UNCLASSIFIED

AD NUMBER
AD329725
CLASSIFICATION CHANGES
TO: UNCLASSI FI ED
FROM: CONFI DENTI AL

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Operational Use; OCT 1961. O her
requests shall be referred to Ofice of the
Naval Research, Arlington, VA 22303.

AUTHORITY

31 Cct 1973, DoDD 5200.10 ; ONR Itr 30 Apr 1974

THISPAGE ISUNCLASSIFIED




10329 725

Reproaduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA




NOTICE: Wwhen government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
goyernment procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsocever 5 and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any

ratented invention that may in any way be related
thereto.




o i”w%ﬁ,gf -ny% ‘F:'"‘"‘ Lt
o S 2 'P“*“’g x.-:'?m.

it d bt

=

NN” &Ww@@ ! Submarine lnicgr.a“u&d. Contral’

on

OFFICE OF GENERAL DYNAMICS COR m\ﬁjﬂ\
ELECTRIC BOAT DIVISION -
NAVAL G . CONNECTICUT '

RESEARCH |



Mathematical Concepts of the
Automatic Statistical Processing

Fire Control Computer (U)

This materiaf Contains intormatian ctin
the nationa! defonse f the Yrrag o :

within the mesnin R -
! the ¢gg ;
vlle 18, USC, woc jyy s A
transrussion o/ ': 'n )
manner to a9 Cnayings I o
Riied £ ot ed person s cichi-

DOWNGRADED AT 3 Y22 INTERVALS;
DZCLASSIFIED AFTEZR 12 YEARS
DOD DIR 5200.10

’a-n‘i'ﬂ_




Mathematical Concepts of the

Automatic Statistical Processing

Fire Control Computer (U}

by

Claude R. Gagnon

Frances R. Callanan

GENERAL DYNAMICS/ELECTRIC BOAT
Research and Development Department

) ) L)
Examined: L/{"Q 3 ~<{ZL_, (o
C. R. DeVcee )
Computer Applications Supervisor

Approved: WM L"““ L"‘
Dr.lA. J. van Woerkom
Chief Computer Scientist C417-61-011

October 1961 '5




FOREWORD

This report was prepared by the Computer Applications Section of
General Dynamics/Electric Boat as part of the Submarine Integrated
Control Program (SUBIC) of the Office of Naval Research. Electric
Boat 1s coordinator, under Contract Nonr 2512(00), of this program;
Cdr. F., R. Haselton, Jr., USN, is ProJect Officer for ONR; Dr, H, E,
Sheets 1s Project Coordinator for Electric Boat; and Dr. A. J.

van Woerkom is Chief Computer Scientist.

The program is divided into several parts: shilp control, weapon and
tactical control, engineering control, communications, environmental
control, and command control. This report 1s one of a series dealing
with tactical control.




ABSTRACT
(Unclassified)

This report consists of a mathematical model of a simple, statistical
fire control scheme. The equations are developed for the determina-
tion of relative target notion parameters, a complete btearings-only
solution and complete solutions based upon hypothesized inputs of
target speed, course, or range. The statistical properties of some

of the results are analyzed and compared to Mark 113 results and 1deal-
ized manual plots. A method of detecting target zigs 1s described

and statistically evaluated. Methods of imrroving some of the present
Mark 113 fire control system computational schemes are presented,
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SUMMARY

Purposes

Automatic Statistical Processing (ASP) is a fire control ¢-mputational
scheme that has been developed to provide all available tactical data
rapidly and accurately and, ultimately, to provide a fire control
solution for a target employing evasive tactics.

Techniques

1. Bearing-time Curve and Relative Motion Analysis

ASP's basic technique consists of statistically smoothing bearings to

a mathematical approximation to the bearing-time curve. By using a
digital computer for rigorous statistical processing, the best possible

curve (least-square fit) 1s produced. The smoothed curve used in man-
ual plotting 1s obtained by eye and, 1n general, only approximates the
least -square fit.

The equation of the least-square bearing-time curve yields the bearing
(B), bearing-rate (B) and bearing acceleration (B) as functions of time,
These parameters contain all the essential information contained in the
raw bearing-time data. The following relative motion parameters can be
deduced from this information:

1. relative angle-on-the-bow (a)
2, relative course (0)

3. ratio of relative speed to initial range (U/RO)
4, minimum target speed (V(Q)
In order to obtain a meaningful approximation to the bearing-time
curve and the resulting parameters, 1t is necessary for own-ship to
travel with uniform, rectilinear motion. This 1s true for both ASP
and manual plotting techniques.
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ASP also has the capacity to produce hypothetical solutions on any .
single leg of own-ship track by introducing values of target speed,
course or range into the computer. The values introduced may be
estimated, hypothesized or based on physical limitations. By dis-
playing the resulting "solutions'", qualitative information about
possible tactical situations 18 provided. ‘I

2, Zig Detection T
The initilal step toward ultimate solution of the passive maneuvering
target problem 1s the detection of target zigs. ASP includes a

technique whereby a computer calculates the probability that a target

has zigged. The principle used is fundamentally the same as that
used in the Barnard plot. A least-square bearing-time curve is ex-
trapolated to obtain an estimate of the expected future bearings.
The occurrence of a target zlg is then indicated by systematic de-

viations of the measured bearings from the predicted bearings. Since
deviations will result from bearing nolse even when a target zig has

pr—rt

not occurred, only the probability of a target zig can be determined.
Probabilities in excess of 99% are, however, usually interpreted as
certainty. Comparison of the expected bearings to the measured i
bearings 1s contlnued for approximately two minutes whence the bearing

data obtained in the two minute interval are automatically combined

with the bearing history to form a new least-square fit. The next

two minute interval is then scanned in the same manner. When a zig

1s detected, the history prior to detection 1is disregarded (zig de-

tection reset) and a new history 1s collected on the next leg of

target track for the purpose of detecting possible subsequent target

zigs. Since the zlg detector 1s also sensitive to own-ship zigs, it :
must be reset when own-ship maneuvers,

Two types of bearing-time curve-fitting have been investigated for

purposes of zig detection: a curved line (quadratic scheme) and a

straight line (1inear scheme). The extrapolation and deviation 1
caused by a target zig are i1llustrated in Fig. C-1-1 on page 116 for
the quadratic scheme and in Fig. C-5-2 on page 126 for the linear
scheme,
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3. Bearings-only Complete Solution

When the zlg detector indicates that the target i1s straight running, a
complete bearings-only target localization solution 1s possible., To
obtain the solution, own-ship travels on a straight leg and collects.
bearing-time data, then changes course and/or speed and collects a
second set of bearing-time data., By combining the information contained
in the resulting two statistically-smoothed bearing-time curves, the
range, course and speed of the target can be obtained.

Results

1, Statistical Error Analysis

Since all bearing data have random deviations, all parameters derived
from bearing-time data are subject to statistical uncertainty. The
curves in sections 3, 4, 5, and 6 of Appendix B illustrate the un-
certainties in the relative motion parameters. The uncertainties in
bearing, bearing-rate and bearing acceleration decreases as tracking-

time increases, The uncertainties in the other relative motion para-
meters decrease with increasing bearing-rate and time and with de-
creasing range, Although no formal error analysis has been made for
the hypothetical solutlons, their accuracies are not expected to be
very high, However, thls type of solution can be used to‘furnish
early information about possible tactical situations.

The percentage error in bearings-only range decreases as tracking times

and the absolute difference 1n the bearing-rates on the two own-ship .
legs inerease. Statistical evaluation of the bearings-only solution

has also indicated the possibility that bearing-rate and its uncertainty
can be used to determine the optimum time for own-ship zig. The de-

tails for establishing. an own-ship 2zig time criterion are yet to be
determined.

The linear zig detection scheme has been found to be more effective for
long range targets. Figs. C-6-1 and C-6-2 and the accompanylng tables
contaln quantative comparisons of the two schemes.

vii
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2. Comparison of ASP with Manual Plots

To quantatively compare ASP with manual plots, 1t 1is necessary to
assume that manual plots are rigorously least-square fttted. Compari-
son can then be made directly because ASP's mathematics are implicit

in manual plotting techniques.

The ASP scheme 1s superlior because of the high data assimilation rate
possible using digital computer processing. Parameters are obtailned
more accurately, more rapidly and at longer ranges. The curves of
Section 6 of Appendix B (pages 82 through 106) compare the accuracies
achieved by the two techniques for various geometries. A complete
discussion of the assumptions and results of the comparison is con-
tained in Sections 4.A and 4.B of Part II of this report (pages 29

through 31).

3. Comparison of ASP with Mark 113
The Mark 113 system 1ncludes relative motlon analysis and a complete

bearings-only solution (Churn).

Relative motion analysis 1n the present Mark 113 1s similar to that in
ASP in that bearing-time data are used as 1nput and own-ship 1s con-
strailned to uniform, rectilinear motlion to obtain a meaningful relative
motion analysis. However, the only parameters provided by the Mark

113 relative motion analysils are the 1nitial angle-on-the-bow and the
ratio of relative speed to 1nitlal range. Since no statistlcal error
analysis has been made for the Mark 113 relative motion parameters,
accuracies for the two techniques cannot be compared.

In the Mark 113 system, a hypothetical solution can be obtalned for an
input of target speed only. In the event that a dual :.cvlution exists
(see Fig. A-4-2 ¢ page 51), only the longer range solution is pro-

vided, whereas ASP furnishes both soliutions.

The Mark 113 bearings-only solution uscs bearing-time data and own-
ship motion parameters for at least two own-ship legs to provide tar-
get range, course and speed. Although Churn theoretically allows

vili CONFIDENTIAL
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own-ship freedom of motion (with resulting mathematical complexity),
in reality, an optimum tactic (two straight legs differing in course
and/or speed) 1s necessary to produce adequate solutions at SUL:OC
ranges. Also, own-ship straight legs are required in order to detect
target zigs. It 1s therefore apparent that the freedom of own-ship
motion provided by the Mark 113 system is not a requirement 1n connec-
tion with SUBROC fire control solutions.

4, Bearing Pre-Smoothing
In addition to belng complex, the mathematics in Churn include an in-

herent bias. It has been shown (reference 1) that this bias can be
reduced to insignificance by pre-smoothing (averaging) groups of bear-
ings. At present the averaging criterion 1s based on bearing-rate.
The ASP study indicates that a better criterion, based on bearing
acceleration and its uncertainty, can be developed.

ix

CONFIDENTIAL




CONFIDENTIAL

1
CONTENTS
Page
Foreword i
Abstract iii
Summary v
Introduction 1
I - Target Localization Solutions
l. Geometric Relations, Definitions, Symbols 5
2. Bearing-Time Relation and Approximation 9
3. Relative Motion Parameters 11
4. Requirements for a Complete Solution 13
5 Solution Using Speed Input 13
6. Solution Using Range Input 16
7. Solution Using Course Input 18
8. Bearings-Only Solution 18
ITI - Statistical Properties
1. Varilances and Covariances of Least-Square Coefficients 23
2. Variance 1in Relative Motion Parameters 25
3. Bearings-Only Range Variance 27
4, Examples for Particular Geometries and Comparison of
ASP with Manual Plots 29
5. Bearing Pre-Smoothing 31
ITII - Long Range Bearings-Only Zig Detection
1. Detection Scheme 33
2. Equatilons 33
3. Theoretical Results 36
IV - Conclusions and Areas Requiring Further Investigation 39
Appendix A - Derivation of Target Localization Equations L3
Appendix B - Derivation of Statistical Properties 63
Appendix C - Derivation of Zig Detection Equations 115
References 145

x1

CONFIDENTIAL




CONFIDENTIAL

FIGURES
I-1=1 Earth-Fixed Coordinates
I-1-2 Own-ship € ordinates
I-1=3 Velocity Vectors B
I=2=1 Bearing-Time Curves
I-5=1 Speed Input Solution Possibilities
A-1-1 Own-Ship Coordinates
A=L-1 Velocity Vectors
A=-L=2 Earth-Related Dual-Solution Illustration
A=ly=3 First and Fourth Quadrant Solution Possibilities
A==y Second and Third Quadrant Solution Poesibilities
A-b=5 Speed Input Solution Possibilities
B-1-1 o, Versus Time
B-l=2 %, Versus Time
B-1-3 S Versus Time
B-3=1 o Versus Time
.'B-l;-l S and % Versus Time 3
B-5-1 % /R, Versus Time for lI/Ro = 2 hr -1
B-5~2 % /Ro Versus Time for ll/l?.o =) hr © L
‘B=5-3 % /R, Versus Time for u/ao = 0.5 hr
B-6-1 Case 1 Geometry
B-6-2 Case 1 °U/R°/U/Ro Versus Time
B-6-3 Case 1 o, Versus Time
B=b6-4 Case 1 oy /B Versus Time
B-6-~5 Case 1 op /B 7ersus Time
B-6-6 Case 2 Geometry
B-6~7 Case 2 o /RQ/U/_RO Versus Time
B-6-8 Case 2 o Versus Time
B~-6-9 Case 2 oy /B Versus Time
B~6-10 Case 2 op /B Versus Time
|
xit

Page

10
15
L
50
51
52
51,
55
67
68
69
72
76
78
79
80
82
83
8l
85
86
87
88
89

91

CONFIDENTIAL




CONFIDENTIAL

B-6-11
B-6-12
B-6-13
B-6-14
B-6-15
B=6-16
B=-6-17
B-6-18
B-6-19
B-6-20
B-6=-21
B-6-22
3-6-23
B-6-24
B=6-25
B-7-1

B-7-2

C-1-1

C-3-1

C-4-1

C=5-1
C-5-2
C-5-3
C=5-4
C-5-5
C-5-6
C-5-7
c-5-8
C=5-9
c-6-1
C-6=2

Case Geometry

Case 4 /RO/U/RO Versus Time
Case o Versus Time

Case % /5 Versus Time

Case %B/B Versus Time

Case 4 Geometry

3
3
3
3
3
4
Case 4 g /RO/U/R o Versus Time
Case 4 o, Versus Time
Case 4
Case 4
5
5
5
5
5

Case

°é/é Versus Time
aﬁ/ﬁ Versus Time
Geometry

Case °U/RO/U/R0 Versus Time
Case % Versus Time
Case aé/é Versus Time
Case a§/§ Versus Time

X-opt Versus vy

Z-opt Versuc y

Bearing-Time Curves fo: a Zigging Target

Standard Deviation of I' Versus Time for
Quadratic Extrapolation

Standard Deviation of T Versus Time for
Linear Extrapolation

Linear Bearing-Time Curve for a Zigging Target

I“j for tz< t’j

Behavior of Linear Pj in Succeeding Scan Intervals
Zig Geometry No. 1

2ig Geometry No, 2

I' Linear Versus Zig Time for Given Geometries

I' Linear Versus Zig Time for Given Geometries

I’ Linear Versus Zig Time for Given Geometries
Behavior of Quadratic Pj in Succeeding Scan Interval
FJ Quadratic Versus Time

PJ Linear Versus Time

x111

Page

93
9L
95
96
97
98
99
100
101
102
103
104
105
106
110
111

116
122

123

126
126
130
132
132
133
134
135
136

139
140

—CONFlDENTlAL




CONFIDENTIAL

C-6-3
C-6-4

C~6=5

Page

I' Linear Versus Time for Two-Minute Scans - * 141
20 Nautical Mile Target

I' Linear Versus Time for Two-Minute Scans - 142
15 Nautical Mile Target

I' Linear Versus Time for Two-Minute Scans - 143

10 Nautical Mile Target

s

-~

i 1

t ‘ """“ ‘f”‘ﬂ!‘

v CONFIDENTIAL




CONFIDENTIAL

INTRODUCTION

Automatic Sfatistical Processing (ASP) is a continuation of earlier

SUBIC studies in the fire control area. The objective set forth for
ASP (in addition to the more general SUBIC objectives) is to provide
all useful tactical inforiation which can be derived from available

data as rapidly and accurately as possible.

It 1s felt that a significant portion of available tactical informa-
tion is not now displayed in present automatic computing systems.

For example, 1in the existing Mark 113 fire control system, the initial
relative angle-on-the-bow and ratio of the relative target speed to
initial range are the only quahtities derived from the bearings on the
first leg of own-ship maneuver. Range, course, and speed are avail-
able either upon entering a target speed estimate or after an own-ship
zig. Other tactical information such as target zig indications,
smoothed bearings and bearing-rate, a quantity often used to fire
acoustic torpedoes, 1is obtained from manual plots which are severely
limited in accuracy at the longer ranges.

The technique used to meet the ASP objective consists of smoothing,
in the statistical sense, bearing data to a mathematical approxima-
tion to the bearing-time curve. This technique provides relative mo-
tion parameters during the first leg of own-ship maneuver, results in
simplified solution equations, and makes zig detection possible. In
order to achieve these ends, however, it is necessary to constrain
own-ship to uniform rectilinear motion. Relative motion parameters
can be obtained on any own-ship uniform rectilinear motion leg. Such
legs will be referred to as single legs throughout this report; and
relative motion analysis, or simply single leg analysis will be used
to designate calculations leading to relative motion parameters.

The relative motion parameters which can be obtained from any single

CONFIDENTIAL
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leg analysis are:

ot

relative angle-on-the-bow

relative course

statistically smoothed bearings
bearing-rate

change in bearing-rate

ratio of relative speed to initlal range
. minimum target spéed

~N WU W D

—

These quantities can be supplied continuously for the entire tracking
period. It is also possible for the operator to introduce into the
computer estimates or hypothetical values of target range, course or
speed to obtain possible target localization solutions. The possible
solutions can be geographically represented on a display similar to a
strip plot for a qualitative "picture" of the possible tactical

situations.

when confronted with a zigging target, as indicated by the zig detect-
or, it may be possible to obtain a range estimate by obtaining para-
meters for each leg of the target track and, from these, selecting
portions of the possible target tracks where zigs will not severely .
degrade range solutions. In the event that the target is sinuating,
i1t may be possible to approximate the track by a series of straight
legs and use the same technique as for a zigging target.

4

Thus, a leg-py-leg analysis, coupled with the ability of a trained op-
erator, mighﬁ possibly be used to partially overcome the difficulties
presented by a zigging target so that a rough estimate of target range
can be passively obtained. This range could be used to ihdicatewhéther
the target 1s within weapon range and, if éo, which weapon to use,
Single ping techniques could then be used to obtaln a more accurate
range, if necessary. Thus, the possibility oI pinging a target beyond
weapon ranges could be reduced.

€ CONFIDENTIAL |
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°
In addition to the objectives and capabilities mentioned above, the
ASP fire control system can also be used to obtain a complete bearings-
only solution. To obtain this solution, own-ship maneuver must consist
of two straight legs differing in course and/br speed. Comparison of
the bearings-only solution to the hypothetical solutions obtained on
first leg of own-ship maneuver can serve to increase operator confi-

dence 1in computer outputs.

This report 1s preliminary and represents the results of the study to
date. Conclusions based on this work and an outline of the work con-
sidered for the future are contained in Part IV.

CONFIDENTIAL
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i
TARGET LOCALIZATION SOLUTIONS

1. Geometric Relations, Definitions, and Symbols

The expression target localization is used here to designate the data
processing which provides information about the time-dependent posi-
tion of the target relative to own-ship. Complete knowledge of the
-target's relative position as a function of time (subject to statisti-
cal uncertainties) will be called a complete solution. Thus, target
range and bearing as functions of time; or target range, course and
speed, and own-ship motion constitute a complete solution.

The geometry for an earth-fixed coordinate system is shown in Fig.
I-1-1 where both own-ship and target are traveling with uniform mo-
tion*, Fig. I-1-2 depicts the same situation, but with the coordinate
system origin fixed to own-ship. The velocity vector relations are
1llustrated in Fig. I-1-3.

The symbols used in the aforementioned figures are also used in the
mathematical development. Vector quantities are designated by horiz-
ontal bars above the symbols; their magnitudes are designated by the
symbols without the bars. Superscripts (1) and (2) refer to own-ship
and target quantities, respectively. Inputs to the target localiza-
tion computer other than bearing data and own-ship parameters are
designated By an e subscript.

Equations appearing in Sections I, II, and III of this report are de-
veloped in the appendices and bear the same numbers. The useful equa-
tions for target localization solutions are enclosed in rectangles.

*Thls will be assumed throughout unless otherwise indicated.

5 CONFIDENTIAL
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2. Bearing-Time Relation and Approximation

Typical bearing-time relations are qualitatively represented by Fig.
I-2-1 for U/Ro both small and large. The point of maximum bearing-
rate 18 the closest point of approach (CPA) of the target.

It is shown in Section 1 of Appendix A that limited portions of the
bearing-time relation can be approximated by

2
a+b(t-to)+c(t-to)

in which
By » (A-1-3)
b = (U/Ro) sin a, (A-1-%)
and c = (U/'Ro)2 sin o cos a_. (A-1-5)

The approximation to the bearing time curve (equation A-1—2) 18 more
acourate at long ranges than at short ranges.

A least-square processing of bearings versus time using (A-1-2) ylelds
the matrix equation

u=°Cv (A-1-9)
in which
a
u = bl|, (A-1-10)
1
9
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v = |zB;(t,-t,) , (A-1-11)

C = A , (A-1-12)

n L(ty-ty)  E(ty-t,)?]
A= | oE(b-t)  E(t-t)% E(t,-t)3

(ty-t)2  (ty-t)3  E(ty-t)"

J

L

and B, is the bearing obtained at time t

i i’

The coefficients a, b, and ¢ as obtained from equations (A-1-9, 10)
are used i1n the subsequent section to obtain relative motion parameters.

3. Relative Motion Parameters

The relative mction parameters are those quantities which are obtain-
able on a single leg of own-ship maneuver.

The equations of this section are developed in Sections 2 and 3 of
Appendix A.

Differentiating equation (A-1-2) with respect to time gives’

2 CONFIDENTIAL
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B=b+ 2e(t-t ) (A-2-1)

(S

which when differentiated again glives

tmj

B=2c |. (A-2-2)

ﬁ and E are bearing-rate ahd the change in bearing-rate, respectively.

The change in bearing-rate indicates whether the target 1is opening or
closing. I
The relative angle-on-the-bow is obtained from the relation I
Y |
a, = tan™ (b /c) (A-3-1)
1
u
for the initial value and from B
[ 4
a(t) = a +B(t)-a (A-3-2) [
for any subsequent time (t).
Relative course can then be found from the relation
6 =7 - \ao + a . (A"3"3) 7
The ratio of relative speed to initial range can also be obtained l
from béaring data alone. The relation is expressed by :
lt

12 ,
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U/R, = b/sin a_ s (A=3-4)
or
o 1/2
U/R, = iﬁb— : (A-3-5)

4. Requirements for a Complete Solution

Bearing data alone 1is insufficient to obtain a complete solution when
own-ship travels with uniform motion. It is possible, however, to ob-
tain a complete solution when either range, course, or speed of tar-
get 1s specified (i.e., obtained externally). Occasionally, estimates
of one or more of these parameters are avallable and can be used to
obtain estimates of the remaining parameters. Alternatilvely, values
can be hypotheslized 1in order to obtain various possibllities for the
remaining parameters. Thus, for example, a submariner might ask for
possible ranges and courses under the hypotheses that the target speed
is ten, twelve, and fifteen knots. Hypothesized parameters are per-
haps more prevalent than estimated parameters in the manual and seml-
automatic plotting systems.

5. Solution Using Speed Input

In thls and the following sections, inputs to the target locallzation
computer other than bearing data and own-ship parameters are desig-
nated by an e subscript.

The equations of this section provide a complete solution from bearing

data and a glven target speed (Vé(2)). The development 1s in Section 4
of Appendix A.

13 CONFIDENTIAL
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Target course is given by

¢(2) =T -y+a-a (A-%-1)
in which
1
Y = sin™? ;!éQ; sin(ﬁ(l)-a+ao) . (A-4-2)
) e

Equation (A-4-2) indicates the possibility of two solutions. This
dual solution possiblility 1s a property of the fire control geometry
and 1s 1ndependent of the partlcular mathematical descriptions used
(see Section 4 of Appendix A). It 1s also possible to enter a speed
Ve(e) which 1is too asmall to provide a solutlion. -"This latter situation
leads to a minimum target speed (subject to statistical uncertainties).

By examining the angle (ﬂ(l)-a+ao) and Ve(g), the various solution
possibilities may be determined. Flg. I-5-1 summarizes the different
possibllities.

When more than one solution exists, two values of y exist. One is
glven by the principal value of equation (A-4-2) and the other by 1its

complement. Thus

Yy =Y (A-4-4)

Yo =T - Y (A-%4-5)

14 CONFIDENTIAL]
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Fig. 1-5-1 Speed Input Solution Possibilities
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In the event that two Y angles are possible, equation (A-u-l) and
those which follow will have to be duplicated to provide the two pos-
sible solutions. Thus,

¢J(2) = T-v rasa (5 =1or1,2) |, (A-4-7)

, 1/2
U, = [V[1}£+VE{2}E—E‘U{ljveie}cus[ﬂ,{g}-ﬁtl}}] , (A-4-8)

5 lj. ,2 R b (A-)'!"'g)
o)
ROJ = bUJ/(c + b f/ , and | R(t)J = ©rs = y in:o)

in which R(t) 1s the range at any time t.

In many cases, one of the two solutlons will be physically absurd al-
though it is mathematically possible.

6. Solution Using Range Input

The equations of this section are derived in Section 5 of Appendix A.

Let Re(te) be a range input at time te, then

v,(B(e) = vVsin [¢(l)—B(te)]+-Re(te)[b+2c(te—to)] (A-5-6)

16
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2

and

Re(te)c

V&(a)(te) = V(l)cos[ﬂ(l)-n(te)] "B (5,7%,)

(A-5-7)

in which Vx(e)(te) and Vy(a)(te) are the cross-line-of-sight and along-

line-of-sight speeds at te,

respectively, and

B(t,) =

. 2
a+b(te-to)4c(te-to)

Target speed 1s then obtalned by

NON Y

N2 N 1/2
(2 (6g)4v, 12 (te)]

and the target course by

ﬂ{g} = F{tl]+tan_l :

W ]

Range at any time other than te is then

R(t) =

Re(te) [b+c(te—to)]
bte(t-t,)

17
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(A-5-9)

(A-5-10)
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7. Soiution Using Course Input (See Section 6 of Appendix A for development)

peerd

For an estimate of target course (ﬂé(g)), target speed is obtained

from I
(1) (1) T
vit/sin(g' "/ —a+a )
v(?) T e (A-6-2) I
in which T
Yy = m+a-ao—¢g(a) (A-6-1) [
Target range can then be found f{rom ;
‘ Hor 3
in which
. 1/2
2 2 "
= [v‘.l} +1|,‘||-|:'5e‘-i _J-_'_:y(l}v{“]caatge{el_gil}} b (A—6-—3)
o {ca+bﬂ}1fﬂ

8. Bearings-Only Solution (See Section 7 of Appendix A for development)

For a bearings-only solution, own-ship travels for a time t' with uni-
form motion, then changes course and/or speed and travels with uniform
motion until the end of the tracking time. The simplifying assumption
is made that own-ship changes course and/br speed instantaneously at

0 CONFIDENTIAL
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tr.® Bearing data is collected and processed on each of these two
"legs" of own-ship track. The subscripts 1 and 2 are used to indicate
first and second leg parameters, respectively. The x and y subscripts
are used to indicate the cross~-line-of-sight and along-line-of-sight

speeds, respectively.

At the time of own-ship zig (t'), it can be seen that two values of
own=-ship cross-line-of-sight speed and two values of bearing-rate are

obtainable, one from each of the legs of own-ship track.

leg l:

le(l)(t') - Vl(l)sin[ﬁl(l)'B(t')] ’
and

By(t') = by+2c (t'-t,) '-

For leg 2,

v2x(l)(t') = V2(l)sin[¢2(l)-3(t')] ’
and

é2(t') - b2
#See Section 2, Part IV.
19
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(A-T-1)

(A=T=T)

(A=T=5)

(A-T7-8)
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The bearing B(t') is common to both legs and is calculated using the
appropriate time welghing factors. Thus,

of

[

o e

B(t') = %}[a1+b1(t"to)+°1(t"to)2]+ t;t' a, . (A-T-6)

The range at t' 1s then calculated from

(1) (1)
. tr)-v t
R(t') = —X ( ? 2x_ (") (A-T-3) I
B2(t')-Bl(t') I
and for any subsequent time (t), I
R(t')b '
R(t) = —— 2 |, (A-7-9) H
byt (t-t 1)

=

Target speed and course are constant by assumption and can, therefore,
be calculated using information obtained on both legs of own-ship man-
euver. Thus, for leg k (k =1, 2), f

Ly -z

=

v (B (e = Vk(l)sin[gk(l)-B(t')]+R(t')ék(t') , (A-T-10)

and

L B

Vi B (61) = v, P eos (2,2 -B(e )] 4R, (1) (A-7-11)
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in which B(t') 1s found by equation (A-7-6),

Using the above equations,

. R(t')cy
Ry(t') = - By¥¢;(ET=E)
and
] R(t")e.
[ Hgft'} w-_._..,D___e
2

?kte} B {[vkx{EIKEI}]Ef[vhxtzjtt.}]z

and

Vi

ky

(2)('0')
¢k(2) = B('c')+'cam'l [;—ETET?———

Introducling the appropriate welghing factoirs,

v(®) v, (B) g, (B

and

¢(2) =_w3¢1(2) o Wuﬁé(e)

21

(A-T-12)

(A-7-13)

(A-T-1%)

(A-T-15)

(A-T-16)

(A-7-17)
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STATISTICAL PROPERTIES

1. Variances and Covariences of Least-Square Coefficients (See Section 1 of
Appendix B for development)

The varilances, covariances, and correlation coefficients of the coef-
ficients a, b, and ¢ are :‘iven oy

(B-1-2)

Q
[¢]

A
Q
i

(@]
Q

"ue%% T C23% , (B-1-3)

T = 23 (B-l-u)
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where the Cij's are the elcments of the inverse of matrix A, which 1s
obtained from the coefficients of a, b, and ¢ of equations (A-1-7) or

= .
n It ~t_) I(t,-t,)"
2 3

A = 2(t1—to) 2(t1—to) z(ti-to) .
Bt -t)7 g, -t)3 Z(t,-t )"

The elements of A consist of somewhat cumbersome summations. There-
fore, to facilitate calculations for analysis 1t 1s assumed that the
bearings are obtained at equal time increments (T). The variances

then become

e T e B TR B R S SO R S

> g _ 2
%  “np>

2 192 2
0o ° = —73-—: LR (B-1-12)

T™Tn

2 180 2 i

[o] . [o]
c T 5 B

in which oB 1s the standard deviation of sonar bearings and n 1s the

number of bearings sampled.

The covariances are

36 4 2
T .0 0 = e X s
ab a b Tﬁ? B
180 . 2
Tpe®b%% = T ,'I,?“TI"B ’ (B-1-13)
n

CONFIDENTIAL |




CONFIDENTIAL

and the correlation coefficlents are

Ty = -V3/2 = - 0.866,
v, = -VI5/H = - 0.97, (B-1-14)
Toe = V5/3 = 0.745.

Figs. B-1-1, B-1-2, and B-1-3 of Section 1, Appendix B, are plots of
the standard deviatlions of the least square coefficients as functions
of time. A bearing sampling interval o1 two seconds and a sonar bear-
ing standard deviation of 0.2° are used.

2. Variance in Relative Motion Parameters (See Sections 3 and Y4 of Appendix
B for development)

The standard deviation in bearing rate is given by

o: =0 . (B-3-2)

The standard deviation in the change in bearing rate is given by

Oy = 20 . . (B-3-3)

]

The standard deviation in ao is

uuc ;‘(Ugﬂﬂ}'Lac (B-4-2)
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and

Also, the standard deviation in 6 is

The general expression for

1s given by

= -2 =
Y% = (U/Ro) % =%

standard deviation in the parameter U/Rj

o =
u/R,

2 2
sin ao-cos a

(

ol ¢ _ -1
sin a ) p - (U/R)™ cot ®5%

For a_ & 1/2, equation (B-5-1) reduces to

but in this case bearing rate is zero and the only information which

=~ o0

o *
U/R, b

can be derived from the data is,

B = constant
and

B = O.

26

(B-4-3)

(B-4-7)

. (B-5-1)

(B-5-2)

(B-5-3) :
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The figures in Sections 3, i, and 5 of Appendix B illustrate the var-
1ation of the standard deviations of the relative motion parameters
‘with tracking time.

3. Bearings-Oniy Range Variance

The equations of this sectlon are developed 1n Section 7 of Appendix B.

The variance of the range at current time (t) is obtained from

E:-

- Tt)ﬂ {T1)? ljfifbfiﬁﬁ TLﬁGB 573
11{'{} = o | o . » (B-7-3
(T; \ "2/\B, T;ﬁia B|

and the variance of the range at zig time (t') is obtained from

o

= | 7 e — B-T7-
t I,J_ * T_g Tt_:";hiﬂ EI ( )

in which Tt 1s the total tracking time and the 1 and 2 subscripts re-
fer to first and second leg quantities, respectively. The above two
equations show that the range uncertainty decreases with the total
tracking time and, for a given total time, 1s minimized by maximizing
the change in bearing-rate (AB).

The change in bearing-rate can be very nearly maximized by running
own-ship perpendicular to the initial bearing line for a period of

time, and running in the opposite direction for the remainder of the
tracking time. The terms within the brackets indicate how the ratlos
of the times on each leg to the total time affect the range uncertalinty.
The bracketed part of equation (B—7-6) is a minimum when '1‘l = T2. The

27
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minimum for the bracketed part of equation (B-7-3) 1s, howe?er, a {
fﬁnction of both the times and the bearing-rates on each leg, When
the bearing-rate on the second leg approaches zero, the uncertalinty
of the current range 1lncreases beyond bound, Thls 1s also a property
of the Mark 113 (Mode 2) range solutlion as time on second leg in-
creases beyond bound (Reference 1), A small ﬁa can be avolded by
running own-ship in the direction of the bearing drift on the first
leg and against ‘the bearing drift on the second leg, If for some
reason this 1s not done and B2 is small compared to Bl’ R(t!') will be
a much more reliable estimate than R(t), The Mark 113 system com- 1
putes only R(t), (Reference 2). '

-

PR —

The minimum for the bracketed expression of equation (B-7-3) and the
comparable expression for Mode 2 13 illustrated in Fig. B-7-1 of Ap- T
pendix B. The x and y variables are defined by

X = o=
. Te [
and . ]
B1 .
y = = s . T
By B

The ratio T2/T1 which minimizes the brackcted expresslon of equation
(B-7-3) 1is designated by x-opt and represents the optimum time ratio
for a given y. Posltlve y values correspond to ﬁ2'< él'

The cusp of the ASP curve shown on PFig. B-6-1 does not extend to a
zero value for x-opt since at this point 'I‘2 and él would also be zero,
causing the bracketed expression in equation (B-7-6) to become inde-
terminate. Thls expresses the fact that no solution can be obtained
on a single leg (i.e., T, # O).

The minimum value of the bracketed expression for various values of y

1s deslignated by z-opt. Fig. B-7-2 of Section 7, Appendix B, illus-
trates z-opt for both ASP and Mode 2. In general, the ASP range

28
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uncertainty will be about 1.! times larger than the Mode 2 uncertainty,
but when él approaches zero, the range error will be the same for both
systems. '

The term optimum tactic 1s delflned as the own-shlp maneuver which will
re3ult in the smallest range uncertainty. Optimum tactlc deslignates
both the direction of travel and the 1length of time on each leg. The
difference 1n the optimum tactics for ASP and Mode 2 lles only 1n the
length of time on each leg. For ASP, the time on the flrst leg should,
in general, be slightly more than half the total tracking'time (Tl'g
55 T3 Tp = .5 Tt)’ but for Mode 2 (Reference 1) the time spent on
the first leg should be only about thlrty per cent of the total

(T ¥ 3T T = .7T).

4, Examples for Particular Geometries and Comparisons of ASP with Manual Piots

A. Relative Motion Parameters

The figures of Section 5, Appendix P, show relative motlon parameter
accuracles
o M hd o
o U/R, °f and Iy
;2 2 2 .o
Q U;RO b B n

fu> both ASP and manual plottlng as functions of time for the particu-
lar geometries i1llustrated. Although bearing-rate 1s the only one of
these parameters presently obtalned from the manual plots, the mathe-
matical approach for obtalning all of the parameters 1s 1impliciltly
contailned in plotting technlques. Thils fact is used to malke a compar-
ison of man versus computer. The comparison is ideallzed by assuming
that the manual plots represent least-square flts of the data. The
essentlal difference between the man and the computer is taken to be
the data assimilation rate. One bearing per two seconds 1is assumed
for ASP whlle one bearing per minute 1s assumed for the manual plots.
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All sonar bearing errors are considered lndependent and normally dis-
tributed with a standard deviatlon of 0.2 degrees; but, since physical |
plotting of data introduces some error, the total standard deviation
of bearing data for the manual plots 1s assumed to be 0.3 degrees.
For these sampling intervals bearing-error correlation times of two

Seconds or less will not degrade the results (Reference 1). Llkewise, {
a constant bearing offset will not degrade the results although the J
final least-square bearings will be offset by.the same amount. {1
These graphical comparisons 1llustrate that -

l. The standard deviatlons in the relative motlon parameters
are always approximately eight times less for ASP than
for manual plotting when the same geometry and tracking
time are assumed.

2. To achleve equal accuracy wlth manual plotting technliques
longer tracking times are requlred. 3

a. For o9 the required time using manual plots 1s more
than four times as great as that required for ASP.

b. For % and Oﬁ the required time is about two and one-
thirds greater than that required for ASP.

¢. Since OUVRo is geometry dependent, the required time
varles from two and one-third to about four times as
great as that required for ASP.

B. Manual Plot vs. ASP Range Accuracy

For the same geometry and length of tracking time, the standard devia-
tion of bearings-only range for the best least-square manual plot is
approximately 8.2 times as great as the standard deviatlon obtained

30 CONFIDENTIA! |




CONFIDENTIAL

employing the ASP system.* Thils difference in accuracy 1s a result
of the ASP system's faster bearing sampling rate and freedom from
errors l1lncurred in physical plotting.

To obtain a manual plot range accuracy comparable to that obtained by
the ASP solution the necessary tracking time 1s more than four times
greater than that required for ASP.

The ratio °é/ﬁ (see figures of Section 6 of Appendix B) gives the sig-
nificance of bearing-rate as a function of tracking time. Since all
bearings-only solutlons are dependent on the change in bearing-rate
resulting from an own-ship zig, the range uncertainty will be a func-
tion of Oé/é for each leg. Thils provides a basis for determining the
length of time own-shilp should track on a single leg, the detaills of
which have not yet been determined. No such criterion is given 1n the

present Mark 113 system.

3. Bearing Pre-Smoothing

The ratio Oﬁ/ﬁ indicates the significance of curvature in the bearing-
time curve. It has been shown (Reference 1) that the inherent bilas in
the Mark 113 bearings-only solution can be reduced to Insignificance
by averaging (pre-smoothing) groups of bearings and using the result-
ing weighed averages as single bearings for the least-square process-
ing. No information 1s lost by this scheme provided the bearing-time
curve has no significant curvature within the averaging intervals.

The present Mark 113 criterion for establishing the widths of the
averaging intervals (Reference 2) 1s based on the bearing—rate. This

crliterion should be based on the 0“/" ratio.

A valild criterion 1s obtained by establishing a level of significance
(K) for the curvature. Thus, when

¥Using the assumptions of the preceding paragraph.
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r

OB/E' >K (K a constant)

significant curvature 1s present. The first an bearings are averaged
(¢ <1 and n is the total number of bearings) and the least-square
process is applied to the remaining bearings and the incoming bearings
until °§/§.>'K when the entire process is repeated.

Since 1t 1s necessary to have at least four bearings for a solution,
an upper limit is set for the smoothing time. Thus, if

[« BT B Y
B/B <K

when the time interval is N minutes, the bearings in the N minute
interval should be averaged and a new interval started.

3 bl e bt peed e ey

= ==
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LONG RANGE BEARINGS-ONLY ZIG DETECTION

1. Detectlion Scheme

All present bearings-only range finding methods are based on the as-
sumption that the target track consists of uniform rectilinear motion.
Thus, the usefulness of these bearings-only solutlions depends on the
ablility to detect target zigs.

A zigging target is defined here as one which does not conform to the
aforementioned hypothesis. Thils definition includes sinuating targets.

The equations of this section represent a zig-detection technique
which is fundamentally the same as that used in the manual plots. 1In
this technique bearing data are collected for a time interval and
least-square filtted to a function of time. Estimates of the expected
future bearings are obtained from the least-square fit (bearing his-
tory). The occurrence of a target zlg is then indicated by systema-
tic deviations of the measured bearings from the predicted bearings.
When systematic devliations are not discernible, the bearing measure-
ments obtained in the prediction interval are combined with the his-
tory bearings to form a new history from which a new least-square fit
18 obtained. Bearings are then predicted for the next interval and
the entire process 1s repeated. The entire bearing-time curve 1is
scanned in this manner.

2. Equations

The tracking time is divided into intervals to, tl, G o9 tJ, tj+l’ cee
such that

(ti-ti-—l) a At
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for (1 =1,2,...). Each At interval contains p bearing sampling
points. The absolute value of the sum of the deviations of the pre-
dicted bearings from the measured bearings in the interval (tJ, tJ+l)

is

m J+1+P

Ly Z (B*, .-B (c-1-3)

1=m _4+1
J

p 2y 1J}

in which the BiJ's are measured bearings at times ti and the B*iJ's
are predicted bearings for times ti’

Two schemes have been considered for bearing prediction. In the
first, the predicted bearings are obtained from the quadratic

expression

B*

2
13 = aJ+bJ(ti-to) + cJ(ti—to) (C-1-1)

in which aJ, bJ, and cJ are obtained from a least square fit of the
m, bearings in the interval (to’tj)'

The random part of the deviation PJ for the quadratic extrapolation
is

o 1/2

2
¢11P +c22T231+033 32+2c12Tle
OJ = OB (0-3"5)
+2cl3T32p+2023TJ1T32+p

in which the ciJ's are as given in equations (A-1-12) with ti replaced
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by tJ, and le and T32 are

J+1

Ty = (ty-t5)
£y =€ +T

(C-3-4)

The alternate scheme 1s based on linear prediction from

B*1J = a'+b' (b, -t)

(c-1-2)

in which a'J and b'J are obtained from a llinear least-square fit of

the mJ bearings.

The 1nterval considered must, of course, be limited

such that equation (C-1-2) 1s a sufficiently accurate description.
The standard devliation for the linear extrapolation 1is

in which

o . 2 2
o] op {c 11P +c'22TJl +20'12T31p+p

} 1/2 ()
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*3

2
Z(ti-to) n _ z(ti-to) k

L2

and ' (C-2-8)

2
2
Det A' = nZ(t,-t,)° - [E(tl-toj] .

The sums in the above are from ti = to to tJ. The linear least-square
fit 1s obtained by

4 et e 4 b

at = c'112B1+c'122B1(t1-t°)

and

*

bt = 0'122B1+c'222B1(t1—t°) .

The probabllity of a target zlg (Pz) 1s found by

r
4 2
P, = —i—f exp {- -—*"L,}dx . (C-1-4)
2Te 20"
J =Ty J

3. Theoretical Resuits

The theoretical results of Section 6 of Appendix C indicate that, at
least for long range targets, the linear prediction scheme is superior
to the quadratic scheme. Further study at the shorter ranges 1is
needed especially where the time for executing the zig 1s long. The
quadratic scheme might be better in such cases. It 1s quite possible,
however, that less sophisticated schemes such as visual inspection of
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a bearing-time curve would be completely adequate for these short
ranges.

Figs. C-6-1 through C-6-5 (see Section 6 of Appendix C) and the ac-
companying tables glve comparisons of PJ and o‘j for various geome-
tries. Approximate expressions for PJ and oJ were used to obtain
these flgures. The theoretical expressions used to determine PJ are
based on the following assumptions:

l. Range does not change appreciably during the time intervals
considered.

2. Bearing-rate for each leg of the target track is approxi-
mately constant.

3. Target zlgs occur instantaneously and without changes in
sSpeed.

Assumptions 1 and 2 above are not unrealistic for long ranges, 1l.e.,
ten nautical miles or more. The effects of assumption 3 can be par-
tially reduced by applying the following interpretations for "zig
time":

1. The "time of zig" (as used in the diagrams and tables) should
be oconsidered to lie approximately midway between the begin-
ning of the zlg and the end of the zig.

2. Speed reductions resulting from course zigs advance or re-
tard the "time of z1g" depending on whether the speed reduc-
tions 1increase or decrease the change in bearing-rate caused
by the change 1n course. Thus, apart from the correction in
1 above, "zig time" should be interpreted as the time at
which the bearing-rate changes abruptly.

The values of °j and consequently the zlg probabilities are based cn
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an assumed raw bearing standard deviation of 0.2 degrces and a bear-
ing sampling interval of 2 seconds. Larger standard deviations will
degrade the results somewhat whereas a constant bearing off-set willl

have no effect.

The geometries considered (Figs. C-6-1 through C-6-5) represent zigs
which are particularly difficult to detect. In all cases, a 15 de-
gree counterclockwlise rotation of the target track would make the

zig impossible to detect. In such cases, however, the zig would not
affect the bearings-only range solutions. Zigs which cause larger
changes in bearing-rates will, of course, result in larger zig proba-
bilities at a given time.

Figs. C-6-1 and C-6-2 and the corresponding tables illustrate the su-
periority of the linear zig detection scheme over the quadratic scheme
at a relatively long range. Since the assumptions used for determin-
ing Pj are not valid at short ranges, a similar comparison cannot be
made for the short range cases; computer sinmulations will be used for
thils latter situation. The zilgs for these two flgures were assumed

to occur at the beginning of the scan intervals.

Figs. Cc-6-3 through €-6-5 and their respective tabies illustrate the
growth of the zig probability with subsequent scans. Thus, if the

zig 1s not detected (zig probabllity too small) in the interval in
which 1t occurred, i1t will be easier to detect in the subsequént in-
tervals. This will not, in general, be true for the quadratic scheme.

Analysis 1is needed to determine the effects of undetected target zigs
on the range estimate.

4
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CONCLUSIONS AND AREAS REQUIRING FURTHER INVESTIGATION

1. Concluslons

A. The ASP relatlve-motion analysis is superior to manual plot-

ting analysis in the followlng respects:

1.

Accurate relative-motlon parameters are obtained in less
time for ASP than that required for manual plotting.

The ASP system can analyze targets at longer ranges than
are possible using manual plots.

The ASP relative-motion analysis 1s superior to the present
Mark 113 system analysis in the following respects:

1.

More relative-motion parameters are obtained as outputs
from the ASP analysis than from the present Mark 113 sys-
tem analysis.

The ASP system has the capacity to produce "if -therefore"
solutions based upon relative-motion parameters and an
hypothesized input of target range, course or speed. The
Mark 113 system can obtain this type of solution only for
an input of target speed. Also, the possibility of a dual
solution 1s recognized by the ASP system, but ignored by
the present Mark 113 system.

C. Automatic target zig detection is possible within the ASP fire
control computer.
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D.

The linear zlg detection technilque 18 superior to the quadra-
tic technique at the longer ranges.

The significance of curvature criterion for establishing the
widths of bearing pre-smoothing intervals 1s superior to the
bearing-rate criterion presently employed in the Mark 113
system. ’

As presently formulated, the ASP bearings-only complete solu-
tion is inferior to that of the Mark 113 system.

2. Areas Requiring Further Investigation

A.

A criterion 1s needed whereby the interval over which the
bearing-time expanslon 1s applied 1s such that the expansion
1s indeed an adequate approximation to the true bearing-time
function. 1In the event that the total interval can only be
adequately approximated by two or more separate expansions,

1t would be desirable to combine the information obtained
from the separate intervals in such a manner that no useful
information 18 discarded. The need for such a criterion 1is,
as previously indicated, more important at the shorter ranges.

The bearings-only solution as presented here represents a
"first look" at the system. The assumption that own-ship zig
occurs instantaneously must be replaced by a realistic
maneuver.

The combination of the first and second leg information has
not been fully exploited. The scheme presented here treats
the six parameters (a's, b'!'s, and c¢'s) as independent whereas
only four can truly be independent (x, y, X, and y of the

4o
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target). It would be desirable to find relations describing
dependence if such can be obtalned without introducing the
complexity of the previous SUBIC schemes.

Variance expressions for many of the parameters have yet to

be derilved.

A method of introducing additional measurements (e.g., range
from PUFFS or single ping) into the bearings-only complete
solution is necessary to obtain the best possible solution
from all of the data which might be available.

Analysis of the zlg detection schemes must be continued and
extended. Further study at shorter ranges 1is needed, es-
peclally where the zig 1s extended in time. Analysis is also
needed to determine the effects of undetected target zigs on
the range estimate.

The ASP approach to fire control has been designed to permit
more effective communication between the man and his computer.
The next step 1s to investigate how this communication can be
accomplished and to evaluate the increase of tactical effect-
lveness resulting from this communication. In order to accom-
plish this, it is planned to connect a research console to a
computer to determine those parameters which should be under
operator control and those parameters which should be under
computer control.
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APPENDIX A
DERIVATION OF TARGET LOCALIZATION EQUATIONS

1. Least-Square Approximation to the Bearing-Time Relation

The bearing-time relatiocn,

(A-1-1)

41 (UR )(t-t )sin a
B = Bo+tan 1[ S 2 2
o

1-(U/Ro)(E—to)cos a

1s obtalned from Flg. A-1-1 (which for convenlence 1s reproduced here
from Flg. I-1-2). An approximation to thils relation 1s obtalned by
taklng a Taylor expansion of

tan(B—Bo)
and
(U/Ro)(t—to)SLn a,
1-(U/RO)(t—to)cos g
to get
2
B = a+b(t—to)+c(t—to) (A-1-2)
1n which
a =B, (A-1-3)
b = (U/R,)sin a_, (A-1-4)
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Fig. A-1-1

Own-Ship Coordinates

Ly

—p EAST

U = RELATIVE VELOCITY
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.and
c = (U/RO)Qsin a  cos a . (A-1-5)

When the quadratic expansion (equation (A-1-2)) is sufficiently accu-
rate and when the bearings have random variations, a least-square
processing of the bearing equation will yield unblased estimates of
the coefficients a, b, and c.

Assuming that the error in time is insignificant, the sum of the

squares of the residuals 1is expressed by

2
2
G=1=L a+b(ti-to)+c(t1-to) -Bi] (A-1-6)
which is minimized with respect to the coefficients to give

2
an+b2(ti-to)+c2(ti-to) = 2By,

8aZ(t, -t ) +bZ(t, -t ) +ex(t, -t )3 = ZB, (t,-t ), (A-1-7)

az(ti-to)2+bz(ti-to)3+cz(ti-to)“ = 2B, (t,-t )",

l Let the coefficients of a, b, and c be designated by the matrix A,

then
a B,
[A] b= |2B,(t,-t,) (A-1-8)
2
Lc - EBi(ti—tO) ]
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which can be written as

u = Qv (A-1-9)
in which
a
u=|>b1{, (A-1-10)
c
F
2B, l
vV = zBi(ti-to) » (A-1-11)
IB, (t, ~t )2
iYL Yo
and
-1
C = A (A-1-12)
Then
a = °11V1+°12V2+°13V3’
b = v.+C

Co1Va1tConVotcnaVys
C = 031V1+C32V2+C33V3 .

Explicitly, these equations are
2 y 2 3
Det |A |= ni(t, -t ) Z(t,-t,) +2z(ti-to)z(ti-to) Z(t,-t,)"+

3 2 2
_[z(ti-to)zl -n[z(ti-to)3] -z(ti-to)u[z(ti-to)]

ety

— -

'3
-

i

—
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a pet [A] = zBiz(ti-to)Qz(ti-to)4+zBi(ti-to)z(ti-to)2z(ti-to)3+
B t_)%r(t,-t_)E(t,~t_)3-IB, (t,-t )3t (&, -t )2 ¢
+IB, (ty -t (ty-t5) E( 1-%5)7-EBy ( 1™ "o (ty- o +

2
-zBi[:(ti-to)3] -tBi(ti-to)z(ti-to)z(ti-to)u,

4 \2 2
b Det |A| = nzBi(ti-to)E(ti—to) +IB; (t, -t ) z(ti-to)z(ti—to) +
+IB,I(t, -t )°r(t, -t _)3-rB, (t,-t )|z (t, -t )2 g
i 1 "o 1 "¢ 1Yl "o i 7o
-nZB,(t, -t )2£(t -t )3-zB I(t,-t ) (t,-t )”
1Y o 1 "o 1 1 "o 1 "0/

and

2 2 3
c Det |A| = ntBi(ti—to) z(ti—to) +£Bi£(ti-to)£(ti-to) +

2 2]
+zBi(ti-to)z(ti-to)z(ti-to) -ZBi[Z(ti-to) +

4

3 2 W
-ntBi(ti-to)t(ti-to) -£Bi(ti-to) [z(ti-to)‘ .

2. Bearing-Rate and Change in Bearing-Rate

~coegring-rate, the time-rate-of-change of becaring, is found by differ-
Coaaeation (A-)-2) with respect to time. Thus,

s ;s A
fee L= ). HEE R

CONFIDENTIAL




CONF/DENTIAL

Similarly, the change in bearing-rate is gilven by

b = 2c.

3. Determination of &, & and U/R,

From equations (A-1-4) and (A-1-5),

a = tan'l(bz/%)

and from Fig. A-1-2,

a(t) = a +B(t)-a,

This angle 1s referred to as the relative angle-on-the-bow.

The relative course (6), see Fig. A-1-1, 1is seen to be

From equation (A-1-4),
U/'RO = b/sin @
and from equations (A-3-1) and (A-3-4),

1/2

2 .1
¢ +b
g =[]

T

(A-2-2) 1
1
|

PER
|

(A-3-2) I}
1

(A-3-3)

[

(A-3-4)

(A-3-5)
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4. Development of Solution Using Speed Input

Bearing data, own-ship motion parameters and a given target speed
(Vé(a)) are used to determine a complete solution. '

From Fig. A-4-1 (which 1s Fig. I-1-3 reproduced here for convenience)
target course is given by

ﬂ(e) = T-r+a-a (A-4-1)
in whieh
¥ = sin~? —X%;; 1 (1) ) A-4.2
= - sin(g "/ -a+a ) |. (A-4-2)
e

The foregoing equation indicates the possibility of two solutions
(this is a property of all target localization solutions based on
bearing data). Fig. A-4-2 1llustrates the fact that when bearing
lines converge, two possible target tracks exist for a given target
speed. By examining the angle (ﬂ(l)-a+ao) the various solution pos-
8ibilities may be determined.

Fig. A-4-3 (a) and (b) 1s a vector veloclty diagram in which the
angle (¢'1 -a+ao) is in the first and fourth quadrants, respectively.
It can be seen that

vn(gl?1 = y(1) sin(y!(l)-amo) . (A-1-3)

When Ve(z) exceeds Véi% but is less than V(l), two values of ¥ exist.

One 1is given by the principal value of equation (A-4-2) and the other
by its complement. Thus,
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Fig. A-4-1 Velocity Vectors
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POSSIBLE TARGET TRACK
2

POSSIBLE TARGET TRACK
# |

Flg. A-4-2 Earth-Related Dual-Solution

Il1lustration
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F
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(2)
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B E / /
q[l]

i
b) g'ﬁd-" “ata 2w

Fig. A-4-3 First and Fourth Quadrant Soiution
Possibilities
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Yy, =7 (A-4-1)

72 = ‘H'-?. (A-4-5)

When V(2)2= V(l), only 71 exists and there is a unique solution.
Fig. A-4-4 (a) and (b) depict the situations in which the angle

(¢(1)—a+ao) lies within the second or third quadrants, respectively.
The minimum target speed 1s given by

vi2) = (1) (A-4-6)

For any larger value of Ve(g) a unlque solution exists and 71 (prin-
cipal value of equation (A-4-2)) alone exists.

Fig. A-4-5 summarizes the various solutlion possibilities.

-When two values of 7 exist, the entire solution must be performed in
duplicate. Thus, equation (A-4-1) becomes

¢§2) = T-74+a-a (J =1 or i: 2). (A-4-7)

(o]

From the law of cosines

2 2 1/2
Uy =[v(l) +ve(2) —2V(1)Ve(2)cos(¢J(2)—ﬁ(l))] / s> (A-4-8)
and, from equation (A-3-5)
1/2
Ryy = bUJ/(c2+b4) . (A-4-9)
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-z

b TS -atag ¢ ST

Flg. A-4-4 Second and Third Quadrant Solution
Possibllitles
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If

0< ¢(1)-a+ao<

ISTE

Or

% < ¢(1)-a*ao £ 2n

[o]

2 > )
or V(2)= V(l),sin(¢(1)-a+ao)l

VW ain(@Vava ) < v < @)

-Yl--y Yln-y

72 = n=y Y, nonexistent

V2 e VW ain(g V) g )|

55
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Yl'Y

Y, nonexistent

‘,(2)“‘Ln - (1)

Fig. A-4-5 Speed Input Solution Possibilities
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For range at any time (t), 1t can be seen from Fig. A-1-1 that
U sin ao(t-to) = R(t)sin[B(t)-a].
Thus, assuming (B-a) to be small

b

Ry
R(t)J = W-EJ_LTO)—. (A-ll'—lO)

It 1s possible that one of the two solutions will be physically ab-
surd, although mathematically possible.

5. Development of Soiutlon Using Range Input

At any time (te), conslder a coordlnate system with the x axis perpen-
dlcular to the bearing line and the y axls along the bearing line.

The components of target speed at this particular time can then be
written in terms of known parameters and a range input at the gilven
time, Re(te). The cross-line-of-sight component of target speed at

te 1s then given by -

vx(z)(te) = V(l)sin[ﬂ(l)—B(te)]+Re(te)é(te), (A-5-1)
in which
B(tg) = a+b(t -t )+c(t -t )2 (A-5-2).
and
B(t,) = b+2c(t -t ). (A-5-3)

The along-line-of-sight component of target speed 1s given by

4

e e I B L T B R L S Y S

l
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v, (B (e,) = vPeos[g(1) p(e,) ] 4R (8,)

in which the quantity ﬁe(te) can be developed as follows.

From equation (A-4-10)

R_b
Re(%e) = wra(e €7 -

Thus,
Robc
2 »
[b+c(te—to)]

Ry(ty) = -

or

. R_(t.)e
Ro(tg) = - b+c?te?t07"

Equations (A-5-1) and (A-5-4) can then be written as

vx(g)(te) = v(l)sin[g(l)-B(te)]+ﬂe(te)[b+2c(te-to)]

and

) Re(te)c
B+c(te-f6) ’

(2) = y(1) (1)
vy ol (tg) = v cos [g ) B(t,) ]
Total target speed 1s found from its components,

1/2

2 2
v(2) o [VX(Q) (te)+Vy(2) (te)]

57

(A-5-4)

(A-5-5)

(A-5-6)

(A-5-7)

(A-5-8)
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(2)(t )J (A-5-9)
-

,d(e) = B(t )+tan"1l:v
(te)

From Fig. A-4-1, 1t can be seen that target course is given by I
From equation (A-4-10)

) Ry (t,) [bre(t -t)]
© b

and for any time (t) other than (te)

Rob |

+e(t-t

R(t) =

Thus, range at any time is given by

Ry (t,) [b+e(t -t )]

R(t) = BFeTEE) (A-5-10)

6. Development of Solution Using Course input

Bear-ing data, own-ship motion parameters and a given target course
(¢ (2 )) are used to determine a complete solution.

From equation (A-4-1)

Y = 1r+a-ao-¢e(2) . (A-6-1)

Then, rearranging equation (A-4-2)
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-

+(2) . V(l)sin(ﬂ(l)-a+ao) .
sin 7

(A-6-2)

Target range can then be obtained from equation (A-4-10) in which

[V(1)2+V(2)2_2v(l)v(z)cos(gée)-d(l))]l/2b (A<6-3)
R = . A-6-3
o (02+bh)1/2

7. Development of Bearings-Only Solution

Own-ship travels and collects bearing data on two distinct "legs",
each consisting of uniform motion, but differing in speed and/or
course. The simplifying assumption 18 made that own-ship zig (change
of course and/br speed) occurs instantaneously. The subscripts 1 and
2 indicate first and second leg parameters, respectively. The x and
y subscripts indicate the cross-line-of-sight and along-line-of-sight
speeds, respectively. The initial time 1s designated by to, the time
of own-ship zlg by t', and current time on the second leg by t.

At the time of own-ship zilg, the relation existing between range,
relative cross-line-of-sight speeds and bearing-rate is

R(£1)B(E') = U (6') = v, B ey (D (ery, (A-7-1)
For a uniform target track,

R(t')aB(t') = - Avx(l)(t'-). (A-T-2)
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Thus, o

le(l)(t')-V2x(l)(t')

R(t') = A " ’ (A-7-3) T
Bo(t')-B,(t') i
in which I
Vi P w0y = vy Maanfg (D open)], (A-T-4) |
Vo, (P(er) = vz(l)sin[ﬂé(l)-B(t')], (A-7-5)
and the bearing at time t' is the time-weighted mean of the two bear- I
ings (one from each of own-ship's "legs") obtained at time t'. Thus,

-t

*

t! 2 t-t!
B(t') = -E-—[al+bl(t'-to)+cl(t'-to) ]+ 5 a,. (A-7-6)
The two bearing-rates at time t' are given by

B, (t') = b,+20, (£'-t ) (A-7-7)

and

By(t') = by,. (A-7-8)

Range at any time on the second leg (t) is then calculated from

R(t')b2

R(t) = By¥o,(E-ET) ° (A-7-9)
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By assumption, target course and speed are constant. Therefore, in-
formation obtained on each leg of own-ship track can be used to cal-
culate target course and speed by the method used in the range input

solution. Thus, for leg k (k =1, 2),

ka(a)(t') e Vk(l)sin[gk(l)_s(t')]+R(t')ék(t') (A-7-10)
and

ka(e)(t') = Vk(l)cos[ﬁk(l)-B(t')]+ék(t') (A-7-11)

in which B(t') 1is given by equation (A-7-6),

. R(t')c1
Ry(t!) = - bFe(tr-t ) * (A-7-12)
and
. R(t')c2
R2(t') = = ——BE_—_ (A-7-13)
Target speed 1s then given by
2 2,1/2
Vk(e) = { [vkx(e)(t')] + [vky(e)(t')] } s (A-T-14)
and target course 1s given by
(2)
Al Vv (¢)
ﬁk(z) = B(t')+tan 1[: kx(g) ]. (A-7-15)
ka (t")
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The results of equations (A-7-14) and (A-7-15) are then weighed
to obtaln the best values of target speed and course. Thus,

-3

v o v (@) v, () (A-7-16)
and

¢(2) = w3¢1(2) + WMQ(Q) (A—7-l7)

in which the W's are the appropriate weighing factors.
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APPENDIX B
DERIVATION OF STATISTICAL PROPERTIES

1. Coefficient Variances and Covarlances

By definition,

C = Adj A/Det| A | (B-1-1)

in which A 18 the coefficient matrix of equation (A-1-8) and let cy 4
be the 1J element of C. Since A = A C = C, i.e., both matrices are
symmetric, or ciJ = ch, then,

( 2
a < *11°
variances < °b2 = °22°B2 (B-1-2)
2 _ o o2
% T ®33°B

(= 0.0, = ¢ 02
b%a"b 12 B
covarlances T, 0,0 = C,,0 2 (B-1-3)
< be b ¢ 23 B
2
4 o
\ tacoaoc c13 B

in which °B2 i1s the variance in the bearing data and the tmn's are the

correlation coefficients which, from equations (B-1-2) and (B-1-3) are
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)172' ac (°11°33)172

T = 012 T. = 023
ab 172’ “be
(e33¢0p)

(eppc34

The elements of A from which the °1J's are calculated consist of rel-
atively cumbersome summations. Simplified approximations are presented
here to facilitate calculations. Let the bearings be obtained at equal
time increments (T), then

t, = T (B-1-5)

in which t, 18 the time at which the 1%D

bearing 1s obtained. Also,

n n n
125 ti B 1§£ B = 12; t
or
Et, = T n/2 (n+1).
Similarly,
£t,% = 1 n/6 (n+1)(2n41),
£t,3 = 3 n/4 (ne1)2, i (B=1-6)
and z:ti4 = T4 n2/10 (n+l)2(2n+1).

For n large,

ity ¥ 7 n2/2, : xtiz T n3/3, A
: \ \ (B-1-7)
zt13 T1m3n VAR and It, = ot n5/5.
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Relating equations (B-1-7) and (A-1-7), the elements (aij) of A are:

8y = 1y
a8, =a,, =T n2/2
12 = @2 ’
a3 = a3 =ay, = T n3/3, ~ (B-1-8)
a3 = azy = 73 n%/&, and
b
azy =T n5/5.

The determinant of A is
Det ‘AI = na22a33 + a12a23a31 + a21a32a13 +
T 831%20%13 T 83p3p3" - 35723)5354
and using (B-1-8),

pet |a| = 0 n9/(2160). (B-1-9)

The elements of C are,
¢y = (a22a33 - a32a23)/bet IAI,
cpp = (213835 - agja 3)/Det 4], (B-1-10)

¢33 = (217255 - aj5a54)/Det |al,
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coy = Cyp = (83y853-357833)/Det [A],

C3p = Cp3 = (a3y8y,-3;985,)/Det |4,

and

¢z = C3y = (a12a23-a22a13)/Det lAl.

Using equations (B-1-8) and (B-1-9),

°13 = 9/n,

= 192/1° n3,

- 180/1* n5,

2

and Cyg = C3y = 3O/T2 3,

Combining equations (B-1-2), (B-1-3), and (B-1-11),

2 2
og = (9/n)e ",

ob2 = (192/T2n3)oB2,

2

%¢

and

- (180/Tun5)oB2,

= c3p = -180/'.'['3 nu,

Tap%a®p =(-36/MI) 02,

Tbc oboc

T, 0 O
ac a c¢

= (-180/'1'3n4 )o

2
B ?

=(30/T2n3) "Ba .
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Also, from equations (B-1-4) and (B-1-11),

Tap = -V3/2 = - 0.866,
Tve = - V15/4 = = 0,970, (B-1-14)

T, = V5/3 = 0,745,

Figs. B-1-1, B-1-2, and B-1-3 are Pilots of the standard deviations of
the least square coefficients as functions of time. A bearing sampling
interval of two seconds and a sonar bearing standard deviation of 0.2
degrees are used,

2. Variances in Functions of the Coefficients

For a linear combination of the coefficients

u = kla + k2b + k3c,

2 2 2 2. 2 22 )
o0 = K179 + k, °p *+ k3"0.% + 2Tabk1K2°a°b + (B-2-1)

kK k.o + 2t_ k.k.o o .

+2T Ko 3%9% ac®1%3%%

be

For an arbitrary function of the coefficients

u = f(a, b, c),

2 2 2 ,9u 2, 2 245 2 3
‘0 = (%%) °a +(%%) “b +(g%) % *2Tap 3%'%% a% * (B-2-2)

du du du du
* 2Tpe aB 3¢ %n% * 27,5, 37 5o %2%

——

o s#
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to a first order approximation.

Varlance expressions for some of the functions of interest are devel-
oped 1n the following pages. Analysis is being continued on several
that have not yet been evaluated.

3. Varlance in Bearing Rate and Change In Bearing Rate

From equation (A-2-1),

é = b + 2ct.

Therefore, taking Tpe = —1 (equation B-1-14),

or

which results in

. (B-3-1)

From equations (B-1-12),

).

Tno ,

or, from the definition of T and n,

n

tac.

%
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Therefore,

= 0o

°B b

(B-3-2)

Thus Fig. B-1-2 can be interpreted as a plot of 0. versus tracking

B
time. The time-rate-of-change of bearing-rate 18 given by

B = 2¢.

Thus, 1t 1s obvious that

o'B' = 200.

Fig. B-3-1 18 a plot of og versus tracking time.

4. Varlances Ind .o, and 4

From equation (A-3-1)

a = tan'l(be/c)

and
aa’o = 2b/c - _2bc
b
ob [1+(b2/c )2] c®+b
Bao . -b2/02 . _b2
. °¢  [1+(6%/e)]  Pan?

Using equations (A-1-4) and (A-1-5)

73

(A-2-2)

(B-3-3)

CONFIDENTIAL




CONFIDENTIAL

da aao

=1 -2
Sp- = 2(U/R_) Tcos a_ and 55— = - (U/R))™".
Thus, using Toe = -1,

oao = 2(U/Ro)'lcos aoob+(U/Ro)'20c . (B-4-1)

Conslder the ratio of the first term in (B-4-1) to the second term,

-1
2(U/R _ ) "cos a o o
2 - el - 2(U/Ro)cos a ;E .
(U/Ry) 2o, e

Using (B-1-12), the ratio becomes

2(u/R,)cos a,(™) = 2(U/Ro)t cos a_

which must be small for the expansion expressed by (A-1-2) to be
valid. Thus, to a first order approximation,

°q_ = (U/R,)™Z o (B-4-2)

It can be shown that

0(1 =3 oa . (B-4-3)

From equations (A-3-3) and (A-3-1)

6 = v-tan'l(bz/b)+a.
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Also,
30 _ 4
da ’
3 _[_ 2 )(21;) ~2be
——— | R ’
b 1+b|/'c2 ¢/ Zpt
and 30 _ ( -1 Cba . b2
dc 1+b /Je ) R
Using v,y = -1, vy, = -1, and v = +1,
2
2be b
0n = | O + T-To + o )
0 8" 2t b AT e
or
0g = |og + —gjLK (2cop+bo )| .
c +b

second term, using equations (A-1-4), (A-1-5), and (B-1-12),

cos a_ to

2(U/Ro)asin a, "

U/R, 8in a0,

acob

boc

== 2(U0/R,)cos a_t

which must be small for the bearing expansion to be valid.
to a first order approximation,

75

(B-4-4)

Consider the ratio of the first term in the above parenthesis to the

Therefore,

(B-4-5)
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Then, from equation (A-3-5),

2

o
c

R
— O
% = °a+(ﬁ_

e

Expressing %, in terms of aly and using the arguments used above

-2
o

o, T

e

)
Q

U
Ro o] Q

(B-4-6)

(B-4-7)

Fig. B-4-1 1s a plot of g and oo versus tracking time for various

values of U/R,.

5. Variance in (U/Ro)

From equation (A-3-5)

U
<U/Ro>=[-°—b7}b—] ,

Using equations (A-1-%, 5) and the above,

o]
o(U/R,) sineao-cos‘ao
3b = sin o

and

3(u/R,) cos a

oc = b > = (U/(Ro)—lCOt %o

Therefore, taking Toe = -1,

7
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singa cos2a
o~ 0 -1 e
STn G, >ob-(U/Ro) cot a_o_|. (B-5-1)

o =
U/R,

Figs. B-5-1 through B-5-3 show the variation of °U/Ro with tracking
time for various values of U/R, and a,.

For a = /2,

/R, = b, (B-5-2)
For a, = o,
“um> P (B-5-3)

In this case, however, bearing-rate 1s zero and the only information
which can be derlved from the data 1is,

B = constant and B = 0.

6. Examples for Particular Geometries and Comparisons of ASP with Manual Plots

The figures of thils section give relative motion parameter accuracies
as functions of time for the geometries 1llustrated. The ASP results
are based upon a two-second bearing sampling interval with a bearing
standard deviation of 0.2 degrees, and the manual-plot results are
based upon a one minute bearing sampling interval with a bearing stan-
dard deviation of 0.3 degrees. The signifiicance of these figures is
discussed in Section 4-A of Part II.
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Fig. B-6-6 Case 2 Geometry
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7. Bearings-Only Range Variance

From equations (A-7-3, 7, 8, 9),

AVx(l)(t')b2

(o2, (57 t0) by [grop (o1 ]

R(t) = (B-7-1)

From thls equation,

OR(t) _ R(%t) . R(t) _ R(t)
by By [b+2e, (£1-8,)=by]  [byrey(t-t)] ’

dR(t) _ _ _R(t){t-t')
Ch b2+02(t-t') ’

dR(t) _ - R(t) . _R(%)

ob, [o+2¢, (£1-t,)-by]  AB(E")
SR(t) . =2R(t)(t'-tgy)  _ 2R(E)(t'-t,)
9¢, [b1+2cl(t'—to)-b2] AB(t')

Own-ship speed and course are assumed to have negligible error and the
own-ship track is assumed to be nearly perpendicular to the B(t') bear-
ing line such that

v, (1) . Vj(l)sin [ﬂd(l)-B(t')]

Jx
= Vj(l)sin(AJ+;B)

107
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in which AJ = 1/2 and €n represents the error in B(t'). Thus,

v (1) = VJ(l)[sin AJ+e cos AJ] . ¥

Jx B

which, to a first order approximation, 1s

ij(l) = VJ(l)sin AJ.

Thus, errors arising from resolving own-ship veloclty are negligible. T

From the above, using ¥ e = -1, no correlation between first

= Tb202
and second leg coefficlients and Op = toc,

°R(1c)2.5 o, ° +(1 _a )2 o 2
R(t)° 4B (t') b2 T aB(t!) b2 _
and using
4B = B, - B,
é2 = b2;

. (2 1/2
°R(t 1 2 B1> 2
_ﬁ.&} =1 g e B . B-7 -2
las| | P2 B, b ( )

Using (B-1-12),
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%R(t Tt3 Tt3/é12 /2 83 T1/2°B
—ﬁé's'g' - 3 + 3 ] 3/2 . (B"7 "3)
Ty Ty \Bz 7.~ |AB| :

in which Tl and T, are the times on the first and second legs, respec-
tively, and T is the bearing sampling interval. Let the bracketed ex-
pression be denoted by z2, then

z 8'\[5- Tl/eoB

o
IRistEg ) |Aé|Tt3/2 . (B-7-4)

This equation 1s similar to that for range variance in Mode 2 (Refer-
ence 1). The optimum value of z, however, differs in the two systems.

The tracking time on each leg appears only in z. Now let

in which T, 1s the total trackling time. Then,

t

2.1 .1 y2
(1-x)3 %3 | (y-1)3

Minimizing this expression with respect to x gives the optimum time
ratio (T,/T,) and the minimum z (z-opt). Figs. (B-7-1) and (B-7-2)
are graphs of x-opt and z-opt versus y for both this system and Mode
2 (Merk 113), 2z-opt and consequently the range error for ASP is about
1.4 times larger than the error for Mode 2.
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From equation (B-7-2), i1t 1s apparent that if the second leg bearing-
rate approaches zero, the range deviation increases without bound.
Thus, R(t) may be of no value. However, the range at time of own-ship
zig, R(t'), can be used in this situation.

From equations (A-7-3), (A-7-7), and (A-7-8) range at time of own-ship
zig is given by

R(t') = Vl'x(l)(t')-vex(l)(t') i \,le(l)(t.)_vex(l)(t') |
By(t')-B,(t") by=by -2¢, (' -t )

From the above‘equation,

3R(t') _ le(l)(t')‘vex(l)(t'L R(t')
oby [be-bl-ecl(t'-to)]2 [aB(t")]

3R(t') =-<§1x(l)(t')‘Vex(l)(t')) R(t')

=t -

oby [0p-by-2¢, (81t )]? [aB(e)) ’

and

or(sr) | 2t =t [vy, M e v, Men] ager-s ircen)
9¢, [be-bl-ecl(t'-to)]Q [4B(£")]

The assumptions which led to (B-7-2) are agaln used to get
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°2R(t') = [

Thus,

2
% R(t')

Then, using

or

s, T )
aB(t') P1 8B(t') P2 aB(t')

2

- u(t'-to)[—ﬂ(i)-

Y o o L]
AB(t')] by ey

2
o -+
%

2

R (t') [ 24 2 22

3 oo +H(t'-t “h(tr -t .
aB2(t') | P1 P2 (67-8,) ey (£2-%) oblocl]

o = (t'-t )o
bl 0’7 ey

2 2
°2R(t') . o b1+o bo
R°(t') aBo(t')

2 2 1/2
o] o b o b
R(t' 1 2
R AB(t')

Using equations {B-1-i2),

113
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APPENDIX C
DERIVATION AND ANALYSIS OF ZIG DETECTION EQUATIONS

1. Predicted Versus Measured Bearings

Let the interval to to t1 be such that a quadratic approximation to
the bearing-time curve 1is sufficlently accurate, and let the bearing
data from t, to tJ (to <:tJ <:ti) be least-square fitted to obtain
coefficients aJ, bJ, and °J' The bearing at time ti can then be ob-

tained from
B*,, = a,+b (t, -t )+c,(t, -t )2 (c-1-1)
1) = 8y+Py(ty-t )+e (b -t ) .

The B*ij's thus represent predicted bearings based on bearing history
from to to tJ. When the interval to to ti is further restricted,
bearings can be predicted from

B*1J =a'y +b'(t,-t) (C-1-2)

in which a'J and b'J are obtained from a linear least-square fit.

Let

mj+p+l
PJ - Z (B*ij-Bij) (c-1-3)

1~mj+l
in which the Bij's are the bearing data as received from sonar at ti’
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mJ 1s the number of bearings prior to tj, and p is the number of pre-
dicted bearings. It can be seen that Iﬁ represents a quantity propor-
tional to the area between the expected and the true bearing-time curve
from tJ to tJ+1 (see Fig. C-1-1). This area is also approximately
proportional to the difference between the expected and the true bear-

ing rates.

The probability of a target zig is found by

r
1 J x2
P 2 f exp - ———x dx C-1-4
zJ V21roJ o 20, ( )
J

'in which °J is the standard deviation of I', and remains to be deter-
mined. 2Zig detection sensitivity will obviously depend upon PJ and oJ.

2. Linear Least-Square Fit

The primed coefficients of equation (C-1-2) are obtained from

u' = c'v! (c-2-1)
in which

a't

u' = { J, (c-2-2)
bl
LB

v -[ 1 ], (c-2-3)
zBi(ti-to) .

ot = (a)7l . AdJ A (C-2-4)
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and

n I (ti-to)

L(ty-t.) z(ti-to)2

(c-2-5)

The primes are used here to distingulsh between the linear and quad-

ratic least-square fits.

From the above
a' = c'llmi + c'lzzBi(ti-to),

b' = c',,IB, + 0'22£B1(t1-to)

and

2
Tatbt %1% = ¢'12% -

From equations (C-2-4, 5),
o 2
1 = - - -
Det A ni(t,-t ) [z:(t1 to)] ’

2
c'yq = E(ty-t.)"/Det Al ,

118

(c-2-6)

(c-2-7)

CONFIDENTIAL




CONFIDENTIAL

clyy = n/Det A? (c-2-8)

and

clyp = c'yy = -E(ti-to)/Det AY,

3. Varlance of I" for Quadratic Extrapolation

From equations (C-1-1, 3)

2
rJ = z{aJ+bJ(ti—to)+cJ(ti—to) -B_,LJ} (c-3-1)
or

r, = aJp+bJ2(ti-to)+cJZ(t1—to)2—rB1J (c-3-2)

in which the sums are from t1 = tJ to tJ+1. Since the BiJ bearings
are bearing data obtalined after time tJ and the coefficlents aj, bJ,
and cJ are derived from bearing data obtained prior to tJ, the B

1]
bearings are stochastlically independent of the coefficlents. Also,
PJ is a linear combination of variates. Thus, the variance of PJ(0J2)
is

2 2
2 2 2 2 2
r P % +[z(ti'to)i| b +[}:(t1'to)} 9%
2

2
oJ = ﬂ +2rabpt(ti-to)oaob+21acp2(ti-to) 0,0, + >. (c-3-3)

2 /

\ 2
+2Tbc}:(ti"to)2:(1-’1"1-’0) ob°c+p°B
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let
Now 1le tJ+1

E: (ty-ty) = Tyy»
tiat +T

and

€y

ti-tJ+T

(Cf3-4)

then, using equations (B-1-2, 3) with ti replaced by tJ, equation

(c-3-3) becomes

2 2 2
C11P +CppTyy +e33Ty5 +2¢ 5Ty P +

+2013TJ2p+2023TJ1TJ2+p

Let the number of bearings from to to tJ be mJ, then the ¢
equation (C-3-5) can be replaced by equations (B-1-11) in which n=m
For t =0 the expressions (C-3-4) can be written as

m
J+l+p

and

m,+1+p

1=mJ+l

120
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Now let
1=K+mJ+1,
then for mJ large,
p
= = L
TJl T }: (K+mJ) T[me+KK]
K=0

and

p
TJ2 = T2§Z (K+mJ)2=T2[mJ2p+2mJ §K+§F2].
K=0"

The sums over K can be reduced by

p
Z K = p(p+l)/2
K=0

and
P
Z K° = p(p+l)(2p+1)/6.
K=0

l Using the above simplifications, equation (C-3-5) becomes

2 36 2 p>
p+—£% p +“§_ P (p+1)4-;;3 (p+1) (68p+ 58) +
o 2=o 2 . (c-3-6)

2 2
1 _,;301’ (p+1)2(2p+1) + 5—"—5 (p+1)%(2p+1)?
. my ™3

This equation was used to obtain the curves of Figure C-3-1.
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4. Variance of I’j for Linear Extrapolation

From equations (C-1-2, 3)

l"J -'z{a'J+b'J(t1-to)-BiJ}, (c-4-1)

and in a manner analogous to the previous section.

(c-4-2)
2
2
OJQ- paoa,2+ [}:(ti-to)] O +2‘a'b'p£(t1'to)°a'°b'+pqBQ
= °B2 {c'11p2+c'22TJ12+2c'12TJ1p+p} (c-4-3)
in which TJl 18 defined by equation (C-3-4).
The approximation to (C-4-3) analogous to (c-3-6) 1s
02202 fou b 12, 607 (4), 302 ()2 (C-4-)
J B {p My P ;R? p+ ;23 P }' T
J J

Curves of Fig. (C-4-1) were obtained from equation (C-4-4).

S. Approximate Expressions forI” j

The analysis of this section is simplified by assuming target zigs to
occur instantaneously and without changes in speed for course zligs.
The effects of these assumptions must be considered when interpreting
the results of the analysis. Thus, a finite zig time will retarad
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detection while a speed reduction accompanylng a course zlg wlll
elther retard or advance detection depending upon 1ts effect on the
change 1n bearing-rate. The effects can easlly be deduced for the

particular cases examlined.

Consider first the linear extrapolation scheme expressed by equatlon
(C-1-2). This scheme will obviously be suitable for long range tar-
gets, but can also be used at the shorter ranges by restricting the
time intervals. A target zig 1s 1llustrated by the bearing-time curve
of Fig. C-5-1. The curve consists of two stralght lines (lines 1 and
2) meeting at t, (the time of target zig). The case where (t, < tJ)
will be considered later. The prediction interval (or scan interval)
beglins at tJ
contalns mJ bearings. The number of bearlings from tJ to tJ+1 1s
(mJ+1—mJ) = p and the number from t_ to t, is N. For further simpli-
fication without loss of generalilty, B(to) and to are both set to

so that (tJ—to) represents the history interval which

zero. For line 1,

B = byt (c-5-1)
and for line 2,
B = ajtbyt = B(tz)+b2(t-tz) = (bl-bg)tz+b2t. (c-5-2)
Thus,
*
BTy = bty for t; < t, <ty (c-5-3)
and
bit;i for tJ< tig tz
B = (c-5-4)
1] _ !
(by-by)t, +byt, for t < &, < €y 4.
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Using equation (C-1-3)

N My
* %
p=| L (BB Y (B 1578y 4)
i=mJ+1 1=N

in which the first sum is O by virtue of (C-5-3) and (C-5-4). Intro-

ducing the expressions for B*1J and BiJ’

ty

y = E: [(0)-b5) (,-t,)]
t, =t

Assuming equal bearing sampling intervals,
ti = 1T and tz = NT
in which T 1s the time between samples. Then,

My

ry=|T E: [(bl-bz)(i-N)] .
1=N

Now let 1 = K+N, then

or
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or (by-by)

r T —— (mJ+1-N)(mJ+1-N+1) . (c-5-6)

J ==

Since mJ+1:> N by hypothesis, only (bl'be) can be negative. Also,
from equations (C-5-1, 2)

|(0y-02)| = |aB]
so that (C-5-6) reduces to

Py o= Z|AB|(my, N (my, ) N+1) e

or

dg " %‘L%El(t3+1‘tz)(tj+1'tz+T) (¢-5-7)

for t, < t_ <t

J z J+1°

Consider now tz <1tJ as indicated in Fig. C-5-2. The least-square fit
of the bearings from to to tJ is represented by line J which will in-

tersect 1line 1 at t,/2 and line 2 at (tJ-tz)/?. The equation of line

J 1is

¢ t
B = é% {(bl-be)tz+b2tJ}+-g£ {(bl-bé)[l-EE]} . (C-5-8)

Using this equation for B*1J and the equation of line 2 for BiJ’ equa -
tion (C-1-3) reduces to
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lag| ©
Ty - %‘L%El'tf (£4427C5) (B,7-5,+T) (c-5-9)

for t,< ty- This relation reduces to equation (C-5-7) when t, = £y
as indeed 1t should.

It will subsequently be seen that for small 4B the ratio I‘J/'oJ de-
creases with increasing (tj+1'tj)° This merely reflects the results
of extrapolation and should be expected. Suppose a zig has ococurred
in the interval (tj+1'tj)’ but that PzJ was not of sufficient magni-
tude to conclude that a zig occurred. Extrapolation is terminated at
tJ+1 whence all of the bearing data prior to tJ+1 18 least-square
fitted, and the 1interval (tj+2'tj+l) 1s scanned using this latter
least-square fit, and so on, for the next interval. We would like to
determine the behavior of PJ in these subsequent scanning intervals.
The situation is 1llustrated in PFilg. C-5-3. PJ+k 1s given by equation

(0-5—9) . Thus,

Pyak _ Pek-1(8 50000 7Egak) (B k01 82+ T)

F3+k-1 ekt ekt gak-1) (B gug-t,T)
If ty,941 - btyyq = 4t for all i,
PJ+K . (tJ+K - At) (tJ+K+At-tz+T)
PJ+K-—l tJ+K(tJ+K'tz+T)

which for T small compared to (tJ+K-tz) reduces to

t_ -at
S Ly, (z ) c-5-10
Tyek-1 Sk \Uj4k~%2 ( )
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P
Since t, < tJ+K for K 1,

>1 for tz > At

r
PAL"L_K_,. <1 for t, <At (c-5-11)
J+K-1

= ] for tz = At

It can thus be concluded that I} Increases when we progress to succeed-
ing scan intervals whenever tz > At, and conversely.

The value of any I}+K rapldly approaches its limiting value for a

fixed scan interval as (tJ+K-tz) gets large. The limiting value 1s

limit
K— o

r o lla Bl
J4K ~ 27T

t,at. (c-5-12)

Approximate expressions for AB for long ranges can easily be obtained
for specific geometries. We assume range to be approximately constant.
For Fig. C-5-4

AB =~ -(v(2)sin;)/n, (c-5-13)
and for Fig. C-5-5

aB =~ v{®)(1 _ cost) . (C-5-14)
For a speed zig,

aB =~ av(?) g, (C-5-15)

These equations and the equations for PJ were used to obtailn Figs.
C-5-6 and C-5-8.
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Fig. C-5-6 T Linear Versus Zig Time for
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The quadratlc bearing extrapolation expressed by equation (C-l-l) has
the disadvantage of having a much larger °J associated with 1it. Addi-
tional difficulties arise when the zlg i1s not detected in the interval
in which it occurred. This difficulty arises from the tendency of the
quadratic leasfighuare fit to follow the bearing-time curve "knee"
caused by the zig. The situation 1s qualitatively illustrated in Fig.
C-5-9 where the parabolic curve represents a least-square fit of the
bearing data from to tc tJ+l' It appears that linear extrapolation

is superior to quadratic extrapolation for two reasons: l) for tz
near tJ, PJ for long ranges 1s approximately the same for both, but
the ‘5 associated with linear extrapolation 1s considerably less; and
2) zigs not detected in the interval in which they occurred have a
greater probability of being detected in subsequent scans with linear
extrapolation. If, however, the interval of validity of the linear
equation is comparable to zlg execution time, as might occur at short
ranges, the quadratic method might be better than the linear method.

A detalled study of this situatlon 1s needed.

6. Theoretical Zig Probablliities

Graphs of FJ and the assoclated oJ based on the approximate equations
of the previous sections are presented in this sectlon. Only a few
geometries are considered. Zig probabllity tables accompany each
graph; the tables correspond to the graphs bearing the same numbers.

Figs. C-6-1, C-6-2, and the tables illustrate the conclusion arrived
at in the previous section. The zig was assumed to occur at the be-
ginning of the scan interval.

Figs. C-6-3 through C-6-5 and their tables 1llustrate zigs which have
small effect on bearing-rate. It 1s very unlikely that these zigs
would be detected using the quadratic method.
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In all of the cases considered, speed reductions during the zigs would
tend to increase Ibfand consequently advance detection time. Finite
zlg times would, of course, retard detection time.
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TABLE C-6-1

TABLE ¢-6-2

History Time Zig History Time Zig
(min.) (sec.) Probability (min.) (sec.) Probability

2 50 | .21 2 60 .59

2 70 .28 2 80 .68

4 60 .50 2 " 100 .76

b 80 .58 2 120 LTh

4 100 .63 3 60 .68

4 120 .6 3 80 .80

6 60 .63 3 100 .89

o 80 .75 3 120 .93

6 100 .82 4 60 .75

6 120 .86 y 80 .87

y 100 .94
4 120 .97
TABLE C-6-3 TABLE C-6-4 TABLE C-6-5
Z2ig Time Zip Zip'_, Tlme Zig Z1lg Time Zig

(Min.) Probabllity (Min.) Probability (Min.) Probability

1 L1 1 .18 1 .26

2 .75 2 13 2 .90

3 .79 3 .90 3 .99

4 .80 y Lak 4 .99

B ) .9¢< .97 5 .999
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