AD NU	JMBER:							
	LIMITATION CHANGES							
TO:								
FROM:								
	AUTHORITY							

AD NUMBER: AD0301411
CLASSIFICATION CHANGES
то:
Unclassified
FROM:
Confidential
AUTHORITY
C to U DoDD 5200.10 31 Dec 1969

AD_____

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS DOD DIR 5200.10

UNCLASSIFIED

and the second sec

in the other was data that have a

MEMORANDUM NO. 20-152

COPY

SURVEY OF THE COMPATIBILITY OF VARIOUS MATERIALS SWITH HYDRAZINE AND MIXTURES OF HYDRAZINE,

HYDRAZINE NITRATE, AND WATER

DONALD H. LEE

ORDCIT Project Contract No. DA-04-495-Ord 18 Department of the Army ORDNANCE CORPS

MEMORANDUM No. 20-152

A SURVEY OF THE COMPATIBILITY OF VARIOUS MATERIALS WITH HYDRAZINE AND MIXTURES OF HYDRAZINE, HYDRAZINE NITRATE, AND WATER

Donald H. Lec

Arthur F. Grant, Jr., Chief C Power Plant Research Section

82 Copy No.

JET PROPULSION LABORATORY California Institute of Technology Pasadena, California December \$2, 1957 58AA 8100 CONFIDENTIAL

而到的方法是我们的Literature terrature terrature

CONFIDENTIAL

Jet Propulsion Laboratory

「こく、~~、 というないのないののである

The standard and the standard

CONTENTS

		age
I.		1
H.	Factors in Evaluating Compatibility	2
111.	Comparative Compatibility of Various Materials	2
IV.	Compilation and Evaluation of Experimental Data	5
	A Matula	
		2 F
	2 Brase	11
	2. Diass	15
	4 Conner	12
		1.0
		14
	7 Iron	14
		14
	9 Manaelum	14
		17
	11. Molybeaum	17
	12 Monet	1.
	13. Nickel	10
	14. Nickel-chromium cilovs	20
	15 Silver	21
	14 Steel (mild)	21
	17 Staal (strainlass)	21
	18. Stellite	25
	19. Tentolusa	25
	20. Tin	24
	21 Titanium	24
	227 Tine	40
		47
	B. Plastics and Elastomers	27
	1. Cellulose acetate	27
	2. Diallyl phthalate	28
	3. Epon	28
	4. Eihyi cellulose	28
	5, Furane resin	28
	6. Hycar	28
	7. Kel-F	29
	8. Lactopreme	29
	9. Lucite	29
	10. Melamine formaldehyde	30
	11. Nylon	30
	12. Phenolic	30
	13. Polyester	30
	14. Polyethylene	31
	15. Polystyrene and polydichlorostyrene	31
	16. Polyvinyl alcohol	32

CONFIDENTIAL

Page ili

Jet Propulsion Laboratory

Memorandum No. 20-152

CONFIDENTIAL

CONTENTS (Cont'd)

																			P	age
	17.	Polyvinyl	chl	orid	e (Ko	ros	eal,	V	inyl	ite)									32
	18.	Rubber (nati	ırai)																33
	19.	Rubber (syni	heti	cl															34
	20.	Saran																		35
	21.	Silastic																		36
	22.	Teflon			•					•			•							36
	23.	Tygon										•					•			37
	24.	U. S. Rul	obei	Pla	stic	: L7	782	5												38
	25.	U. S. Rub	ber	Pla	stic	M:	209	95												38
	26.	Veloform		•					•	•				•	•			•	•	38
C.	Mi	cellaneou	is A	late	oric	Is						•		•	•					39
	1.	Asbestos																		39
	2.	Glass .																		39
	3.	Graphite																		40
	4.	Graphita	r																	40
	5.	Pipe-join	t co	mpo	vn	ds														41
	6.	Rags .																		41
	7.	Silicone	lubr	ican	ts															41
	8.	Solder (I	ead	-tin)																42
	9.	Solder (live	r)																43
	10.	Varnish																		43
	11.	Wool .																		44

CONFIDENTIAL

Page iv

Callin Churter

いたいないのでは、「「「「「「「」」」」

THIS REPORT HAS BEEN DISTRIBUTED ACCORDING TO SECTION A. WITH ABSTRACTS TO SECTIONS C AND DP, OF THE SUBCOMMITTEE ON ANAF, GM MAILING LIST, OFFICE OF THE ASSISTANT SECRETARY OF DEFENSE (RESEARCH AND DEVELOP-MENT), GUIDED MISSILE TECHNICAL INFORMATION DISTRIBUTION LIST, MML 200/14, LIST NO. 14, DATED 1 JUNE 1957.

Memorandum No. 20-152

CONFIDENTIAL

ADDER AND

新新

ABSTRACT

A compilation and an evaluation of experimental data obtained from the available literature are presented on the compatibility of various metals, plastics and elastomers, and miscellaneous materials with hydrazine and hydrazine-hydrazine nitrate-water mixtures. An effort has been made to present this material in a condensed tabular form for ready reference and also in sufficient detail to outline the limitations of the test data.

I. INTRODUCTION

In order that hydrazine and hydrazine-rich mixtures may be used to full advantage as rocket fuels or gas generants, their compatibility with various materials must be known. A great quantity of research and development work on hydrazine has been accomplished since the compound was determined to have practical application. In virtually all cases, the organization doing the work has conducted an independent experimental program to obtain information on the compatibility of hydrazine with various materials, in order that suitable facilities and

CONFIDENTIAL

equipment might be constructed. This information is available in varying quantities in numerous reports. However, for the user entering into the application of hydrazine for the first time, the acquisition of a working knowledge of compatible materials for the job at hand is rather time consuming. The purpose of this Memorandum is to consolidate and, where possible, to evaluate in an easily referable form all of the compatibility informa ion that is readily available concerning hydrazine and hydrazine-hydrazine nitrate-water mixtures.

ABSTRACT

A compilation and an evaluation of experimental data obtained from the available literature are presented on the compatibility of various metals, plastics and elastomers, and miscellaneous materials with hydrazine and hydrazine--hydrazine nitrate--water mixtures. An effort has been made to present this material in a condensed iahular form for ready reference and also in sufficient detail to outline the limitations of the test data.

I. INTRODUCTION

In order that hydrazine and hydrazine-rich mixtures may be usel to full advantage as rocket fuels or gas generants, their compatibility with various materials must be known. A great quantity of research and development work on hydrazine has been accomplished since the compound was determined to have practical application. In virtually all cases, the organization doing the work has conducted an independent experimental program to obtain information on the compatibility of hydrazine with various materials, in order that suitable facilities and

equipment might be constructed. This information is available in varying quantities in numerous reports. However, for the use: entering into the application of hydrazine for the first time, the acquisition of a working knowledge of compatible materials for the job at hand is rather time consuming. The purpose of this Memorandum is to consolidate and, where possible, to evaluate in an easily referable form all of the compatibility information that is readily available concerning hydrazine and hydrazine-hydrazine nitrate-water mixtures.

CONFIDENTIAL

II. FACTORS IN EVALUATING COMPATIBILITY

The compilation of materials-compatibility information for anhydrous hydrazine, hydrazine hydrate, and hydrazine-hydrazine nitrate-water mirtures has been a lengthy but straightforward task; however, a complete evaluation of the compatibility of a particular material has, in many cases, not been possible because of inadcquate test data or because of th inability to define a universally applicable standard of compatibility. In describing the compatibility of a particular material with hydrazine, the following factors must be taken into consideration:

- 1. The effects of hydrazine on the material, as evidenced by a loss or gain in the weight of the material, a color change, a dimensional change, loss of elastomeric properties, etc.
- 2. The effect of the material on the rate of decomposition of hydrazine, as evidenced by a pressure rise in sealed containers, the evolution of gas, a change in the composition, weight, or color of the liquid, etc. Ions, oxides, or the leaching of constituents from the material may influence the autodecomposition of hydrazine.

Both of these factors are, in turn, influenced by initial hydrazine purity, the temperature at which contact occurs, the duration of contact, and the surface area of the material in contact with the hydrazine.

When consideration is given to all these factors, there are few materials which can be judged completely compatible with hydrazine. In almost all cases, the suitability of a material becomes a matter of the specific application. A particular metal may be satisfactory for an application where air oxidation of the metal surface can be reliably avoided, whereas it may be completely unacceptable for a similar application in which prolonged exposure to air cannot be avoided.

The existence of varying degrees of compatibility makes a simple presentation of materials acceptability difficult and, in many cases, misleading. The presentation of a compatibility evaluation in chart form only, describing materials as being either good or bad, does not give the user much leeway on material selection, nor does it supply all the information that he should possess before employing a material in a particular application. For this reason, the data compiled herein are presented both in a condensed summary form for ready reference and also in detail, so that the limitations of the test data are readily apparent.

Pope 2

III. COMPARATIVE COMPATIBILITY OF VARIOUS MATERIALS

It is the purpose of this Section to present, in condensedsummary form (Table 1), the present author's evaluations of the compatibility data available for numerous metals, plastics and elastomers, and miscellaneous materials.

In Table 1, the following symbols are used to represent varying degrees of compatibility:

- A-Material is acceptable for general service.
- B-Material is acceptable for limited service. See Sec. IV for specific limitations.
- C-Material should be avoided. See Sec. IV for data on which this conclusion is based.

Material	Anhydrous Hydrazine	Hydrazine Hydrate	Hydiozîne Hydiozîne Nîfrate- Water Mixtures	Material	Anhydrous Hydrazine	Hydrazine Sydrate	Hydrazine- Hydrazine Nitrále- Water Mixtures
		•	H	iétáls			
				Hickel-chrame allays			
		}		(Chiomel-A, Michiome)	•		c
A farm To unit		1		Silver			1
25				Steal			
250	Â	Ä		MIM	с	c	c
254	Â			Calefeii			
35	A A		i i	302	8	B	
35H	A			303	с	c	c
24ST			A	304	A		
405	B		8	315	с	c	c
43				. 51t	د	с	c
525T				317	c	C C	c
615T	A		A	JŻI	Ű.	•	
75ST			•	329	c	c	c c
XA-345				347	*	A	A
718	•			410		6	6
Scilla 1		B		416	c	c	c
Colsialt	С	с	C	420F	с	C	c
Copper	с	С	c	430	B.	•	•
Inzónal	•	R	•	430	c	C	c
tinconet X	8			440A	С	C C	c
Iren	c	¢	c	440C	C	c	c
Load	c	c	C	Ŵ	В		•
Mognëslum	c	c	c	Stellite			•
Mongenste	c	c	c	Tantalum	A	A	
Molybdenum	c	c	c	Tin	c	¢	ç
Mone	•	•	c	Tildnium	A A	Å	À
Nickel		•	c	Zinc	¢	C	C C

Table 1. Summary of the Comparative Compatibility of Various Materials With Hydrazine and Hydrazine Mixtures

CONFIDENTIAL

Poge 3

į.

Jet Propulsion Laborator;

CONFIDENTIAL

Table 1 (Cont'd)

Material	Anhydrous Isydrazine	Hy drazine Hydrate	Hydrazine- Hydrazine Nitrate- Water Mixtures	Material	Anhydrous Hydrazine	Hydrazine Hydrate	Hydrazine Hydrazine Nitrate Water Mixtures
			Plastics an	d Electomers			
Colluiose acolaie	c	c	c	Polyvinyl	c	c	c
Dioliyi		<u>ر</u>	c	Pohrvinyl		-	
Free				chloride			
E prom				(Korosea),			
English reals				Vinylite,			
Hurar				etc.)		•	B
Kabf				Rubber			
Lachingen	c	ċ	c l	Natural gum	c	c	c
Lucifie		i i	6	Synthetic	8	5	a
Malamian	-			Saran	c	c	c
farmeidehyde			1	Silostic			
Nyles			•	Teffen	A	A	A
Phenolic		5		Typen			•
Polyester	c	c	c	U.S. Rubber			
Pelyathylene	A	A	A	Piestic			
Polystwane and				17425	B		•
polydichla-				M20995		•	•
räityrana	c T	С	•	Veiolorm	e	c	C
			Miscoliania	urs Materials			
Ashestos		B		Silicone			
Glaiss				lebricants			
Sefi		A	A	DC-200			
Pyräx	A	A		DC-110			
Gréphité				DC-710			- B
Geophites	•	•		Plug-cock			
Pipe-joint comissionale				grebse Solder	•		
AN-C-53	•			Load-tin	1	B	L L
Oxyleal				Silvor	Ŀ	2	
Thread-Tite		•		Varnish			
Reat	C	c	c	Wood	c	C (c
				Wool	c	C C	c

Page 4

IV. COMPILATION AND EVALUATION OF EXPERIMENTAL DATA

A. Metals

1. Aluminum. Aluminum and a number of aluminum alloys are considered to be suitable for general use with hydrazine and hydrazine-hydrazine nitrate-water mix-tures containing as much as 20 to 30% hydrazine nitrate.

Picatinny Arsenal reports that aluminum alone, of all common metals tested, was unaffected after storage for 1 yr in anhydrous hydrazine, both at room temperature and at 149°F. Data from the Neval Ordnance Laboratory also indicate that aluminum was unaffected and had not significantly contributed to the decomposition of anhydrous hydrazine after contact for 1 yr at ambient temperatures. The data from other agencies are for tests of shorter duration, but, in general, substantiate these results within the time limits of the tests. Grades of aluminum for which at least some data exist and which, it is believed, can be used without restriction with anhydrous hydrazine are 2S, 2SO, 2SH, 3S and 3SH.

Data for aluminum alloys in contact with anhydrous hydrazine do not cover as lengthy periods of time as do those for pure aluminum. However, from the results of the tests, it is believed that aluminum alloys 75ST, 24ST, 52ST, and 61ST are all satisfactory, but should be given preference in the order shown. Experimental data are meager with regard to aluminum alloys 40E, 43, XA-545, and 716. Until additional data are available, it is concluded that alloys 43, XA-545, and 716 should be considered suitable only for short term application, but that 40E should be avoided because of the possibility that zinc might be leached from the alloy.

Test results for commercially pure aluminum with hydrazine nitrate mixtures have not been completely consisient. The Naval Ordnance Laboratory obtained varying data which indicated decreasing compatibility as the percentage of hydrazine nitrate was increased. However, this organization recommended that additional testing should be undertaken to clarify the results. The Navord data, as well as data from Mathiesen Chemical Corporation, indicate the acceptability of aluminum with hydrazinehydrazine nitrate-water mixtures containing approximately 20 to 30% hydrazine nitrate. It is believed that 2S, 2SH, and 3S aluminum should be considered completely acceptable in contact with hydrazine nitrate concentrations up to the percentages noted above, but that additional data should be obtained for long-term compatibility of the more concentrated nitrate mixtures.

The aluminum alloys 24ST, 52ST, 61ST, and 75ST appear to have been generally unaffected by the hydrazine nitrate mixtures and did not significantly influence the stability of these propellants. Consequently, it is considered that all these alloys are acceptable, but should be used in the same order of preference previously indicated for anhydrous hydrazine (75ST, 24ST, 52ST, and 61ST).

The apparent high degree of compatibility exhibited by aluminum in contact with hydrazine may result from the fact that aluminum ions are apparently noncatalytic in the decomposition of hydrazine (Ref. 1). It has also been reported (Ref. 2) that aluminum oxide (AI₂0₃) has a remarkable stabilizing effect upon hydrazine. Aluminum oxide formed on the metal surface may act as a buffer. In this respect, it would appear that anodization of aluminum in conte ' with hydrazine would be advantageous. Only one test is reported for anodized aluminum. In this test, which was performed with 45.0 wt % N₂H₈NO₃ and 9.9 wt % H₂O in N₂H₄ at 162 to 165°F, no reaction other than a slight discoloration of the solution was observed after 7 days.

Experimental Data

Material tested: Aluminum 25 (Alcoa 2S, 99% Al) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Rolled sheet Propellant: Anhydrous hydrazine (93.09%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 120 hr Results: Neglizible corrosion was observed.

Material tested: Aluminum 2SO Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric

CONFIDENTIAL

拉拉性动物和同种物和动产和4种型型LKno-sm

日本であるので見たるとなったの

IV. COMPILATION AND EVALUATION OF EXPERIMENTAL DATA

A. Metals

I. Aluminum. Aluminum and a number of aluminum alloys are considered to be suitable for general use with hydrazine and hydrazine-hydrazine nitrate-water mixtures containing as much as 20 to 30% hydrazine nitrate.

Picatinny Arsenal reports that aluminum alone, of all common metals tested, was unaffected after storage for 1 yr in anhydrous hydrazine, both at room temperature and at 149°F. Data from the Naval Ordnance Laboratory also indicate that aluminum was unaffected and had not significantly contributed to the decomposition of anhydrous hydrazine after contact for 1 yr at ambient temperatures. The data from other agencies are for tests of shorter duration, but, in general, substantiate these results within the time limits of the tests. Grades of aluminum for which at least some data exist and which, it is believed, can be used without restriction with anhydrous hydrazine are 2S, 2SO, 2SH, 3S and 3SH.

Data for aluminum alloys in contact with anhydrous hydrazine do not cover as lengthy periods of time as do those for pure aluminum. However, from the results of the tests, it is believed that aluminum alloys 75ST, 24ST, 52ST, and 61ST are all satisfactory, but should be given preference in the order shown. Experimental data are meager with regard to aluminum alloys 40E, 43, XA-545, and 716. Until additional data are available, it is concluded that alloys 43, XA-545, and 716 should be considered suitable only for short term application, but that 40E should be avoided because of the possibility that zinc might be leached from the alloy.

Test results for commercially pure aluminum with hydrazine nitrate mixtures have not been completely consistent. The Naval Ordnance Laboratory obtained varying data which indicated decreasing compatibility as the percentage of hydrazine nitrate was increased. However, this organization recommended that additional testing should be undertaken to clarify the results. The Navord data, as well as data from Mathiesen Chemical Corporation, indicate the acceptability of aluminum with hydrazinehydrazine nitrate-water mixtures containing approximately 20 to 30% hydrazine nitrate. It is believed that 2S, 2SH, and 3S aluminum should be considered completely acceptable in contact with hydrazine nitrate concentrations up to the percentages noted above, but that additional data should be obtained for long-term compatibility of the more concentrated nitrate mixtures.

The aluminum alloys 24ST, 52ST, 61ST, and 75ST appear to have been generally unaffected by the hydrazine nitrate mixtures and did not significantly influence the stability of these propellants. Consequently, it is considered that all these alloys are acceptable, but should be used in the same order of preference previously indicated for anhydrous hydrazine (75ST, 24ST, 52ST, and 61ST).

The apparent high degree of compatibility exhibited by aluminum in contact with hydrazine may result from the fact that aluminum ions are apparently noncatalytic in the decomposition of hydrazine (Ref. 1). It has also been reported (Ref. 2) that aluminum oxide (Al₂O₂) has a remarkable stabilizing effect upon hydrazine. Aluminum oxide formed on the metal surface may act as a buffer. In this respect, it would appear that anodization of aluminum in conta^{-*} with hydrazine would be advantageous. Only one test is reported for anodized aluminum. In this test, which was performed with 45.0 wt % N₂H₈NO₃ and 9.9 wt % H₂O in N₂H₄ at 162 to 165°F, no reaction other than a slight discoloration of the solution was observed after 7 days.

Experimenta! Data

Material tested: Aluminum 25 (Alcoa 28, 99% Al) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Rolled sheet Propellant: Anhydrous hydrazine (95.0%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 120 hr Results: Negligible corrosion was observed.

Material tested: Aluminum 2SO Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.63) Pressure: Atmospheric

CONFIDENTIAL

的目的是一种。但是是是

Pege 5

Jet Propulsion Laboratory

CONFIDENTIAL

Temperature: 20°C (68°F) Time: 24 days Results: No change was noted in t

Results: No change was noted in the specimen or the solution.

Material tested: Aluminum 2S Source of data: Ref. 5 Number of samples tested: 4 Shape of samples: Strip, 10 mm × 100 mm × 3 mm Propellants: 97.5% N₂H₄-1.9% H₂O-0.6% NH₃ 78.4% N₂H₄-18.1% N₂H₅NO₃-3% H₂O-0.5% NH₃

44.93 N₂H₄-45.33 N₂H₃NO₃-9.43 H₂O-0.43 NH₃ 19.63 N₂H₄-78.43 N₂H₃NO₃-1.83 H₂O-0.23 NH₂

Pressure: Closed system, initially atmospheric Temperature: Ambient Time: 36 to 344 days

Results: The results of this test are varied, depending on

the particular solution used. The test of 2S in the 45-45-10 mixture exhibited a large and rapid gas formation. The test was discontinued after 112 days, when 202 ml of gas had been collected. There was a large reduction in the weight of the strip, and extensive corrosion, mostly in the vapor phase, had occurred. The composition of the solution had not changed materially.

The test of 2S in the 19.6-78.4-1.8 solution showed a rapid rate of pressure rise for the first 36 days. At this time, the flask was accidentally broken. Subsequent retest of 2S in this solution showed no abnormal rate of pressure rise; however, at the end of 344 days, 15 cc of gas had been evolved as compared with the 9.6 cc obtained from the control solution after 384 days. These data, plus the fact that there was a greater reduction of N₂H₆NO₅ concentration in the test solution than in the control solution, indicate that the 2S increased the rate of decomposition. The strip showed a white incrustation at the immersed part, but only slight attack.

In anhydrous hydrazine and in the 78.4-18.1-3 solution, the strips were apparently unaffected, with the exception that the 78.418.1-3 sample showed slight discoloration. Sample-weight differences were negligible and the composition of the solutions had not altered significantly from that of the controls.

NAVORD recommends that a final conclusion regarding the compatibility of 2S aluminum with the hydrazine nitrate solutions should await further tests. Its use with anhydrous hydrazine appears acceptable.

Material tested: Aluminum 2S Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (S0°F) Time: 30 days Results: Slightly over 2% of the hydrazine was decomposed.

Material tested: Aluminum 2S

Source of data: Ref. 6

Number of samples tested: 1 or 2

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 60°C (140°F)

Time: 30 days

Results: Approximately 4% of the hydrazine was decomposed. This was about the same as that noted in the blank run in glass.

Material certed: Aluminum 25 Source of data: Ref. 6 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 4 mo Results: The sample was unaffected and did not decompose the hydrazine to any extent.

Material tested: Aluminum 25H-14 Source of data: Ref. 7 Number of samples tested: 3 Shape of samples: Strip, 2 in, × ½ in, × ½ in.

CONFIDENTIAL

Pièce 6

CONFIDENTIAL

Propellants: 957 N₂H₄-57 H₂O 657 N₂H₄-307 N₂H₃NO₃-57 H₂O 607 N₂H₄-307 N₂H₅NO₃-107 H₂O

Pressure: Atmospheric Temperature: 60°C (140°F)

Time: 2 wk

Results: A slight weight increase (0.03%) and a slight scale formation at the liquid-vapor interface occurred with the anhydrous hydrazine solution; the hydrazine remained colorless. No weight change took place in the hydrazine nitrate solution with 5% water, but a slight yellowing of the solution was observed. A weight loss of 0.01% was noted in the hydrazine nitrate solution with 10% water, and the solution showed yellowing. The color change is believed due to the presence of traces of aniline in the hydrazine. No dimensional changes occurred in any samples.

Material tested: Aluminum 3S Source of data: Ref. 8 Number of samples tested: 2 Shape of samples: Strip Propellant: 70% N₂H₄-25% N₂H₅NO₃-5% H₂O Pressure: Atmospheric Temperature: 71°C (100°F) Time: 9 wk Results: The test solution had not changed significantly, and the specimen appeared unaffected.

Material tested: Aluminum 35 Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric

Temperature: 28°C (80°F) Time: 30 days Results: Approximately 1.5% of the hydrazine was decomposed.

Material tested: Aluminum 3S Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric
Temperature: 60°C (140°F)
Time: 30 days
Results: The hydrazine was approximately 9% decomposed.

Material tested: Aluminum 3SH-14 Source of data: Ref. 7 Number of samples tested: 3 Shape of samples: Strip, 2 in. × ¼ in. × ¼ in. Propellants: 95% N₂H₄-5% H₂O 65% N₂H₄-30% N₂H₅NO₅-5% H₂O 60% N₂H₄-30% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: 60°C (140°F) Time: 2 wk

Results: A weight increase of 0.01% occurred in the specimen tested in the anhydrous hydrazine solution, accompanied by some scale at the liquid-vapor interface. The solution remained colorless. In both the hydrazine nitrate mixtures, the samples showed a weight loss of 0.02%, accompanied by yellowing of the solution. The yellowing is believed due to the trace presence of any of the samples.

Material tested: Aluminum Source of data: Ref. 9 Number of sample: tested: 1 Shape of sample: Strip, 5 cm × 1 cm × 9.4 cm Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo Results: No change was observed in the weight or appearance of the sample at the end of 12 mo.

Material tested: Aluminum Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip, 5 cm × 1 cm × 0.4 cm Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 12 mo Résults: No change had occurred in the weight or appearance of the sample at the end of 12 mo.

CONFIDENTIAL

Paga 7

Jet Propulsion Laboratory

And the State of t

Jet Propulsion Laboratory

Material tested: Anodized aluminum (green) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Strip Propellant: 45% N₂H_{*}45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (162 to 165°F) Time: 7 days Results: A color change took place in the solution. Otherwise, no reaction was apparent.

Material tested: Aluminum 24ST Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (\US.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change was observed in the specimen or the solution.

Material tested: Aluminum 24ST Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Strip Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (162 to 165°F) Time: 7 days Results: No loss or gain in weight was noted. The specimen apparently remained unaffected.

Material tested: Aluminum 24ST-3 Source of data: P.ef. 7 Number of samples tested: 3 Shape of samples: Strip, 2 in. × ½ in. × ½ in. Propellants: 95% N₂H₄-5% H₂O 65% N₂H₄-30% N₂H₃NO₃-5% H₂O 60% N₂H₄-30% N₂H₃NO₃-10% H₂O Pressure: Atmospheric

Temperature: 60°C (140°F)

Time: 2 wk

Results: A weight increase of 0.07% was noted for the specimen in the anhydrous hydrazine, with a slight scale formation at the liquid-vapor interface. No change occurred in the color of the solution. The sample in the hydrazine nitrate solution with 10% H_4O showed a 0.20% weight gain. Both solutions had turned yellow; this was believed due to the presence of traces of aniline. No change in dimension occurred for any of the sample:

CONFIDENTIAL

Material tested: Aluminum 24ST Source of data: Ref, 11 Number of samples tested: 3 Shape of samples: 8-ce bomb of 24ST alloy with pressure gage, 50% ullage Propellants: 98% N₂H₄-2% H₂O 65% N₂H₄-30% N₂H₅NO₅-5% H₂O 60% N₂H₄-30% N₂H₅NO₅-10% H₂O Pressure: Initially atmospheric Temperature: 60°C (140°F) Time: 30 days Results: During the initial beating period, the pressures

in the bombs rose rapidly to 4 to 8.5 psig. The rate of pressure rise decreased with time for all the bombs. The rate for the anhydrous hyrazine averaged 0.17 psi/day, based on final pressure at 18°C. The bomb containing the hydrazine nitrate the twith 5% water showed an average pressure rise of 0.13 psi/day. The bomb containing the hydrazine nitrate mixture with 10% water showed an average pressure rise of 0.17 psi/day. It is believed that most of the initial pressure rise was due to NH₃ vapor pressure.

Material tested: Aluminum 24S Source of data: Ref. 12 Number of samples tested: 2 Shape of samples: Strip Propellant: Eutectic hydrazine (actual N₂H₄-H₂O proportions not given) Temperature: Ambient Time: 30 days Mesults: With hydrazine from Mathieson, there was a heavy brown deposit on the specimen. With hydrazine from Fairmount, the material was black and badly corroded.

Material tested: Aluminum 24S Source of data: Ref. 12 Number of samples tested: 2 Shape of samples: Strip

CONFIDENTIAL

1 Ant Propulsion Laboratory

Propellant: Eutectic hydrazine (N₂H₄-H₂O proportions not given)
Pressure: Atmospheric
Temperature: 49°C (120°F)
Time: 30 days
Results: The specimen in Mathieson hydrazine had a

- light brown deposit. The specimen in Fairmount hydrazine was black and badly corroded.
- Material tested: Aluminum 40E (5% Zn, 0.5% Cr, 0.2% Ti, 1.0% Fe, 0.4% Cu, 0.3% Mn, 0.3% Si, balance Al)

Source of data: Ref. 3

Number of samples tested: 1

Shape of sample: Cast section

Propellant: Hydrazine hydrate (66% N₂H₄)

Pressure: Atmospheric

Temperature: 14 to 24°C (57 to 75°F)

Time: 67.5 hr

Results: Slight corrosion occurred, causing a 0.07% change in weight. Zinc-bearing alloys should be avoided.

Material tested: Aluminum 43 (5.0% Si, 0.8% max Fe) Source of data: Ref. 3 Number of samples tested: 1 Shape of sumple: Cast section Propellant: Hydrazine hydrate (66% N₂H₄) Pressure: Atmospheric Temperature: 14 to 25°C (57 to 77°F) Time: 67.5 hr Results: The surface of the sample turned blue. No change occurred in the weight of the sample.

Material tested: Aluminum 52ST Source of aatu: Ref. 10 Number of samples tested: 2 Shape of samples: Strip Propellant: 45% N₂H₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (162 to 165°F) Time: 7 days Results: No loss or gain in the weight of the samples was observed.

Material tested: Aluminum 52ST Source of data: Ref. 8 Number of samples tested: 2 Shape of samples: Strip Propellant: 70% N₂H₄-25% N₂H₅'4O₅-5% H₂O Pressure: Atmospheric Temperature: 71°C (160°F) Time: 9 wk Results: The test solution had not changed significantly, and the specimens appeared unaffected.

Material tested: Aluminum 52SH-34 Source of data: Ref. 7 Number of samples tested: 3 Shape of samples: Strip, 2 in. × ½ in. × ½ in. Propellants: 95% N₂H₄-5% H₂O 65% N₂H₄-30% N₂H₂NO₃-5% H₂O 60% N₂H₄-30% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: 60°C (140°F) Time: 2 wk Results: The samples showed a 0.03% weight increase in anhydrous hydrazine, with slight scale at the interface, but no solution discoloration. The tests in both hydrazine nitrate solutions showed 0.01% weight losses and solution yellowing. The

0.01% weight losses and solution yellowing. The yellowing is believed to be caused by trace quantities of aniline. No change in the dimensions of any of the samples was noted.

Material tested: Aluminum 61ST Source of data: Ref. 10 Number of samples tested: 2 . Shape of samples: Strip Propellen:: 45% N₂II₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (162 to 165°F) Time: 7 days Results: No loss or gain in weight was noted in either specimen.

Material tested: Aluminum 61ST Source of data: Ref. 8 Number of samples tested: 2 Shape of samples: Strip Propellant: 70% N₂H₄-25% N₂H₅NO₃-5% H₂O Pressure: Atmospheric Temperature: 71°C (160°F) Time: 9 wk Results: The samples were slightly tarnished and showed

CONFIDENTIAL

Pegè 9

Trans.

Jet Propulsion Laboratory

CONFIDENTIAL

a slight weight increase. The test solution had not changed significantly.

Material tested: Aluminum 61ST-6 Nource of data: Ref. 7 Humber of samples tested: 3 Shape of samples: Strip, 2 in. × ½ in. × ½ in.

Propellants: 95% N2H4-5% H2O

65% N₂H₄-30% N₂H₅NO₃-5% H₂O 60% N₂H₄-30% N₂H₅NO₃-10% H₂O

Pressure: Atmospheric

Temperature: 60°C (140°F)

Time: 2 wk

Results: The sample in the anhydrous hydrazine solution showed a 0.06% weight increase and a slight scale at the vapor-liquid interface. No solution discoloration was noted. The sample in the hydrazine nitrate solution with 5% water showed no weight change. The sample in the hydrazine nitrate solution with 10% water showed a 0.02% weight increase. Both solutions were slightly yellow; this is believed due to the presence of aniline. No change in the size of any of the samples was noted.

Material tested: Aluminum 61ST

Source of data: Ref. 11

Number of samples tested: 3

Shape of samples: 8-cc bomb of 61ST alloy with pressure gage, 50% ullage

Propellants: 95% N₂H₄-2% H₂O

65% N1H-30% N1H1NO3-5% H1O

60% N2H-30% N2H NO3-10% H2O

Pressure: Initially atmospheric

Temperature: 60°C (140°F)

Time: 30 days

Results: During the initial heating period, pressures rose to 6 to 8 psig. The rate of pressure rise decreased with time for all the bombs. The average rate of pressure rise over the 30-day test of the anhydrous hydrazine, based on a final temperature of 18°C, was 0.22 psi/day. The 5% and 10% water mixtures of hydrazine nitrate showed average pressure rises of 0.18 psi/day.

Material tested: Aluminum 75ST-6 Source of data: Ref. 7 Number of samples tested: 3

Page 10

Shape of samples: Strip, 2 in. \times ½ in. \times ½ in. \times ½ in. Propellants: 95% N₂H₄-5% H₂O

65% N₂H₄-30% N₂H₆NO₃-5% H₂O 60% N₂H₄-30% N₂H₆NO₃-10% H₂O

Pressure: Atmospheric

Temperature: 60°C (140°F)

Time: 2 wk

Results: The samples in anhydrous hydrazine shower a 0.04% weight increase, and a slight scale at the liquid-vapor interface, but no change in solution color. The sample in hydrazine nitrate solution with 5% water showed no weight change. The sample in hydrazine nitrate solution with 10% water showed a 0.01% weight increase. Both hydrazine nitrate solutions turned yellow. It is believed that the yellowing was due to trace quantities of amline. No change in size was noted for any of the samples.

Material tested: Aluminum 75ST-6 (Alclad)

Source of data: Ref. 7

Number of samples tested: 3

Shape of samples: Strip, 2 in. \times $\frac{1}{2}$ in. \times $\frac{1}{2}$ in.

Propellants: 95% N₂H₄-5% H₂O

657 H.-30% N.H.NO.-5% H.O

60% N2H4-30% N2H4NO3-10% H2O

Pressure: Atmospheric Temperature: 60°C (1.40°F)

Lemperature: 00°C (1.40°)

Time: 2 wk

Results: The test in anhydrous hydrazine was interrupted before a weight change was noted. The solution remained colorless, however. Both hydrazine nitrate solutions turned yellow, but the sample showed no weight change. The yellowing was believed due to the presence of aniline. No dimensional changes in the samples were noted.

Material tested: Aluminum 75ST Source of data: Ref. 11 Number of samplas tested: 3 Shape of samples: 8-cc bomb of 75ST alloy with pressure gage, 50% ullage Propellants: 96% N₂H₂-2% H₂O 65% N₂H₂-30% N₄H₆NO₅-5% H₂O

60% N2H1-30% N2H5NO5-10% H2O

Pressure: Initially atmospheric Temperature: 60°C (140°F)

CONFIDENTIAL

Time: 30 days

Results: During the initial heating period, a pressure rise of 3.5 to 9 psig was noted. The rate of pressure rise decreased with time for all the bombs. The average rate of pressure rise over the 30-day period for anhydrous hydrazine, based on a final temperature of 18°C, was 0.10 psi/day. The hydrazine nitrate mixture with 5% water showed the same average pressure rise. The hydrazine nitrate mixture with 10% water gave an average pressure rise over the 30-day period of 0.12 psi/day. It is of interest to note that 75ST aluminum had a lower average pressure rise than did 24ST or 61ST, which were tested in the same manner.

Material tested: Aluminum 75ST

Source of data: Ref. 13

Shape of sample: 8-cc cylinder of 75ST with pressure gage, 10% ullage

Propellants: 100% N₂H₄

70% N2H4-30% N2H5NO3 80% N2H4-20% HNO3 60% N2H4-30% N2H5NO3-10% H2O

Pressure: Initially atmospheric

Temperature: 60°C (140°F)

Time: 3 mo

Results: An initial pressure rise of 5 to 10 psig occurred within the first few hours, apparently resulting from the vapor pressure of ammonia present in the propellant and not from decomposition. Slight decomposition occurred, as evidenced by a gradual increase in pressure; however, the rate of decomposition decreased with time.

Material tested: Aluminum XA-545

Source of data: Ref. 7

40

Number of samples tested: 3

Shape of samples: Strip, 2 in. × 1/4 in. × 1/6 in.

Propellants: 35% N2H4-5% H2O

65% N₈H₄-30% N₂H₅NO₃-5% H₂O 60% N₂H₄-30% N₂H₆NO₅-10% H₂O

Pressure: Atmospheric

Temperature: 00°C (140°F)

Time: 2 wk

Results: 'The sample in anhydrous hydrazine showed a 0.04% weight increase; a slight scale appeared at the vapor-liquid interface; no color change was

CONFIDENTIAL

observed in the solution. The hydrazine nitrate solutions turned yellow, probably because of the tare presence of aniline, but the samples showed any weight change. None of the samples showed any changes in dimension.

Material tested: Aluminum 716 (Alcoa welding-rod designation)

Source of data: Ref. 6

Number of samples tested: 1 or 2

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%)

Prossure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: Approximately 25 hydrazine decomposition was observed (about %% more than that noted in the blank run in glass).

Material tested: Aluminum 716 (Alcoa welding-rod designation)

Source of data: Ref. 6

Number of samples tested: 1 or 2

Shape of samples Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 60°C (140°F) Time: 30 days

Time: 50 days

Results: Approximately 47 hydrazine decomposition was observed (about the same 35 that noted in the blank run in glass).

2. **Brase.** It is believed that brass should be avoided for general use with hydrazine and should be avoided completely with hydrazine nitrate mixtures. From a corrosion standpoint, it is believed that contact periods should not exceed a duration of a few months. Mathieson Chemical Corporation determined, during the course of thermal-decomposition studies of anhydrous hydrazine in a brass bomb at temperatures up to 500°F, that there was an apparent leaching-out of the zinc after several consecutive tests. The interior surface of the bomb had the appearance of copper (Ref. 11).

In view of the large proportion of copper present in brass, it would appear that some difficulties might be encountered under conditions where the copper might be 1

oxidized in air. These oxides would be capable of exothermic reduction by hydrazine.

As indicated below, brass appeared to be unsatisfactory in contact with a 45-45-10 hydrazine-hydrazine nitratewater mixture. A definite gas evolution and a salt formation were noted after a few hours of contact.

It is believed that the recommendations given in the evaluation of copper (Sec. IV-A-4) are applicable to brass.

Experimental Data

Material tested: Commercial brass Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₃NO₃-10% H₂O Pressure: Atmospheric Tomperature: Ambient Time: A few hours Results: A definite evolution of gas and a salt formation at the vapor-liquid interface were observed.

Material tested: Brass Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Timc: 24 days Results No change in the specimen was noted.

Material tested: Brass Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 3.5% hydrazine decomposition was noted.

Material tested: Brass Source of data: Ref. 6 Number of samples tested: 1 or 2

Page 12

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%) Pressure: Cloced system, initially atmospheric

Temperature: 60° C (140°F)

Time: 30 days

Results: Approximately 4.5% hydrazine decomposition was observed (about the same decomposition as that noted in the blank run in glass).

Material tested: Brass

Source of data: Ref. 6

Number of samples tested: 1

Shape of sample: Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 60°C (140°F)

Time: 4 mo

Results: The sample was unaffected and did not decompose the hydrazing to any extent.

3. Cobalt. The available compatibility-test data indicate that cobalt is completely unsatisfactory for use with hydrazine nitrate mixtures. No experimental data relating to the compatibility of cobalt with pure hydrazine are available. However, it is known that metallic cobalt in finely divided form will catalyze the decomposition of hydrazine (Ref. 1). In addition, where hydrazine has been subjected to some salt or acid contamination, it has been found that cobaltic ions are capable of oxidizing hydrazine (Ref. 14). The compatibility of cobalt in sheet form has not been determined, and it may well be that the catalytic effect is reduced to a point where the material may have some degree of acceptability. In the absence of specific test data, however, it is believed that cobalt should be avoided.

Experimental Data

Material tested: Cobalt Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperaturs: Ambient Time: A few hours

and the second states of the s

Jet Propulsion Laboratory

いいない

Results: A definite evolution of gas and a salt formation were noted.

4. Copper. It is recommended that copper be avoided for use with both hydrazine and hydrazine nitrate mixtures.

It is well-known that copper oxide, like iron oxide, is readily reduced by hydrazine, and that this reaction can be extremely violent. Also, laboratory tests have been conducted which indicate that cupric ions in solution with hydrazine cause more-than-normal decomposition (Ref. 1). In other studies, it was found that traces of dissolved copper strongly catalyzed auto-oxidation of hydrazine in air. (These tests were conducted by Audrieth and Mohr and are mentioned in Ref. 1.)

The hazards involved in the use of copper as a general construction material are illustrated by the experience of Mathieson Chemical Corporation (Ref. 1). In 1947, on the basis of the experience in preliminary compatibility tests, copper was chosen for fabrication of a hydrazine flash-distillation unit. The choice appeared satisfactory for almost 2 yr. Oxide film and/or oxide-welding-slag inclusions, which were later recognized as decomposition catalysts, eventually caused an explosion in the copper .411. Battelle Memorial Institute reports (Ref. θ) that copper equipment in the Fairmount Chemical Company plant was found to be unsatisfactory.

It appears that copper falls into the same category as mild steel or iron, in that it would be acceptable under controlled conditions where it is not allowed to become oxidized, and where there is no possibility of contamination of the hydrazine.

凵

Experimental Data

Material tested: Copper Source of tlata: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the specimen was noted. Material tested: Copper Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO_x-10% H₂O Pressure: Atmospheric Temperature: Ambient Time: A few hours Results: A definite evolution of gas and a salt formation were present at the vapor-liquid interface. Material tested: Copper Source of data: Ref. 9

Number of samples tested: 1

Shape of sample: Strip

Propellant: Anhydrous hydrazine (95.1%)

Pressure: Atmospheric

Temperature: 21 to 23°C (70 to 73°F)

Time: 12 mo

Results: When checked cach month, the sample showed a loss in weight. The test was discontinued during the twelfth month.

Material tested: Copper

Source of data: Ref. 9

Number of samples tested: 1

Shape of sample: Strip

Propellant: Anhydrous hydrazine (95.1%)

Pressure: Atmospheric

Temperature: 65°C (149°F)

Time: 8 mo

Results: At the end of 8 mo, there was very heavy corrosion of the sample. The jost was then discontinued.

Material tested: Copper

Source of data: Ref. 15

Number of samples tested: 1 or 2

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: -Approximately 1% hydrazine decomposition was observed. At ambient temperatures, copper showed the lowest percentage of hydrazine decomposition of any material tested by Battelle.

CONFIDENTIAL

Jet Propulsion Laboratory

I.

Material tested: Copper Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 30 days Results: Approximately 27% decomposition of the hydrazine was noted. Ac 140°F, copper was the worst of all materials tested by Battelle.

5. Inconel. The available test data indicate that insignificant corrosion of Inconel occurs after contact with anhydrous hydrazine for time periods of at least a month. Since the principal constituent of Inconel is nickel, it is believed that the evaluation given for nickel (Sec. IV-A-13) should be referred to, and that the same precautions should be observed as those taken with pure nickel.

Inasmuch as no data are available with regard to the compatibility of Inconel with hydrazine nitrate mixtures, and in view of the limited corrosion resistance exhibited by nickel in contact with hydrazine nitrate mixtures, it is believed that contact with the nitrate mixtures should be avoided unless specific screening tests are undertaken.

Experimental Data

Material tested: Inconel (81% Ni, 13% Cr, 6% Fe) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Sheet, 50 cm² Propellant: Anhydrous hydrazine (95.09%) Pressure: Atmospheric Temperature: £0 to 25°C (68 to 77°F) Time: 120 hr Results: Negligible corrosion was noted.

Material tested: Inconel Source of data: Ref. 4 Number of samples test 1: 1 Shape of sample: Striv Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the sample was observed. Material tested: Inconel Source of daia: Ref. 6 Number of san; cles tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 2% hydrazine decomposition was noted (about ½% more than that for the blank run in glass).

6. Inconel X. Only limited test data are available for Inconel X. Consequently, it is believed that the evaluation given for Inconel (Sec. IV-A-5) should be followed until additional data are available.

Experimental Data

Material tested:	Inconel X (0.05% Cb, 0.49% Mn, 0.53% Si,
	74.04% Ni, 14.24% Cu, 6.80% Fe, 2.20% Ti)
Source of data:	Ref. 3
Number of samp	les tested: 1
Propellant: Hy	' zine hydrate (66% N ₂ H ₄)
Pressure: Atmo	spheric
Temperature: 1	3 to 23°C (56 to 73°F)
<i>Time:</i> 67.5 hr	
Results: No evi	dence of corrosion was found.

7. Iron. All forms of iron are considered to be completely unsatisfactory for use with hydrazine or hydrazine nitrate mixtures.

It is well-known (Refs. 1 and 14) that iron oxide is readily reduced by hydrazine, and that this reduction, being exothermic, can become explosive under certain conditions. In addition to the hazards encountered with iron oxide, it has been found that metallic iron in finely divided form, and also ferric ions, markedly catalyze the decomposition of hydrazine. Since the general co-rosion resistance of iron is poor, any salt or acid contamination of hydrazine would cause the introduction of iron impurities into the hydrazine.

If contact with oxygen and contamination of hydrazine could be completely avoided, iron would probably perform as a satisfactory material.

Page 14

正法に置けたいたい

Jet Propulsion Laboratory

語をない

Experimental Data

Material tested: Cast iron Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: Amblent Time: A few hours Results: The solution had a cleaning effect on the surface, and gas evolution was noted. Use of this material is not recommended.

Material tested: Armco iron Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: Ambient Time: A few hours Results: Salt formation and gas evolution were noted.

Material tested: Electrolytic iron Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: Ambient Time: A few hours Results: Definite evolution of gas and salt formation were observed.

Material tested: Wrought iron Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₂-45% N₂H₂NO₃-10% H₂O Pressure: Atmospheric Temperature: Amblent Time: A few hours Results: A reaction on the surface and definite gas evolution were noted.

Material tested: Soft iron Source of data: Ref. 9

CONFIDENTIAL

Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.12) Pressure: Atmospherk Temperature: 21 to 23°C (70 to 73°F) Time: 9 mo

Results: A considerable weight loss was noted each month. Very heavy corrosion and pitting were observed in the eighth month. The corrosion and pitting were so severe by the ninth month that the test was discontinued.

Material tested: Soft iron

Source of data: Ref. 9

Number of samples tested: 1

Shape of sample: Strip

Propellant: Anhydrous hydrazine (95.1%)

Pressure: Atmospheric

Temperature: 65°C (149°F)

Time: 10 mo

Realts: A weight loss was noted by the fifth month and each month thereafter. By the tenth month, the very heavy corrosion forced an end to the test.

Matérial tested: Pure fron

Source of data: Ref. 6

Number of samples tested: 1 or 2

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 20°C (80°F)

Time: 30 days

Results: Approximately 2.5% hydrazine decomposition was observed, and a pressure increase of 50 min Hg occurred. This material is considered unsatisfactory for use with hydrazine.

Material tested: Pure iron Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 30 days Results: Approximately 2.0% hydrazine decomposition

esuits: Approximately 2.06 hydrazine decomposition was noted (a blank run in glass showed 4.55 decomposition). A pressure increase of 100 mm

Poge 15

Hg occurred. This material is considered unsatisfacto y for use with hydrazine.

8. Lead. All the compatibility-test data available, with the exception of findings in a test made by NACA, indicate virtually inomediate reaction with lead in contact with either anhydrous hydrazine or hydrazine nitrate mixtures. In view of the obvious high rate of corrosion, lead is considered to be completely unsatisfactory for use with hydrazine cr hydrazine nitrate mixtures.

Experimental Data

Material tested: Lead Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: A definite reaction was observed, with a yeilow

salt formation and loss of weight in the specimen.

Material tested: Lead Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change was noted in the specimen.

Material tested: Lead Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydro 15 hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 22 hr

Results: The sample reacted immediately, and severe corrosion was apparent in 22 hr. The test was discontinued.

Material tested: Lead Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Etrip Propellant: Anhydrous hydrazine (95.12) Pressure: Atmospheric Temperature: 65°C (149°F) Time: Minutes Besults: The sample reacted immediately of

Results: The sample reacted immediately, and the solution turned blue. The test was discontinued.

9. Magnesium. Magnesium is considered to be completely unsatisfactory for use with anhydrous hydrazine. All organizations that have undertaken compatibility tests have observed an almost immediate reaction, resulting in the evolution of large volumes of gas and severe corrosion of the magnesium. No experimental data are available on the compatibility of magnesium with hydrazine hydrate; it seems likely, however, that such data would also be unsatisfactory.

Only one test with hydrazine nitrate mixtures is reported. Some reaction was noted, apparently severe enough to warrant abandonment of further testing. On the basis of this test it appears that magnesium is unsuitable for use with hydrazine nitrate mixtures.

Experimental Data

Material tested: Magnesium Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazane (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 24 hr Results: The sample lost weight so rapidly that the test was discontinued after 24 hr.

Maturial tested: Magnesium Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: Minutes

Pose 16

Results: A reaction occurred immediately, giving off hydrogen. The test was discontinued.

Material tested: Magnesium alloy M-1 Source of data: Ref. 16 Number of samples tested: 6 Shape of samples: %-in. sheet Propellant: Anhydrous hydrazine (96%) Pressure: Atmospheric

Temperature: Ambient

Time: 24 hr

Results: All the samples were withdrawn after 24 hr. The samples were pitted, and a heavy white precipitation appeared in the solution.

Material tested: Magnesium Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.3%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days

Results: Approximately 1.25% hydrazine decomposition was indicated by chemical analysis; however, a pressure increase of 474 mm Hg was noted. Magnesium is not considered satisfactory for use with hydrazine.

Material tested: Magnesium Source of data: Ref. 10 Number o, supples tested: 2 Shape of samples: Strip Propellant: 45% N₂H₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric

Temperature: 72 to 74°C (161 to 165°F)

Time: 7 days

Results: No weight change was observed in the sample; however, gas evolution and surface blackening were noted. The material was not considered promising enough to warrant further testing.

10. Manganese. Only one test on the compatibility of manganese with hydrazine has been reported. This test was made with a 45% hydrazine-45% hydrazine nitrate-10% water mixture. Excessive gas formation was noted almost immediately, and the test was discontinued after a

CONFIDENTIAL

few hours. The compatibility of manganese with hydrazine nitrate solutions is considered to be unsatisfactory.

In view of the meager data, it is believed that testing with anhydrous hydrozine should be undertaken before a firm conclusion is drawn. For the present, in the absence of specific testing, it is believed that the use of manganese should be avoided.

Experimental Data

Material tested: Mangauese Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Strip Propellant: 45% N₂H₄-45% N₂H₅NO₄-10% H₂O Pressure: Atmospheric Temperature: Ambient Time: A few hours Results: An obvious reaction, with excessive gas formation, was noted, and the test was discontinued.

tion, was noted, and the test was discontinued. This material is considered unsatisfactor: for use with hydrazine.

11. Molybdenum Molybdenum is considered to be completely unacceptable for use with hydrazine or hydrazine nitrate mixtures.

From the standpoint of corresion, molybdenum appears to possess limited suitability with hydrazine; however, it is known that molybdenum strongly catalyzes the decomposition of liquid hydrazine and, for this reason, is unacceptable. Molybdenum has been found to catalyze hydrazine decomposition, when present in a finely divided metallic form. In addition, it is known that, under suitable conditions, hydrazine enters spontaneously into a combustion reaction with oxidized molybdenum (MoO₃) (Ref. 1). Apparently, even small quantities of molybdenum in various alloys are sufficient to produce a marked increase in the decomposition of hydrazine. A series of vapor-phase decomposition tests was made by Olin Industries (Ref. 1), in which various metals were exposed in the vapor phase of refluxing hydrazine. The tests with 316 stainless steel (45 Mo) and with Hastelloy A (70% Ni, 30% Mo) yielded appreciably larger pressure rises than those observed with 304 stainless steel and nickel. Over a time period of 14.5 hr, the pressure rise for 304 stainless was 31 mm Hg; for 316 stainless, it was 194 mm Hg; and, for pure nickel, it was 79 mm Hg. For Hastelloy A, the pressure rise was 198 mm Hg in only 2 hr.

Experimental Data

Material tested: Molybdenum (sintered, swaged, and rolled by Westinghouse) Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Disk cut from sintered bar Propellant: Anhydrous hydrazine (95.097) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 75°F) Time: 120 hr Results: Penetration of the samples was negligible.

Material tested: Molybdenum (sheet, plated with 0.004in. chrome) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydrous hydrazine (93.23%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 75°F) Time: 169 hr Results: No change in the weight of the sample was observed.

Material tested: Molybdenum Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: Ambient Time: A very short time Results: Gas evolution occurred upon contact of the

sample with the solution. Testing was immediately discontinued.

Material tested: Molybdenum Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially otmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 1.57 hydrazine decomposition was noted.

12. Monel. The available test this concerning Monel in contact with anhydrous hydrazine indicate negligible corrosion for a time period of approximately 1 mo. Monel does not appear suitable for use with hydrazine nitrate mixtures.

More important than the corrosion aspects, however, is the fact that Monel is composed of 67% Ni, 30% Cu, 1%Fe, 1% Mn. All these elements, in either ionic or finely divided for a, here been observed to be catalytic in the decomposition of hydrazine. For specific information, the reader is referred to the recommendations given for each of these metals elsewhere in this Memorandum.

It is therefore believed that Monel should be avoided for general use with hydrazine and should not be used at all with the nitrate mixtures. If, for some reason, the use of Monel is particularly desired, care should be taken to assure that the hydrazine is uncontaminated, that oxidation conditions are not present, and that contact time is limited.

Experimental Data

Material tested: Monel (67% Ni, 30% Cu, 1% Fe, 1% Mn) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Rolled sheet Propellant: Anhydrous hydrazine (97.63%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 75°F) Time: 92 hr Results: A penetration of 0.00011 in./yr was recorded. A very light attack on the surface of the sample was noted.

Material tested: Monel Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: Less than 7 days

Page 18

信いる単ないいちゃ

日本にある

Results: The sample was removed from the oven after salt formation was observed in the solution.

Material tested: Monel Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the specimen was observed.

Material tested: Monel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: '26°C (80°F) Time: 30 days Results: Approximately 1.5% hydrazine decomposition

was recorded (slightly more than that noted in the blank run in glass).

13. Nickel. From the standpoint of corrosion, nickel appears to be relatively unaffected by contact with anhydrous hydrazine for periods of 1 to 2 mo. The only test data for hydrazine nitrate mixtures indicate that a reaction occurred after several hours at 165°F.

Nickel in finely divided form (Haney Nickel) has been observed to catalyze hydrazinc decomposition. Here again, as with stainless steel, cobalt, etc., the controlling factor appears to be the extended surface area (Ref. 2). Ions of nickel have been found to be noncatalytic in pure hydrazine (Ref. 1); however, where the hydrazine has been contaminated (with some acidic or basic substance), and hydrazine salts are present, catalytic decomposition of the hydrazine may occur (Ref. 2).

Therefore, nickel should be avoided for use with hydrazine where intermittent atmospheric contact may occur, or where impure hydrazine is likely to be present. Where adequate precautions are taken, nickel appears to be suitable for limited time periods. The use of nickel with hydrazine nitrate mixtures is not recommended.

Experimental Data

Material tested: Commercially pure nickel Source of data: http://www.source.com/ Shape of samples tested: 1 Shape of sample: Rolled shet: Propellant: Anhydrous hydrazine '97.63%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 75°F) Time: 92 hr Results: No evidence of corrosion was found.

Marerial tested: Nickel Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the specimen was observed.

Material tested: Nickel Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: ^cheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: 74°C (165°F) Time: 24 hr Results: Salt formation became apparent after a short period of time. The specimen was removed

period of time. The specimen was removed from the oven, and the test was discontinued.

Material tested: Nickel Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrouv hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo Hesults: A weight loss in the sample was noted each month.

Material tested: Nickel Source of data: Ref. 9 Number of samples tested: 1

CONFIDENTIAL

Jet Propulsion Laboratory

CONFIDENTIAL

Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (165°F) Time: 10 mo

Results: A weight loss was noted during the fifth month and each month thereafter. By the tenth month, the very heavy corrosion necessitated discontinuing the test.

Material tested: Nickel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 12 hydrazine decomposition was noted.

Material tested: Nickel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 30 days Results: Approximately 24% hydrazine decomposition was observed (about 6 times the value for the

blank run in glass).

Material tested: A-Nickel (99.4% Ni + Co) Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days

Results: Approximately 2.25% hydrazine decomposition was found (a blank run in glass showed 1.5% decomposition).

14. Nickel-chromium alloys. The only available data were obtained from tests made with a nickel-chromium alloy in contact with a hydrazine nitrate mixture. Because of the scarcity of data, and also because of the similarity of this alloy to pure nickel, it is believed that, at least for the present, the evaluation given tor nickel should be followed.

Experimental Data

Material tested:	Nickel-chromium alloy (75% Ni, 12% Cr, 9% Fe, 5% Cu)										
Source of data:	Ref. 10										
Number of samp	les tested: 2										
Shape of samples: Sheet											
Propellant: 45% N2H,-45% N2H3NO3-10% H2O											
Pressure: Atmo	spheric										
Temperature: 7	4°C (165°F)										
Time: 24 hr											
Results: Forma after a remove	tion of salt in the solution was noted short period of time. The sample was ad from the oven, and the test was dis-										
contin	ned.										
Material tested:	Nickel-chromium alloy (Nichrome, 613 Ni, 153 Cr, balance Fe)										
Source of data:	Ref. 6										
Mr. I and a start	Instantal I and										

Number of samples tested: 1 or 2

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: Approximately 1.5% hydrazine decomposition was observed (a slightly lighter decomposition than that noted in the blank run in glass).

Material tested: Nickel-chromium alloy (Chromel-A) Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 3% hydrazine decomposition was recorded (about twice that obtained with the

blank run in glass).

Page 20

÷

CONFIDENTIAL

٨.

Jet Propulsion Laboratory

15. Silver. Only one source of data has been found relating to the compatibility of silver with anhydrous hydrazine. From these data, silver appears to be suitable, from a corrosion standpoint, for use with hydrazine for at least a month. However, Mathieson Chemical Corporation reports (Ref. 1) that hydrazine is capable of reducing the salts and oxides of silver, with a possible acceleration of the decomposition of the hydrazine. For this reason, silver should be avoided for general use.

Experimental Data

Material tested: Silver Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrons hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 2% hydrazine decomposition was

observed (about ½% more than that obtained in the blank run in glass).

18. Steel (mild). Mild steel of any type is considered to be undesirable for contact with hydrazine or hydrazine nitrate mixtures.

From a corrosion standpoint, the available test data indicate that, in general, there is negligible corrosion of mild steel in contact with anhydrous hydrizine for time periods of approximately 1 mo. After more extended periods, the corrosion and weight loss are more severe.

Corrosive attack by hydrazine nitrate mix ures appears to be much more rapid; however, the primery danger in using mild steel is the possible formation of rust, which can react with the hydrazine.

For additional details, see the evaluation of iron (Sec. IV-A-7). If, for some specific reason, mild steel must be used, extreme care should be taken to keep the surface free of oxides.

Experimental Data

Material tested: Mild st el (SAE 1020) Source of data: Ref. 3 Number of samples teste 1: 1 Shape of sample: Rolled sheet

Propellant: Anhydrous hydrazine (97.63%)

Pressure: Atmospheric Temperature: 20 to 25°C (68 to 75°F)

Time: 92 hr

Results: Any visible corrosion was masked by rust formed after the test. Although the test results indicate negligible corrosion of the steel, this material is not recommended for use because of the ease of rusting and the effect of rust on the decomposition of hydrazine.

Material tested: Spring steel Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₃NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: Definite salt formation and loss of weight (4.45%) in the sample were observed.

Material tested: M-grade steel Source of data: Hef. 10 Number of samp¹⁻⁻ tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Hesults: Definite loss in sample weight (9.04%) and for-

mation of gray salt in the solution were noted.

Material tested: Steel (SAE 4130, annealed) Source of data: Ref. 16 Number of samples tested: 3 Shape of samples: ½-in. sheet Propellant: Anhydrous hydrazine (96%) Pressure: Atmospheric Temperature: Ambient Time: 36 to 278 days Results: Some loss in weight was noted for all samples. This material is not recommended because of

Material tested: Cold-rolled steel Source of data: Ref. 4

rust possibilities.

CONFIDENTIAL

1.1

Point 21

Jet Propulsion Laboratory

Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the specimen was observed.

Material tested: Mild steel Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo

Results: A weight loss was noted each month when the sample was checked. By the seventh month, considerable corrosion was apparent.

Material tested: Mild steel Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 10 mo

Results: A weight loss in the sample was noted, starting at the fifth month. The test was discontinued in the tenth month, when very heavy corrosion was found to be present.

Material tested: Mild steel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 28°C (80°F) Time: 30 days Results: Approximately 2.0% hydrazine decomposition

was observed (about ½ more than that for the blank run in glass). A significant pressure increase was noted.

Material tested: Mild steel Source of data: Ref. 6

Page 22

Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 4 mo Results: The sample was unaffected and did not decompose the hydrazine.

17. Steel (stainless). The compatibility of stainless steel with anhydrous hydrazine has been investigated rather thoroughly. However, because of the wide variety of stainless steels available, it is necessary that recommendations for each type be given separately.

Of the stainless steels which have been tested, only two are presently considered suitable for unlimited service types 304 and 347. This recommendation is based on (1) the data presented below, (2) the successful application of such steels in test-cell installations at this Laboratory for over 8 yr, and (3) the recommendations of Mathieson Chemical Corporation (Refs. 1 and 2) and Fairmount Chemical Company (Ref. 6), after years of successful service in the production and storage of hydrazine.

The suitability of these stainless steels appears paradoxical, on cursory examination, in view of the known fact that ferric ions, as well as iron and stainless steels in finely divided form, are catalytic in the decomposition of hydrazine. Practically, of course, the stainless steel is present in sheet or plate form and has a relatively smooth surface, so that the extended surface area is minimized. In addition, large quentities of metallic ions will not be present unless there has been sait or acid contamination of the metal surface, accompanied by the usual metallic corrosion and introduction of ions into the solution. There is little possibility of the occurrence of this problem, because of the excellent resistance of 304 and 347 stainless steel to such acid attack.

Molybdenum has been observed to be a particularly potent catalyst in the decomposition of liquid hydrazing (Ref. 1). Consequently, molybdenum-stabilized stainless steels (the most common being type 316) should be avoided. There is insufficient evidence, at present, to warrant setting a maximum allowable tolerance for molybdenum in stainless steels; therefore, it is believed that types 303, 315, 317, 318, 329, 416, 420F, 430F, 440A,

Jet Propulsion Laboratory

and 440C should be avoided, until sufficient data are available to permit some definite conclusions to be drawn.

It is believed that other 300-series steels, such as 302 and 321, may also be suitable for unlimited service, but that, in the absence of adequate experimental data, their use should be restricted to moderate time periods.

Other 400-series steels, such as 410 and 430, also fall into this category; however, the additional factor of their poorer resistance to rusting should be taken into consideration.

Experimental data concerning the compatibility of stainless steels with hydrazine nitrate mixtures are meager. The Naval Ordnance Laboratory noted salt formation and weight loss with 18-8 stainless steel (type not given) in contact with a mixture of 45% N_2H_4 -45% $N_2H_5NO_3$ -10% H_2O for 7 days at 165°F. This Laboratory, however, has utilized types 304 and 347 stainless steels for test-cell equipment for 2 to 3 yr, in contact with a 66% N_2H_4 -24% $N_2H_3NO_3$ -10% H_2O mixture, with no apparent difficulties. It is considered necessary that additional tests be made before any specific conclusions with regard to the hydrazine nitrate mixtures can be drawn.

Where stainless steels are joined, heliarc welding should be used to eliminate slag or oxide inclusions which may act to catalyze the decomposition of hydrazine.

Experimental Data

Material tested:	Type 304 stainless steel [0.08% C (max),
	17.5/19% Cr, 8/9% Ni, solution heat
	treated]
Source of data:	Ref. 3
Number of samp	les tested: 1
Shape of sample	Solid cylinder
Propellant: Hy	Irazine hydrate (00%)
Pressure: Atmo	spheric
Temperature: 1	4 to 25°C (59 to 75°F)
Time: 67.5 hr	
Results: No co	rrosion was apparent, and no change ed in the weight of the sample.

Material tested: Type 304 stainless steel Source of data: Ref. 16 Number of samples tested: 6 Shape of samples: 1%-in. sheet Propellant: Anhydrous hydrazine (96%)

CONFIDENTIAL

Pressure: Atmospheric Temperature: Ambient Time: 119 to 382 days Results: A slight loss in weight was observed for all samples.

Material tested: Type 302 stainless steel Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the specimen was found after the

Results: No change in the specimen was found after the test. A pressure increase due to gas evolution was recorded, equal to 0.015 atm/day/ml N₂H₄.

Material tested: Type 321 stainless steel Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change was observed in the specimen. The pressure increase due to gas evolution was

0.011 atm/day/ml N₂H₄.

Material tested. Type 430 stainless steel Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Simp Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change was observed in the specimen. The pressure increase due to gas evolution was 0.010 atm/day/ml N₂H₄. Material tested: Stainless W alloy (Carnegie-Illinois: 0.06% C, 7% Ni, 17% Cr, 0.6% Ti,

0.23 Al) Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Disk from bar stock

Jet Propulsion Laboratory

CONFIDENTIAL

Propellant: Anhydrous hydrazine (93.23%) Pressure: Atmospheric Temperature: 24°C (75°F) Time: 147 hr Results: No corrosion or change in weight was noted in either sample.

Material tested: Stainless steel (type not specified) Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo Results: A weight loss was noted each month. The material was not considered satisfactory.

Source of data: Ref. 9 Number of samples tested: 1, Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 12 mo Results: A weight loss was noted in the sample at the fifth month and cach month thereafter.

Material tested: Type 347 stainless steel Source of data: Ref. 17 Number of samples tested: 4 Shape of samples: Lathe turnings from bar stock Propellant: Anhydrous hydrazine (95.33%) Pressure: Closed system, initially atmospheric Temperature: Ambient Time: 39 days

Results: The four samples were actually tested as follows: two samples were stored in the daylight; one was stored in the dark; the remaining one was preheated to 500°C for 15 min, cooled, and immersed in the hydrazine. None of the samples showed any visible signs of rusting or corrosion at any time, nor did they show any appreciable change in weight after 39 days of exposure. The change in hydrazine concentration noted during the tests was not significant (0.5% or less); however, it was concluded that hydrazine

stored in daylight decomposes slowly, as compared with material stored in the dark, and that the presence of stainless steel has a slight accelerating effect on the decomposition in daylight.

Material tested: Type 304 stainless steel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Fropellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 1.25% hydrazine decomposition was observed (slightly lower than the decomposition noted in the blank run in glass).

Material tested: Stainless steel (type not specified)

Material tested: Type 317 stainless steel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip

blank run in glass).

Material tested: Type 304 stainless steel

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

noted (about 14% less than that noted in the

Number of samples tested: 1 or 2

Source of data: Ref. 6

Shape of samples: Strip

Time: 30 days

Temperature: 60°C (140°F)

Propellant: Anhydrous hyuraziac (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: Approximately 1.5% hydrazine decomposition was observed (about the same as that noted in the blank run in glass).

Material tested: Type 302 stainless steel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F)

Pope 24

Time: 30 days

Results: Approxim itely 27 hydrazine decomposition was noted (about ¹% more than that noted in the blank run in glass).

Material tested: 123-chromium stainless steel Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days

Results: Approximately 1.5% hydrazine decomposition was observed (about the same as that noted in the blank run in glass).

Material tested: Type 304 stainless steel Source of data: Ref. 6 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 4 mo Results: The sample was unaffected and did not decom-, pose the hydrazine to any extent.

Material tested: Type 18-8 stainless steel Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Strip Propellant: 45% N₂H₄-45% N₂H₅NO₅-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 te 165°F) Time: 7 days

Results: Definite salt formation occurred in the liquid phase, and corrosion was noted in both the liquid and the vapor phase. The weight loss of the sample was 0.23%.

18. Stellite. The results of a single investigation, consisting of a 67%-hr corrosion test with hydrazine hydrate, are the only data available. From a corrosion standpoint, the stellite appeared to be unaffected. However, because of the high percentage of molybdenum present (4.5 to 6.5%), which has been observed (Ref. 1) to be a specific

CONFIDENTIAL

and potent eatalyst for the decomposition of liquid hydrazine, it is believed that stellite should be avoided for contact with anhydrous hydrazine, hydrazine hydrate, and hydrazine mixtures.

Experimental Data

Material tested: Stellite 21 (0.20/0.35% C, 25/30% Cr, 1.75/3.75% Ni, 4.5/6.5% Mo, 2.0% max Fe, balance Co) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Cast section of blade Propellant: Hydrazine hydrate (66%) Pressure: Atmospheric Temperature: 14 to 25°C (59 to 75°F) Time: 67.5 hr Results: No evidence of corrosion was found.

19. Tantalum. Two organizations have conducted compatibility tests of tantalum in contact with anhydrous hydrazine. Both tests, one continuing for approximately a month and the other for almost a year, were carried out at ambient temperatures and indicate that the tantalum was unaffected : ¹ caused no significant decomposition of the hydrazine. In view of the limited data, it is concluded that additional testing under elevated-temperature conditions should be undertaken before tantalum can be considered acceptable for unlimited service. No test data regarding the compatibility of tantalum with hydrazine hydrate or hydrazine nitrate mixtures are available.

Experimental Data

Material tested: Tantalum

Source of data: Ref. 10

Number of samples tested: 1

Shape of sample: Sheet, 10 mm \times 100 mm \times 37 mm

Propellant: Anhydrous hydrazine (97.5%)

Pressure: Closed system, initially atmospheric

Temperature: Ambient

Time: 331 days

Results: The sample was completely unaffected. No significant decomposition of the hydrazine was noted.

Material tested: Tantalum Source of data: Ref. 6

Jet Propulsion Laboratory

CONFIDENTIAL

Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days

Results: Approximately 2% hydrazine decomposition was noted (about 1%% higher than that found in the blank run in glass).

20. Tin. It would appear that, from a corrosion standpoint, tin can be considered acceptable over a narrow range of temperatures. Picatinny Arsenal noted no change in the weight of a tin sample in contact with hydrazine at room temperature for 12 mo, but observed weight and surface discoloration after contact for approximately 6 mo at 149°F. Battelle Memorial Institute does not make note of any corrosion after contact for 1 mo at either 80°F or 140°F.

More important, perhaps, than the corrosion aspects of tin compatibility is the fact that the contamination of liquid hydrazine by the oxides of tin lower the ignition temperature in air from 428°F to 230°F (Ref. 9). For this reason, tin is not recommended for general use with anhydrous hydrazine or hydrazine nitrate mixtures.

Experimental Data

Material tested: Tin Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo Results: No change in the weight of the sample was noted.

Material tested: Tin Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 11 mo Results: A loss in the weight of the sample was noted, starting with the seventh month. By the eleventh month, the metal had turned very dark, and the test was discontinued

Material tested: Tin

Source of data: Ref. 6

Number of samples tested: 1 or 2

Shape of samples. Strip

Fropellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: Approximately 3% hydrazine decomposition was noted (a blank run in glass showed 1.5% decomposition).

Material tested: Tin

Source of data: Ref. 6

Number of samples tested: 1 or 2

Shape of samples: Strip

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 60°C (140°F)

Time: 30 days

Results: Approximately 4% hydrazine decomposition was observed (about the same decomposition as that noted in the blank run in glass).

21. Titarium. Titanium is considered completely satisfactory for use with anhydrous hydrazia: or hydrazine nitrate mixtures. Although only one organization, the U.S. Naval Ordnance Laboratory, has undertaken a compatibility test program, this program was detailed and conclusive. Aspects of material corrosion, as well as solution stability, were determined at ambient and elevated temperatures (160°F) with anhydrous hydrazine and with a number of hydrazine nitrate mixtures of varying concentration. In all cases, the test samples were entirely unaffected, and the solutions themcelves showed no significant decomposition.

Experimental Data

Material tested: Titanium Source of data: Ref. 5 Number of samples tested: 4

Page 26

CONFIDENTIAL

学校で

Jet Propulsion Laboratory

78.43 N2H4-18.13 N2H2NO3-33 H2O-0.53 NH3 44.93 N2H4-45.33 N2H2NO3-9.43 H2O-0.43 NH3 19.63 N2H4-78.43 N2H2NO3-1.83 H2O-

0.2% NH_a

Pressure: Closed system, initially atmospheric

- Temperature: Ambient
- Time: 324 to 355 days
- Results: The material was entirely unaffected. No significant decomposition was observed in any of the solutions.

Material tested: Titanium Source of data: Ref. 8 Number of samples tested: 1 Shape of sample: Strip Propellant: 70% N₂H₄-25% N₂H₅NO₅-5% H₂O Pressure: Closed system, initially atmospheric Temperature: 71°C (160°F)

Time: 9 wk

Results: The titanium strip was completely unaffected. No significant change in solution composition had taken place.

22. Zinc. All experimental data available indicate that zinc is completely unratisfactory for contact with anhydrous hydrazine or hydrazine nitrate mixtures. A definite reaction takes place quickly, with severe corrosion of the metal and the formation of a precipitate.

Experimental Data

Material tested: Zinc Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₂-45% N₂H₃NO₃-10% H₂O Pressure: Atmospheric Temperature: Ambient Time: 24 hr

Results: A definite reaction was noted, with complete decomposition of the sample at room temperature. The specimen was not tested at 74°C because of its reactivity. Material tested: Zinc Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Ztrip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 2 mo

Results: Very heavy corrosion was apparent after 1 mo. There was a deposit of hygroscopic crystalline material over the entire strip. The sample was cleaned and placed in the solution for another month. At the end of the second month, the same condition was apparent. The test was discontinued.

Material tested: Zinc

Source of datu: Ref. 9

Number of samples tested: 1

Shape of sample: Strip

Propellant: Anhydrous hydrazine (95.1%)

Pressure: Atmospheric

Temperature: 65°C (149°F)

Time: 8 mo

Results: A weight loss was noted after 1 mo. By the eighth month of the test, very heavy corrector and incrustation of the metal was apparent. The test was discontinued.

B. Plastics and Elastomers

1. Cellulous acetate. Cellulous acet-te appears to be completely unsuitable for contact with hydrazinehydrazine nitrate-wat... nixtures. No data on its compatibility with anhydrous hydrazine are available. If the material is required for application with anhydrous hydrazine, additional tests should be undertaken. In the absence of experimental data with anhydrous hydrazine, this material is not recommended.

Experimental Data

Material testea: Cellulose acetate (flow F-8) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₂-45% N₂H₃NO₃-10% H:O Pressure: Atmospheric

Jet Propulsion Laboratory

Temperature: 72 to 74°C (161 to 165°F)

Time: 7 days

Results: This material, when placed in the propellant. became swollen and showed definite signs of chemical decomposition. The same type of reaction occurred at ambient temperature and at 74°C.

2. Diallyl phthalate. This material appears to be completely unsuitable for contact with hydrazine-hydrazine nitrate-water mixtures. No test data concerning its compatibility with anhydrous hydrazine are available; however, because of its extremely poor behavior with the nitrate mixture, it would also be unsatisfactory with anhydrous hydrazine.

Experimental Data

Material tested: Diallyl phthalate (Shell) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄---45% N₂H₃NO₃--10% H₃O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days

Results: 'The sample was completely decomposed by the solution.

3. Epon. Epon is not recommended for contact with hydrazine nitrate mixtures for extended periods of time. Contact times should probably be limited to a few weeks. No experimental data on the use of this material with anhydrous hydrazine are available; however, it appears probable that Epon would also be acceptable in this application for short contact times.

Experimental Data

Material tested: Epon Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₃NO₈-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F)

Time: 7 days

Results: The specimens showed a definite gain in weight and appeared bleached.

4. Ethyl cellulose. Ethyl cellulose appears to have been dissolved to some extent by a hydrazine nitrate mixture. In view of the degree of attack, ethyl cellulose would probably be acceptable for time periods of a few weeks, both in hydrazine nitrate mixtures and in anhydrous hydrazine.

Experimental Data

Material tested: Ethyl cellulose (E/C-232) Source of data. Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₄NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: An apparent material loss of 2% and a very slight color change were noted.

5. Furane resin. It appears that furane is soluble to some extent in hydrazine nitrate mixtures. In all likelihood, furane resin would be acceptable in contact with hydrazine nitrate mixtures and anhydrous hydrazine for time periods limited to a few weeks.

Experimental Data

Material tested: Furane resin (Resin X) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H;-45% N₂H₀NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: The sample showed a definite loss in weight (4.3%). No other physical changes were noted.

6. Hyear. The only experimental data available indicate limited acceptability for Hyear in contact with hydra-

CONFIDENTIAL

Poge 28

CONFIDENTIAL

2

zine hydrate. It is probable that it would also be acceptable with anhydrous hydrazine for short-term contact. Additional tests should be made before use with hydrazine nitrate mixtures is contemplated.

Experimental Data

- Material tested: Hycar Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: O-ring Propellant: Hydrazine hydrate Pressure: Atmospheric Temperature: 14 to 25°C (59 to 75°F) Time: 67.5 hr
- Results: A slight reduction in the weight of the sample was observed. This material was considered satisfactory by M. W. Kellogg Company.

7. Kel-F. Kel-F appears to be satisfactory for extended use with both hydrazine and hydrazine nitrate mixtures. Experimental data indicate surface discoloration, but no apparent effect on other physical properties. It is believed, however, that if there is any preference in the use of plastics, Teflon or polyethelene should be employed before Kel-F is considered.

Experimental Data

Material tested: Kel-F (NST 270, pressed) Source of data: Ref. 16 Number of samples tested: 6 Shape of samples: %-in. sheet Propellant: Anhydrous hydrazine (96%) Pressure: Atmospheric Temperature: Ambient

Time: 114 to 377 days

ورا

Results: Most samples showed very slight weight increases. Two samples were tinted brown. One sample, at the end of 377 days, showed no weight change.

Material tested: Kel-F Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₃NO₃-10% H₂O

CONFIDENTIAL

Jet Propulsion Laboratory

Pressure: Atmospheric

Temperature: 72 to 74°C (161 to 165°F)

Time: 7 days

Results: No sign of definite loss or gain in weight was noted. The specimen turned brown (apparently, a skin effect).

Material tested: Kel-F

Source of data: Ref. 18

Test conditions: None given

Results: This material is considered by North American Aviation, Inc., to be suitable in contact with hydrazine for extended times at temperatures up to 390°F.

S. Lactopreme. This material apparently changes physical properties rather drustically on contact with hydrazino nitrate mixtures. It is likely that it would also be unsatisfactory for use with anhydrous hydrazine.

Experimental Data

Material tested: Lactopreme (BN-15-298) Source of data: #4.10 Number of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric I emperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: The specimens showed a slight loss fit weight. The material cracked, became embrittled, and showed a color change.

D. Litche. Litche appears to be satisfactory for contact periods of a few weeks, both with stillydrous hydrizine and with hydrazine nitrate mixtures.

Experimental Data

Marerial tested: Lucite (Methacrylate, Dupont) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N.H.-45% N.H.NO.-10% H.O Pressure: Atmospheric

Jet Propulsion Laboratory

Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: The samples showed a slight loss in weight, but

no apparent physical changes were noted.

Material tested: Lucite Source of data: Ref. 6

Number of samples fested: 1 or 2

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 29°C (85°F)

Time: 30 days

Results: Approximately 3% hydrazine decomposition was observed (about twice that noted in the blank run in glass).

10. Melamine formaldeligide. Melamine formaldelyde was affected to some extent by the hydrazine nitrate mixture used in the test. It probably would be acceptable in contact with hydrazine nitrate mixtures or anhydrous hydrazine for letins limited to approximately a week.

Experimental Data

Material identific Melamine formaldeliyde (Melmao 1500) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₂-45% N₂H₃NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: The samples showed a definite loss in weight distant the samples showed a definite loss in weight

(3.12%). A bleaching effect was noted in both the liquid and the vapor phase.

12. Nylon. Nylon diplets to possess limited acceptability for use with antivorous hydrazine or hydrazine nitrate solutions. It apparently would be usable for shortterm contact, but not for extended application.

Experimental Data

Material tested: Nylon (10001) Source of lata: Ref. 5 Number of samples tested: 4

Polos 20

Shape of samples:SheetPropellants:97.53 N₂H₄-1.93 H₃O-0.63 NH₃78.42 N₂H₄-18.13 N₂H₃NO₃-33 H₂O-0.53 NH44.93 N₂H₄-45.33 N₂H₃NO₃-9.43 H₂O-0.43 NH₄19.63 N₂H₄-78.43 N₂H₃NO₃-183 H₂O-0.23 NH₄Pressure:AtmosphericTemperature:ArmbientTime:167 to 382 daysResults:The samples varied, but all showed yellowing
and brittleness. The worst samples exhibited a
roughened and powdery surface.

12. Phenolic. This material would probably be suitable for contact with both the hydrazine nitrate mixtures and anhydrous hydrazine for times limited to a few days. However, because of its definite chemical breakdown, it should be avoided if possible.

Experimental Data

Material tested: Phenolic (BN-250)

Source of data: Rel. 10

Number of samples tested: 2

Shape of samples: Sheet

Propellant: 45% N2H4-45% N2H3NO3-10% H2O

Pressure: Atmospheric

Temperature: 72 to 74°C (161 to 165°F)

Time: 7 days

Results: The loss in weight of the sample was slight, but the suiface of the material showed definite signs of chemical reaction.

13. Polyester. Polyester appeared to be rather readily attacked by the hydrazine nitrate test mixture and, consequently, is not recommended for use with hydrazine nitrate mixtures. In all likelihood, it would behave comparably in anhydrous hydrazine.

Experimental Data

Materials tested: (1) Polyester (500) (2) Polyester (P-43/Styrene, 52 Al, 2% Co)

CONFIDENTIAL

Source of data: Ref. 10 Number of samples: 2 each Shape of samples: Sheet Propellant: 45% N₂H₁--45% N₂H₈NO₅--10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days

Hesults: A slight loss in weight, a definite color change, and decomposition of the material was noted in all cases. A pungent gas was noted during and after removal of the samples from the oven.

14. Polyethylene. Polyethylene appears to be well suited for use with anhydrous hydrazine or hydrazine nitrate mixtures. All experimental data indicate no change in the physical condition of the polyethylene for time periods of somewhat more than 1 yr, at both ambient and elevated temperatures.

Experimental Data

Material tested: Polyethylene Source of data: Ref. 5 Number of samples tested: 4 Shape of samples: Sheet Propellants: 97.5% N₂H₄-1.9% H₂O-0.5% NH₃ 78.4% N₂H₄-18.1% N₂H₃NO₃-3% H₂O-0.5% NH₃ 44.9% N₂H₄-45.3% N₂H₃NO₃-3% H₂O-0.4% NH₃ 19.6% N₂H₄-78.4% N₃H₃NO₃-9.4% H₂O-0.2% NH₃ Temperature: Ambient Time: 312 to 383 days Results: The samples were apparently unaffected.

Material tested: Polyethylene Source of data: Ref. 8 Number of samples tested: 1 Shape of sample: Sheet Propellant: 70% N_2H,-25% N_2H_8NO_8-5% H_2O Pressure: Atmospheric Temperature: 71°C (160°F) Time: 9 wk

Results: A very slight weight increase was observed, but no apparent change occurred in the physical condition of the specimen. Material tested: Polyethylene Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo Results: No loss or gain in the weight of the sample was

observed. The material was completely satisfactory after contact with hydrazine for a period of 1 yr.

Material tested: Polyethylene

Source of data: Ref. 9

Number of samples tested: 1

Slidpe of sample: Strip

Propellant: Anhydrous hydrazine (95.1%)

Pressure. Atmospheric

Temperature: 65°C (149°F)

Time: 12 mo

Results: No change occurred in the weight or appearance of the sample. The material was completely satisfactory after contact with hydrazine for period of 1 yr.

Material tested: Polyethylene

Source of data: Ref. 18

- Experimental data: None given
- Results: The insterial was considered by North American Aviation, Inc., to be suitable in contact with hydrazine for long-time service at temperatures ab to 1200F

Material tested: Polyethylene

Source of data: Ref. 6

Number of samples tested 1 or 2

Propellant: Atthydroits hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: Approximately 2% hydrazine decomposition was observed (about 12% more than that Noted for the blank run in glass).

15. Polystyrene and polydichlorostyrene. Both of these materials exhibited physical-property changes after con-

CONFIDENTIAL

Page 31

Jet Propulsion Laboratory

近の正常語

Jet Propulsion Laboratory

tact with anhydrous hydrazine or hydrazine nitrate mixtures. Although they will probably stand up for short periods of time, their use is not recommended.

Experimental Data

Materials tested: (1) Polystyrene (Koppers) (2) Polydichlorostyrene (Mathieson) Source of data: Ref. 10 Number of samples tested: 1 each Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₈NO₃-10% H₂O Pressure: Atmospheric Tempetature: 72 to 74°C (161 to 165°F) Time: 7 days Results: Surface changes and warping were observed.

Material tested: Polystyrene Source of data: Ref. 5 Number of sumples tested: 4 Shape of samples: Sheet Propellants: 97.5% N₂H₄-1.9% H₂O-0.6% NH₃ 78.4% N₂H₄-18.1% N₂H₆NO₃-3% H₂O-0.5% NH₃ 44.6% N₂H₄-45.3% N₂H₃NO₃-9.4% H₂O-0.4% NH₃ 19.6% N₂H₄-78.4% N₂H₃NO₃-1.8% H₂O-0.2% NH₃ Pressure: Atmospheric

Temperature: Ambient

Time: 43 to 383 days

Results: All the samples exhibited large weight increases and internal frosting and cracking or caused gas evolution and solution-composition changes. The material is not recommended for long-term storage.

16. Polycinyl alcohol. This material is completely unsatisfactory for use with anhydrous hydrazine. No data are available on its compatibility with hydrazine nitrate mixtures. However, it is probable that it would be equally unsatisfactory in the latter application.

Experimental Data

Material issted: Polyvinyl alcohol Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydro.'s hydrazine (95.17) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: ¹/₂ hr Results: The material swelled and started to disintegrate in ¹/₂ hr.

Material tested: Polyvinyl alcohol Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydrous hydrazine (95.17) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 1 hr Results: The material swelled in 1 hr.

17. Polyvinyl chloride (Koroscal, Vinylite). The consensus among the organizations which have tested polyvinyl chloride is that this material is completely unsatisfactory for contact with hydrazine or hydrazine nitrate mixtures. All organi "ons, with one exception, report severe changes in the physical properties of the polyvinyl chloride within a short time.

Experimental Data

Material tested: Polyvinyl chloride (B, F Goodrich) Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₄-45% N₂H₅NO₃-10% H₂O Pressure: Atmospheric Temperature: 72 to 74°C (161 to 165°F) Time: 7 days Results: The samples showed definite weight gains and changes in physical properties. The material changed color, and the surface of the material cracked and blistered.

Material tested: Polyvinyl chloride (unplasticized) Source of data: Ref. 8 Number of samples tested: 1 Shape of sample: Sheet Propellant: 70% N₂H₄-25% N₂H₃NO₃-5% H₂O

Poige 32

Pressure: Atmospheric
Temperature: 71°C (160°F)
Time: 9 wk
Results: The specimens turned brown, swelled, and were extensively blistered. Needlelike crystals were obviously formed. The material is considered unsuited for use with hydrazine solutions.

Material tested: Polyvinyl chloride Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 7 days Results: The material turned deep yellow in 7 days.

Material tested: Polyvinyl chloride Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 2 days Results: The material swelled, turned deep yellow, then became cream-colored in 2 days,

Material tested: Polyvinyl chloride (Koroseal, B. F. Goodrich) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Sheet Propellant: Hydrazine hydrate Pressure: Atmospheric Temperature: 14 to 25°C (59 to 75°F) Time: 67.5 hr Results: Small blisters on the sample were observed at the end of the test. However, M. W. Kellogg considered the material satisfactory.

 Material tested:
 Polyvinyl chloride (Koroscal, B. F. Goodrich)

 Source of data:
 Ref. 18

 Test conditions:
 None given

 Results:
 This material is considered by North American Aviation, Inc., to be suitable for long-time use

Jet Propulsion Laboratory

State of the second

四十四十四

「たいこうで

at temperatures up to 122°F. Some swelling was noted at higher temperature (150°F).

Material tested: Polyvinyl chloride (Vinyhte, Bakelite) Squrce of data: Ref. 3 Number of samples tested: 1 Shape of sample: O-ring linear mold 3248C Propellant: Anhydrous hydrazine (94.48%) Pressure: Atmospheric Temperature: 15.2 to 23°C (59 to 74°F) Time: 48 hr Results: The entire sample became darker. There was some loss of flexibility. The material was considered still usable at the end of the test.

18. Rubber (natural). The majority of the organizations which have tested natural rubber with enhydrous hydrazine report that the rubber absorbed hydrazine. It is believed that natural gum rubber should be avoided, if possible.

Experimental Data

Material tested: "...tural gum rubber Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: The material absorbed hydrazine, but remained strong and pliable.

Material tested: Natural rubber Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 22 hr Results: In 22 hr, the specimen swelled, and the solution became discolored.

Material tested: Natural rubber Source of data: Ref. 9

Jet Propulsion Laboratory

CONFIDENTIAL

Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.13) Pressure: Atmospheric Temperature: 65°C (149°F) Time: A few minutes Results: The sample swelled immediately on contact with the solution.

Material tested: Natural rubber (U. S. Rubber) Source of data: Ref. 18 Test Conditions: None given Results: The material is considered by North American

Aviation, Inc., to be satisfactory for extended usage at ambient temperature, or at temperatures up to 200°F for intermittent use.

Material tested: Pure gum rubber Source of data: Ref. 6 Number of samples tested: 1 or 2 Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days

Results: Approximately 1.5% hydrazine decomposition – was observed (about the same percentage as that attained with the blank run in glass).

Material tested: Pure gum rubber Source of data: Ref. 6 Number of samples tested: 1 or 2 Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric

Temperature: 60°C (140°F)

Time: 30 days

Results: Approximately 1% hydrazing and the blank run in the state of the blank run in the state of the state of the decomposition).

19. Rubber (synthetic). Among the synthetic rubbers, compatibility data were found and evaluated for Neoprene, buna N, and four samples of synthetic rubber especially prepared by Picatinny Arsenal.

Neoprene rubber appears to absorb hydrazine rather quickly and, for that reason, should probably be avoided. If required for a specific application, it should be used under static conditions and checked often. **Experimental Data**

Material tested: Neoprene Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: The specimen absorbed hydrazine, but still appeared strong and pliable.

Although no blanket recommendation can be made for buna N base rubbers, the two samples tested appeared unaffected over a span of 23 days and would probably be satisfactory for at least a few months. Frequent checks of the material should be made if it is used. This is particularly true for dynamic applications.

Experimental Data

Material	tested: Buna N compound 27-351 (Parker
	Rubber)
Source of	f data: Unpublished data from 'PI, test starting
	July 5, 1958
Number	of samples tested: 1
Shape of	sample: O-ring
Propellar	at: 66% N ₂ H ₄ -24% N ₃ I ₃ NO ₃ -10% H ₂ O
Pressure:	Atmospheric
Tempera	dure: Ambient
Time: 2	23 day:
Acsults:	No physical change occurred in the O-ring sub- merged in the test solution. At the end of the test, the change was the same as when the sample was placed in the solution. No analysis was u ade of the solution.

Material tested:	Buna N compound SR-349-70 (Stillman
	Rubber)

Source of data: Unpublished data from JPL test starting July 5, 1956

Number of samples tested: 1

Shape of sample: O-ring

Propellant: 6/ \$ N2H4-24% N2H3NO3-10% H2O

Pressure: At iospheric

Temperature: Ambient

Time: 23 da s

CONFIDENTIAL

Results: No physical change occurred in the submerged specimen. The diameter of the O-ring did not change. No analysis was made of the solution.

Four samples of synthetic rubber were especially prepared by Picatinny Arsenal to resist the action of hydrazine. They were compounded as follows:

	Composition in Parts							
Component	Sam- ple A	Sam- ple B	Sam- pte C	Sam- ple D				
Natural rubber	100.0	0.0	0.0	0.0				
Butadienstyrene copolymer	0.0	100.0	0.0	0.0				
Neoprene	0.0	0.0	100.0	0.0				
Butadieneacrylonitrile	0.0	0.0	0.0	100.0				
Stearic acid	1.0	1.0	1.0	0.5				
Zinc oxide	5.0	5.0	5.0	5.0				
Sulphur	1.5	1.5	1.0	1.0				
Circo-all	15.0	15.0	1 15.0	15.0				
Thermatomic carbon black	J.0	50.0	50.0	50.0				
Pheyl-ô-napthylamine	0.0	0.0	2.0	0.0				
Benzathiazyldisulphide	1.0	1.0	0.0	1.0				

All the compounded synthetic rubbers listed above were found to be completely unsatisfactory with anhydrous hydrazine, as indicated below.

Experimental Data

Materials tested: Synthetic rubbers A, B, C, and D Source of data: Ref. 9 Number of samples: 1 each Shape of samples: Strip Propellant: Anhydrous hydrazine (95.4%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 22 hr Results: All the compounds reacted in 22 hr, swelled,

and discolored the solution. The tests were discontinued.

Materials tested: Synthetic rubbers A, B, C, and D Source of data: Ref. 9 Number of samples tested: 1 each Shape of samples: Strip Propellant: Anhydrous hydrazine (95.4%) Pressure: Atmospheric Temperature: 65°C (149°F)

Time: Up to 411 hr

Results: Compounds A and B started to swell in 2 hr. Compound C swelled in 44 hr. Compound D started to swell and disintegrate immediately.

20. Saran. Saran is considered unsatisfactory for use with anhydrous hydrazine or hydrazine nitrate mixtures. Deterioration of the Saran is apparent in a matter of hours.

Experimental Data

Material tested: Saran Source of data: Ref. 10 Number of samples tested: 2 Shape of samples: Sheet Propellant: 45% N₂H₁--45% N₂H₃NO₃--10% H₂() Temperature: 72 to 74°C (101 to 165°F) Time: 7 days Results: The sample showed a definite gain in weight (8.7%) and physical-property changes.

Material tested: Saran (B11-K-1791, color S-192B) Source of data: Het. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: At the end of the test, the specimen was dark and brittle.

Material tested: Saran Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 3 hr Results: The material darkened and became brittle in 3 hr.

Material tested: Saran Source of data: Ref. 9 Number of samples tested: 1

Jet Propulsion Laboratory

CONFIDENTIAL

Shape of sample: Strip Propellant: Anhydrous hydrazine (95.1%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 2 hr Results: The material became brittle in 2 hr.

Material tested: Saran Source of data: Ref. 6 Number of samples tested: 1 or 2 Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days

Results: Approximately 2.5% hydrazine decomposition was noted (about 1% more than that for the blank run in glass).

21. Silastic. Silastic appears to be adequate, at least for moderate contact times with anhydrous hydrazine. Additional tests should be run before silastic is used for periods of more than a few weeks with hydrazine nitrate mixtures.

Experimental Data

Material tested: Silastic 167 (Dow-Corning) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: G-ring from linear mold 3248C Propellant: Anhydrous hydrazine (94.48%) Pressure: Atmospheric Temperature: 15 to 23.9°C (59 to 74°F) Time: 48 hr Results: No change occurred in the appearance or flex-

ibility of the sample. The material is considered satisfactory by M. W. Kellogg Company.

Material tested: Silastic

Source of data: Ref. 18

Test conditions: None given

Results: Silastic-type elastomers are considered satisfactory at temperatures up to 300°F for extended usage.

22. Teflon. Teflon is considered to be completely compatible with anhydrous hydrazine, hydrazine hydrate, and hydrazine-hydrazine nitrate-water mixtures. All the

Page 36

organizations that have tested Teflon report no change in its physical properties and no significant decomposition of the hydrazine.

Experimental Data

Material tested: Teflon Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Sheet Propellant: Anhydrous hydrazine (94.48%) Pressure: Atmospheric Temperature: 16 to 25°C (61 to 77°F) Time: 48 hr Results: No change in the appearance or properties of the sample was observed.

Material tested: Teflon Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Sheet Propellant: Hydrazine hydrate Pressure: Atmospheric Temperature: 14 to ... C (57 to 75°F) Time: 67.5 hr Results: No attack or change in weight of the sample

esuits: No attack or change in weight of the sample was observed. The material is considered satisfactory for this service.

Material tested: Teflon Source of data: Ref. 16 Number of samples tested. 6 Shape of samples: Extruded %-in. sheet Propellant: Anhydrous hydrazine (903) Pressure: Atmospheric Temperature: Ambient Time: 119 to 382 days

Results: A very slight gain in weight occurred in all samples. The material is considered satisfactory by M. W. Kellogg Company.

Material tested: Teflon Source of data: Ref. 8 Number of samples tested: 1 Shape of sample: Sheet Propellant: 70% N₂H₄-25% N₂H₃NO₃-5% H₂O Pressure: Atmospheric

CONFIDENTIAL

「三世代的」の

Jet Propulsion Laboratory

and "A" (A) how of the part of the the part of the par

Temperature:	71°C	(160°F
--------------	------	--------

Time: 9 wk

闕

The star shows a subscription of the start o

- Results: The sample appeared to have suffered no changes in physical condition. The composition of the solution did not change to any significant degree.
- Material tested: Teflon Source of data: Ref. 5 Number of samples tested: 4 Shape of samples: Sheet Proj ellants: 97.5% N₂H₄-1.9% H₂O-0.6% NH₃ 78.4% N₂H₄-18.1% N₂H₅NO₃-3% H₂O-0.5% NH₃ 44.6% N₂H₄-45.3% N₂H₅NO₃-9.4% H₂O-0.4% NH₃ 19.6% N₂H₄-78.4% N₂H₆NO₃-1.8% H₂O-0.2% NH₃
- Pressure: Atmospheric
- Temperature: Ambient
- Time: 370 to 385 days
- Results: All the samples were apparently unaffected. The compositions of the solutions did not change appreciably.

Material tested: Teflon Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change was observed. The material was

strong and pliable and had absorbed no hydrazine.

Material tested: Teflon

.

Source of data: Ref. 18

Test conditions: None given

Results: The material is considered by North American Aviation, Inc., to be suitable in contact with hydrazine for long-time usage at temperatures up to 500°F.

Material tested: Teflon Source of data: Ref. 6 Number of samples tested: 1 or 2

CONFIDENTIAL

Propellant:Anhydrous hydrazine (95.5%)Pressure:Closel system, initially atmosphericTemperature:26°T (80°F)Time:30 daysResults:Approximately 2% hydrazine decomposition was

observed (about 14% more than that noted in the blank run in glass).

Material tested: Teflon
Source of data: Ref. 6
Number of samples tested: 1 or 2
Propellant: Anhydrous hydrazine (95.5%)
Pressure: Closed system, initially atmospheric
Temperature: 60°C (140°F)
Time: 30 days
Results: Approximately 2% hydrazine decomposition was observed (about one-half as much decomposition as that noted in the blank run in glass).

Material tested: Teflon Source of data: Ref. 6 Number of samples tested: 1 Shape of sample: strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 4 mo Results: The sample was unaffected and did not decompose the hydrazine to any ext nt

23. Tygon. Tygon possesses limited suitability for use with anhydrous hydrazine. Contact times should be limited to short periods. The material should not be used with hydrazine nitrate mixtures without further testing.

Experimental Data

Material tested: Tygon Source of data: Ref. 4 Number of samples tested: "1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: The material absorbed hydrazine, but remained strong and pliable. After drying, the material shrank to its original dimensions.

24. U. S. Rubber Plastic L7825. This material, which is a polymer of butadiene, styrene, and acrylic, appears to be adequate for use with anhydrous hydrazine and hydrazine hydrate for periods of a few weeks. Additional tests should be made if this material is to be used with hydrazine nitrate mixtures or for extended time periods.

Experimental Data

Material tested: U. S. Rubber Plastic L7825 Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Sheet Propellant: Anhydrous hydrazine Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 140 hr

Results: The hydrazine turned pink, in each case. A slight loss in the weight of the sample was noted. No change occurred in the appearance of the sample.

Mate....' tested: U. S. Rubber Plastic L7825 Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Sheet Propellant: Hydrazine hydrate Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 168 hr

Results: No change in the appearance or weight of the samples was observed.

Material tested: U. S. Rubber Plastic L7825 Source of data: Ref. 18 Test condition: None given Results: The material is considered by North American

Aviation, Inc., to be suitable for long-time ambient-temperature usage with hydrazine.

25. U. S. Rubber Plastic M20995. This material, which is a polyethylene-polyisobutylene polymer, appears to be adequate for use with anhydrous hydrazine and hydrazine nydrate for periods of a few weeks. Additional tests should be made if this material is to be use i with hydrazine nitrate mixtures.

Experimental Data

Material tested: U. S. Rubber Plastic M20995 Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Sheet Propellant: Hydrazine hydrate Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F)

Time: 188 hr

Results: No change in the appearance of either sample was noted. A slight gain in weight occurred in each sample.

Material tested: U. S. Rubber Plastic M20995

Source of data: Ref. 18

Test conditions: None given

Results: The material is considered by North American Aviation, Inc., to be suitable in contact with hydrazine for long-time ambient-temperature uses.

20. Veloform. Veloform is considered to be unsatisfactory for use with hydrazine-hydrazine nimite water mixtures and, in all likelihood, would be unsatisfactory with anhydrous hydrazine.

Experimental Data

Material tested: Veloform (F-10CPP264)

Source of data: Ref. 10

Number of samples tested: 2

Shape of samples: Sheet

Propellant: 45% N₂H₄--45% N₂H₈NO₈--10% H₂O

Pressure: Atmospheric

Temperature: 72 to 74°C (161 to 165°F)

Time: 7 days

Results: The samples showed a definite gain in weight; the material decomposed and swelled, and the color changed from white to black.

CONFIDENTIÁL

C. Miscellaneous Materials

I. Asbestos. Asbestos apparently is not physically attacked to any degree by anhydrous hydrazine. Its form of manufacture, however, appears to be the principal factor in determining its acceptability. In an oral communication from the Fairmount Chemical Company to the Battelle Memorial Institute, it was pointed out that hard asbestos was found satisfactory for gasketing and valve packing, but that soft asbestos, because of its porous nature and, hence, its large surface area, burst into forme when soaked with hydrazine and exposed to air; even hard asbestos must be watched carefully for frayed edges, which may become soaked with hydrazine (Ref. 6). Battelle also reports, on the basis of communication with Western Cartridge Company (Ref. 6), that an accident at the Western Cartridge plant was traced to asbestos soaked with hydrazine, Mathieson Chemical Corporation has stated that asbestos acts to catalyze the decomposition of hydrazine (Ref. 2).

It is recommended, therefore, that asbestos be avoided if possible. If it is necessary to use asbestos, only hard asbestos should be used, and frequent inspection should be undertaken.

Experimental Data

Material tested: Asbestos Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.6%) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days

Results: No change in the specimen was noted.

Material tested: Asbestos Source of data: Ref. 18 Test conditions: None given Results: This material is considered by North American Aviation, Inc., to be suitable.

Material tested: Asbestos (Pyroid) Source of data: Ref. 6 Number of samples tested: 1 or 2 Propellant: Anhydrous hydrazine (95.5%)

CONFIDENTIAL

Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 2.07 hydrazine decomposition

was observed (a blank run in glass showed 1.5% decomposition).

Material tested: Asbestos (Vellumoid)

Source of data: Ref. 6

Number of samples tested: 1 or 2

Propellant: Anhydrous hydrazine (95.5%)

Pressure: Closed system, initially atmospheric

Temperature: 26°C (80°F)

Time: 30 days

Results: Approximately 2.0% hydrazine decomposition was observed (about 1% higher than that for a blank run in glass).

2. Glass. Glass, both soft and hard (Pyrex), is considered to be completely satisfactory for contact with anhydrous hydrazine and hydrazine nitrate mixtures. Picatinny Arsenal reports that anhydrous hydrazine stored in both hard- and soft-glass bottles at room temperature caused solution of the glass after 12-mo storage. The nonvolatile content was 0.02% at 65°C (149°F), indicating only a very slight amount of solution. The hydrazine stored in both hard and soft glass at room temperature underwent practically no decomposition after 1 year. At 65°C (149°F), some hydrazine decomposition occurred; however, since the bettles were opened frequently to extract samples, it is believed that the decomposition was not caused by the glass.

Experimental Data

Material tested: Soft glas: Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Rod Propellant: Anhydrous hydrazine (95.4%) Pressure: Atn.ospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo Results: No change in the weight or appearance of the sample was noted.

Material tested: Hard glass (Pyrex) Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Rod Propellant: Anhydrous hydrazine (95.4%) Pressure: Atmospheric Temperature: 21 to 23°C (70 to 73°F) Time: 12 mo

Results: No change in the weight or appearance of the sample was observed. In a separate test, a hardglass bottle containing hydrazine of 95.4% composition before storage showed a composition of 93.1% after 12 mo. The bottle had been opened and closed many times and had air above the liquid.

Material tested: Soft glass Source of data: Ref. 9 Number of samples testen. 1 Shape of sample: Rod Propellant: Anhydrous hydrazine (95.4%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 12 mo Results: No change in the weight or appearance of the sample was noted at the end of the test.

Material tested: Hard glass (Pyrex) Source of data: Ref. 9 Number of samples tested: 1 Shape of sample: Rod Propellant: Anhydrous hydrazine (95.4%) Pressure: Atmospheric Temperature: 65°C (149°F) Time: 12 mo

Results: No change in the weight or appearance of the sample had appeared at the end of the test. In a separate test, a hard-glass bottle containing hydrazine of 95.4% composition of the start of the test showed a concentration of 9.5.9% after 12 mo. The container had been opened several times and air had been admitted above the liquid.

Material tested: Glass Source of data: Ref. 6 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric

Page 40

Temperature: 60°C (140°F) Time: 4 mo Results: The sample was unaffected and did not decompose the hydrazine to any extent.

3. Graphite. It is believed that graphite presents much the same type of compatibility problem as does asbestos. That is, the form in which the graphite is processed is the controlling factor in its compatibility. It appears that physically, graphite is relatively unaffected by hydrazine.

The use of graphite should probably be avoided, if possible. If it is required for a specific application, care should be taken to utilize graphite of low porosity, and frequent inspections should be made.

Experimental Data

Material tested: Natural carbon porous graphite, grade 60

Source of data: Ref. 3

- Number of samples tested: 1
- Propellant: Anhydrou's hydrazine
- Pressure: Atmos ' ric
- Temperature: 15 to 24°C (59 to 75°F)

Time: 48 hr

Results: The material itself was apparently unaffected; however, there was a greater-than-normal decomposition of the hydrazine. The material is not recommended by M. W. Kellogg Company.

Material tested: Graphite valve packing Source of data: Ref. 4 Number of samples tested: 1 Shape of sample: Strip Propellant: Anhydrons hydrazine (95.63) Pressure: Atmospheric Temperature: 20°C (68°F) Time: 24 days Results: No change in the specimen was noted.

4. Graphitar. Because of the close similarity of graphitar to graphite, it is believed that the evaluation given for graphite adequately describes the compatibility of graphitar.

Jet Propulsion Laboratory

Experimental Data

Material tested: Graphitar 2 (U. S. Graphite) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Cut from foil Propellant: Anhydrous hydrazine (94.48%) Pressure: Atmospheric Tempe ture: 15 to 23.2°C (59 to 74°F) Time: 48 hr Results: The material itself was apparently unaffected;

however, there was a greater-than-normal decomposition of the hydrazine. The material is not recommended by M. W. Kellogg Company.

Material tested: Graphitar 50 (U. S. Graphite) Source of data: Ref. 3 Number of samples tested: 1 Shape of sample: Cut from foil Propellant: Anhydrous hydrazine (94.483)

Pressure: Atmospheric

Temperature: 15.3 to 22°C (59 to 72°F)

Time: 48 hr

Results: The material itself was unaffected; however, there was a greater-than-normal decomposition of the hydrazine. The material is not recommended by M. W. Kellogg Company.

Material tested:	Graphitar 2
Source of data:	Ref. 18
Test conditions:	None given

Results: The material is considered suitable in contact with hydrazine by North American Aviation, Inc.

Material tested: Graphitar 50 Source of data: Ref. 18 Test conditions: None given

Results: The material is considered suitable in contact with hydrazine by North American Aviation, Inc.

5. Pipe-joint compounds. North American Aviation, Inc., rates all three of the compounds listed below as being acceptable for hydrazine service. However, no

CONFIDENTIAL

detailed experimental data are given regarding test conditions, etc.

Experimental Data

Material tested:	AN-C-53 thread compound (Socony-
	Vacuum and others)
Source of data:	Ref. 18
Test conditions:	None given
Results: The m zine se	aterial is considered suitable for hydra- rvice.
Material tested:	Oxyseal (Parker Appliance)
Source of data:	Ref. 18
Test conditions:	None given

Results: The material is considered suitable for hydrazine service.

Material tested: Thread-Tite (Armite Laboratorios) Source of data: Ref. 18 Test conditions: None given

Results: The material is considered suitable for hydrazine service.

6. Rags. Liquid hydrazine, when in contact with an organic material such as wiping rags, may smoulder and burst into flame. Rags should not be used to pick up spillage (Ref. 2).

7. Silicone lubricante. The silicone lubricants listed below are apparently suitable for moderate contact with hydrazine. Additional data should be obtained before any long-term applications are considered.

Experimental Data

Material tested: Silicone lubricant DC-710 Source of data: Ref. 3 Number of samples tested: 1 Propellant: Hydrazine hydrate Pressure: Atmospheric Temperature: 19 to 25°C (66 to 77°F) Time: 67.5 hr Results: A slight scum had appeared on the surface of

the hydrazine at the end of the test. The silicone was slightly decomposed.

Jet Propulsion Laboratory

CONFIDENTIAL

Material tested: Silicone lubricant DC-710

Source of data: Ref. 18

Test conditions: None given

Results: The material is considered by North American Aviation, Inc., to be suitable in contact with hydrazine. It will be thermally stable at temperatures up to 500°F.

Materials tested: Silicone lubricants, DC-200 series Source of data: Ref. 18

Test conditions: None given

Results: The lubricants are considered by North American Aviation, Inc., to be suitable in contact with hydrazine.

Material tested: Silicone lubricant DC-550

Source of data: Ref. 18

Test conditions: None given

- Results: The material is considered by North American Aviation, Inc., to be suitable in contact with hydrazine.
- Material tested: Silicone plug-cock grease (Dow-Corning)

Source of data: Ref. 18

Test conditions: None given

Results: The material is considered by North American Aviation, Inc., to be suitable in contact with hydrazine.

8. Solder (lead-tin). The experimental data available indicate that, from a corrosion standpoint, lead-tin solder would be acceptable in contact with hydrazine at ambient conditions for at least a week. However, in view of the poor behavior exhibited by metallic lead, as well as the fact that oxides of tin reduce the ignition temperature of hydrazine, it is believed that the material should be avoided. Silver solder would appear to be a better choice where soldering is required.

Experimental Data

Material tested: Solder (90% Pb, 10% Sn) Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Rolled sheet Propellant: Anhydrous hydrazine (93.23%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 211 and 211.5 hr Results: The penetration/year is negligible.

Material tested: Solder (90% Pb, 10% Sn) Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Rolled sheet Propellant: Vapor over anhydrous hydrazine (95.23%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 211 and 211.5 hr Results: The penetration/year is negligible.

Material tested: Solder (90% Pb, 10% Sn) Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: Rolled sheet Propellant: Hydrazine hydrate (66.56%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 143 and 210⁻⁻':r Results: No corrosion or change in the weight of the

Results: No corrosion or change in the weight of the samples was observed.

Material tested: Lead-tin solder

- Source of data: Ref. 6
- Number of samples tested: 1 or 2
- Shape of samples: Strip

Propellant: Anhydrous i., Irazine (95.52)

Pressure: Closed system, initially atmospheric .

Temperature: 26°C (80°F)

Time: 30 days

Nesults: Approximately 3.75% hydrawe decomposition was noted (the blank run in glass showed 1.5% decomposition).

Material tested: Lead-tin solder Source of data: Ref. 8 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 60°C (140°F) Time: 30 days Results: Approximately 3% hydrazine decomposition was

CONFIDENTIAL

WARMERSHI ##FILM

CONFIDENTIAL

Jet Propulsion Laboratory

and the second se

「日本」の「「「「「「「「」」」」

「「「「「「「「」」」「「」」」」

observed (about 1% less than the decomposition appearing in the blank run in glass).

Results: No corrosion, penetration/year, or change in the weight of the samples was noted.

9. Solder (silver). Silver solder appears to be acceptable, at least for short-term or intermittent contact with anhydrous hydrazine and hydrazine hydrate. Experience at this Laboratory indicates equal acceptability with hydrazine nitrate mixtures.

For longer-term applications, additional tests, as well as periodic inspections, should be made because of the possibility of leaching-out the zinc.

Experimental Data

 Material tested:
 Easy Flo silver solder (50% Ag, 15.5% Cu, 16.5% Zn, 18% Cd)
 Material tested

 Source of data:
 Ref. 3
 Number of sam

 Number of samples tested:
 2
 Shape of samples

 Shape of samples:
 %-in. rod
 Propellant:

 Propellant:
 Anhydrous hydrazine (93.23%)
 Pressure:

 Clo
 Pressure:
 Clo

 Pressure:
 165 to 190 hr
 Time:
 30 day

 Results:
 No corrosion was evident, and the penetration/ year was negligible.
 obse
 blan

Material tested: Easy Flo silver solder Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: %-in. rod Propellant: Vapor over anhydrous hydrazine (93.23%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Time: 211 and 211.5 hr Results: No corrosion and no penetration/year were observed.

Material tested: Easy Flo silver solder Source of idata: Ref. 3 Number of samples tested: 2 Shape of samples: K-in. rod Propellant: Hydrazine hydrate (66.56%) Pressure: Atmospheric Temperature: 20 to 25°C (68 to 77°F) Timo: 141.5 and 142 hr Material tested: Easy Flo silver solder Source of data: Ref. 3 Number of samples tested: 2 Shape of samples: M-in. rod Propellant: Anhydrous hydrazine (96.06%) Pressure: Atmospheric Temperature: 110 to 125°C (230 to 257°F) Time: 50 hr Results: No corrosion or change in weight was noted for either sample.

Material tested: Silver solder Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhydrous hydrazine (95.5%) Pressure: Closed system, initially atmospheric Temperature: 26°C (80°F) Time: 30 days Results: Approximately 3% hydrazine decomposition was observed (about twice that noted with the blank run in glass).

Material tested: Silver solder Source of data: Ref. 6 Number of samples tested: 1 or 2 Shape of samples: Strip Propellant: Anhy-Irous hydrazine (95.5%) Pressure: Cloced system, initially atmospheric Temperature: 60°C (140°F) Time: 30 days Results: Approximately 9% hydrazine decomposition was observed (about twice as inuch as that for the blank run in glass).

10. Varnish. North American Aviation, Inc., indicates at least short-term projection with varnishes utilizing silicono resins of the DC-800 series.

Material tested: Variish (formulated with DC-800-series silicone resins) Source of data: Ref. 18 Test conditions: None given

CONFIDENTIAL

4

Jet Propulsion Laboratory

Results: This material will provide adequate splash protection and will withstand immersion for short periods.

11. Wool. Liquid hydrazine in contact with an organic material such as 'vool may start to burn spontaneously. Wool should never be used near hydrazine (Ref. 2).

Page 44

CONFIDENTIAL

Jet Propulsion Laboratory

and the second s

「日日にあるというない」「日日の日間

KEFERENCES

Memorandum No. 20-152

- Troyan, J. E., "Safety in the Handling of Hydrazine," Symposium on Hydrazine and Its Applications, Olin Mathieson Chemical Corporation, Baltimore, Maryland, February 2 to 3, 1953 (Report FRO 20509, "al. I, Department of Defense, Research and Development Board, Washington, D. C.) (Confidential).
- Clark, C. C., Hydrazine, Olin Mathiesan Chemical Corporation, Baltimore, Maryland, 1953.
- 6000-Pound-Thrust Jet Propulsion Unit, Part II. Materials Corrosion Data, Final Report, Vol. VII, Report No. SPD 121. M. W. Kellogg Campany, Jersey City, New Jersey, Murch 19, 1948.
- Ordin, P. M., Preliminary Investigation of Hydrazine as a Rocket Fuel, Research Memorandum No. E7H21. National Advisory Committee for Aeronaulics, Washington, D. C., May 24, 1948.
- Dwiggins, R. D., et al. Investigation of Mixtures of Hydrazine, Hydrazine Nitrate, Water, NAVORD Report No. 2787. U. S. Naval Ordnance Laboratory, White Oak, Maryland, June 18, 1953 (Confidential).
- Patarselin, F. D., and Clegg, J. W., Behavior of Commercial Hydrozine in Contact with Various Materials, Report to Project RAND, Rand designation RM-504. Batelle Memorial Institute, Columbus, Ohio, August 1, 1950.
- Development of Manopropellant Hydrazine as a Liquid Propellant for Guns, Bimonthly Progress Reports, Contract NOrd 12649. Olin M Leson Chemical Corporation, Baltimore, Maryland, 1952 (Canfidential).
- Dwiggins, R. D., et al, Investigation of Mixtures of Hydrazine, Hydrazine Nitrate, Water, NAVORD Report No. 2964. U. S. Naval Ordnance Laboratory, White Oak, Maryland, September 23, 1953 (Confidential).
- Livingston, S., Determination of the Characteristics of Liquid Propellants: Explosive, Handling, and Storage Characteristics of Hydrazine, Technical Report No. 1732. Picatinny Arsenal, Dover, New Jersey, May 16, 1949 (Confidential).
- Dwiggins, R. D., et al. Investigation of Mixtures of Hydrozine, Hydrozine Nitrate, Water, NAVORD Report No. 2255. U. S. Navat Ordnance Laboratory, White Oak, Maryland, February 1, 1952 (Confidential).
- Development of Manopropellant Hydrazine as a Liquid Propellant for Guns, Bimonthly Progress Report, Contract Nord 12649, Task I. Olin Mathiason Chemical Corporation, Baltimore, Maryland, February 19, 1953 (Confidential).
- MX:776 Rocket Power Plant, 'Quarterly Progress Report No. 56-981-015. Bell Aircraft Corporation, Niagara Falls, New York, December 31, 1953 (Confidential).
- Development of Monopropellant Hydrozine as a Liquid Propellant for Guns, Final Summary Report, Contract NOrd-12649. Olin Mathieson Chemical Corporatic 1, Baltimore, Maryland, May 31, 1953 (Confidential).
- Audrieth, L. F., and Ogg, B. A., The Chemistry of Hydrazine, John Wiley & Sons, Inc., New York, 1951.
- Dwiggins, R. D., et al., Investigation of Mixtures of Hydrazine, Hydrazine Nitrate, Water, NAVORD Report No. 2715. U. S. Noval Ordnance Laboratory, White Oak, Maryland, January 9, 1953 (Confidential).

CONFIDENTIAL

44 南京都設置的設置以及14

Jet Propulsion Laboratory

*

e onfidentiae

REFERENCES (Cont'd)

- 16. Freeman, A., at al, Proliminary Experimental Studies of Liquid Fuel Systems, Final Report No. SPD 236. M. W. Kellogg Company, Jersey City, Naw Jersey and 20, 1949.
- 17. Theoretical, Laboratory, and Experimental Investigations of High East by Propollaufs: H) Irazine, Vol. II, Report No. RMI-293-SSI. Reaction votum, Inc., Packaway, NL. Jersey, November 20, 1950.
- 18. De Dapper, J. W., and Nadler, M., Nonmetallic Materials for Use with Llauid Rocket Propellants, Report No. AL-692. North American Ar alicin Inc., Los Anneles, California, May 1, 1951.

CONFIDENT

* ¥*\$

- 1**4**-1

1 [m] - [m] - [m] - m

1 49 1 96 al -

UNCLASSIFIED