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FOREWORD 

This report was prepared by the Computer Applications Section of 

General Dynamics/Electric Boat as part of the Submarine Integrated 

Control Prosram (SUBIC) of the Office of Naval Research.  Electric 

Boat is coordinator, under Contract Nonr 2512(00), of this program; 

Cdr. F. R. Haselton, Jr., USN, is Project Officer for ONR; Dr. H. E. 

Sheets is Project Coordinator for Electric Boat; and Dr. A. J. 

van Woerkom is Chief Computer Scientist. 

The program is divided into several parts:  ship control, weapon and 

tactical control, engineering control, communications, environmental 

control, and command control.  This report is one of a series dealing 

with tactical control. 

1. 



ABSTRACT 

(Unclassified) 

This report consists of a mathematical model of a simple, statistical 

fire control scheme.  The equations are developed for the determina- 

tion of relative target motion parameters, a complete bearings-only 

solution and complete solutions based upon hypothesized inputs of 

target speed, course, or range.  The statistical properties of some 

of the results are analysed and compared to Mark 113 results and Ideal- 

ized manual plots.  A method of detecting target zigs is described 

and statistically evaluated.  Methods of improving some of the present 

Mark 113 fire control system computational schemes are presented. 

ill 
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SUMMARY 

Purposes 

Automatic Statistical Processing (ASP) Is a fire control f-mputatlonal 

scheme that has been developed to provide all available tactical data 

rapidly and accurately and, ultimately, to provide a fire control 

solution for a target employing evasive tactics. 

i 

i 

Techniques 

1.  Bearlng-tlme Curve and Relative Motion Analysis 

ASP's basic technique consists of statistically smoothing bearings to 

a mathematical approximation to the bearing-time curve.  By using a 

digital computer for rigorous statistical processing, the best possible 

curve (least-square fit) is produced.  The smoothed curve used In man- 

ual plotting Is obtained by eye and, in general, only approximates the 

least-square fit. 

The equation of the least-square bearing-time curve yields the bearing 

(B), bearing-rate (B) and bearing acceleration (B) as functions of time. 

These parameters contain all the essential information contained In the 

raw bearing-time data.  The following relative motion parameters can be 

deduced from this Information: 

1. relative angle-on-the-bow (a) 

2. relative course (0) 

3. ratio of relative speed to initial range (u/R ) 

(2) 4. minimum target speed ("Vj. M 

In order to obtain a meaningful approximation to the bearlng-tlme 

curve and the resulting parameters, it is necessary for own-ship to 

travel with -uniform, rectilinear motion.  This is true for both ASP 

and manual plotting techniques. 
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ASP also has the capacity to produce hypothetical solutions on any 

single leg of own-ship track by introducing values of target speed, 

course or range into the computer.  The values introduced may be 

estimated, hypothesized or based on physical limitations.  By dis- 

playing the resulting "solutions", qualitative information about 

possible tactical situations is provided, 

2.  Zig Detection 

The initial step toward ultimate solution of the passive maneuvering 

target problem is the detection of target zigs.  ASP includes a 

technique whereby a computer calculates the probability that a target 

has zigged.  The principle used is fundamentally the same as that 

used in the Barnard plot.  A least-square bearing-time curve is ex- 

trapolated to obtain an estimate of the expected future bearings. 

The occurrence of a target zig Is then Indicated by systematic de- 

viations of the measured bearings from the predicted bearings.  Since 

deviations will result from bearing noise even when a target zig has 

not occurred, only the probability of a target zig can be determined. 

Probabilities in excess of 93^ are, however, usually interpreted as 

certainty.  Comparison of the expected bearings to the measured 

bearings is continued for approximately two minutes whence the bearing 

data obtained in the two minute interval are automatically combined 

with the bearing history to form a new least-square fit.  The next 

two minute interval is then scanned in the same manner.  When a zig 

is detected, the history prior to detection is disregarded (zig de- 

tection reset) and a new history is collected on the next leg of 

target track for the purpose of detecting possible subsequent target 

zigs.  Since the zig detector is also sensitive to own-ship zigs, it 

must be reset when own-ship maneuvers. 

Two types of bearing-time curve-fitting have been investigated for 

purposes of zig detection: a curved line (quadratic scheme) and a 

straight line (linear scheme).  The extrapolation and deviation 

caused by a target zig are illustrated in Pig. C-l-1 on page 116 for 

the quadratic scheme and in Pig. C-5-2 on page 126 for the linear 
scheme. 

1 
"i 
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3.  Bearings-only Complete Solution 

When the zlg detector Indicates that the target Is straight running, a 

complete bearings-only target localization solution Is possible.  To 

obtain the solution, own-ship travels on a straight leg and collects 

bearing-time data, then changes course and/or speed and collects a 

second set of bearlng-tlme data. By combining the Information contained 

In the resulting two statistically-smoothed bearlng-tlme curves, the 

range, course and speed of the target can be obtained. 

Results 

1.  Statistical Error Analysis 

Since all bearing data have random deviations, all parameters derived 

from bearlng-tlme data are subject to statistical uncertainty.  The 

curves in sections 3> ^>   5/   and 6 of Appendix B illustrate the un- 

certainties in the relative motion parameters.  The uncertainties in 

bearing, bearing-rate and bearing acceleration decreases as tracking- 

time Increases,  The uncertainties in the other relative motion para- 

meters decrease with increasing bearing-rate and time and with de- 

creasing range.  Although no formal error analysis has been made for 

the hypothetical solutions, their accuracies are not expected to be 

very high.  However, this type of solution can be used to furnish 

early information about possible tactical situations. 

The percentage error In bearings-only range decreases as tracking times 

and the absolute difference in the bearing-rates on the two own-ship 

legs Increase.  Statistical evaluation of the bearings-only solution 

has also Indicated the possibility that bearing-rate and Its uncertainty 

can be used to determine the optimum time for own-ship zlg.  The de- 

tails for establishing an own-ship zlg time criterion are yet to be 

determined. 

The linear zlg detection scheme has been found to be more effective for 

long range targets.  Figs. C-6-1 and C-6-2 and the accompanying tables 

contain quantative comparisons of the two schemes. 

vii 
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2. Comparison of ASP with Manual Plots 

To quantatlvely compare ASP with manual plots, it Is necessary to 

assume that manual plots are rigorously least-square fttted.  Compari- 

son can then be made directly because ASP's mathematics are implicit 

in manual plotting techniques. 

The ASP scheme Is superior because of the high data assimilation rate 

possible using digital computer processing.  Parameters are obtained 

more accurately, more rapidly and at longer ranges.  The curves of 

Section 6 of Appendix B (pages &2 through 106) compare the accuracies 

achieved by the two techniques for various geometries.  A complete 

discussion of the assumptions and results of the comparison is con- 

tained In Sections 4.A and 4.B of Part II of this report (pages 29 

through 31)« 

3. Comparison of ASP with Mark 113 

The Mark 113 system Includes relative motion analysis and a complete 

bearings-only solution (Churn). 

Relative motion analysis In the present Mark 113 1-s similar to that in 

ASP in that bearlng-tlme data are used as Input and own-ship is con- 

strained to uniform, rectilinear motion to obtain a meaningful relative 

motion analysis.  However, the only parameters provided by the Mark 

113 relative motion analysis are the initial angle-on-the-bow and the 

ratio of relative speed to initial range.  Since no statistical error 

analysis has been made for the Mark 113 relative motion parameters, 

accuracies for the two techniques cannot be compared. 

In the Mark 113 system, a hypothetical solution can be obtained for an 

input of target speed only.  In the event that a dual julution exists 

(see Pig. A-i+-2 c  page 51 )J only the longer range solution is pro- 

vided, whereas ASP furnishes both solutions. 

i 

i 

1 
! 

T 

J 

* 

: 

The Mark 113 bearings-only solution uses bearing-time data and own- 

ship motion parameters for at least two own-ship legs to provide tar- 

get range, course and speed.  Although Churn theoretically allows 

vlii 
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own-ship freedom of motion (with resulting mathematical complexity), 

in reality, an optimum tactic (two straight legs differing In course 

and/or speed) Is necessary to produce adequate solutions at SUbhOC 

ranges.  Also, own-ship straight legs are required In order to detect 

target zlgs.  It Is therefore apparent that the freedom of own-ship 

motion provided by the Mark 113 system Is not a requirement In connec- 

tion with SUBROC fire control solutions. 

4.  Bearing Pre-Smoothing 
in addition to being complex, the mathematics In Churn Include an In- 

herent bias.  It has been shown (reference l) that this bias can be 

reduced to Insignificance by pre-smoothing (averaging) groups of bear- 

ings.  At present the averaging criterion is based on bearing-rate. 

The ASP study indicates that a better criterion, based on bearing 

acceleration and its uncertainty, can be developed. 

I 

1 
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INTRODUCTION 

Automatic Statistical Processing (ASP) Is a continuation of earlier 

SUBIC studies In the fire control area.  The objective set forth for 

ASP (In addition to the more general SUBIC objectives) Is to provide 

all useful tactical Information which can be derived from available 

data as rapidly and accurately as possible. 

It Is felt that a significant portion of available tactical Informa- 

tion Is not now displayed in present automatic computing systems. 

For example, in the existing Mark 113 fire control system, the Initial 

relative angle-on-the-bow and ratio of the relative target speed to 

Initial range are the only quantities derived from the bearings on the 

first leg of own-ship maneuver.  Range, course, and speed are avail- 

able either upon entering a target speed estimate or after an own-ship 

zlg.  Other tactical Information such as target zig indications, 

smoothed bearings and bearing-rate, a quantity often used to fire 

acoustic torpedoes, is obtained from manual plots which are severely 
limited In accuracy at the longer ranges. 

Ihe technique used to meet the ASP objective consists of smoothing. 

In the statistical sense, bearing data to a mathematical approxima- 

tion to the bearing-time curve.  This technique provides relative mo- 

tion parameters during the first leg of own-ship maneuver, results In 

simplified solution equations, and makes zig detection possible.  In 

order to achieve these ends, however, it is necessary to constrain 

own-ship to uniform rectilinear motion.  Relative motion parameters 

can be obtained on any own-ship uniform rectilinear motion leg.  Such 

legs will be referred to as single legs throughout this report; and 

relative motion analysis, or simply single leg analysis will be used 

to designate calculations leading to relative motion parameters. 

The relative motion parameters which can be obtained from any single 

i CONFIDENTIAL 
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leg analysis are: 

1. relative angle-on-the-bow 

2. relative course 

3. statistically smoothed bearings 

4. bearing-rate 

5. change in bearing-rate 

6. ratio of relative speed to initial range 

7. minimum target speed 

1 
I 
J 

I 

These quantities can be supplied continuously for the entire tracking 

period.  It is also possible for the operator to introduce into the 

computer estimates or hypothetical values of target range, course or 

speed to obtain possible target localization solutions.  Tlie possible 

solutions can be geographically represented on a display similar to a 

strip plot for a qualitative "picture" of the possible tactical 

situations. 
I 

When confronted with a zigglng target, as indicated by the zig detect- 

or, it may be possible to obtain a range estimate by obtaining para- 

meters for each leg of the target track and, from these, selecting 

portions of the possible target tracks where zigs will not severely 

degrade range solutions.  In the event that the target is sinuating, 

it may be possible to approximate the track by a series of straight 

legs and use the same technique as for a zigglng target. 

I 

Thus, a leg-by-leg analysis, coupled with the ability of a trained op- 

erator, might possibly be used to partially overcome the difficulties 

presented by a zigglng target so that a rough estimate of target range 

can be passively obtained.  Itils range could be used to Indicate whether 

the target is within weapon range and, if so, which weapon to use. 

Single ping techniques could then be used to obtain a more accurate 

range, if necessary. "Hius, the possibility of pinging a target beyond 

weapon ranges could be reduced. Q 
1 
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in addition to the objectives and capabilities mentioned above, the 

ASP fire control system can also be used to obtain a complete bearings- 

only solution.  To obtain this solution, own-ship maneuver must consist 

of two straight legs differing in course and/or speed. Comparison of 

the bearings-only solution to the hypothetical solutions obtained on 

first leg of own-ship maneuver can serve to increase operator confi- 

dence in computer outputs. 

This report is preliminary and represents the results of the study to 

date. Conclusions based on this work and an outline of the work con- 

sidered for the future are contained In Part IV. 
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TARGET LOCALIZATION SOLUTIONS 

1. Geometric Relations, Definitions, and Symbols 

The  expression target localization Is used here to designate the data 

processing which provides Information about the time-dependent posi- 

tion of the target relative to own-ship.  Complete knowledge of the 

target's relative position as a function of time (subject to statisti- 

cal uncertainties) will be called a complete solution.  Thus, target 

range and bearing as functions of time; or target range, course and 

speed, and own-ship motion constitute a complete solution. 

Hie geometry for an earth-fixed coordinate system is shown in Pig. 

I-lrl where both own-ship and target are traveling with uniform mo- 

tion*.  Pig. 1-1-2 depicts the same situation, but with the coordinate 

system origin fixed to own-ship.  The velocity vector relations are 
illustrated in Pig. 1-1-3. 

The symbols used in the aforementioned figures are also used in the 

mathematical development. Vector quantities are designated by horiz- 

ontal bars above the symbols; their magnitudes are designated by the 

symbols without the bars.  Superscripts (1) and (2) refer to own-ship 

and target quantities, respectively. Inputs to the target localiza- 

tion computer other than bearing data and own-ship parameters are 

designated by an e subscript. 

Equations appearing in Sections I, II, and III of this report are de- 

veloped in the appendices and bear the same numbers.  The useful equa- 

tions for target localization solutions are enclosed in rectangles. 

♦This will be assumed throughout unless otherwise Indicated. 
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Fig.  1-1-2   Own-Ship Coordinates 
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Flg.   1-1-3    Velocity Vectors 
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2. Bearing-Time Relation and Approximation 

Topical bearing-time relations are qualitatively represented by Pig. 

1-2-1 for U/h0 both small and large. The point of maximum bearing- 

rate Is the closest point of approach (CPA) of the target. 

It Is shown In Section 1 of Appendix A that limited portions of the 

bearlng-tlme relation can be approximated by 

In which 

B = a+Mt-t^+cCt-tJ' (A-l-2) 

and 

a - B0, 

b = (U/R0) sin ao. 

c = (U/ft )  sin a cos a . 

(A-l-3) 

(A-l-4) 

(A-l-5) 

The approximation to the bearing time curve (equation A-l-2) is more 
accurate at long ranges than at short ranges. 

A least-square processing of bearings versus time using (A-l-2) yields 
the matrix equation 

In which 

u = C v (A-l-9) 

u  ■ 
*a 

b 

c 
(A-l-10) 
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V    ■ 

XB1 
(A-l-11) 

-1 {A-l-12) 

A  - 

n 

Kti-^)       r(t1-to)2       ^(ti-^)3 

zit^-t^2     titx-t0)3       I(t1-t0)4 

and B. Is the bearing obtained at time t.. 

Ilie coefficients a, b, and c as obtained from equations (A-l-9, 10) 

are used In the subsequent section to obtain relative motion parameters, 

3. Relative Motion Parameters 

The relative motion parameters are those quantities which are obtain- 

able on a single leg of own-ship maneuver. 

Itie equations of this section are developed in Sections 2 and 3 of 

Appendix A. 

Differentiating equation (A-l-2) with respect to time gives 
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B = b + 2c(t-t ) o' (A-2-1) 

which when differentiated again gives 

B = 2c (A-2-2) 

B and B are bearing-rate and the change In bearing-rate, respectively 
The change in bearing-rate indicates whether the target is opening 
closing. 

or 

i 

1 
[ 

i 

I 

Ttie  relative angle-on-the-bow is obtained from the relation 

ao = tan-^bVc) 

for the Initial value and from 

a(t) - ao+B(t)-a 

for any subsequent time (t). 

Relative course can then be found from the relation 

(A-3-1) 

(A-3-2) 

i 
7 

r 

ö • T - o + a (A-3-3) 

The ratio of relative speed to initial range can also be obtained 
from bearing data alone.  The relation is expressed by 

12 
I 
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U/R0   - b/sln ao (A-3-4) 

or 

U/^o  " [ ^ \ 
1/2 

(A-3-5) 

4.  Requirements for a Complete Solution 

Bearing data alone Is insufficient to obtain a complete solution when 

own-ship travels with uniform motion.  It is possible, however, to ob- 

tain a complete solution when either ranf?e, course, or speed of tar- 

get is specified (i.e., obtained externally).  Occasionally, estimates 

of one or more of these parameters are available and can be used to 

obtain estimates of the remaining parameters.  Alternatively, values 

can be hypothesized in order to obtain various possibilities for the 

remaining parameters.  Thus, for example, a submariner might ask for 

possible ranges and courses under the hypotheses that the target speed 

is ten, twelve, and fifteen knots.  Hypothesized parameters are per- 

haps more prevalent than estimated parameters in the manual and semi- 

automatic plotting systems. 

5.  Solution Using Speed Input 

In this and the following sections, inputs to the target localization 

computer other than bearing data and own-ship parameters are desig- 

nated by an e subscript. 

The equations of this section provide a complete solution from bearing 

data and a given target speed (V   )•  T^6 development is in Section 4 

of Appendix A. i 

13 CONFIDENTIAL 
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Target course Is given by 

(A-4-1) 

in which 

sin -1 Biniff^'-a+a ) (A-4-2) 

Equation (A-4-2) indicates the possibility of two solutions.  This 

dual solution possibility is a property of the fire control geometry 

and is independent of the particular mathematical descriptions used 

(see Section 4 of Appendix A).  It Is also possible to enter a speed 

Ve
v ' which is too small to provide a solution. "This lattor situation 

leads to a minimum target speed (subject to statistical uncertainties), 

((1) By examining the angle {0 

possibilities may be determined, 

possibilities. 

a+a ) and VÄ o'     e 
(2) 

Fig. 

, the various solution 

1-5-1 summarizes the different 

When more than one solution exists, two values of y  exist.  One is 

given by the principal value of equation (A-ii-2) and the other by its 

complement.  Thus 

(A-4-4) y i ~ Y 

Y 2 m IT - Y (A-4-5) 

■ 

I 

i 
i 

; 

i ■ 
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If 

O^(l)-a*ao<| 

Or 

V 
•^ 

V 

H 
> 

In 

A\ 

o a 
+ 

J 
rH 

"^ 
c 

•H «) 

rH 

II 

CM 

U o 

y2 - «-Tj. Y2 nonexistent 

If 

W1'—.*? 

Ti'T 

Y? nonexistent 

v(2)   „ yCDlsin^d)^^ ) 
min      ' o* 

v(2)   . v(l) 
v  min  v 

Fig.  1-5-1    Speed Input Solution Possibilities 
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In the event that two Y angles are possible, equation (A-4-1) and 

those which follow will have to be duplicated to provide the two pos- 
sible solutions.  Thus, 

ri   (2) p.,v   '   = TT-Y .-fa-a 
J J o (J  - 1 or 1,2) (A-4-7) 

, (A-4-8) 

I 
I 
] 

I 
li 
II 
I 
I 

R0    = bUjAc2^. b4^'2 , and R(t)  ,    =   _-°i 
b+c(t-t0) 

(A-4-9) 
and 

(A-4-10) 

In which R(t) is the range at any time t 

In many cases, one of the two solutions will be physically absurd al. 
though it Is mathematically possible. 

6. Solution Using Range Input 

The equations of this section are derived in Section 5 of Appendix A. 

Let ^^e^ be a ranSe input at time t , then 

Vx
(2)(te)   - V^sin ^(1)-B(te) + W b+2c(te-to) (A-5-6) 

16 
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and 

v (2)(tJ = y^) cos ^ (1)_ B(te) 
Re(te)c 

(A-5-7) 

in which V ^ Mt ) and V ' '(t ) are the cross-ilne-of-sight and along- x  v e'     ye' 
llne-of-sight speeds at t , respectively, and 

B(t   )   = a+b(t  -t   )-;c(t„-t^)' ^e' veo/      veo/ (A-5-2) 

Target speed Is then obtained by 

v(2)  = VJ2)2^e^y{2)2^e\ 
1/2 

(A-5-8) 

and the target course by 

(A-5-9) 

Range at any time other than t  is then 

R(t) 
Re^e)   [^V1^] 

b+c(t-t0) (A-5-10) 
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7.   Solution Using Course Input  (See Section 6 of Appendix A for development) 

For an  estimate   of  target   course   {0 ^   '),   target  speed  Is   obtained 
from i 

V 
(2)      yWaini/V-a+aJ 

O' 

sin Y 
(A-6-2) 

i 

I 
in which 

Y  =  77+a-a   -0 o ^e 
(2) (A-6-1) 

Target   range   can  then   he   found   froin 

H   b o m) -^trrrj (A-4-10) 

in which 

(A-6-3) 

8. Bearings-Only Solution (See Section 7 of Appendix A for development) 

For a bearings-only solution, own-ship travels for a time t1 with uni- 

form motion, then changes course and/or speed and travels with uniform 

motion until the end of the tracking time. The simplifying assumption 

is made that own-ship changes course and/or speed instantaneously at 

! 
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t'.*  Bearing data Is collected and processed on each of these two 
"legs" of own-ship track.  The subscripts 1 and 2 are used to indicate 
first and second leg parameters, respectively.  The x and y subscripts 
are used to indicate the cross-line-of-sight and along-line-of-sight 
speeds, respectively. 

At the time of own-ship zig (f), it can be seen that two values of 
own-ship cross-line-of-sight speed and two values of bearing-rate are 
obtainable, one from each of the legs of own-ship track.  Thus, for 

leg 1, 

and 

vlx
(1)(t') = v^^sm^^-BCf)] (A-7-4) 

B1(t') = b1+2c1(t'-to) (A-7-7) 

For leg 2, 

V2x
(l)(f) = V2<

l)sin^2(
1)-B(f)] (A-7-5) 

and 

B2(t') = b2 (A-7-8) 

♦See Section 2, Part IV. 
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The bearing B^') Is common to both legs and is calculated using the 
appropriate time weighing factors.  Thus, 

B(f) = ^[a1+b1(t.-t0)+c:L(t..to)
2]+ izil (A-7-6) 

The range at t1 Is then calculated from 

. . Vix
(1)(t')-v2x(

1)(t>) 
R(f) = 

^(tO-^Ct«) (A-7-3) 

and for any subsequent time (t). 

R(t) 
R(t')b2 

b2+c2(t-t') 

Target speed and course are constant by assumption and can, therefore, 
be calculated using information obtained on both legs of own-ship man- 
euver.  Thus, for leg k (k =. 1, 2), 

\x{2)(t,y> - vk(1)sinK(1)-B(t,)]+R(t')Bk(t') 

and 

Vjcy^hf )   = V^^oos^^J-Btf )]+Rk(f) 

20 
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in which B^')   Is  found  by equation  (A-7-6), 

R1(f )   =  - 
R(t')c1 

and 

(A-7-12) 

(A-7-13) 

Using the above equations. 

and 

,  (A-7-H0 

^k(
2) = Blt^ + tan"1 (A-7-15) 

Introducing the appropriate weighing factors. 

i 

v(2)   . WiVi(2)   +  W2V2(2) 

and 

^2) .w^2) + w^2) 

(A-7-16) 

(A-7-17) 
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II 
STATISTICAL PROPERTIES 

1.  Variances and Covariences of Least-Square Coefficients (See Section l of 
Appendix B for development) 

The  variances,   covarlances,   and   correlation  coefficients  of  the  coef- 
ficients  a,   b,   and  c  are  ,:i.ven   by 

cii0n 

'22   E (B-l-2) 

c ^ v Or, 

II 

w 

T.OO,      =0-0" ao  a   b 12  B 

Tbc0b0c = c23Qn 

ac  a   c        c15 B 

'12 
ab 

'be 

^C11C22; 

C23 

\c22c33' 

aC        (c     c     I1/2 

^cllc33; 

23 

(B-l-3) 

(B-l-4) 
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where the c. .'s are the elements of the inverse of matrix A, which Is 

obtained from the coefficients of a, b, and c of equations (A-l-7) or 

A = 

n 

=(Vt0) 

t{trt0) 

=(*l-t0)2 

ztt.-t^ 

^t.-tj 

l(t1-to)
: 

2 

The elements of A consist of somewhat cumbersome summations.  There- 

fore, to facilitate calculations for analysis it is assumed that the 

bearings are obtained at equal time Increments (T).  The variances 

then become 

2  9 „ 2 
0a = ?r0B ' 

. 2  =  192 o 2 

b    7^  B ' 

o 2 = 180_ 0 2 

(B-l-12) 

in which o  is the standard deviation of sonar bearings and n is the 

number of bearings sampled. 

The covariances are 

f i0 cr = ao a b 

be b c 

36 
T5-  B ' 

Tn 

180 _ 2 
(B-l-13) 

Ü 
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T o o =  30  0 2 
ac a C   T^n-5  B 

and the correlation coefficients are 

ab 

be 

- -VV^ - - 0.866, 

- -VlS/1» = - 0.97, 

Tac '=  V^/3 = 0-'^5. 

(B-l-14) 

Pigs. B-l-1, B-l-2, and B-l-3 of Section 1, Appendix B, are plots of 

the standard deviations of the least square coefficients as functions 

of time.  A bearing sampling interval of two seconds and a sonar bear- 

ing standard deviation of 0.2° are used. 

2. Variance In Relative Motion Parameters (See Sections 3 and 4 of Appendix 
B for development) 

The standard deviation in bearing rate is given by 

o • = o 
E    b (B-3-2) 

The standard deviation in the change in bearing rate is given by 

oy . 20 
B    c (B-3-3) 

The standard deviation in a is 

I (B-4-2) 
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and 
o     = o 

a a       I o 
(B-4-3) 

Also, the standard deviation in ö is 

ac  ' (u/Ro)' 0 = 0 
-2„  ~ 

c   a (B-4-7) 

The general expression for standard deviation in the parameter U/R 
Is given by 

'uA 
^ 2      2  v >in a -cos a \ .. 

sin a   0) % - (^o)"1 COt a 0„ o c 
. (B-5-1) 

For a    9f Tr/2,   equation  (B-5-1)   reduces  to 

U/R0 b' (B-5-2) 

For ao = 0, 

'U/h 00 (B-5-3) 

but in this case bearing rate is zero and the only information which 

can be derived from the data is. 

and 
B = constant 

B = 0. 

] 

! 

I 
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The figures in Sections 3, H, and 3 of Appendix B illustrate the var- 

iation of the standard deviations of the relative motion parameters 

'with tracking time. 

3. Bearings-Only Range Variance 

The  equations of this section are developed in Section 7 of Appendix B. 

The variance of the range at current time (t) is obtained from 

(B-7-3) 

and the variance of the range at zig time (t1) is obtained from 

i 
1 

(B-7-6) 

in which Tt is the total tracking time and the 1 and 2 subscripts re- 

fer to first and second leg quantities, respectively.  The above two 

equations show that the range uncertainty decreases with the total 

tracking time and, for a given total time, is minimized by maximizing 

the change In bearing-rate (AB). 

The change In bearing-rate can be very nearly maximized by running 

own-ship perpendicular to the initial bearing line for a period of 

time, and running in the opposite direction for the remainder of the 

tracking time.  The terms within the brackets indicate how the ratios 

of the times on each leg to the total time affect the range uncertainty, 

The bracketed part of equation (B-7-6) is a minimum when T-^ = T2.  The 

il 
27 CONFIDENTIAL 



CONFIDENTIAL 

minimum for the bracketed part of equation (B-7-3) is* however, a 

function of both the times and the bearing-rates on each leg. When 

the bearing-rate on the second leg approaches zero, the uncertainty 

of the current range increases beyond bound. This is also a property 

of the Mark 113 (Mode 2) range solution as time on second leg in- 

creases beyond bound (Reference 1),  A small Bp can be avoided by 

running own-ship in the direction of the bearing drift on the first 

leg and against the bearing drift on the second leg. If for some 

reason this is not done and Bp is small compared to B,, RCt*) will be 

a much more reliable estimate than R(t). The Mark 113 system com- 

putes only R(t), (Reference 2), 

The minimum for the bracketed expression of equation (B-7-3) and the 

comparable expression for Mode 2 is illustrated in Fig. B-7-1 of Ap- 

pendix B.  The x and y  variables are defined by 

I 
I 
] 
I 

A    = 

and 
t 

B, 
y - 

B1 -B2 

The ratio T^/T, which minimizes the bracketed expression of equation 

(B-7-3) is designated by x-opt and represents the optimum time ratio 

for a given y.  Positive y values correspond to Bg <  B, . 

The cusp of the ASP curve shown on Pig. B-6-1 does not extend to a 

zero value for x-opt since at this point T^ and B, would also be zero, 

causing the bracketed expression in equation (B-7-6) to become inde- 

terminate.  This expresses the fact that no solution can be obtained 

on a single leg (i.e., T« / 0). 

Hie minimum value of the bracketed expression for various values of y 

is designated by z-opt.  Pig. B-7-2 of Section 7, Appendix B, illus- 

trates z-opt for both ASP and Mode 2.  In general, the ASP range 

il 
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uncertainty will be about l.M  times larger than the Mode 2 uncertainty, 

but when B-, approaches zero, the range error will be the same for both 

systems. 

The term optimum tactic Is defined as the own-ship maneuver which will 

result in the smallest range uncertainty.  Optimum tactic designates 

both the direction of travel and the length of time on each leg.  Hie 

difference in the optimum tactics for ASP and Mode 2 lies only in the 

length of time on each leg.  For ASP, the time on the first leg should, 

in general, be slightly more than half the total tracking^ time (T, ■ 
.55 Tt; Tp ^ .45 T,), but for Mode 2 (Reference l) the time spent on 

the first leg should be only about thirty per cent of the total 

(Tj m  .3Tt; T2 = .7Tt). 

4. Examples for Particular Geometries and Comparisons of ASP with Manual Plots 

A. Relative Motion Parameters 

Ttie figures of Section 6, Appendix P, show relative motion parameter 

accuracies 

OU/R-  "  an,/* 
°a' -Tf7!V T    F 

fL"* both ASP and manual plotting as functions of time for the particu- 

lai' geometries illustrated.  Although bearing-rate is the only one of 

these parameters presently obtained from the manual plots, the mathe- 

matical approach for obtaining all of the parameters is implicitly 

contained in plotting techniques.  This fact is used to make a compar- 

ison of man versus computer.  The comparison is Idealized by assuming 

that the manual plots represent least-square fits of the data.  The 

essential difference between the man and the computer is taken to be 

the data assimilation rate.  One bearing per two seconds is assumed 

for ASP while one bearing per minute is assumed for the manual plots. 

29 CONFIDENTIAL 



CONFIDENTIAL :i 

I 

All sonar bearing errors are considered Independent and normally dis- 
tributed with a standard deviation of 0.2 degrees; but, since physical 
plotting of data Introduces some error, the total standard deviation 
of bearing data for the manual plots Is assumed to be 0.3 degrees. 
For these sampling Intervals bearing-error correlation times of two 
seconds or less will not degrade the results (Reference 1). Likewise, 
a constant bearing offset will not degrade the results although the 
final least-square bearings will be offset by.the same amount. 

These graphical comparisons Illustrate that 

1. The standard deviations In the relative motion parameters 
are always approximately eight times less for ASP than 
for manual plotting when the same geometry and tracking 
time are assumed. 

2. To achieve equal accuracy with manual plotting techniques 
longer tracking times are required. 

a.  For o^ the required time using manual plots Is more 
than four times as great as that required for ASP. 

b. 

c. 

For oa and og the required time Is about two and one^ 
thirds greater than that required for ASP. 

Since OyAj Is geometry dependent, the required time 
varies from two and one-third to about four times as 
great as that required for ASP. 

B. Manual Plot vs. ASP Range Accuracy 

For the same geometry and length of tracking time, the standard devia- 
tion of bearings-only range for the best least-square manual plot Is 
approximately 8.2 times as great as the standard deviation obtained 

! 

: 

: 

: 

: 

: 

■ 
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employing the ASP system.* This difference In accuracy Is a result 

of the ASP system's faster bearing sampling rate and freedom from 

errors Incurred in physical plotting. 

To obtain a manual plot range accuracy comparable to that obtained by 

the ASP solution the necessary tracking time Is more than four times 
greater than that required for ASP. 

The ratio a■fcfa  (see figures of Section 6 of Appendix B) gives the sig- 

nificance of bearing-rate as a function of tracking time.  Since all 

bearings-only solutions are dependent on the change In bearing-rate 

resulting from an own-ship zlg, the range uncertainty will be a func- 

tion of 0g/g for each leg.  This provides a basis for determining the 

length of time own-ship should track on a single leg, the details of 

which have not yet been determined.  No such criterion Is given In the 
present Mark 113 system. 

5. Bearing Pre-Smoothlng 

Itie ratio 0g/g Indicates the significance of curvature in the bearing- 

time curve.  It has been shown (Reference 1) that the Inherent bias in 

the Mark 113 bearings-only solution can be reduced to Insignificance 

by averaging (pre-smoothing) groups of bearings and using the result- 

ing weighed averages as single bearings for the least-square process- 

ing.  No information is lost by this scheme provided the bearing-time 

curve has no significant curvature within the averaging intervals. 

The present Mark 113 criterion for establishing the widths of the 

averaging Intervals (Reference 2) is based on the bearing-rate.  This 

criterion should be based on the 0ö/ö ratio. 

A valid criterion is obtained by establishing a level of significance 

(K) for the curvature.  Thus, when 

♦Using the assumptions of the preceding paragraph. 
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'B/S* > K (K a constant) 

significant curvature is present.  The first qn bearings are averaged 
(q < 1 and n is the total number of bearings) and the least-square 
process is applied to the remaining bearings and the incoming bearings 
until 0B/fe* > K when the entire process is repeated. 

Since it is necessary to have at least four bearings for a solution, 
an upper limit is set for the smoothing time.  Thus, if 

B/B ^K 

when the time interval is N minutes, the bearings in the N minute 
interval should be averaged and a new Interval started. 

1 

I 

i 

I 

I! 

[ 

I 
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III 

LONG RANGE BEARINGS-ONLY ZIG DETECTION 

1. Detection Scheme 

All present bearings-only range finding methods are based on the as- 

sumption that the target track consists of uniform rectilinear motion. 

Thus, the usefulness of these bearings-only solutions depend» on the 

ability to detect target zigs. 

A zigging target is defined here as one which does not conform to the 

aforementioned hypothesis.  This definition includes sinuating targets. 

•■ 

! 

i 

1 

•Rie equations of this section represent a zig-detection technique 

which is fundamentally the same as that used in the manual plots.  In 

this technique bearing data are collected for a time interval and 

least-square fitted to a function of time.  Estimates of the expected 

future bearings are obtained from the least-square fit (bearing his- 

tory).  The occurrence of a target zig is then Indicated by systema- 

tic deviations of the measured bearings from the predicted bearings. 

When systematic deviations are not discernible, the bearing measure- 

ments obtained In the prediction interval are combined with the his- 

tory bearings to form a new history from which a new least-square fit 

is obtained.  Bearings are then predicted for the next interval and 

the entire process is repeated.  Ttie entire bearing-time curve is 

scanned in this manner. 

2. Equations 

llie tracking time is divided into Intervals t , t-,, ... t., t. ,, ... 

such that 

(VVi) mLt 
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for (1 = 1,2,...).     Each At Interval contains p bearing sampling 
points.  The absolute value of the sum of the deviations of the pre- 
dicted bearings from the measured bearings In the interval (t , t  ) 
is J  J+1 

(C-l-3) 

In which the B^'s are measured bearings at times t. and the B*  «s 
are predicted bearings for times t.. 

Two schemes have been considered for bearing prediction.  In the 
first, the predicted bearings are obtained from the quadratic 
expression 

B' 'ij " WV^) + ^w (C-l-1) 

in which aj, bj, and c^ are obtained from a least square fit of the 
m. bearings in the interval (t ,t1). 

The  random part of the deviation r for the quadratic extrapolation 
is 

0J   =  0B 

cnP  +C< .T2-T+CO^T2 

'11*- T«224  31™33x' J2+2ci2TjiP 

+2C13TJ2P+2C23TJ1TJ2+P 

1/2 

> (C-3-5) 

in which the c^'s are as given In equations (A-l-12) with t^ replaced 

> 

- 

D 
; 

i 
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by t.,  and T.-,   and  T.p are 

TJI -   L (ti-to) 

tjL-tj+T 

•J2 
t^tj+T 

(C-3-4) 

Itie alternate scheme Is based on linear prediction from 

B*1J -a'j^Wto) (C-l-2) 

In which a'. and b" . are obtained from a linear least-square fit of 

the m. bearings.  The Interval considered must, of course, be limited 

such that equation (C-l-2) is a sufficiently accurate description. 

The standard deviation for the linear extrapolation Is 

B {C,llP2+C,22TJl2+2c,12TjlP+P} 
1/2 

(C-4-3) 

In which 
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11 Det A' 12 bet A' 

and 
(C-2-8) 

The axma  in the above  are  from t1  = to  to  t..     The  linear least-square 
fit Is obtained by 

a-   =  C^B^c'^ZB^-tJ 

and 

b-   = c'122Bi+c'222B1(t1-t0) 

] 

I 
I 
I 

i 
* 
I 

The probability of a target zig (P ) is found by 

I 

(C-l-4) 

3. Theoretical Results 

The theoretical results of Section 6 of Appendix C indicate that, at 

least for long range targets, the linear prediction scheme is superior 

to the quadratic scheme.  Further study at the shorter ranges is 

needed especially where the time for executing the zlg is long.  The 

quadratic scheme might be better in such cases,  it is quite possible, 

however, that less sophisticated schemes such as visual inspection of 

36 
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a bearing-time curve would be completely adequate for these short 

ranges. 

Pigs. C-6-1 through C-6-5 (see Section 6 of Appendix c) and the ac- 

companying tables give comparisons of r and o for various geome- 

tries . 

these figures. 

based on the following assumptions: 

Approximate expressions for r and o . were used to obtain 

The theoretical expressions used to determine r are 

1. Range does not change appreciably during the time intervals 

considered. 

2. Bearing-rate for each leg of the target track is approxi- 

mately constant. 

3.  Target zigs occur instantaneously and without changes in 

speed. 

Assumptions 1 and 2 above are not unrealistic for long ranges, i.e., 

ten nautical miles or more.  The effects of assumption 3 can be par- 

tially reduced by applying the following interpretations for "zig 
time": 

1. The "time of zig" (as used in the diagrams and tables) should 

be considered to lie approximately midway between the begin- 

ning of the zig and the end of the zig. 

2. Speed reductions resulting from course zigs advance or re- 

tard the "tine of zig" depending on whether the speed reduc- 

tions Increase or decrease the change in bearing-rate caused 

by the change in course.  Thus, apart from the correction in 

1 above, "zig time" should be Interpreted as the time at 

which the bearing-rate changes abruptly. 

The values of Oj and consequently the zig probabilities are based on 
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Analysis Is needed to determine the effects of undetected target zlgs 
on the range estimate. 

an assumed raw bearing standard deviation of 0.2 degrees and a bear- 

ing sampling Interval of 2 seconds. Larger standard deviations will 

degrade the results somewhat whereas a constant bearing off-set will 

have no effect. 

The geometries considered (Figs. 0-6-1 through C-6-5) represent zlgs 

which are particularly difficult to detect.  In all cases, a 15 de- 

gree counterclockwise rotation of the target track would make the 

zig impossible to detect.  In such cases, however, the zig would not 

affect the bearings-only range solutions.  Zlgs which cause larger 

changes in bearing-rates will, of course, result in larger zig proba- 
bilities at a given time. 

Pigs. C-6-1 and C-6-2 and the corresponding tables Illustrate the su- 

periority of the linear zig detection scheme over the quadratic scheme    { 

at a relatively long range.  Since the assumptions used for determin- 

ing IV. are not valid at short ranges, a similar comparison cannot be      i 

made for the short range cases; computer simulations will be used for     ' 

this latter situation.  The zigs for these two figures were assumed 

to occur at the beginning of the scan intervals. ! 

Figs. C-6-3 through C-6-5 and their respective tables illustrate the 

growth of the zig probability with subsequent scans.  Thus, if the 

zig is not detected (zig probability too small) in the interval in 

which it occurred, it will be easier to detect in the subsequent in- 

tervals.  This will not, in general, be true for the quadratic scheme. 

: 

I 

1 
1 
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IV 

CONCLUSIONS AND AREAS REQUIRING FURTHER INVESTIGATION 

1. Conclusions 

A. The ASP relative-motion analysis Is superior to manual plot- 

ting analysis In the following respects: 

1. Accurate relative-motion parameters are obtained In less 

time for ASP than that required for manual plotting, 

2. TOie ASP system can analyze targets at longer ranges than 

are possible using manual plots. 

B. Itie ASP relative-motion analysis Is superior to the present 

Mark 113 system analysis In the following respects: 

1.  More relative-motion parameters are obtained as outputs 

from the ASP analysis than from the present Mark 113 sys- 

tem analysis. 

2.  The ASP system has the capacity to produce "If-therefore" 

solutions based upon relative-motion parameters and an 

hypothesized Input of target range, course or speed.  The 

Mark 113 system can obtain this type of solution only for 

an Input of target speed.  Also, the possibility of a dual 

solution Is recognized by the ASP system, but Ignored by 

the present Mark 113 system. 

C. Automatic target zlg detection Is possible within the ASP fire 

control computer. 

I- 
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D. The linear zig detection technique is superior to the quadra- 

tic technique at the longer ranges. 

E. Wie significance of curvature criterion for establishing the 

widths of bearing pre-smoothing intervals is superior to the 

bearing-rate criterion presently employed in the Mark 113 

system. 

F. As presently formulated, the ASP bearings-only complete solu- 

tion Is inferior to that of the Mark 113 system. 

■ 

I 

2. Areas Requiring Further Investigation 

A. A criterion is needed whereby the interval over which the 

bearing-time expansion is applied is such that the expansion 

is indeed an adequate approximation to the true bearing-time 

function.  In the event that the total Interval can only be 

adequately approximated by two or more separate expansions, 

it would be desirable to combine the information obtained 

from the separate Intervals in such a manner that no useful 

Information is discarded. The  need for such a criterion is, 

as previously indicated, more important at the shorter ranges. 

I 

B. The bearings-only solution as presented here represents a 

"first look" at the system.  The assumption that own-ship zig 

occurs instantaneously must be replaced by a realistic 

maneuver. 

C. The combination of the first and second leg information has 

not been fully exploited.  The scheme presented here treats 

the six parameters (a's, b's, and c's) as independent whereas 

only four can truly be Independent (x, y, x, and y of the 

40 

J 

CONFIDENTIAL 



CONFIDENTIAL 

target).  It would be desirable to find relations describing 

dependence If such can be obtained without introducing the 

complexity of the previous SUBIC schemes. 

D. Variance expressions for many of the parameters have yet to 

be derived. 

E. A method of introducing additional measurements (e.g., range 

from PUFFS or single ping) into the bearings-only complete 

solution is necessary to obtain the best possible solution 

from all of the data which might be available. 

F. Analysis of the zig detection schemes must be continued and 

extended.  Further study at shorter ranges is needed, es- 

pecially where the zig is extended in time.  Analysis is also 

needed to determine the effects of undetected target zigs on 

the range estimate. 

G. The ASP approach to fire control has been designed to permit 

more effective communication between the man and his computer. 

The next step is to investigate how this communication can be 

accomplished and to evaluate the Increase of tactical effect- 

iveness resulting from this communication.  In order to accom- 

plish this, it Is planned to connect a research console to a 

computer to determine those parameters which should be under 

operator control and those parameters which should be under 

computer control. 
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APPENDIX A 

DERIVATION OF TARGET LOCALIZATION EQUATIONS 

1.   Least-Square Approximation to the Bearing-Time Relation 

The bearing-time relation. 

B = B +tan -1 (U/RG)(t-to)sln ao 

l-(U/RoHt;-t0)cos  ao 
(A-l-1) 

is obtained from Pig. A-l-1 (which for convenience Is reproduced here 

from Pig. 1-1-2).  An approximation to this relation Is obtained by 

taking a Taylor expansion of 

and 

tan(B-B ) 

1 
u 

to get 

in which 

(U/Ro)(t-to)sin ao 
MV^0)(t--bo)cos ao 

E = a+b(t-t0)+c(t-t0) 

a = B0, 

b - (U/R0)sln ao. 

^3 

(A-l-2) 

(A-l-3) 
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Flg.   A-1-1    Own-Ship Coordinates 

] 

NORTH 

U ■ RELATIVE  VELOCITY 

; 

i 

I 

[ 

] 

•>   EAST 

! 

LI 
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i 
and 

c = (U/ft ) sin a cos a . v ' o'     o     o (A-l-5) 

When the quadratic expansion (equation (A-l-2)) is sufficiently accu- 

rate and when the bearings have random variations, a least-square 

processing of the bearing equation will yield unbiased estimates of 

the coefficients a, b, and c. 

Assuming that the error in time is insignificant, the sum of the 

squares of the residuals is expressed by 

G = E a+b(t1-to)+c(t1-t0) -B± (A-l-6) 

which is minimized with respect to the coefficients to give 

an+b2(t1-t0)+c2;(t:L-to)
2 = ZB^ 

a2(t1-to)+bZ(t1-to)
2+cr(t1-to)

3 = 2B1(ti-to),     (A-l-7) 

a2(t1-t0)
2+b2(ti-t0)

3+cS(t1-t0)
4 = 2B1(t1-t0)

2, 

1 

Let the coefficients of a, b, and c be designated by the matrix A, 

then 

lft 

2B, 

2Bi(VV (A-l-8) 
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which can be written ar 

In which 

and 

Then 

u =» Cv 

u 
a 

b 

c 

J:B4 

C » A -1 

a = c11v1+c12v2+c13v3. 

b = c21v1+c22v2+c23v3. 

c - c3ivi+c32v2+c3':5v^* 

Explicitly, these equations are 

(A-l-9) 

(A-l-10) 

(A-l-11) 

(A-l-12) 

Det | A I = ni(t1-to)2r(t1-t0)V2r(t1-to)i(ti-to)2r(ti-to)3+ 

-[Z^l- ̂ y -n K^-^)3]   -i(t1-t0)1,[r(tl-to)] 

i 

1 

I 

I 

i 
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a Det |A( = rB1z(t1-to)2r(t;L-to)if+i:Bi(ti-to)i(ti-to)2r(t1-to)3+ 

+iB1(t1-t0)2r(t1-t0)L(t1-to)3-iB1(t1-to)2[i(t1-t0)2]' 

-IB. *(Vt0) 
l2 

-iB1(t1-to)E(t1-t0)2:(t1-t0) .4 

b Det |A| - niB1(t1-to)r(t1-to)'t
+iBi(t1-to)^(t1-to)r(t1-to)^+ 

+IB1Z(t1-to)2l(t1-tc)
3-EB1(t1-t0) ^it,-t) i   "o- 

and 

-nIB1(t1-to)2I(t1-t0)3-IBir(t1-to)I(t1-to)f, 

o Det |A| - nEB1(ti-t0)2i(t1-to)24rB1r(ti-to)r(t1-to)3+ 

+ IB1(t1-to)Z(t1-t0)E(ti-t0)2-ZB1   Uti-tJ 

-nEB1(t1-to)j:(t1-t0)3-lB1(t1-t0): Ht^tJ 

2.   Bearing-Rate and Change in Bearing-Rate 

. ••3 'in^-rats,   the   time-rate-of-change  of bearing.   Is  found  by  differ- 
■■■•'■'■'': r: equation   (A-i-^)   with   veapect  to   time.     Thus, 

i 

ft-t   ). A-.-J-l 
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Similarly,   the   change In bearing-rate  Is given by 

B - 2c. (A-2-2) 

1 I 
[ 

I 

3.  Determination of or. 0 and U/R 

Prom equations   (A-l-4)   and  (A-1-5). 

ao  - tan"1(b2/c) 

and from Fig.   A-1-2, 

(A-3-1) 

a(t)   = ao+B(t)-a. (A-3-2) 

This angle is referred to as the relative angle-on-the- bow, 

l^e relative course (0), see Pig. A-l-1, is seen to be 

From equation (A-l-4), 

0 = IT - ao -+ a, 

V/Ro  - b/sin a 

and from equations(A-3-1) and (A-3-4). 

(A-3-3) 

(A-3-4) 

^'[^ 
I c   +b 

(A-3-5) 

I 
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4. Development of Solution Using Speed Input 

Bearing data, own-ship motion parameters and a given target speed 

(ve  ) are used to determine a complete solution. 

Prom Pig. A-4-1 (which Is Pig. 1-1-3 reproduced here for convenience) 
target course Is given by 

* 
(2) ir->+a-a 

In which 

(A-4-1) 

sin -1 
,(1) 

LVe 
TTf sin (*<1>- a+ao) (A-4-2) 

11 

i 

The foregoing equation Indicates the possibility of two solutions 
(this is a property of all target localization solutions based on 
bearing data). Pig. A-4-2 Illustrates the fact that when bearing 
lines converge, two possible target tracks exist for a given target 
speed.  By examining the angle (/^-a+o^) the various solution pos- 
sibilities may be determined. 

Pig. A-4-3 (a) and (b) Is a vector velocity diagram In which the 
angle (/ ;-a+a0) Is In the first and fourth quadrants, respectively. 
It can be seen that 

v(2) vmln V (1) sln(^1)-a+a ) (A-4-3) 

When Ve(
2) exceeds V^ but Is less than V^, two values of y exist. 

One is given by the principal value of equation (A-4-2) and the other 
by Its complement.  Thus, 
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Flg.  A-4-1    Velocity Vectors 
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POSSIBLE  TARGET  TRACK 

POSSIBLE   TARGET  TRACK 
#1 

Flg.   A-4-2    Earth-Related Dual-Solution 
Illustration 
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Fig.    A-4-3    First and Fourth Quadrant Solution 
Possibilities 
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y1 ~y 

r2 - ir-y. 

(A-4-4) 

(A-4-5) 

When V^ '^ V^ S only ^ exists and there Is a unique solution. 

Flg. A-4-4 (a) and (b) depict the situations In which the angle 
{ffi   ^-a+ao) lies within the second or third quadrants, respectively 
The minimum target speed Is given by 

v(2) -vW mln      « (A-4-6) 

For any larger value of Ve^
2' a unique solution exists and r. (prin- 

cipal value of equation (A-^-2)) alone exists. 

Flg. A-4-5 summarizes the various solution possibilities. 

.When two values of > exist, the entire solution must be performed In 
duplicate.  Thus, equation (A-4-1) becomes 

0 (2) = ir-y.+a-a (J - 1 or 1, 2).   (A-4-7) 

Prom the law of cosines 

U.. V^) +Ve(
2)2-2v(

1)ve(
2)cos(^(2)-^1)) 

1/2 
(A-4-8) 

and, from equation (A-3-5) 

P     ii 1/2 Roj  " WjAoN-b4) (A-4-9) 
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I 

,1   * i ^1  - o + a,, ^ 

I 

f* -a*^ 

Flg.  A-4-4   Second and Third Quadrant Solution 
Possibilities 
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[1 

■ 

lt 

0 < ^^0< f 
Or 

^ < j2((l)-a*«o <  2n 

<-s 
•H 

t> 

V o 
cv f 
^-f CO > 1 

V rH 

■ ^SL 
^■H t» o C 
* Al 

•H « 
f ^■S 

^■% ^—% H 
rH Oi 
s«^ s*^ > 
^ä 6» 
5 ii 
n <\» 

^-s > 
«H ^-^ 

t> ö 

Yi — r Yl - Y 

Y2-» t-Yi Y2 nonexistent 

If 

li^)^0< f 

Yi ■ T 

Y2 nonexLetent 

^^ - ^U^1 W)| V(2)        . „(1) 
v      ndn      v 

ii 
Fig.   A-4-5    Speed Input Solution Possibilities 
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For range  at any  time   (t).   It can be  seen from Pig.  A-l-1  that 

U sin a0(t-t0)   - R(t)sln[B(t)-a] 

Thus, assuming (B-a) to be small 

i 

(A-4-10) 

It Is possible that one of the two solutions will be physically ab- 

surd, although mathematically possible. 

5. Development of Solution Using Range Input 

At any time (te), consider a coordinate system with the x axis perpen- 

dicular to the bearing line and the y axis along the bearing line. 

The components of target speed at this particular time can then be 

written In terms of known parameters and a range Input at the given 

time, Re(te).  The cross-llne-of-slght component of target speed at 
te Is then given by 

T 
i 

(2) rU) Vx^(te) - V^W[^.B(te)]+Re(te)B(te),      (A-5-1) 

In which 

B(te) = a+b(te-t0)+c(te-to)
: 

(A-5-2). 

and 

I 

B(te) = b+2c(t -t ). e o' 

The  along-llne-of-sight component of target speed is given by 

56 
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Vy
(2)(te) = V

(l)cos[^1)-B(te)]+Re(te) (A-5-4) 

In which the quantity Re(te) can be developed as follows 

Prom equation (A-^I-IO) 

R0b 
Re^   * b+c(t -t ) e  o' 

Thus, 

R0bc 

[b+0(te-to)]' 
or 

w Re(te)c 
(A-5-5) 

Equations (A-5-1) and (A-5-^) can then be written as 

Vx
(2)(te) = v(

1)sln[^1)-B(te)]+Re(te)[b+2c(te-t0)]  (A-5-6) 

and 

v/2)(te) ^(^cos^^-BCt^J- 
Re(te)c 

D+c^e-t0; ■ 

Total target speed Is found from its components. 

(A-5-7) 

v(2) ^(2)2(tJ+v (2)2(t )' x e'     y (A-5-8) 
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From Pig. A-^-l, It can be seen that target course is given by 

^2) = B(t )+tan~1 
rvx

(2)(te) 
Lvy (».). 

Prom equation (A-4-10) 

Re(te)[^c(te-t0)] 

(A-5-9) 

1 

I 

I 
and for any time (t) other than (t ) 

«(») - W^T • 

Thus, range at any time is given by 

R(t).vvMvvi 
v b+c(t-t^; (A-5-10) 

6.  Development of Solution Using Course Input 

Bearing data,   own-ship motion parameters  and a given target  course 
(^e       )  are used to determine a  complete  solution. 

Prom equation  (A-4-1) 

> = Tr+a-a  -0 ^2) . o ^e (A-6-i) 

■men,  rearranging equation  (A-4-2) 

T 
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v(2)     v^ain{0W.a+a0)  ^ 

sin 7 
(A-6-2) 

Target range can then be obtained from equation (A-^-lO) In which 

1/2 

(c2+bV
/2 

(A-6-3) 

7. Development of Bearings-Only Solution 

Own-ship travels and collects bearing data on two distinct "legs", 

each consisting of uniform motion, but differing In speed and/or 

course.  Itie simplifying assumption Is made that own-ship zlg (change 

of course and/or speed) occurs Instantaneously.  The subscripts 1 and 

2 Indicate first and second leg parameters, respectively.  The x and 

y subscripts Indicate the cross-line-of-sight and along-llne-of-sight 

speeds, respectively.  The Initial time Is designated by t , the time 

of own-ship zlg by t1, and current time on the second leg by t. 

At the time of own-ship zlg, the relation existing between range, 

relative cross-llne-of-sight speeds and bearing-rate Is 

R(t')B(t') -Ux(t') = vx^(t')-Vx
(:L) 

(f )• 

For a uniform target track, 

R(t')AB(t') - AV (1) 
x (f.) 

(A-7-1) 

(A-7-2) 

59 CONFIDENTIAL 



CONFIDENTIAL 

Thus, 

R(t') 
vlx

(1)(t')-v2x(1)(t') 
B2{f )-B:L(f ) 

(A-7-3) 

i 

1 

In which 

vlx
(1)(f) -v^^sm^^^-BCf)], (A-7-4) I 

V2x
(l)(f)  -V2

{1)BXn[02W.B{f)]t (A-7-5) 
I 

and the bearing at time t' is the time-weighted mean of the two bear- 
ings (one from each of own-ship's "legs") obtained at time t'.  Thus, 

B(t.)  - |-[a1+b1(t.-to)+c1(t.-t0)2]+ ££1 a2. (A-7-6) 

i 

The  two bearing-rates  at time  t'   are  given by 

B1(t')   = b^OiCt'-^) (A-7-7) 

and 

B2(t')  - b2, (A-7-8) 

Range at any time on the second leg (t) is then calculated from 

R(t) 
R(t,)b2 

b2+c2tt-t » ) (A-7-9) 
Ü 
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By assumption,targöt course and speed are constant. Therefore, in- 
formation obtained on each leg of own-ship track can be used to cal- 
culate target course and speed by the method used in the range input 
solution.  Thus, for leg k (k = 1, 2), 

Vkx
(2)(t') = Vk

(1,sln ^(1)-B(t') +R(t')Bk(t«)     {A-7-10) 

and 

Vky
(2)(t') = Vk

(l)cos |2fk(
l)-B(t')]+Rk(f)       (A-7-11) 

in which BCt") is given by equation (A-7-6), 

li 

! 

R1(t
I) = - 

R(f )c1 
b^c^t'-^) ' 

and 
R(t')c2 

«2^') - -     ST 

Target  speed  is   then   given  by 

2vl/2 

(A-7-12) 

(A-7-13) 

v2) = {Kx
(2)(t.)] +K

(2,(f)rr. (A-7-14) 

and target course is given by 

0^^   = BCt^ + tan"1 

1-Vkyr',(t,) 
(A-7-15) 
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The results of equations (A-T-l1*) and (A-7-15) are then weighed 
to obtain the best values of target speed and course.  Thus, 

v(2) = w.v^2) + w2v2(
2) (A-7-16) 

■ 

and 

*<*) = v^2) + W^2(
2) (A-7-17) 

In which the W's are the appropriate weighing factors. 
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APPENDIX B 

DERIVATION OF STATISTICAL PROPERTIES 

1. Coefficient Variances and Covarlances 

By definition. 

C = AdJ A/Det ) A | (B-l-1) 

1J 
in which A is the coefficient matrix of equation (A-l-8) and let c 

th —     -w 
be the ij   element of C.  Since A ■ A, C ■ C, i.e., both matrices are 
symmetric, or c.. = c^i> then. 

variances 

covariances 

0a  = C110B 

0b  = C220B 

0c  " C330B 

ab a b    Id  B 

be b c    23 B 

T   OO  = c   0 
ac a c   c13 B 

(B-l-2) 

(B-l-3) 

in which a-a     is the variance in the bearing data and the x  's are the 
D " mn 

correlation coefficients which, from equations (B-l-2) and (B-l-3) are 
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J 
Tab" eJiV^ ^' ioJli)^-and T

-
=
J^P*- 

<E
-
I
-

4)
 •Ii 

3 
The elements of A from which the c^'s are calculated consist of rel- 

atively cumbersome summations.  Simplified approximations are presented 
here to facilitate calculations. Let the bearings be obtained at equal 
time increments (T), then 

*! - T± (B-l-5) 

in which t1 is the time at which the 1
th bearing is obtained. Also, 

or 

Similarly, 

n       n        n 
1    *! * E ^ " T £ 1 
i=»o      i»o        i»o 

^ - T n/2 (n+1). 

Zt1    - T2 n/6 (n+l)(2n+l), 

lt±
3  - T3 n2/^ (n+l)

2,        .       (B.Lgj  - 

/ - T4 n2/l0 (n+l)2(2n+l). I 

] 

and it 4 - 'P
4
 -2/^ /~..x2 

For n large. 

It^-^V,    and zt.^T^nVs.       
(B"1'7)    | 
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Relating equations   (B-l-7)   and   (A-l-7),   the elements   {a±.)   of A are: 

all  = n' 

l12   ^ a21   =  T n /2 

a13 = a31  = a22 T2 n3/3. 

3 3 a23  = a32   = T    n /^>   and 

a33 - T
H
 nV5. 

(B-l-8) 

The determinant of A is 

Det j A I - na22a33 + a^^ + a21a32a13 + 

- a31a22a13 - a32a23n - a21a12a33 

and using (B-l-8), 

Det |A | = T6 n9/(2l60) {B-l-9) 

The elements of C are. 

cll = (a22a33 " a32a23)/Det |A|. 

c22 = (a-na« - a a1^)/bet |A|. (B-l-10) 

c33 =  (ai:La22   - a12a21)/Det  |A|. 
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and 

c2l " c12 " i&2i&23-&2l&33^^Det   lAl' 

032 " c23 " ^a3i&i2-all&32^^Det   lAl'     (B-l-10) 

C13 - C31 " (ai2a23-a22a13)/Det M- 

Using equations (B-l-8) and (B-l-9), 

'11 

'22 

'33 

'21 

and 

9/n, 

192/T2 n3, 

180/T4 n5, 

- ol2  - -36/T n2, 

c^2 - -180/T
3 n4, 

30/T2 n3. 

'23  "32 

'13   31 

(B-l-11) 

I 
I 
: 

: 

] 
■; 

: 

: 

; 

■ 

: 

Combining equations (B-l-2), (B-1-3), and (B-l-11), 

«a2 * (9/n)oB
2, 

o 2 - (192/^3)0 2 

on
2  - (180/TV)««2, 

(B-l-12) 

and 

Tab0a0b »(-36/Tn2)^2, 

TbC
0b0c -(-l8o/T3n^)oB2, 

Tac0a0c = (BO/T2!!3) OB2 . 

(B-l-13) 
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Also, from equations (B-l-4) and (B-l-11), 

Tab = -V3/2 = - 0.866, 

be -^fT^/k m ~ 0.970, 

T
an - VT/s - 0.745. 

(B-l-14) 

I 
! 

1 
I 
I 

Pigs. E-l-l, B-l-2, and B-l-3 are plots of the standard deviations of 
the least square coefficients as functions of time.  A bearing sampling 
interval of two seconds and a sonar bearing standard deviation of 0.2 
degrees are used. 

7 

2.  Variances In Functions of the Coefficients 

For a linear combination of the  coefficients 

u =» k1a +  k2b + k-c, 

0u2 - kiV + k22ob2 + VS2 + ^abVs'Vb + (B-2-1) 

fl 

+2Tbck2k30b0c + 2Tacklk30a0c- 

For an arbitrary function of the coefficients 

u - f(a,   b,   c). 

u 
-   r^2o   2^r^20   2j_,öu,2n 2 

I 
^>     a +^>     b +^l   °c +2Tab Sa 3b  0a0b + (B-2-2) j 

I 
CONFIDENTIAL| 

dn  äu öu ö\ +  2V. ^SF<VC  
+  2TaclliF0a0c 
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to a first order approximation. 

Variance expressions for some of the functions of interest are devel- 

oped in the following pages. Analysis is being continued on several 
that have not yet been evaluated. 

3. Variance In Bearing Rate and Change In Bearing Rate 

Prom equation (A-2-1), 

B = b + 2ct. 

Therefore,  taking Tbc  -  -1   (equation B-l-14), 

.2   ,   (*k)2a   2  +   ^Vo   2       p  ÖB ÖB fl   fl B     '   W      b     +   ^^   0c     "  2 S¥ SF 0b0( 

or 

'B 
dB o     _  ÖB 0 
db     b  " dc     o 

which results  In 

0B-   %  " 2toc   * (B-3-1) 

1 

I 

Prom equations  (B-l-12), 

o,   ö Tno , b c. 

or, from the definition of T and n. 

% " toc- 
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Therefore, 

I 

o * 'S a 
B   b" (B-3-2) 

Ttvaa  Pig. B-l-2 can be Interpreted as a plot of o • versus tracking 
time. The time-rate-of-change of bearing-rate Is given by 

B - 2c. 

Thus,  It Is obvious that 

0B  "  2V 

Flg.   B-3-1 Is a plot  of o" versus  tracking time 

4. Variances \neC0.c(. and 9 

Prom equation (A-3-1) 

ao  -  tan"1(b2/°) 

and 

5b- 

öu. 

2h/c 2bc_ 
.2/.  x21       2 rn  ' [l+(b2/c   )Z]     cVb 

-J^c 
[l+(b2/c)2]       c^b4  * 

Using equations (A-l-1!) and (A-l-5) 

(A-2-2) 

(B-3-3) 
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öa 
3E2- - 2(U/h0)'1oos  ao and 3o~ - (ü/fc0) -2 

Thus, using Tbc ■ -i. 

a. 
-1 -2. 2(U/R0)--Lcos ao%+{U,/k0)-';o (B-4-1) 

Consider the ratio of the first term In (B-^-l) to the second term. 

2(UA0) 
10O8 a o o 

(U/V'^c 0     0 0c 

Using (B-l-12), the ratio becomes 

2(U/^0)cos ao(Tn) - 2{U/k0)t cos a 

which must be small for the expansion expressed by (A-l-2) to be 
valid.  Thus, to a first order approximation. 

0ao - (U/V
2 V (B-4-2) 

It can be shown that 

0a a 0a ' o 
(B-4-3) 

Prom equations (A-3-3) and (A-3-1) 

e m Tr-tan"1(b2/o)+a. 
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I 

Also, 

he     , 
3ä ^ "^ 

and 

de 
3¥ 

he 

-2bc 
~2—T 

"2—T * c^+b 

Using Tab  - -1, Tbc  - -1,  and Tao  - +1, 

2bc 
"5—l c +b 

0- ' ~5^Tir0b + •^TTr0c 
b 
s— 

c^+b 

or 

0a + "TTT  (2cVboo) c +b 
(B-4-4) 

Consider the ratio of the first term In the above parenthesis to the 

second term, using equations (A-l-4), (A-l-5), and (B-l-12), 

2coh  ZivA^r,)   ai-n ar>  oos art 
to 

U/R^ sin ao ' o     o c 

o  c 2(0^)008 aot 

which must be small for the bearing expansion to be valid, 

to a first order approximation. 
Itierefore, 

0a + -rTT0. c +b 
(6-4-5) 
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Then,   from equation (A-3-5), 

0e " 0a+ 
U   / 

(B-4-6) 

Expressing o  in terms of o and using the arguments used above 

0   lR0)   C (B-4-7) 

Pig. B-4-1 Is a plot of o  and o« versus tracking time for various 

values of U/^ . 

5.  Variance In (U/R0) 

From equation  (A-3-5) 

(U/R0) 
2   ^ c  +b 

-11/2 

Using equations (A-l-^, 5) and the above. 

I! 

li 

i: 
and 

ö(U/R0) 
-TB  

Sc 

,   2              2 sin a  -cos  a  o o 
sin a_ 

cos  a 
- =   (U/R^)"1cot  a   , v   '    o' o 

y 
i: 

Therefore,   taking  x       =  -1, 
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0uA0 

^   2 2     \ sin a   -cos   a \ -, 
 ^ ^ «^-(U/ft   )      cot  a   o sin a j  h   K   /   o' o  c (B-5-1) 

Pigs.  B-5-1  through B-5-3 show  the  variation of Oy ,R    with  tracking 

time for various  values  of U/S0  and ao. 

For a     = Tr/2, 

o    ^     ~ o^ (B-5-2) U/^0  =     b. K     *>     i 

For a    = 0, 

ouA->   oo. (B-5-3) 

In  this   case,  however,   bearing-rate  Is  zero and the  only  Information 

which can be  derived from the data  Is, 

B  = constant  and B = 0. 

6.   Examples for Particular Geometries and Comparisons of ASP with Manual Plots 

The  figures   of  this  section  give  relative motion parameter accuracies 

as  functions  of time  for the  geometries  Illustrated.     The  ASP results 
are  based upon a  two-second  bearing sampling Interval with a bearing 

standard deviation of 0.2  degrees,   and the manual-plot results are 
based upon a one  minute   bearing  sampling  Interval with  a   bearing   stan- 
dard deviation  of  0.3  degrees.     The  significance  of  these  figures   is 

discussed in Section  ^-A  of   Part   II. 
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7.   Bearings-Only Range Variance 
:' 

From equations (A-7-3, 7, 8, 9), 

(1) 
R(t) = 

Prom this equation. 

AV ^(f)b, 

[b1+2c1(t'-t0)-b2][b2+c2(t-t')] 
(B-7-1) 

SR(t)  . R(t)    R(t)  R(t) 

[b2+c2(t-t«)] 

aR(t) _ R(t){t-t') 

BR(t) -H(t)   = mi 
[b1+2c1(t

I-to)-b2]   AB(t') 

!. 

i 

i 
r 

Mil 2R(t)(f-t0) -2K(t)(f-t0) 

[b1+2c1(t'-t0)-b2]     AB(t') 

Own-ship speed and course are assumed to have negligible error and the 

own-ship track is assumed to be nearly perpendicular to the B(tl) bear- 

ing line such that 

vJX(i) -v/Dsm^/D-Btt.)] 

v/1)sin(Aj+cB) 
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In which A.  ** Tr/2  and e     represents  the  error  In B(tl).     Thus, 
! 

V'1' -Vj(1)(«ln AJ+eBoo3 Aj] 

which, to a first order approximation. Is 

VJX(1) ■vj(1)8lnAr 

Thus, errors arising from resolving ov/n-shlp velocity are negligible. 

Prom the above, using x-^ c    
m xy)OCO  " ~1< no correlation between first 

and second leg coefficients and ^w = ^c* 

2     2 2 
R(t)  ~ ^1     . / 1   _1 \  o ! 

I 

T 

- • 

: 

: 

11 

and using 

•        ■ 

A B = B2 - B1, 

B2 =» b2} ! 

^ |AB| 

2 JBl\ 2 
1/2 

Using (B-l-12), 

(B-7-2) 
J 
jj 

i 
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T* 3/A 2v 
Tt 7^1 + -^. 

LT1 V V^ 

1/2 8V3 ^o, 

Tt^ |AB| 
(B-7-3) 

in which T, and To are the times on the first and second legs, respec- 
tively, and T is the bearing sampling interval. Let the bracketed ex- 

2 
pression be denoted by z , then 

gR(t)   ; 8vrT1/2oB (B-7-4) 

This equation is similar to that for range variance in Mode 2 (Refer- 

ence l).  The optimum value of z, however, differs in the two systems. 

Hie tracking time on each leg appears only in z.  Now let 

B. 
x = ij;- and y 

t B, -B0 

in which T. Is the total tracking time.  Then, 

1.1 
I+ 3 (1-x) (y-D' 

Minimizing this expression with respect to x gives the optimum time 

ratio (Tg/Tj.) and the minimum z (z-opt).  Pigs. (B-7-1) and (B-7-2) 

are graphs of x-opt and z-opt versus y for both this system and Mode 

2 (Mark 113).  Z-opt and consequently the range error for ASP is about 

1.4 times larger than the error for Mode 2. 
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Prom equation (B-7-2), It Is apparent that If the second leg bearing- 
rate approaches zero, the range deviation Increases without bound. 
Thus, R(t) may be of no value.  However, the range at time of own^shlp 
zlg, RCt'), can be used In this situation. 

From equations (A-7-3), (A-7-7), and (A-7-8) range at time of own-ship 
zig Is given by 

R(f) 
vlx

(1)(f )-v2x^(f) v^htn-Vz^hf) 
B2(f)-B1(t') b2-b1-2c1(f-t0) 

Prom the above equation. 

ÖR(t') 

ÖR(t') 

=    lx      )Z  '     2x       {    L    R(t') 
[b2-b1-2c1(t'-.t0)]2        [AB(f)]    ' 

.-(Vlx(l)(f)-V2x(1)(t.)) nti) 

[b2-b1-2c1(f-t0)]if   " [AB(f)]    ' 

and 

^R(t-)   _ ^^^p)!^1^^)-^^^')]        2(t'-t0)R(t') 
Cl [b2-b1-2c1(f-t0)]2 [AB(t')] 

The assumptions which led to (B-7-2) are again used to get 

] 

.1 
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2 
0  R(t') '-Mill 

.AB(t')      bl AB(t')     D2j 

2(ti.t  )R(t/ ) 1 2 

AB(t' ) Cl_ 

- Mf-t0) R(t') 
0   [AB(t')J        bl   Cl 

0b,0C- 

nuis. 

R(f) 
R '(f) 

A^t«) 
»VoV+Mf-tj%c„ -Mf-t0) ob oc brb2 

.2  2 
o'1    0 c '1   "1 

I: 

Then,  using 

or 

- (f-tj o'   c- 

2 2 
o2R(t')   ^ 0  b!-»-0  b2 

R^Ct«) AB^Cf) 

3R(t') 
2 2 

bl        b2J 

1/2 

AB(t') 
(B-7-5) 

Using equations  (B-l-12), 

V 

I ! 

TTtnt 

Tt\3+(T^3 ^2 SVTT
1
^ 

^372" 
B 

|AB| 

113 

(B-7-6) 
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APPENDIX C 

DERIVATION AND ANALYSIS OF 2IG DETECTION EQUATIONS 

1. Predicted Versus Measured Bearings 

Let the Interval t0 to t1  be such that a quadratic approximation to 
the bearlng-tlme curve Is sufficiently accurate, and let the bearing 
data from t0 to tj (t0 < tj < ti) be least-square fitted to obtain 
coefficients &y  by  and Oy     The bearing at time t1 can then be ob- 
tained from 

B' u - vvvv+vvv (C-l-1) 

Ihe B^j's thus represent predicted bearings based on bearing history 
from t0 to tj.  When the Interval t0 to t1 Is further restricted, 
bearings can be predicted from 

B' 
U -a'j + ^J^l^o) (C-l-2) 

In which a'j and b'j are obtained from a linear least-square fit. 

Let 

rJ   " 

m.+p+l 

Z (B*ij-B
tj' 1-4IK+1 

(C-l-3) 

In which the B1J'8 are the bearing data as received from sonar at ti. 
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m. Is the nxunber of bearings prior to t,, and p Is the ntunber of pre- 

dicted bearings.  It can be seen that r. represents a quantity propor- 

tional to the area between the expected and the true bearing-time curve 

from tj to tj+1 (see Pig. C-l-l).  This area Is also approximately 

proportional to the difference between the expected and the true bear- 
ing rates. 

The  probability of a target zlg Is found by 

zj VSTT / 
exp 

J  -r. 
2 0, 

dx (C-l-4) 

In which oj Is the standard deviation of r and remains to be deter- 

mined.  Zlg detection sensitivity will obviously depend upon r and o . 
J J 

2.  Linear Least-Square Fit 

Olie primed coefficients of equation  (C-l-2)  are obtained from 

u'   «■ c ' v1 

In which 

u' 
a« 

(C-2-1) 

(C-2-2) 

EB, 

LtB^t^^)] 
(C-2-3) 

(A«) -1 AdJ   A* 
Det  A' (C-2-4) 
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and 

A«   » 

n i (VV 

M^-^)      K^-^)' 
(C-2-5) 

Tine  primes are used here to distinguish between the linear and quad- 
ratic least-square fits. 

: 

Prom the above 

and 

a«   =- c'11rB1 + c,12EBi(ti-t0)' 

b'   - G'12EB1  +  c'22£B1(t1-to) 

(C-2-6) 

2 ,      „ 2    , 
a c   11   B 

2 2 o, .      -  c'00o_     , b' 22  B 

T«i>.i0ai
0K.   ■  CIIP0 'a'b'^a'^b 12 "B 

Prom equations (C-2-4, 5), 

Det  A'   - nI(t1-t0)2-[E(t1-t0)]    , 

c,ll " I(ti-'to)2/Det Al   ' 

(C-2-7) 
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22 n/Det  A» 

and 

'12 = c,21 " -£(t1-t0)/Det A' 

(C-2-8) 

! 

[ 

3.  Variance of T for Quadratic Extrapolation 

Prom equations (C-l-1, 3) 

or 

Mvvvto^vto)2-1^} 

aJP+bJE(t1-t0)+cJE(t1-t0) -IB.J 

(C-3-1) 

(C-3-2) 

1 

;: 

r 

1: 
r 

In which the sums are from t. =■ t. to t. ,.  Since the B^ ^ bearings 

are bearing data obtained after time t. and the coefficients a., b., 

and c. are derived from bearing data obtained prior to t., the B. . 

bearings are stochastically Independent of the coefficients.  Also, 

r1 Is a linear combination of varlates.  Thus, the variance of r.(o  ) 

Is 

2 2 
/ p 0a + z{tL-to) V+ L^-tJ 0c  + \ 

042 " <   +2TaKPL(t^~t«)0Q
0Vs+2To„PZ(tJ.-

t^)2oo0« + >•    (C-3-3) J   A    ab v 1 o' a b  ac  ^lo'ac  f v 

V +2Tbo,:<tl-to)£ttl-*o)2<'bVP0B£ 

i 
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Now let 

and 

'J+l 

E       CV*o)  - TJ1' 
t^tj+T 

(C-3-4) 

-1 

'J+l 

Z   (v1^2 -T^' 
t^t^T 

J2' 
! 

then, using equations (B-l-2, 3) with t. replaced by t., equation 

(C-3-3) becomes 

2 2 
0J   "0B 

c11p2
+c22TJ1

2
+c33TJ2

2-f2c12TJ1p + 

■f2c13TJ2p+2c23TJ1Tj2+p 
.  (C-3-5) 

Let the number of bearings from t to t1 be m,, then the c.-'s of 

equation (C-3-5) can be replaced by equations (B-l-11) In which n-m.. 

For to"0 the expressions (0-3-^) can be written as 

»n.+l+p 

11  " T     I     j 
l-m.+l 

and 

m.+l+p 

TJ2.T-       )        I2. ^ I 
l«^n.+l 
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I 

Now let 

i=K+ni.+l, 

then for m.  large. 

lJl T   Y (K+mi)   " T m.p+EK 
K=«0 L K   J 

and 

TJ2   = T2^ (K+mj)2«1!12 

K=»0 

Ttie  sioms  over K can be  reduced by 

2 2 m.   p+2in1   LK+EK 
J     J K  K 

^K - p(p+l)/2 

K=0 

and 

^K2 = p(p+l)(2p+l)/6. 

K=0 

Using the above simplifications, equation (C-3-5) becomes 

I 

[ 
I 
i 

2    2 
0J ^B 

2 
p+^_ p

2
+ 36 p

2
(p+1) + P (p+i)(68p+ 58) + m. r  m T m. 

(C-3-6) 

30P (p+l)
2(2P+l)+^P  (p-.l)2(2P+l)

2 

This equation was used to obtain the curves of Figure C-3-1 
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4.  Variance of F, for Linear Extrapolation 

Prom equations (C-l-2, 3) 

rj-|r{«'j+,"j<V*o)-Blj}| (0-4-1) 

and in a manner analogous to the previous section. 

I2 "  P2oa'2+ [^W] 0b'2+2Ta'b'PI(tl-to)0a.0b'+PaB2 

(C-4-2) 

B2   {C,11P2+C,22TJ12+2C,12TJ1P+P} (C-4-3) 

In which Tj1 Is defined by equation (c-3-4). 

Ilie approximation to (c-4-3) analogous to (c-3-6) is 

OJ2=OB2 {p+^ p2- ^4 (p^ ^4 (p+i)2} •    (c-4-4) 
j     mJ mJ ' 

Curves of Pig. (C-4-1) were obtained from equation (c-4-4). 

5. Approximate Expressions forF. 

The analysis of this section Is simplified by assuming target zlgs to 
occur Instantaneously and without changes In speed for course zlgs. 
The effects of these assumptions must be considered when Interpreting 
the results of the analysis.  Thus, a finite zlg time will retard 

1 
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detection while a speed reduction accompanying a course zlg will 

either retard or advance detection depending upon Its effect on the 

change In bearing-rate.  The effects can easily be deduced for the 

particular cases examined. 

Consider first the linear extrapolation scheme expressed by equation 

(C-l-2).  This scheme will obviously be suitable for long range tar- 

gets, but can also be used at the shorter ranges by restricting the 

time Intervals.  A target zlg Is Illustrated by the bearlng-tlme curve 

of Fig. C-5-1.  The curve consists of two straight lines (lines 1 and 

2) meeting at t  (the time of target zlg).  The case where {tz<  tj) 

will be considered later.  The prediction Interval (or scan Interval) 

begins at t. so that (t.-to) represents the history Interval which 

contains m. bearings.  The number of bearings from tj to tj+1 Is 

(m ,-iO = p and the number from t  to t_ Is N.  For further slmpll- v J+l  J o     a 
flcatlon without loss of generality,  B(to) and to are both set to 

zero.  For line 1, 

and for line 2, 

B - b1t (C-5-1) 

I B - a2+b2t = B(tz) + b2(t-tz) = (b1-b2)tz+b2t, (C-5-2) 

Thiis, 

B ij = Vi for ti< ti^t^i (C-5-3) 

and 

3iJ 

b1t1 for t . < t. ^ t J    1 ^ z 

(b1-b2)tz+b2t1 for tz< t^ tJ+r 

125 
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TIME 

Flg.  C-5-1    Linear Bearing-Time Curve for 
a Zlgglng Target 
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F, For t,« t, 

Flg.  C-S-2    F. for t < t. 
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Using equation  (C-l-3) 

i 

N m 
J+l 

Z  <BVBIJ)+ Z (B*IJ-BIJ) 
1=^11^+1 1-N 

In which the first sum Is 0 by virtue of (c-5-3) and (c-5-4).  Intro- 
ducing the expressions for B* . and B.., 

Z [i^-^it^j] 
^z 

Assuming equal bearing sampling Intervals, 

(C-5-5) 

I 

I! 

t.   =»  IT and  t     = NT l z 

In which T Is  the  time between samples.     Then, 

m 
J+l 

T   ^     [(Vb2)(i-N)] 
1=N 

Now let 1 » K+N,  then 

mJ+l-
N 

T  £ [(Vb2)K] 
K=0 

or 
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or 
I«, - T -ig  (^+1-N)(inJ+1-N+l) (C-5-6) 

Since nij+1> N by hypothesis, only (l^-bg) can be negative.  Also, 
from equations (C-5-1, 2) 

|(Vb2)| " \^l 

"i 
Ö 

so that (C-5-6) reduces to 

r .  - J -?|AB)(mJ+1-N)(mJ+1-N+l) 

or 

r, =• I^Vl-^^^J+l^z^) 

for t^ t8<tJ+1. 

(C-5-7) 

Consider now tz < t. as Indicated In Pig. C-5-2.  The least-square fit 
of the bearings from t0 to t. Is represented by line J which will In- 
tersect line 1 at tz/2 and line 2 at (t^-tJ/2. The equation of line 
J Is 

'J "z' 

B « 
^7 {(

bl-b2) t„+b^t,}+^ {(b^bg) 1-^]} .      (C-5-8) 'zTW2wJ 

Using this equation for B ^^  and the equation of line 2 for B^, equa- 
tion (c-1-3) reduces to U 

■ 

0 
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Ml j -l^i^Vi-V^j+i-V*) (C-5-9) 

for t ^ t.. Tills relation reduces to equation (C-5-7) vrhen tz « t., 
as Indeed It should. 

It will subsequently be seen that for small ^B the ratio r1/
0« de- 

creases with Increasing (t^.T-t.).  This merely reflects the results 
of extrapolation and should be expected.  Suppose a zlg has occurred 

in the Interval (ti+T"**)* but that P . was not of sufficient magni- 
tude to conclude that a zlg occurred. Extrapolation Is terminated at 
*. 1 whence all of the bearing data prior to t. , Is least-square 

fitted, and the Interval (ti+2"
t^+i) 

ls scanned using this latter 
least-square fit, and so on, for the next Interval.  We would like to 
determine the behavior of r1 In these subsequent scanning Intervals. 

The situation Is Illustrated In Pig. C-5-3.  ri+ic 
ls given by equation 

(C-5-9).  Thus, 

rJ-HK m  t J+K-l(tJ+K-H "tJ-hK^ ( tJ-t-K+1 "V7) 

^J+K-l     tj-HK^J-HK-^+K-l^^+K^z^ 

»- 

If ^+1+1 - ^+1 - *  for a11 1' 

/j-HK    (VK - ^t) (tj+K-HAt-tz+T) 

J+K-l 'J+KVWJ+K "z" 

which for T small compared to (t^.^-t ) reduces to 
J"rlv  Z 

1 J-t-K 

' J+K-l 
1 + At t -At 

J+K VJ+K 
(C-5-10) 

! 
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^tK-l V« tj + K + l 

Flg.  C-5-3    Behavior of Linear T. in Succeeding 
Scan Intervals J 
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fl 

] 
: 

■ 

j 
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Since tz <  t .+K for K > 1, 

J+K 
lJ+K-l 

> 1  for  t  > At 

< 1  for t  < At 

= 1  for t„   - At z 

(C-5-11) 

It can thus be concluded that r Increases when we progress to succeed- 
ing scan Intervals whenever t >4t, and conversely. 

The value of any rj+K rapidly approaches Its limiting value for a 
fixed scan Interval as (tj+K-tz) gets large.  The limiting value Is 

limit        l }A BI . A. 
(C-5-12) 

Approximate expressions for AB for long ranges can easily be obtained 
for specific geometries.  We assume range to be approximately constant. 
Por Pig. C-5-^ 

and for Pig. C-5-5 

AB * -(V(2)sln0/R* (C-5-13) 

Por a speed zlg. 

AB « V(2)(l - cosC)/^. (C-5-14) 

AB «* AV(2^/R. (C-5-15) 

These equations and the equations for T, were used to obtain Piss 
C-5-6 and C-5-8. J 
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Fig.   C-5-9    Behavior of Quadratic E In Succeeding 
Scan Interval J 
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I 
1 

The quadratic bearing extrapolation expressed by equation (C-l-l) has 

the disadvantage of having a much larger o. associated with It.  Addi- 

tional difficulties arise when the zlg Is not detected In the Interval 

In xvhlch It occurred.  This difficulty arises from the tendency of the 

quadratic least-square fit to follow the bearlng-tlme curve "knee" 

caused by the zlg.  The situation Is qualitatively illustrated in Pig. 

C-5-9 where the parabolic curve represents a least-square fit of the 

bearing data from t to t,,, .  It appears that linear extrapolation 

is superior to quadratic extrapolation for two reasons:  1) for tz 
near t., r. for long ranges Is approximately the same for both, but 

the o. associated with linear extrapolation is considerably less; and 

2) zlgs not detected in the Interval in which they occurred have a 

greater probability of being detected In subsequent scans with linear 

extrapolation.  If, however, the Interval of validity of the linear 

equation is comparable to zlg execution time, as might occur at short 

ranges, the quadratic method might be better than the linear method. 

A detailed study of this situation is needed. 

6. Theoretical Zlg Probabilities 

Qraphs of r^ and the associated o. based on the approximate equations 

of the previous sections are presented in this section.  Only a few 

geometries are considered.  Zlg probability tables accompany each 

graph; the tables correspond to the graphs bearing the same numbers. 

Figs. C-6-1, c-6-2, and the tables Illustrate the conclusion arrived 

at in the previous section. The zlg was assumed to occur at the be- 

ginning of the scan interval. 

Pigs. C-6-3 through 0-6-5 and their tables Illustrate zigs which have 

small effect on bearing-rate.  It is very unlikely that these zigs 

would be detected using the quadratic method. 
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In all of the cases considered, speed reductions during the zlgs would 
tend to Increase F and consequently advance detection time.  Finite 
zlg times would, of course, retard detection time. 

0 
n 

y 

D 
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TABLE C- 5-1 TABLE C-6 -2 

History 
(min.) 

Tlme 
(sec.) 

Zlg 
Probability 

History 
(mln.) 

Time 
(sec.) 

Zig 
Probability 

2 ho .21 2 60 .59 
2 70 .28 2 8o .68 
4 60 .50 2 100 .76 
k 30 • ■38 o 120 .74 
ii 100 .63 3 60 .68 
H 120 .65 ^ -> 80 .80 
6 60 .63 3 100 .89 
6 80 .75 j 120 .93 
6 100 .82 4 60 .75 
6 120 .86 

i4 

80 

100 

.87 

.94 

4 
120 .97 

i 

. • 

TABLE C-6-3 TABLE C-6-4 TABLE 0-6-5 

Zig Time 
(Min.) 

Zlg 
Probability 

1 ,14 

2 .75 

3 .79 
4 .80 
5 .92 

7:iz  Time Zlg 
(Min.) Probability 

1 .18 

2 .73 
■3 .90 
4 .94 

5 • 97 

Zig Time 
(Mln.) 

Zig 
Probability 

1 .26 

2 .90 
3 .99 
4 .99 

5 • 999 
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