UNCLASSIFIED

AD NUMBER

AD304847

CLASSIFICATION CHANGES

TO:

unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

AUTHORITY

NRL ltr dtd 29 Jun 98; NRL, 29 Jun 1998

THIS PAGE IS UNCLASSIFIED

X C L U D E D

C

FROM GENERAL CLASSIFICATION SCHEDULE IN ACCORDANCE WITH Information security program regulation

DATED - JULY 1972

DOD 5000.1R & EXECUTIVE ORDER 11652 (EXECUTIVE ORDER 10501 AMENDED)

<u>B¥</u>

Defense Documentation Center Defense Supply Agency Cameron Station Alexandria, Virginia 22314

DEC 1977

CONFIDENTIAL 11. 304847 ASSIFICATION CHANGED CONFIDENTIAL £(· ----SECRET • -14: THE STITY: AI. 215 NRL ITR SIJAL I **NAME** CONFIDENTIAL

OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794.

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN

ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

SECREI

SECRET

CONTENTS

Abstract	ii
Problem Status	ii
Authorization	11
INTRODUCTION	1
EQUIRMENT	1
PERFORMANCE OF THE ACTIVE FILTER	6
Measuring System	7
Measuring Procedure	7
Theory	8
Results	10
PERFORMANCE OF THE SYSTEM	11
CONCLUSIONS	14

V. SECRET

ABUB

i

1

ABSTRACT [Secret]

The Project Music radar system was created for the purpose of exploring, with actual moving targers, s'l of the problems associated with coherence of signals, crosscorrelation, storage, filtering, and tonospheric propagation phenomena in the hf band. This research radar is basically a coherent-pulse doppler radar in which the crosscorrelation and integration is accomplished by an automatic frequency and phase control circuit falled an active filter.

The performance of the active filter was measured with signals of simulated target signals and white noise. Improvement near the theoretical limit for the system in output signalto-noise ratio over input signal-to-noise ratio was obtained. At the input, the minimum detectable signal was 25.5 db below the noise level, and with this input the output signal was 15.0 db above the noise level. The performance of the complet: Music radar system was insasured with actual aircraft targets, and no degradation in results from those obtained with simulated signals was found. These results highlight the ability of the system is reject completely the effects of the short.

PROBLEM STATUS

This is an interim report on one phase of the problem; work is conlinuing on the problem.

AUTHORIZATION

Hill, Problem R02-17 Project NR 312-000, Task NR 412-006

Monuscript subsities Korneber 4, 1955

PERFORMANCE CHARACTERISTICS OF THE MUSIC RADAR SYSTEM [Unclassified Title]

INTRODUCTION

第二日の こうちょう してき しち

The second second

ない、19日の1年間の中華観察堂(19世界)、1911年1日、1911年1月1日 1911年1日 The Project Music radar system is basically a coherence-pulse doppler radar in which the crosscorrelation and integration is accomplished by an automatic requency and phase control circuit (afpc), sailed an active filter, which replaces up to 3600 fixed-frequency narrow-band doppler filters in each range gate. This research radar was created for the purpose of exploring, with actual moving targets, all of the problems associated with coherence, crosscorrelation, storage, filtering, and also line-of-sight and ionospheric propagation phenomena in the hf band.

Earlier, a simulated radar had been developed to determine whether the full the retical enhancement in signal-to-noise ratio over a one-hit radar was obtainable in a system employing crosscorrelation and storage techniques. Simulated signals were buried in artificial noise in this experiment, and it was found that almost exactly the gain in signal to-noise fatio predicted by theory was realizable. The successful solution of the problems as sociated with this system led to the question of how much of the theoretical gais in signal-to-noise ratio can be retained with actual moving targets, where the echos might be degraded in various ways. Consequently Project Music was established to answer not only this question but also many others, as suggested previously. This report is concerned only with the question of determining how much of the theoretical gain in signal-to-noise ratio can be obtained with actual moving targets.

EQUIPMENT

A simplified block diagram of the Music radar is shown in Fig. 1. Only a single receiving channel and the circuits of one range gate are shown. A more complete description is available elsewhere.* The transmitter operates on 26.6 Mc, with a pulse power of 6.4 kw and a pulse width of 250 gsec. Provision is made for rapidly welecting a pulse-iccurrence rate in steps of 2 to 1 from 15-5/8 to 500 pps. A rotatable two-bay Yagi antenna which has a gain of about 12 db is used with the system. A photograph of the Music radar system, exclusive of the transmitter, is shown in Fig. 2. Figure 3 shows the transmitter exciter, driver, final amplifier, and power supply.

Mass coherence is maintained in the system by generating all local-oscillator and timing signals from one master 100-km crystal oscillator. Double conversion is employed in the receiver. The 400-km "tocal-oscillator" signal is a stored copy of the rf transmitter pulse obtained from the storage system. Storage input is derived from the monitor receiver, which is a low-gain device that monitors the in panditer output.

#G. Stock and F. M. Gager, "Crosscorrelation Electronic Storage Rader," NRL Report \$146 ("> "*C Peppert, Uncl. Title), Oct. 29. 1957

2

Fag. 1 - Samplafynd Dinch Haagran of Monar syntem

Since the signal readout of storage is a 400-kL copy of the transmitter pulse, it effectively gates the mean receiver on for the time of one range element. The delay in readout of the the water-is of the if commuter pulse determines the range position of this gate. In turn, the readout delay is controlled by the time r unit. Thus the mode of operation is to set the gate at, for example, 150 naut mi; airborne targets will be subject to detection upon entering an area 20 naut mi deep (at this range) and as wide as the antenna beam. If circuits for the other gates were included, then all areas illumonated by the antenna beam could be placed under surveillance. (Within a given range gate, multiple targets cannot be discriminated. In order to distinguish more than one target within a range gate, active filters may be paralleled, with the obvious limitation that perhaps

SECRET

SECRET

ŝ

no more than three or four can be practically utilized.) Storage was added to the system to provide the tlexicility of various coding and modulations of the transmitter output.

the . . Munic radar eraise exclusive at the breaksauther

The final receiver 1-f frequency was deliberately made equal to 100 kc, the frequency of the master crystal oscillator, to simplify range-rate determinations, as will be discussed later. A narrow-bandpass filter and a narrow rejection filter, both centered on 100 kc, follow next in the 100-kc chain. The purpose of these filters is twoiold. At this operating frequency, enormously arge backscatter eclos (potentially 100 db above minimum detectable signal) are received from very long ranges (1000 to 1500 mil). Since the radar normally operates with shorter base ranges, these signals are unresolvable and ambiguous, hence they completely obscure all but very close-in large targets. The characteristics of this backscatter were extensively investigated, particularly with respect to its spectral handwidth.² It was found that the sideband energy was down to the lavel of the amenna and receiver noise in a filter bandwidth of 1/20 cps at plus and mirow 4.0 cps from the 1-f carrier frequency. In other words, all of the backscatter signal energy that could raise the threshold of detection of a crosscorrelation system is contained in the 24-cps band arcond each repetition-rate

*C. K. Jensen, and C. L. Undarke, "Spectral Europsith of Benaminetter Sygnals," NPL Veport 4976 (Secret Report, Uncl. Tycle), Aug. 1957.

· ~ ~ ~ ~ ~

SECRET

SEGRET

component of the pulse spectrum. Gossequently, it is apparent that if a rejection filter with a sightly wider bandwidth and with sufficient alternation in the stopband is connected in the ischner; the backscatter can be completely elemenated. The only penalty is the loss of the first five cycles of the doppler band, thus is of hitle consequence in the proposed applieations of the system. Since usive shape uses not need to be retained, the system may simply narrow-band allowed only the carrier component of the signal, the other spectral components being rejected by the narrow-bandgass filter which precedes the rejection filter. Otherwise, if all spectral components are admitted to the product detector of the cross-orrelator, then a rejection filter to eliminate backscatter must be designed for each component frequency.

For 2 - Frankmatter encyles, access, and family suplified

The output of the 160-kc rejection filter drives the active filter. In the Music radar system, the active filter (Fig. 4) performs the crosscorrelation function by multiplying the signal with a reference and then integrating or marrow-banding around it. The cutoff frequency of the low-pass filter is such that the effective output bandwidth is less than 1/20 cps. In the absence of backscatter signals, the input bandwidth as determined by a filter preceding the active filter may be as large as desired, if one wishes to compare the performance of the active filter with a conventional redar; however, this bandwidth ideally

should be no wider than necessary (for largest signal-to-noise ratio at the input) to pass the most signal energy and the least noise energy, where it is desired to preserve a semblance of oulse-envelope shape. For a 250-mec pulse, the bandwidth may be as narrow as 4.0 kt. For the Music radar system, a narrower bandpass filter may be used just ahead of the active filter, subsequent to range gating, as previously described (Fig. 1). The overall bandwidth narrowing will remain the table, but the input dynamic range requirements of the active filter will be reduced because of reduced noise power, when backscatter signals are present the is very necessary.

tig is a Biney upgen of the active faller.

The active filter is tuned to operate in a band of doppler frequencies centered on 100 kc. It will automatically lock onto a doppler signal either above or below 100 kc, corresponding to approaching or receding targets, even though the signal is buried many db in more. At the same time that it acquires targets, it effectively acts as a very narrow-band filter, providing a large degree of signal-tonoise enhancement. The operating theory of an afpe circuit has been published* and will not be repeated here. An evaluation of this circuit will be given later in this report.

When the active filter has acquired a target, its doppler signal will appear at the output of the active filter, still at the i-i frequency, but with a much larger signal-to-noise ratio. This enhanced signal may now be directed to the rangerate circuit, as indicated in Fig. 1, where it is compared with the master 100-kc frequency to measure its actual doppler frequency. Once the doppler frequency is known, radial range rate is also known. Likewise, the active filter output is fed to a second circuit which determines whether the doppler frequency is above or below the master 100 kc, to provide the recede or appreach indication.

¹⁶ G. L. Jensen and J. E. McGeogh, 'An Active Filter,' NRL Report 4530 (Unclassified), Nov. 1955.

t1

SECRET

Range in the system is determined by the delay between the transmitter keying pulse and the receiver gating signal. Azimuth is obtained from the heading of the Yagi antenna.

The correlation detector and ilizabilit detector are included in the system to give a positive indication when the active filter acquires a target. Figure 5 shows the correlation detector. The phase detector and low-pass filter in the correlation detector are similar to those in the active filter. A 90-deg phase shifter is placed in the essentially noise free reference signal received via the connection from the active filter. Thus the correlation detector compares the phase coherence of the output signal of the active filter with the noisy input signal to the active filter and, if there is a phase lock, provides a maximized do output voltage proportional to input signal atrength; otherwise only noise appears here. Since the bandwidth at this point is 1/20 cps, as determined by the singlesection RC low-pass filter, the full enhancement in signal-to-noise ratio from bandwidth narrowing occurs between here and the receiver input. Actually, two enhanced outputs are used, one from the active filter and the other from the correlation detector. The signal-to-noise ratio at the output of the correlation detector will never exceed that of the active filter, and furthermore there will, be no signal at this point if the active filter has not acquired a target. Conversely, the active filter may have a greater output signal-to-noise ratio under certain circumstances than the correlation detector, because of its harrower bandwidth. The dc voltage, therefore, may be used to operate a threshold detector which is preset to actuate appropriate indicators upon detection of " target that causer an output de voltage to use a prudetermined number of db above the noise level in the 1/20-cps bandwidth. The correlation detector also provides a suffactory means of measuring the performance of the active filter, as will be described.

Fig. 2 - Black diagram of the correlation detector

PERFORMANCE OF THE ACTIVE FILTER

Since the improvement in signal-to-noise ratio with crosscorrelation in this radar system occurs in the active filter, the active filter's performance has been measured both with simulated signals and with actual targets as a part of the radar system. are 1344 an

ŝ

(helion) variation (

Br Auges an ad B di m

SECRET

NAVAL RESEARCH LABORATORY

Measuring System

Figure 6 shows the experimental setup employed in the investigation of the active filter's performance. A correlation detector, or creascorrelator, was used to measure the response of the active filter is the vertices input signals. A signal generator tunable 190 cps from 100 kc previded the simulated low-level doppler target signals. Likewise, a noise generator supplied white noise extending over a wide band centered on 100 kc. These signals are next added in a linear circuit. The circuit is linear in the sense that the signals and noise preduce currents and voltages which are simply additive without the complicated intermodulation effects between different frequency components such as orcur in non-linear systems. The linearity of the adder may easily be verified by measuring various combinations of input powers and the cutput power with a true-power-reading instrument. Linearity is important in a crosscorrelation system for optimum results. Care has been exercised in both the experimental measuring setup of Fig. 6 and the complete radar system of Fig. 1 to maintain linearity in all circuits from input to narrow-band output.

Referring again to Fig. 6, a bandlimiting filter restricts the bandwich of the white noise and signal output of the adder. The bandwidth of this filter was made 4.0kc, to make it comparable with a conventional radar; this results in the optimum signal-to-noise ratio for a 250-Msec pulse width. Obviously no excessive bandwidth exists, yet the julse-envelope shape is approximately preserved. The input signal-to-noise ratiois measured here (thus a common base exists for comparing the Music system with a unc-lat radar). The signal and noise are next gated, which does not change the signal-to-noise power ratio, and then they pass either directly to the active filter and correlation detector or via a narrow-band filter and IUU-kc rejection filter with characteristics previously described. It can be shown that the overall improvement in signal-to-noise ratio is the same

ertive filter

either way. The output at the correlation detector is measured with a true-powerreading instrument. The total improvement in signal-to-noise ratio achieved from the 4.0-kc-bandwidth filter output to the correlation detector output can be determined from the power measurements.

Measuring Procedure

Special precautions must be taken to insure that all measurements of signal and noise levels are true power readings. The measuring instrument may be either a true-power-measuring device such as a thermocouple meter or some

SECRET

÷,

41

3

- 14 M

11,000

and states and

÷

111 I 111

7

SECRET

other type of instrument which has been calibrated to read power for the particular waveforms used in the measurement. The thermocouple meter and other instruments may also be calibrated in rms volts. Sometimes it is more convenient to use an oscilloarone at the input to examine and measure the signal and noise levels. The rms voltage of the signal can easily be determined by measuring the peak-to-peak voltage of the sine wave with the oscilloscope and then by calculation finding the rms value. Determination of the rms voltage of white noise is not readily accomplished at first, but with experience good accuracy can be achieved. If a known level of white noise is impressed on the oscilloscope, it will be found that the peak-to-peak voltage level at which only 0.01 percent of the nuise peaks exceed the level is 7.8 times the rms voltage of the noise. With experience, this level can be read with good accuracy; thus the rms voltage value of the noise can also be measured with an oscilloscope. The above factor divided by two is known as the peak factor of thermal noise.

The output of the correlation detector consists of a dc voltage, which is proportional to input signal level, and a noise voltage superimposed on the dc voltage by addition (the entire system is linear at every point). Since the output bandwidth is 1/20 cps, the noise fluctuations will occur at a very slow rate. This requires that any power measurement must integrate over at least several minutes to realize an accurate reading of noise power. A sensitive thermocouple meter with a very long time constant was developed for this measurement, but other instruments may also be used, such as a recording do voltmeter on which integration time is represented by storage or chart time, and a do vacuum-tube voltmater. where the integration time must come from the operator's memory. In the cases of the recorder and vivm, these instruments must have an ac frequency response up to 1/2 cps, which selected ones do have, to insure a faithful disclay of signal and noise voltage fluctuations. The signal voltage is read off the recorder chart by noting the average displacement of the trace between a signal-off and a signalon condition. The peak-to-peak noise voltage is determined by noting the plus and minus levels which are exceeded by only 0.01 percent of the noise peaks. At least several minutes of chart must be examined to fix these levels. Once the peak voltage of the noise is known, the rine value is obtained by dividing by the peak factor. The same procedure may be used with a vivm with nearly the same accuracy.

Theory

4

:

ž

1

Before is measurement of the improvement in signal-to-noise power ratio from input to output of the active filter and correlation detector, consideration should be given to the maximum of theoretical improvement possible. A crosscorrelator such as the correlation detector with a noise-free reference and a phase-coherent cw input signal with no gating of noise or signal will have an improvement 1 of

where

Pro is the output signal power File is the output noise power Psi is the input signal power Poi is the input noise power.

SECRET

SECRET

NAVAL RESEARCH LABORATORY

The output-power signal-to-noise ratio is

Hanra

Para Dun + (Bin Dan + ()(Pai Pni).

where

I . Mit Man + 11

Bin = "20; the input rouse bandwidth

Bunger the effective output noise bandwidth Bon - - 280. the output noise bandwidth

Di + the input 3-db bandwidth

to - the output 3-db candwidth.

Where the input noise bandwidth is determined by a single resonant circuit, it can be shown that the noise bandwidth of the circuit is 72 times the bandwidth at the J-db points, as measured with a signal generator. Lakewise, the output noise bandwidth of the single-section low-pase at filter is 7/2 times the 3-db bandwidth. The effective output bandwidth is

B.11 - 2(1 - KC) - - KC .

The effective output bandwidth is twice the cutofi frequency of the filter, because with conversion to zero i-f the noise puwers of both sidebands are folded together, remising in more noise than that due to simple handwidth nerrowing. Also, the eilective output noise bandwidth is Brief = 13RC. Thus the overall improvement

9

I = "≇iRC.

However, the improvement is actually

I = 27 MAC.

Equation (1) contains a factor of 1, which arises from the fact that the output signal voltage is a constant peak de voltage, because the output has been maximized on a peak made possible by the active filter locking onto the doppler signal. If the signal had been an ac doppler signal, as normally would be the case in the absence of an active lilter, an ac output voltage would what whose rms value could be measured. However, with the active filter, a dr output voltage is obtained at an amplitude squal to the peak value of the ac voltage signal. Since the signal and noise powers must be expressed in the same units, the output signalto-noise power ratio will be increased by the factor of two.

Equation (1) is the expression for improvement when no geting of signal or noise input is involved. When both signal and noise input to the crosscorrelator

are gated, as they are in the system, then

1 - 27Bizcd,

where duty factor d at

(2)

SECRET

SECRET

5 - pulse length

» « repetition period.

If values as used in the system are assigned, then

$$s_{L} = 4.0 \text{ kc}$$

 $d = 1/8$
 $s_{m_{0}/\ell} = \frac{1}{24C} = \frac{1}{2(1+3)^{5} \times 10^{5} (1-1)^{2}} = 1/20 \text{ cps},$

and I = 44.6 db from Eq. (2). This is the maximum improvement to be expected, based on a numberizer reference. With the larger values of input signal-to-noise ratio, the active filter does provide an essentially noise-free reference to the correlation detector. The bandwidth of the low-pass filter incorporated in the active (ilter has been made one-fifth the width of the correlation detector's bandwidth to help insure this. However, the archive filter does have a lower limit of operation below which it fails to lock and acquire targets with very low-input signal-to-noise ratios. Therefore a considerable departure from theoretical improvement should be expected in this rogion. The pull-in range of the active filter decreases with lowered input ratios, reaching zero pull-in at the point at which it fails to lock. Since detection is required over the full ± 90 -ops doppler band, the minimum detectable signal is considered to be at the level at which the pull-in range of the active filter is ± 30 cps. At this signal level, the targetacquire time is 10 to 20 sec. With larger signals, this time rapidly diminishes.

Results

The performance of the active filter and correlation detector was measured with the experimental equipment shown in Fig. 6. A series of input signal and noise levels was used, and the resulting output canal and noise levels were noted. In all cases, the peak-to-peak input voltage of the signal and noise combination was maintained at the largest possible amplitude to insure that the full linear dynamic ration of the bandpass filter circuit, which represents the input of the system, was utilized. Because there is a minimum usable signal level, this helps insure the possibility of nearing the limits of theoretical improvement. The radar system is also customarily operated in this way.

The results of the measurements are plotted on Fig. 7. Both input and output signal-to-noise ratios have been plotted as a function of the correlation-detector do output voltage. This voltage is proportional to the input-signal amplitude. This graph shows that the smallest detectable signal is 28.5 db below the noise level and that the minimum detectable signal level at which the pull-in range is 190 cps is 26.5 db below the noise level. At this input level, the means signal is 16.0 db above the output noise level. Hence the total improvement here is 42.5 db. With larger input levels, the total improvement here is 42.5 db. In automatic alarm radars, where output signal-to-noise ratios of 12 db and up are required, very nearly all of the total improvement in signal-to-noise ratio would be usable, from the minimum-requirement standpoint. The threshold detector in the Music system is adjustable, permitting a choice of positive-output signal-to-noise ratios lying anywhere from zero db to 20 db. Once the signal dc output voltage exceeds the selected level, the several indicators are switched on to announce the acquisition of a target and at the same time to make the target information available. Data have been taken with the narrow-bandpass and 100-kc rejection filter both in and out of the chain, with identical results; therefore only one graph is shown.

The improvement shown on Fig. 7 is for a duty factor of 0.125. When the input signal and noise has a duty factor of 1.0, it is found that the input signal-to-poise-ratio curve is moved 9.0 th lower. Then the minimum detectable signal level is 35.5 db below the noise level, instead of 26.5 db. Data were taken with a duty factor of 1.0, but it was not presented graphically. Conversely, if the duty factor is reduced, the input signal-to-noise-ratio curve will move upward, reducing the overall improvement.

PERFORMANCE OF THE SYSTEM

Now that the performance of the corescorrelation circuits with simulated signals is known, the question arises, will any degradation in performance occur with actual target signals? Degradation primavily refers to an undesirable increase in the minimum detectable signal level due to certain characteristics of the target. Therefore, to determine the possible existence of degradation it is necessary to use target signals with levels near the minimum detectable level (-26.5 db). A calibrated active-filter correlation detecto: system will readily provide values for the input and output signal-to-noise ratios, but a second independent measurement of the input signal-to-noise ratio is necessary if a meaningful determination of degradation is to be achieved.

l

1.2

SECRET

Measurement of a signal many db below the noise level is a difficult task without correlation. One method is actually to select and measure a target echo at the output of the 4.0-kc-bandwidth filter that is above the noise level, then drop the transmitter power a known amount, such as 20, 26, 32 db, etc., the assumption being that the received echo will also be reduced by the same number of db. This is the method that was employed. The input signal-to-noise level to the crosscorrelation system was measured at the evolut of the receiver, where the signal and noise are narrowed to 4.1 or by the 4.0-kc-bandpass filter (Fig. 1). At the same time, the output of the correlation detertor was measured both with the high-level signal and the reduced level signal. The output signal-to-noise ratio was measured in both cases.

With a knowledge of the correlation-detector output dc voltage, the input signal-to-noise ratio that the correlation system claims to see in a 3.0-kc-input bandwidth can be read from a calibration graph such as Fig. 7. This can be compared with the independent measurement of input signal-to-noise ratio both at high and low levels. At high levels, r close agreement between the two readings should be found, provided the independent reading is made with due caution, as will be discussed later. If agreement exists, then the methods employed in both the measurement and calibration of the correlation system and the measurement of the independent signal-to-noise ratio will in large part be validated. With low levels, a close agreement between the two readings will indicate little or no degradation of the performance of the crosscorrelation system with actual targets. Additionally, the total improvement of the system will also be known.

The high-level-input signel-to-noise ratio was measured at the output of the 6.0-kc-wide, 500-kc bardpass filter, as shown on Fig. 1. An oscilloscope was used to display the i-f signal directly without rectification. This was done to maintain linearity in the display as well as in the system. Consequently, the peak factor of the white noise will be the same as in the previous discussion, and the same measuring methods can be used. The pulse signals as well as the noise will be bipolar. The noise level is obtained by selecting a point on the scope trave free of signals and reading the peak-to-peak voltage and then dividing by twice the peak factor. Likewise, the signal amplitude is determined by selecting a pulse signal which is clearly above the noise level and reading the peak-to-peak reading is determined in the same manner as the noise, because it is the sum of the signal plus noise. Since the signals simply add, the noise can be subtracted from the signal plus noise, leaving only the value of the signal. Hence the ratio of the two may be laken.

Signals well above the maise level were selected for measurement to eliminate the signal-to-nuise-ratio enhancement effects of integration by scope or observer such as would occur with small signals just below the noise. Here, repetitive -ignals will be enhanced by persistence of the phosphor and the eye of the observer. Another reason also exists for selection of large signals, and that is the fact that long-range backscatter folds over and completely obscures all signals in the 162-naut-mi range interval, established by a 500-pps recurrence rate used in the crosscorrelation studies. In order to uncover the signals and to resolve the backscatter, a lower recurrence rate was used when measuring the input ratio only. The input signal-to-noise ratios measured at the lower recurrence rate are identical, when large signals are used, to those measured at 500 pps. This

SECRET

was demonstrated by varying the recurrence rate over the full range on the occasional day when no backscatter was present and observing the signal and noise levels. In this case, only a change in intensity could be noticed.

When measuring input and output signal-to-noise ratios, compensable errors can arise the to other causes. The most obvious error is due to movement of the target within the receiver gate during the time required to make the input measurements and the output measurements. This procedure requires several minutes, because the input and output ratios must be taken, then the power dropped, time allowed for the narrow-band acquisition, readings taken, power restored, and finally input levels rechecked. The input signal-to-noise ratio can be read whether the signal is in the gate or not, but the crosscorrelation system cannot perform without a signal in the gate. Therefore if the signal has moved partly out of the gate, a suitable compensation must be made; this is readily accompliand.

A second source of error is a change in input signal-to-noise level occurring within the measuring time. This is corrected by a recheck on the input ratio.

Spike noise is also a source of error that is difficult to correct. It is easier to avoid this noise. This is done by selecting observation times relatively free of spike noise.

Accelerating targets can be expected to modify the performance of the activefilter correlation system. Mowever, the accelerations involves in fast turns of jet and commercial aircr. The source of target echos reported herein, do not appear to increase the minimum detectable signal level.

Data have been taken on many aircraft targets. Figure 8 shows the deviation of the high-level-input signal-to-noise ratio of the active-filter correlationdetaction system from the measured high-level-input signal-to-noise ratio for a sumber of observations. The deviations reach as much as 6.0 db, which may be explained by the difficulty of the measurements. However, the important point to note is that the deviations center on zero db. Hence, on the average, the agreement between the correlation-system calibration and the input measurements is good.

Performance of the active-filter correlation-detector system with signals near the minimum detectable level is shown on Fig. 9. Here a comparison is made of the deviation of the correlatim system's low-level-input signal-to-noiseratio reading from the measured input signal-to-noise ratio reduced by the amount

Fig. g + Comperison of scrivs-filter input 3/N ratio with the high-level measured input S/N ratio

SECRET

SECRET

13

.

£

SECRET

of the drop in transmitter power. Again, the deviation is sizable, but the average is zero db. Thus, once more the agreement is good. This is an important finding, for it indicates that there is little degradation in the performance of the active filter and correlation-detector system with the type of targets mentioned, even with the target signals buried in noise. Conversely, this also indicates little incoherence in aircraft echos at this operating frequency.

Rig. 9 - Comparison of active-filter samut S/N ratio with the ion-level measured input S/N ratio

The total improvement in signal-to-noise ratio may also be obtained from the data. Figure 10 shows the improvement realized with reduced power, when the input signal was just above the minimum detectable level. The curve shows a 2.5-db spread, with the upper limits approaching the theoretical improvement. Thus good agreement with theory exists.

These results highlight another accomplishment, and that is the ability of the system to detect moving targets with no loss in crosscorrelation efficiency through range-ambiguous backscatter (clutter), which often reaches amplitudes in excess of 60 db over the receiver noise level. As previously mentioned, the backscatter is rejected by the narrow-band rejection filter in the 100-kc i-f chain.

CONCLUSIONS

Measurements of the active filter with simulated signals and noise indicate that near-theoretical improvement in output signal-to-noise ratio over input signalto-noise ratio can be achieved. When the performance of the complete Music radar system is measured with actual aircraft targets, no degradation in results from those obtained with simulated signals can be found. At the input, the minimum detectable signal level is 26.5 db below the noise level, and with this input level the output signal level is 15.0 db above the noise level. Income results also snow that the system is fully capable of completely rejecting the effects of large backscatter clutter encountered in the h band.

14

SECRET

.

.

SECRET

n

SECRET

15

SECRET

ł

-

Copy Nc. 1 Attn: Code Op-03EG 2 CNO 'n Op-345 4 Op-551 Op-573 5 6 ONR Attn: Code :00 7 427 8 - 9 460 461 10 11 BuShips Attn: Code 673 12 - 31 675 684 (20 cys.) 32 - 33 Attn: Code AV-33 BuAer 34 35 BuOrd Attn: Code Re 54 Re S4a 36 - 37 USNEL, San Diego, Calif. 38 Aun: Library 39 Code 1000 2740 40 USNADU, Johnsville, Pa. Alin: Dr. H. Krutter 41 USNPGS, Monterey, Calif. Attn: Tech. Library 42 USNATC, Patuxent River, Md. Attn: Electronics Test 43 CO, DTMB USNOTS, China Lake, Calif. 44 Antris Tutin, Later way 45 USNOL, Corona, Calif. Aitn: Missile Development Div.

DISTRIBUTION

1

ł

\$

SECRET

ł

Ì

.

DISTRIBUTION (Continued)

	Copy	No.
US Nav Training Device Center, Port Washington, L.R., N.Y Attn: Lude 932	7.	46
Office of Ass't Sec'y of Defense (RAE) At: Tech. Library Branch J. W. Klotz, Panel on Electionics	47 .	18 49
Hq., USAF, Deputy Chief of Staff, Operations, Electronic Systems Div. Attn: AFODU		4ئ
Hq., USAF, Dir. of Research & Development Attn: AFDRD		51
Rome Air Development Center, Rome, N. Y. Attn: RCRWE		52
Ait Force Cambridge Research Center, Bedford, M288. Attn: CRTOTT-2 CRTITT-2 Mr. Erving J. Etkind		53 54 55
Wright-Patterson AFB, Dayton, Ohio Attn: CO, Air Materiel Command WADC, Attn: WCOSI-3		56 57
SAC Hq., Operations Analysis Office, Offutt AFB, Nebraska Attn: Mr. T. R. Burnight	-	58
Ai: Defense Command, Ent AFB, Colorado Springs, Colo. Attn: ADLAN Section		59
Office of Sec'y of Defense, The Pentagon Attn: Weapons System Evaluation Group		60
OCSigO Attn: Chief, Research & Dev. Div.		61
USASRDI, Ft. Monmouth, N. J. Attn: USASRDL Liaison Office Mr. R. Dunn, Surveillance Dept., Radar Dev. Br., Evans Area	62 -	64 65
Chief of Staff, USA (R&D), Scientific Res. Sect. Attn: Dr. P. A. Siple		6 6
CG, Sandia Base, Albuquerque, New Mexico		67
Dir., Diamond Ordnance Fuze Lab., Wash., D. C. Attn: Mr. D. Williams		68

17

.....

· ••

SECRET

SECRET

:

ł

	· · · · · · · · · · · · · · · · · · ·						· · ·
way and the					• •	1.14	
				۰.			
	NAVAL BESEARCH LARCENTORY		STORI	ET .			
	DISTRIBUTION (Go timas)			3			
		4	27.52	· .			
	ric Co., Utica, N. Y. W. Jonata		43				
	ala Cong Engand N. Y. J. Roscow		10				
	rse Cao - Surnaviana IV - Y M. Lareban IV		7,				
General Lieu	rsy Cos, Syraryan S. S.						

Atte W. R. Chynometh W. M. Bartly 72 73 74 J. K. whapman Sperry Groups ope Co., screet Nera, 1999 Like 1, N. Y. Alto: Dept. 5225 11 Huyben Alterall Co., Calver City, Calif. Alln: Dr. A. V. Hanff 75 Lonkhoad Alternats Los , MASS, Van Duyn, Calif. Alla. 16. 8 . Masa . . University of Birness, Control Systems Lab., Urbana, DL. Altri Jahraman 7#

Manford Research Instatute, Stanford, Calif. Altri: M. J. Granger 2.9 Ohin Mate University, Antenna Lab., Culur-bus, Ohit Arin, Dr. R. G. Kusyoumjian . . . MET, Lincoln Salteratory, Longitur, Mass. PALS. Novy LABIDON OLES. -82 - 33 ASILA, Arlington, Va Atta, TIPOR 64 - 93

SECRAT

.

:

.

20

CONFIDENTIAL

1 304847

CLASSIFICATION CHANGED T CONFIDENTIAR. F 246: ____SECRET ALTEORITY:

2.5 NRL ITR 31 Julie

CONFIDENTIAL

UNITED STATES GOVERNMENT

5300-31 29 June 1998

DATEL

ATTNOF, Code 5300

NUMECT: REQUEST TO DECLASSIFY NRL REPORTS

то: Code 1221.1 (C. Rogers)

1. It is requested that the NRL Reports listed below be declassified. The information contained in these reports has become public knowledge in the many years since first classified.

Declassified, public release.

G.V. TRUNK Superintendent Radar Division

OPTIONAL FORM NO. 19 (REV. 1-80) GBA FPMR (41 CPR) (01-11.6 5010-114