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THE THERMAL BEHAVIOR OF EXPLOSIVES SUBJECTED TO
SIMULATED AERODYNAMIC HEATING, II: DATB (U)

Prepared by:
N. L. Coleburn
B. E, Drimmer

Approved by: A2 ,ﬂbf—:*wvrmw-x.)
Acting Chief, Explosion Dynamics
Division

ABSTRACT: Measurements were made of unidirectional heat flow,
at rates up to 100°C per minute, into a two-dimensional
analogue of a warhead filled with the exploaive DATB (1, 3-
Diamino-2, 4, 6-Trinitrobenzene). In this experimental
arrangement, deflagration of DATB discs 2-cm thick and 12.7 to
17.8 cm in diameter6 occurred when the hottzgt DATB layer
reached 314°C (+ 10°C). No high order detonations occurred,
Extrapolation of the data, obtained with initilal warhead-
exterior temperatures of 337°C to 450°C, leads to the prediction
that such a DATB-filled warhead would ignite in about 9 seconds
if caught in an oll fire,
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Explosive -filled wlssiles are now subjJected to very severe
skin~frictlion effects during lncreased flight time at super--
sonlc speeds, The exposure to these effects msay eruse the
explosive to attaln its self-ignition temperature prior to
achlevling 1ts wlasion, To prevent thls, the expiosive must be
insulated, or the warhead must be loaded with an explosive
capable of accepting such thermal exposures, Fayload and
missiie design may in many instances force the omission of
insulation, In these instances, 1t 1ls therefore desirable to
utilize explosives wlth superior temperature atability; one
such explosive is 1, 3-Diamino- 2, 4, 6-Trinitrobenzene (DATB),
This study was undertaken to galn a basic understanding of the
reaction of this explosive to conditions simulating aerodynamic
heating, and as such, 1t represents a continuation of similar
studles with other explosives reportsd 1in the authors' previous
publication, NAVORD Report 6216, "The Thermal Behavior of Explo-
sives Subjected to Simulated Aercdynamic Heating, I (U)", dated
15 October 1959, The study was performed under WEPTASK No.
RUME 3-E000,212 /F0O08 10 004, Problem Assignment 012, Explosive
Properties, (formerly Task 301-664/43006/08040, Explosives
Applied Research).

The data are believed to be egsentially correct, but the conclu.-
slions and opinions expresgsed are those of the authors and may
not necessarily represent the final opinion of the Laboratory.

"fhe authory are esgpeclally indebted to Mr, Eugene .1, Duck

who gave careful assistance in the experimentation and thus

made wmueh of this work pogsible, and to Mr. Carl Brown for the
precise machiniong of the test charges, Useful discussions with
De, A, D, YSolem, former Chief of this Division, are acknowledged.
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THE THERMAL BEHAVIOR OF EXPLOSIVES SUBJECTED TO
SIMULATED AERODYNAMIC HEATING, II: DATB (U)

1, INTRODUCTION

1.1 The skin-heating of missiles and war planes during
flights at supersonic speeds has put the explosive components
in warheads to & severe thermal test, Experimental and theoreti-
cal data have been obtained (1, 2, 3) which place limits on the
use of conventional explosives in these applications, These
limitations could result in reducing the exploslve load, limit-
ing the capabilities of the warhead., To thils end, the
evaluation of the response of explosives to heating cycles
corresponding to those experienced at supersonic flying speeds
1s an lmportant research objective, This is the second report
(4) of work done to obtain experimental data useful to the
deslgners of warheads, especlally continuous-rod warheads, that
might be subjected to severe aerodynamic heating. This report
will discuss the work done on an explosive that exhlbits strong
resistance to thermal shocks, DATB (1, 3-Diamino-2, 4, 6-Tri-
nitrobenzene), whose properties, gleaned from References 5, 6,
and 7, are tabulated for convenience in Table 1,

2, EXPERIMENTAL CONDITIONS

2.1 The Arrangement,

The present experiments were performed using the method
previously described by the authors (4), In this method, a
two-dimensional analogue to a steel-confined, cylindrical
warhead was used 1in order to reduce the theoretical analysis to
one-dimensional heat flow: the steel-cased warhead was "rolled
out” to give a flat explosive slab lying on a flat steel plate.
The experimental equivalent, therefore, was a steel disc l-em
thick and 17.8-cm in diameter, which supported an explosive disc
2=-cm thick and 17.8-cm (or in some tests, 12,7-cm) 1in diameter,
During the experiment, the bottom of the steel plate was heated
rapidly by lowering the asseubly ontc a massive brass block
(Figure 1) preheated to the desired "initial forcing temperature!
Heating of the steel disc at rates up to 100°C per minute could
ve obtalued by this means, To preserve the brass block, a l-c¢m
thick, 18-cw diameter, replaceable copper disc was placed on the
bplock 1n all of the experiments, (Sec Figure 2.)

One-dimensional heat flow 1n the temperature-monitored region
was further assured by making the temperature measurements along
the periphery of a 2.54-cm diameter test sectlion at the center of

1
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the steel and explosive, lron-constantan thermocouples of No,
30 gauge wire were imbedded 1n radlal grooves (Figure 2) near
the top surface of the replaceable copper disec, at the top and
bottom surfaces of the steel, and at various depths within the
explosive, (In contrast with our previous tests, thermocouple
Tﬁ”l’ l-mm within the explosive, had to be eliminated in most of
the DATB tests because the deep groove needed for the thermo-
couple so weakened the sample disc that it fell spart.) After
the thermocouples were imbedded 1n the grooves 1n the charges,
loose explosive was packed 1into the cavity so that esch thermo-
couple Junctlon was in intimate contact with explosive,

2.2 The Exploslive Charges.

Two explosives were tested: pure DATB, and DATB bonded with
5 per cent (by welght) of the phenolic resin BRL 2741%*, The
charges were formed by mechanical pressing, using normal press-
ing procedures in the case of the pure DATB charges, In
producing the plastic-bonded charges, the molds were preheated
to 90°C and the compressed charges were cured under pressure
at this temperature for 1b minutes, The charges, formed to the
deslired dlameter in the mold, were then cut to proper thickness
and machined flat on both faces, ALl charges had densities of
98% of their theoretical maximum densities,

3. THE RESULTS
3.1 Summary of Observatious,

Experiments were conducted wiih seven sample discs of DATH
and two sample discs of DATB/BLL 2741 (95/5). The results of
the experiments are gummari-ed in Table II. In this table:

The "cycle duration” was the time elapsed between
the initial contact of the free gteel surface
with the heat soucee; and the deflagration of

the sampleX*¥,

The "initial forciay teuperature' was the

temperature recorded by the thermocouple TCu
located in the shallow groove on the top

*produced by the Bskelite Corporatliov, New York,

*#Sumple 1 was gsubjected tou threc thermal cycles, the first two
of »hich were terminated beforc doflagration occurred, In these
two ecyeles, the "eyele duraiion” wos the time from the initial

contact of the steel-explosive flxture with the heat source, to
itu removal frowp the hest nouree:

COMIEPDERT AL
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surface of the copper dlae, Ilmmediately

prior to the initlal contact of the steel
dise, The "final forecing temperature” was
the temperature recorded by this thermocouple
at the termination of the thermal cycle,

The temperature at the upper surface of the
copper disc could not be mailntained constant.
At the time of contact a rapid drop in
temperature of the disc occurred because of
the large flux of heat iato the steel explo-
slve fixture, Then, as the steel and explosive
warmed up, the flux of heat decreased and the
temperature of the brass block tended to
recover through its own heating system., The
"mean forcing temperature” is the average
temperature of the copper dlsc, as recorded
by TCu’ taken over the c¢ycle duration,

The "final steel-wall temperature" was the
temperature recorded by thermocouple Ty, _g
located In the groove on the bottom sur?ace
of the steel at the 1lnstant oi ignition of
the DATB (or at the termination of the first
two cycles of the first sample).

The "final temperature of the steel-explosive
interface"” was recorded by thermocouple Tq g
located in a groove (1.6-mm wide and 1,6-mm
deep) in the surface of the steel facing the
explosive, Ignition of the explosive was
indicated elther by »an abrupt termination of
the recording for this thermocouple or by
actual observation of flame through the
bombproof window.

3.2 Testwlth the Vartous Samples.
3.2.1 Sample No. 1 (DATB).

Three thermal cycles were lmposed on the first DATB
sample., Using an inltial loreing lemperature of 122°C, the
temperature~time curves aiialued during the first thermal cycle
are shown in Figure 3. The test was terminated after 600
secondg, at which time the wmaximum temperature experlenced by
any of the explosive was 96.5°C (the temperature indicated by
thermocouyple TS_E). The other thermocouples imbedded in the

3
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explosive indicated smooth temperature lnereases; for example,
thermocouple Tg_g, located 8-mm from the steel-explosive inter-
face, rose almos@ linearly from its initial temperature of 13°C,
to 459C at the end of the test,

Visual examination of the recovered sample indicated no
obvious damage to the test explosive disc, Accordingly, the
sample was subjected the next day to a second therma% ¢ycle,
this time with an initial forcing temperature of 309°C (Figure
k), This test was terminated after 354 seconds in order to
preserve the sample for a possible third cycle. Thg maxlmum
explosive tempersture attalned at that time was 217°C, while the
temperature 8-mm within the explosive was (09C, 43 degrees above
the initial temperature of the sample, Again, a visual examina-
tion of the test explosive showed no damage,

The third cycle was therefore imposed, using an initial
forcing temperature of 400°C, Figure 5. Placing the steel-
explosive system on the heat-transfer block caused the
temperature of the copper disc (i.e., the forcing temperature)
to drop to 310°C within 2 minutes, after which it slowly rose to
360°C by the end of the test. These observations correlate
with the fact that the temperature rise in the steel wall began
at a rate exceeding 200°C per minute, but, as heat flowed into
the DATB this rate of temperature rise naturally decreased.
Although the temperature at the steel-explosive interface was
306°C when the explosive ignited 548 seconds after the test
began, the temperature was only 200°C in the explosive layer
4-mm from the interface, This difference of temperatures
¢learly demonstrates the ability of relatively thin layers of
insulation to retard significantly, the flow of heat into the
explosive,

Although this sample received two thermal cycles before
being forced to deflagrate on 1ts third cycle, the temperature
of ignition, 306°C, agrees within experimental error {(Table I)
with the ignition temperature obtalned for other samples
directly heated to deflagration on the first cycle., The
agreement indicates that moderately severe thermal cycling
produces no significant changes in the ignition temperature
of DATB (at least to the extent of these tests).

3.2.2 Sample No, 2(DATH,

Figure 6 shows the temperature-time profiles for the
direct deflagration of a 12.7-cm dlameter sample using an
initial forclng temperature of 4U46°C. Ignition of the sample
occurred when the steel-explosive interface temperature
reached 317°C, It 18 of interest that, for tlmes beyond about

m
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200 seconds after heating started, thermocouple Te1 (located
within the explosive, l-mm from the steel-explosive interface),
recorded a rising temperature of a type that indicated self-
heating of the exploslve. This evidence of relatively slow
self-heating persisted some 100 seconds before a "run-away"
oceurred, at which time the steel-explosive interface temperature
reached 317°C. On subsequent tests, evidence of such self-
heating was observed in nearlK all cases where the initial
forcing temperature exceeded 400°C,

3.2.3 Sample No, 3 (DATB).

Self-heating was agaln seen in the temperature-time
profiles for sample 3 (Figure 7). This sample ignited after
243 seconds uUnder an initial forcing temperature of 500°C,
Thermccouple Tg_ g, at the steel-explosive Interface, recorded
340°C when thermocouple Tg.o first responded to explosive
self-heating (after 190 seconds), and finally 349°C when the
sample ignited, This final interface temperature was some 25
degrees higher than that recorded for the other six DATB samples,
No reason is known for this discrepancy. An explanation would
be posslble if one assumes a small air space between the
explosive and steesl due, for instance, to warping of the charge.

3.2.,4 Sample No, 4 (DATB),

Aun initlal forecing temperature of 354°C was used to
deflagrate the fourth sample, This temperature dropped to
2700C within 2 minutes, after which it slowly increased,
exceeding 320°C after about 15 minutes, Because of these
relatively low temperatures, several "peculiarities" were
observed in the heating curves (Figure 8). The temperature 2-mm
within the explosive, recorded by thermocouple Tg_,, exceeded
the tamperature ¢f the copper-steel interface, TEu_S, after
about 1100 seconds. The relatively smooth temperature rise at
TE-2 Indicates that a falrly large amount of heat was being
generated for a long time, in a smooth and reasonably gentle
process. Only when significant amounts of the explcsive
experienced temperatures in the reglon of 320°C did ignition
occur, Smoke was generated, beginning at about 1200 seconds,
when Tp_o indicated a temperature of about 306°C, Full ignition
(with flame) was observed at 1700 seconds when Tg_p recorded a
temperature of 331°C. All of these observations were compatible
with the 1dea of a destructive distillation going on, in which
the amount of energy evolved per unit time was too small to
czuse a "run away" until temperatures of about 320°C were reached.

ls
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3.2.5 Sample No, 5 (DATB).

Sample No. 5 was subjected to an initial forcing temper-
ature of 4%0°C and 1t ignited after 340 seconds when the steel-
explosive interface temperature reached 316°C (Figure 9).
(Sample No. 5 had a diameter of 17.8-cm while all previous
samples had diameters of 12.7-cm) The ignition temperature and
ignition time for Sample No, 5 compare favorably wlth the
ignition temperature, 317°C, and the ignition time, 307 seconds,
of Sample No, 2 subjacted to an initial forcing temperature of
LiEeOc, These data dcemonstrate that the experiment was ylelding
data of reasonable reproducilbility.

3.2,6 Sample No. 6 (DATB).

Sample No, 6, also 17.8-cm in diameter, ignited after
208 seconds under an initial forcing temperature of 550°C
(Figure 10). The final steel-explosive interface temperature
recorded at ignition was 325°C, This sample alsc exhibited
some self-heating, as indicated by the behavior of thermocouple
Tg.3 which recorded an excesslve temperature rise 20 seconds
priodor to ignition,

3.2.7 Sample No. 7 (DATB).

Sample No. 7 was also subjected to an initial forcing
temperature of 550°C; 1ii{ ignited in 188 seconds (Figure 11),
some 20 seconds sooner than sample No, 6, The steel-explosive
interface temperature recorded at ignition of sample No, 7 was
3200C, as compared to 325°C for sample No. 6, Sample No. 7 also
exhibited pronounced self-heating as shown by the recording of
thermocouple Tg_.g imbedded 1in the explosive six millimeters from
the steel-exploslve 1interface. The temperature in this layer
rose abruptly from 90°C to 210°C, 18 seconds prior to ignition
of the sample,

3.2.8 Samples No, 8 and 9 (DATB/BRL 2741 (95/5)).

Two mamples cf DATB, plastic-bonded with 5 per ecent by
welght of BRL 27416 were driven to ignition using a forcing
temperature of U450°C (Figures 12 and 13). Each sample lasted
600 seconds before deflagrating, or nearly 300 seconds longer
than pure DATB tested under the same conditions., GSamples No,

2 and 5, shown in Figures 6 and Q) In each of these tests the
samples begzan to smoke heavily when the asteel-explosive
interface temperature reached 300°C; however, no flames appeared

“ ]
untii the asteel-sxplosive Iinterface temperature reached

O
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363°C (+ 3°C). When ignition did occur, the temperaure in the
2-mm thick explosive layer was nearly 150°C less than the
steel-explosive interface temperature. These results

indicate that:

The ignition began on the surface of explodve,

A 2-mm thick layer of the plastic-bonded
explosive has considerable insulating value,

Addition of the thermo-setting plastic binder
to DATB substantlially increased the resistance
of the explosive to flame and deflagration.

4, DISCUSSION

4,1 Igonition Temperature of DATRB,

If one can identify the Final Steel-Explosive Interface
Temperature as the highest temperature reached by any mass
element of explosive, then Figures 5 through 11 show that DATB
will ignite when some portion of the explosive experiences a
temperature of 314°C (+ about 10°C). (The one exception,
(Figure 7) where this Tinal temperature rsached 349°C, is
believed to have bean caused by a slight warping of the
explosive sample.) Using essentially steady-atate, equilibrium
conditions in their determination, Loftus and Gross (8) found
that DATB ignited rapigly when thermocouples within the
explosive recorded 295°C,

It 18 believed that these two sets of data can be reconciled
as follows:

The present measurements represent a non-equilibrium,
forced-heating situation. If self-heating plays a
significant role in the development of ignition
then the more rapid heating of the sample, the
smaller the role of self-heating, and consequently,
the higher the (maximum) temperature of the
explosive at the moment of ignition., This

fact is demonstrated in Figure 14, where both

the Final Steel-Wall Temperature and the Final
Forcing Temperature are plotted against the

Final Steel-Explosive Interface Temperature.

Now, 1if the experimental conditions had been

set so that the temperature rise was sufficlently
gradual, that an essentially constant temperature
existed at any one time, then the "Temperature
Equilibrium Line" in Figure 14 would describe
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the temperatures of all components of the
experimental set-up, But, under the vigorous
heating conditions actually used, a severe
thermal gradlent existed, such that self-
heating of the explosive became an important
paremeter, Thus, at hlgher forcing tempera-
tures, the self-heating of the explosive did
not become significant until the last few
seconds, sc that the explosive dld not ignite
until significant amounts had reached higher
temperatures than were attained at lower
forcing tesmperatures.*

If one plots the Final Morcing Temperature
against the highest temperature reached by
the explosive (l.e., Final Steel-Explosive
Interface Temperature) this dependence on
self-heating is seen clearly. Extrapolatlon
of this curve to where it intersects the
Temperature Equilibrium Line then glves an
estimate of the ignition temperature of
DATB under conditions where the entire explo-
sive sample is heated very slowly. In
Figure 14, this temperature iz seen (o be
2939C, sSimilar reasoning applles to the
Final Steel-Wall Temperature curve in

Figure 14; it intersects the Temperature
Equilibrium Line at a temperature of 298°C,
These two values, bracketing the 295°C re-
ported by Loftus ana Gross, lend support

to this value for the ignition temperature
of DATB under couditions of slowly rising

temperatures,

*Tt 18 to be noted that the "iLcuperature" recorded by even a
gemall thermocouple 1s nevertholess a kil.d of an average tempera-
ture over a finite volume of the explosive 1n which 1t is
immersed, Local temperatures wiihin this volume ("hot spots")
could readily exceed thils weuay value., Rapld heating of this
entire volume apperently permits the attalnment of a higher
average temperature before oni ov more of these hot spots "runs
away" exponentially. Converscly, slower heating (as in the case
of essentlally-"equlilibrium" heatlng of the sample)gives more
time, and hence lncreased probabitity, for one of the hot spots
to develop into a deflagration before the average temperature
of “he volume element reache:s ithe value attaimed iIn the case

of the more rapld heating.
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(These results show that the term "Ignition Temperature"
of an explosive 1s meaningful only when the precise experi-
mental conditions are cited. Thus, in our own case, we cite
the "Ignition Temperature" as 3149C + 10°C, Figure 15 shows
that the upper bound spplies to the more rapid heat input,
and the lower bound applles to rapid, but slower input. For
more gentle heating cycles, ignitlon temperatures approaching
2950C might be more accurate.?

4,2 Relationship Betweepn Mean Forcing Temperature and
Ignition Time for DATH,

Under condlitions of our experiments, the logarithm of the
time required for ignition of DATB appears to be simply re-
lated to the reciprocal of the mean forecing temperature,
Figure 15:

logy gt = -0.09113 + i;%lé X103

where t 1s in seconds, and T 1s the mean forclng temperature
in degrees Kelvin. Whlle this reliationship was derived from
data obtained at mean forcing temperatures between 337°C and
only 1509C, 1t 1is of imtcrest to extrapolate these datg to
estimated temperatures within an oil fire (1500 - 2000°K),

The equatlon predicts an ignition time of about 9§ (+ 2)seconds
in such an environment. (In view of the long extrapolation
and the uncertain nature of the heat-transfer characteristics
within such an oill fire this predicted time c¢ould be in error
by a factor of as much as two or three,) For temgeratures
assoclated with aerodynamic heating, say from 330°C to 500°C,
it 45 believed that reasonable estimates of ignition times
(foy our test geometry) are obtained from this formula. For
mean forcing temperatures between 500°C and 1,000°C, a de-
creasing reliance should be placed on the precictions 1t makes,

At temperatures below 330°C the time-to-ignition does not
fit the above formula., We ran one test at a mean forcing
temperature of 318°C (Figure 8). After about 1200 seconds on
the heating block, the DATB began to give off significant
amounts of yellowish-black fumes, The test was continued for
another 500 seconds while more fumes continued to evolve, now
with occasional, small r'lashes of fire, At this point, the
test was terminated, as the actual experimental conditions
were no longer precisely known. It was concluded that at
"about 1700" seconds the DATB disc was more or less destroying
itself by decomposition and sublimation. In Figure 15 thils
uncertainty is expressed by plotting this polnt as a long

Y
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rectangle instead of a small cirele, Similarly, Rosen's thermal
stability data (9) would imply that at 280°C some 100 minutes
would see the destruction of a DATB disc, and a rectangle was
drawn accordingly.

Some liberties were taken in drawlong the two straight lines
in Flgure 15, as if they described two distinct thermal
domains, It is considered more likely that there 1is a cohtinu-
ous curve connecting the two reglons such that time tends
toward "infinity" more rapidly than indicated in Figure 15, as
the temperature decreases, Simllarly, on ithe other end of the
curve, time may not decrease as rapldly as indicated, as
temperature of an oll fire gave a lower limit of the time, and
that such an actual experiment would yield times two or three
times greater than the predicted 9 seconds.

4,3 Effect of Plastic Bluders.

The addition of 5 per cent BRL 2741, forming a plastic-
bonded composition, permitted the explosive to withstand an
initial forcing temperature or #,0°C for about twice as long as
the plain 100 per cent DATB, While 1t would be tempting to
accept thisg at face value, some cautlion must be exercised before
doing so, The Final-Steel-Explosive Interface Temperatures in
the two duplicate tests were 300°C and 366°C, some 50°C more
than was required to ignite puce DATB. It is to be noted that
this temperature is recorde: by the thermocouple placed within
the steel disc: any warpinw oi the explosive disc, produclng a
thin insulating layer of n1: between the explosive and steel
discs, would give rise to » soivious, high tempersfure and an
egually spurious, long time -t -1xnition, These results should
be confirmed in a geomet:y i snisceptible to such a defect,
perhaps one with cylindricit —viwetry,

5., CONCLUSIONS

Under conditions of rapid iaiting, ignition of DATE in a
steel-cased warhead wlll bewis when the steel-explosive
interface reaches 314°C (+ (0V¢) (The addition of an
insulator only 1 or 2-mu ihichk boiveen the steel and the explo-
sive would therefore "buy” :overil more minutes of flight time
under conditions simulated by ihose experiments, )

Ignition beglns at the =ic. 4 wsplosive interface, even
though the interior of the esplosive is still relatively cool,

Within the limits of the ol i number of tests made, it 1s
concluded that the line ignition iemperature of DATB 1s unaf-
fected by several thermal cyecicsn. pirovided none of the DATB
experiences temperatures ucer ii. ignition temperature.

vl
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10 . - .——T-——

where t 1s in seconds, and T 1is the mean forcing temperature

in degrees Kelvin, relatzs the ignition-time, temperature data

for a DATB-filled warhead having a l-cm thick steel case, under
conditions of rapld heating. If the warhead 1s immersed in an

oil fire this equation predicts an ignition time of about
§ seconds,

11
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TABLE I

Chemical, Physical, and Detonation Properties of DATB

Formula N, N On,
NHL

MO 2
Molecular Weight. . . . . « « « . « . « 243

NHy

Melting Point., . . ¢ ¢« o« « s & « « « « 280°C

Vacuum Thermal Stability. . . . . . . 100°C-no gas evolution
2600C-2.1 eec/g/nr

315°%¢
.261 cal/g-deg °C

Ignition Temp. s o & ¥ » e & 3 & & ¥

Speclfic Heat . . « o ¢ o o« o o o o o

Heat of Combustion . « « o + - - +« « & 705.,91+0,09 K cal/mole
Heat of Formation . . . « . « - - . » « 29,23+0,09 K cal/mole

Activation Energy . . . . . . . . o . 37.0 K cal/mole

Thermal Conductivity . » . . . . . . . 6.19 x 107% cal/sec cu’C
Co-efficient of Linear Eapiniiou PR 52x10”6 em/em/°C
Crystal Density . . . . - : .o« o« 1,837 E/bm3

Detonation Velocity (D) (. Lt Zem3 ). T600 m/sec

gg‘ e e e e e e - . 2852 ZLEEE3

Detonation Fallure Dilamet. - S« -« 0,53 cm

Devonation Pressure (¢ -~ | 3¢ . /-wd). o 251 Kb

Detonation Energy . . . . 800 cal/g

Isentropic Exponent (k). 3.1

[
>

Plate-Push Value ('I'N'I=2930 i% /i 3130 ft/sec

50% ILmpact Hammer Height (NO1.} . . < >320 em
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EXPLOSIVE
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