0 1/3

20 6.0 - --- i

N-r1 17.6

15 b .0 I_
1.4 1.5 pg* 1.6 1.7

PO

Fig. 3.,-Dtermlntlon 3f the maximum bubble radius.

56

SECRET- RESTRICTED DATA



SIAM) = 0.415 + S (09C) (.3

QB= 0.390.
V

3.3 BUBBLE PARAMET3FPS AND EPERGY PAnRTITION

From the results in Fqs. 3.12 and 3.13 w#, Mid the mnaximarm bubble radius for Q 30 ht of
T'?Tand 7.. 2033 ;t:

APj= M7 ft ',3.t4)

f he cor rcsmnding period of the first bubble pulsation T is readily Ohtstinpd from the ex-
perimental evidence that the ratic. of the period conistant K and the radiuRt constant J are al-
most the sait for MI high explosives tented so far." Using the vaiue 0.345, whic.h h.a1ds for
TNT, we have

K = 0.345J

fz.-0.305 AM()' (3.15)

T= 0.345 A

This yields the first bubble period for a 30-i TNT point extilosion at a eepth of 201)0 ft*

T = 2.86 sec. (34 0a)

Fere the ques~ion arises whetoer correcti,)ns to the period for P-race or bottom effectu
shou.ld be made. (T1.t maximuin radius is not changed by, these effecta.) An appiroximnate
forriula for sui- a correction i3 (sae Eq. 16, p. 5.1 of ruference i9):

T-O1 0.2 .'+ 0 .2  (3.16)
T-T~l- D 3)

where To free water perind as calculatee abovo
A=, maximum bubble radius
D =depth of erTlosion below water surface

B =dzpth of bottom below center of explosion.
This and similar formulas found In the literature ba~iy overcorrect the bottomn effect.

They also oivercorrect the surface effect for large high-explohiva charges once the bubble Is
several maxvimumn radii below the ,surfac-e. The latter ettect is not so well established at the
first one and is not mentioned in the literature, but It Is evident from Fig;. 8.21 of refe-ence 14.
Fcr configurations nimilar to that considered here (depth about 5% riaximum radii), the un-
corrected .tquatior seems to give the more accurate result. The period corrected for bottom
and surface effects would be 2.79 6ec, iLe., about 3 per cent smeller.

In See.. 3.2 the partition of the three energy terms has been calculated; see also Fig. 3.
We summariz.e:
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Frergy balance:
Bubble energy. 39 per cent cf siL total energy
Dissipated energy, 41 per cent of the total energy
Shock-wave energy, 20 per cent of the total energy.

The last two terms depend on the distance to which the shock has traveled. They hold for
u, = i.0ipo (which is the value of the lower limit used in the calculation of the integral, Eq. 3.4).
This corresponds to the shock-front distance

r, = t2.AQ

or

r, = i903 f' for a 30-kt TNT point explosion.

At larger distances the shock-wuve energy decrenses as shownt in Table 3.1, whereas the
dissipated energy increases correspondingly.

3.4 BUBB.E PRESSURE AND TEMPERATURE, MASS OF WATER VAPORIZED

In Sec. 3.2, we have found the entropy on the bubble interface at the moment of the maxi-
mum expansion. From the steam tables we can find the corresponding pressure and tempera-
ture of the saturated liquid. The iirst magnitude is equal to the bubble pressure at the moment
of the bubble maximum, and the latter r *ers to the temperature on the bubble Interface at i1
same momsnt. From the steam tables we find

PM = 52.4 psia
(3.17)

T(AM) = 284'F.

At the maximum bubble radius the bubble pressure has therefore dropped to tt. of the
hydrostatic pressure and Is constant throughut the inbide of the bk , The temperature is
constant only within the shell, adjacent to the bubble interface, which contains moist steam.
From this point on, th2 temperature increases rapidly with decreuing distance from the
centee and, theoretically, reaches Infinitely high values at the center.

The density of the medl.,m inside the oubble is, at the interface, that of the salurated liquid
(about 0.925 g/cc). The density decreases rapidly with dee-easing distance and vanish,:s t the
center.

When the shock irunt haS traveled to the distance rr, it has reached the layer of particles
which will be on the bubble interface at the moment of the maximum expansion. The Interior
of the spherz of radius r will be, therefore, the interior of the bubble. Hence, the mass of
water evaporated is

Aw
m - -p(r

We have found in Sec. 3.2 that, for a firing depth of 2000 ft,

r* = 17.6Q'.

This corresponds to a radius

r, = 54.7 ft for Q = 30 kc of TNT.

With a density for sea water of 1.025 g/cc, we find
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Maximum mass of water evaporated* = 19.9 metric kt.

It is interesting that the ball of water which i evaporated has just the sise of a 30-kt TNT
sphere. (The radius of the latter is 55 ft for a loading density of 1.52 g/cc.)

At the moment of the bubble maximum the greatest amount of waxer is evaporated. When
the bubble contracts, the pressure increases and steam condenses at the interface. Thus the
interface is transferred to particles which were previously inside the bubble. The condensa-
tion will cease when the bubble pressure and temperature have increased to the critical point
of waier. Beyond this point no condensation is possible, and the mass of the bubble remains
constant during any furiher contraction. This mass will always remain in the vapor state as
long an the flow pattern of the bubble pulsation is irrotational, i.e., a, long as there i no
mixing between the steam and the surrounding cold water. This mass of steam is easily cal-
culated from the entropy-distence relation which can be obtained from Table 3.1. We must
determine that shock distance r, fur which the entropy behind the front is equal to the entropy
at the critical point. The latter is Scr = 1.058 + S (0"C). The corresponding shock radius is
found to be 36 it, and the mass of water which theoretically always remains in the vapor phase
is 5.67 metric kt.

Actuahy, there will be P strong mixing of d!fferent w.. _. e.m eayers near the
bubble minimum for two different reasons. The first is the instability of the interface during
the period of time when the bubble is near its minimum. This produces the disintegration of
the interface into a spray which is thrown into the lr.tsrior of the bubble. Obviously, this brings
about a thorough mixing of the steam with the surrounding, cooler water. The second phenom-
enon causing m iing is the distortion of the bubble shape in the gravitational field. When the
origInally spherical bubble contracts, its lower boundary moves inward faster than the other
points of its surlace. The cross section of the bubble assumes the shape of a kidney, and finally
the lower boundary impinges upon the upper boundary, causing a vast amount ot turbulence
inside and outside of the bubble. It is for these reasons that the concept of the mass of water
which remains in vapor form is misleading and that considerable condensation must be expected
at the bubble minima.

3.5 BUBBLE MIGRArION AND LATER BUBIsLE PIASE

NAVORD Report 4185 describes a method for the calculation of the bubble oscillation and
migration for the second and later cycles. The essential part of these calculations is the de-
termination of the bubble energy for the subsequent cycle. At each minimum the bubble energy
is reduced owing to the emission of the bubble pulse and an energy dissipation which is not
entirely understood at the present time. Probably it is closely connected with the phenomena
described at the end of Sec. 3.4. In NAVORD Report 415 thes energy losses are determined
by a semempirical method which uses experimental data obtained with high explosives. Obvi-
ously, these calculations are not valid for steam bubbles. Steam bubbles suffer the Sams encrgj
losses as gas bubbles do, but in addition there is condensation which damps the oscillation even
more. Therefore, the calculations for gas bubbles may be considered as an upper limit for the
periods and maxinium radii of steam bubbles.

The following results were obtained for gas bubbles:

Second cycle:
Maximum radius, 388 ft
Period, 3.40 sec
Bubble energy, 64 per cent of the bubble energy of the first cycle
Migration between first and second bubble maxima, 675 ft (There is no appreciable
migration up to the moment of the first bubble maximum.)

The bubble co.te:ns a large araount of "wet" steam, Rence, strictly speaking, only 3
fraction of this macs is in the vapo: phase.
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Third cveo:

Maximun r't-.ils. 330 it
Period, 4.38 see
Bubble energy, 18 per cent of the bubble energy of the first cycle
Migration between second and third bubble max1ma, 793 ft.

The gas bubble reaches tht water surface shortly after the third minimum, about 10.7 sec
after the explosion. These results are graphically illustrated in Fig. 3.3. It will be noted that
the pertod- nf the later cycles are increased, althoug the bubble energies are smaller. This
is because the bubble has migrated into shallow water where the lower hydrostatic pressure
causes the bubble to pulsate more slowly.

Very similar data were .btained experiz,;.A tl.y in the vacuum trnk.20'2 !n on f thoze
experiments,2' electric sparks were used to deliver the energy of explosion. The bubbles
produced In this way are steaii bubbles which should behave very much like the bubbles from
atomic underwater explosions. Unfortunately, condensation phenomena are not correctly
bcaled in such tests. To scale gravity, the pressure above the water surface must be reduced
so far that the vapor pressure of water is almost reached. However, for similarity of con-
densation phenomena, the ratio

Total pressvre at firing depth
Vapor pretsure

must be the same in full scale as in the model test. Since it is not possible to reduce the vapor
pressure of water by the same amount as the total hydrostatic pressure in the tank, condensa-
tion cannot be scaled. The conditions in the vacuum tank reseimible explosions in almost boiling
water, and little condensation is expected under such circumstances. In fact, the test results
obtained with sparks and with high-explosive charges are similar and are in good qualllative
agreement with the calculated data above.

If in a model experiment which employs electric sparks the air pressure above the water
surface is not reduced, gravitational phenomena are not scaled and we have the case of a non-
migrating bunble. The scaling of condensation processes, however, is much improved but still
not perfect. Such tests showed strong condensation effects In tihe second and third cycles. The
later periods were substantially less thatn those of corresponding high explosives, which indi-
cates strongly reduced bubble energies. (The bubble energies of nonmigrating bubbles are
proportional to the cubes of the periods.) The pulsat~ons virtually ceased after the third cycle,
and, apparently, most of the vapor was condensed.

The following figures give a summary of the results of these tests as well as data re-
ferring to TNT explosions:

Periods relative to the period f the first cycle

Cycle I Cycle 2 Cycle 3

(a) *Tonmigrating TNT bubble 1 0.72 0.59
(b) Nonmlgrating steam bubble 1 0.45 0.21
(c) Migrating TNT bubble (Wigwam conditions) 1 1.18 1.52
(d) Crude crtfmatc for migrating steam 1 0.74 0.54

bubble: (d) = (c) x I(b),'(a)J

aources: (a) reference 22, (b) preliminary evaluation of Hudson's tests described in refer-
ence 21, (c) calculations based on NAVORD Report 4185 as described in this section.

The first period observed in Operation Wigwam was 2.87 see, the second, 2.6 sec, and the
third, 1.9 sec (reference iS). The ratios of these latter periods to the first period are C.91 and
0.66, respectively. These values are higher thau the ath ve-t-"stiesnd Crude estimates for the
migrating steam bubble but considerably lower than those for the migrating gas bubble. Tnis
indi.-'ites that substantial condensation must have occurred in Wigwam, although not quite so
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r. ,h a, in the case of Huds(.n's nonmi.grating bubble. Actually, however, this model test as
well as approximation (d, are much too crude to allow any quantitative conclusions.

UsinL the concept of the average bubble rise mentioned below, it can be estimated that th.v
third bubble oitaimum occurred at a depth of about 700 It. Is the bubble would continue to
oscillate (which it does if there is still uncondensed vapor), it would have to run through sev-
eral more cycles before it would reach the water surface. At each minimum mre vapor would
be condensed, and it seems unlikely that any substantial amount of vapor would be left when the
bubble reached the water surface.

This may seem to be in contradiction to tWe observed surface phenomena which began about
10 see fter the explo-ion and which showed quite a resemblance to the "breakthrough" of a Si
bubble." These phenomena, however, are not necessarily caused by the venting of a steam
bubble. At the moments of the first and second bubble maxima, the mass of water near the
but'ble acquires an upward momentum which produces a flow directed upward. This momentum
will be c,,ber'ed, aWd the iiuw wiu continue even when all the steam is condensed. The violent
upwelling of this moving mass of wzter probably produced the plumes and the surface phenom-
ena of Wigwam.

Figure 3.3 shows that all bubble maxima and minima lie approximately on a straight line.
This means that the bubble rises with the same sveoage velocity in each cycle. Condensation
wiuld reduce the periods of the oscillation, but the bubble maxima and minima would be ap-
proximptely on thc some line, and the bubble or the water surrounding it wotd reach the
water burface about the same time as the gas bubble. Hence the fact that the plume formation
began at the time predicted for a TNT explosion does not necessarily indicate a "TNT-like"
bubble behavior.

If all the vapor were condensed, the water would move upward at a constant rate, namely,
the abote-mentioned avera :e velocity, &hlch 13 found to be 216 It/sec. Disregarding air drag,
the water would rise 725 ft above the water surface, which is m-uch less than the obearved
1400-ft maximum pimp height.2 The latter corresponds to a velocity of 300 ft/sec, which is
40 per cent higher than the average rate of rise. This again is not a pruuf that the plumes are
driven up by expanding gases or vapor, because some portions ;f the moving mass of water
can have hlohpr velocities than its rate of rise. For instance, a suitable hydrodynamic model
of such a moving mass of water is a vortex ring. (Vortex rings have been actually observed
with high explosives fired at great depth.) The total kir-thL energy of such a vortex ring is
larger than its translational kinetic energy. When reaching the water surface, some of its
particles will rise much higher than the avrage calct.1ated from the translational energy.

These conaideratiors show that the phenomena observed in Wigwam are no: in contradic-
tion to the possibility that all the steam is conaensea in the later bubble oscillations. Complete
condensation, however, must not be expected. For instance, all the gases dissolved in the
evaporated water will remain, and combined with these will be a certain amount of water vapor.
This is clearlv visible in the model tests, but an estimate of its magnitude is difficult and has
not been attempted. For practical purposes this amount is probably negligibly small, and it
seems safe to state that esxentially all the vapor was condensed it, Wigwam before the bubble
reached the surface.

3.6 SUMMARY

The babble period of an atomic explosion of 30-t yield at ii depth of 2000 ft under water
was calculatcd to be 2.88 see. A 24.35-Itt TNT charge detonatel at the same depth would have
the same period.

The measured bubble period in Wigwam is 2.87 sec. In view of the approximations made
in the calculations, such good agreement was not expected.

At the bubble maximum, 19.9 kt of water are in the vapor form. The liquid producing this
would make a sphere of the same s!ze as a 30-kt TNT sphere.

Data for a migratinp bubble of a 24.35-kt TNT explosion are presented Ip Sac. 3.5 and are
tilustrated in Fig. 3.3. The itas bubble reaches the water surface about If sec after the detona-
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tio. Comparison with model tests using electric sparks an energy sources indicates that the
steam bubbles produced by atomic explosions must behave somewhat differently. There will be
condensation of vapar at the bubble minima. Very little vapor is expected to reach the water
surface. The plumes observed in Wigwam about 10 sec after the explosion are probably pro-
duced by the violent upwelling of water 01ch originally surrounded the bubble. This water
keeps .n moving upward even when all #team Is conden-ed.
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APPE'JDIX A

GLOSSARY OF SYMBOLS

a1,az Abbreviations defined by Eqs. 1.38 and 1.39
Al ih CIOeffjieilt ill tile eXpAllbikull uf tile reduced pressure about the ceitc-r
A.., Maximum Nibhble radluR
B1  it,: coefficient in the expansion of the reduced density about the center
B Depth of bottonm below tile center of the explosion
C1  ill: coefficient in the expansion of the reduced velocity about the center
C Integratton constant in Eq. 2.4%a
c Velocity of sound; parameter it. TFD theory; constant in !nq. 2.32
c, Velrccity of souwl i-' t?'e undisturbed medium

Ideai-gas heat capacity at constant voiume tor the ifh constituent
t~ Ideal-gas heat capacity at co~nstant oressurc for the ith constituent

F:-1 Average heat capacities defined by Eq. 1.16
C 2.71828 ... ; electronic charge
I) Depth of explosion below water surfcee
E Internal energy per unit mass
E, Internai energy p" unit mass directly behind the shock front
E0 laiternai energy :xer unit nmass fin the undisturbed medium
Est Sho -k-wave energy flux

I Shlape factor
rt Statistical weight (if the- M! excited state of an atom, Ion, or muleculp
G, Decay factor of the shrick-wave peak densit-i. Eq. 2.A!
h Dissipated cnthalp , incrempnt; Planck's constant
H, Decay factor oif the shocii-wave peak pressure, Eq. 2.10
J Reduced internal eneray
3, Reducd ict'~rnal eneray directly behind the shock front
JI) Reduced internal ener::y of an ideal gas
ki Covolume factor for the ith constituent
k, Covolume factor for a component when in Its ground state
kt Total covolume factor
kc' Boltzmann's '-onstant
K) Equlisoriuni contsia,,t for the jv; chemical reaction
K,, Ideal-gas equilibrium constant for the J11h chemical reaction
in ' Natural logarithm
log Logarithm to tlhe base 10
ll Decay factor for the shork-wave p-:ik particle velocity, Eq. 2.12

M 3 b-0 -- 3); parlicle mass; total mass of the sphere encompassed by the shock front

C7
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M0  Molecular weight of wzter
M Number of hydrogcn nuclei per cell in the TFD theory
ni  Number of moles of the ith constituent in M grrms of the mixture
nz Total number of moles in MO grams
NAy Avogadro's number
p Excess p.'essure

Pl Shock-wave peak pressure
PT Thermal pressure
P0  Absolute pressure in the undisturbed medium
PJ Coefficients in Eqs. 2.46 and 2.47
Pm Pressure in the steam bubble at the moment of the maximum radius
Ps Pressure of the saturated liquid
Q Energy yield in kilotons of TNT; partition function
Qdiss Dissipated energy
W13 Bu1bble energy
r11  Coefficients in Sq. 1.24
r Radius
rl Radius of shock front
r * Radius of the layer of particles which forms the bubble interface at its maximum

pxntnsto.
r0  Reference radius
R Gas constant
61 Cell radius in TFD theory
S Entropy per ualt mass
s t  Entropy per unit mass directly behind the shock front
S0  Entropy per unit mass in the undisturbed medium
SAM Entropy per unit mass at the bubble maximum
Scr Entropy per unit mass at the critical point
t Time
T Temperature; first bubble :eriod
To  Frie-water bubble perioc
u Particle velocity
ul Particle velociiy directly behind the shock front
u0  Particle velocity in the undisturbed =edhum
U Propagation velocity of the shock front
v Specilic volume
v s  Specific volume of the saturated liquid
V Elfective atomic or ionic volume of a component in its ground state
Vi Effective atomic or ionic volume of a component when in its i th excited state
wI  Coefficients in Eq. 2.4P
W Energy yield in pounde of TNT
x Imperfection factor in the HKW equation of state, Eq. 1.17; r,.,.ucsd radius in TFD and

Fnay-Matthiss theories

-1 (Pt - oolso
Yl Number of moles of hydrogen sams in Mg grams of the mixture

Y2  Numoer of moles of oxygen atoms in Uj grams of the mixture
Ys Number of moles of free electrons in M, grams of the mlxtur. ,

Z Charge of the oxygen nucleus
Zi  Valency of the ith eompozent
Zi Valency of the jth reaction
Z0  Total hydrostatic head in feet
a Time factor; parameter in HKW equation of state
am Factor whicn accounts for the Internal energy within the bubble

Logarithmic decay faclor for the reduued total enargy; parameter in HiCW equation of
.-0atf
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,30 Exchan~ge corretio~n
Os Logait'hiic~ decay factor for the reduced shock-wave energy
Y Isentropic exponient, Eq. 1.9
Y1 Isentropic exponent d'rectly ktehind tt.A shock front
Y' Isentropic exponent for an Ideal iras

aRF L*garitl.niic derivative of the peak pressure with respect to the peak density
Et Excitation energy of the WI excited state of wi atow, ion, or molecule
77 Reduced total energy, Eq. 2.3
?Is Reduced shock-wave energy

t Reduoced radius
III Stoichiometric coefficient of the ith component In a chemical reactihn

3.41585 ...
p Density

P1 Density directly behind the shock front
PO Betiaiiy u! illS mainiurled ZIWUIuut

p Thomas-Fermi unit
Coei; .eIent In Eq. 1.34

* Electrostatic correction, Eq. 1.23
V Reduced particle velo'city

c ~ nth derivative of op with respect to ~,evaluated at =I

X Reduced density
Reduced pressure

* TFD ootential
o 'nime canstant
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