<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD034949</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW LIMITATION CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Distribution authorized to DoD only; Administrative/Operational Use; 24 MAR 1954. Other requests shall be referred to Naval Air Systems Command, Washington, DC 20362. Pre-dates formal DoD distribution statements. Treat as DoD only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSWC ltr dtd 28 Jan 1976</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
TRIGONOMETRIC THEORY OF THE DIFFERENTIAL EQUATIONS OF EXTERIOR BALLISTICS

24 MARCH 1954

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
METRIC THEORY OF THE DIFFERENTIAL EQUATIONS OF EXTERIOR BALLISTICS

Prepared by:

D. C. Lewis, Jr.

ABSTRACT: This paper develops the fundamental equations of motion for an axially symmetric shell using the so-called "spinless" reference frame, suggested by A. W. Wundheiler. Approximate integration methods are also considered, not so much for the purpose of solving the equations, as to give the proper background for the application of the author's "metric theory" to this particular system. A particular Riemannian metric is introduced and, to some extent, justified as being particularly efficient for this purpose. The theory requires the calculation of the coefficients of a certain quadratic form in eight independent variables. Explicit formulas are given for the most complicated of these coefficients. They are indeed so complex that the author has not succeeded in drawing interesting general conclusions from them. They are nevertheless available for the numerical analysis of particular cases.
This report represents a new approach to the linearized equations of exterior ballistics. The novel features include use of a "spinless" reference frame and the application of the authors "metric theory" of differential equations. The work was carried out under project NOL-Re9a-108-1-53, entitled "Aerodynamics and Fluid Mechanics." The results are of use for the solution of exterior ballistics problems.

EDWARD L. WOODYARD
Captain, USN
Commander

H. H. KURZWEI, Chief
Aeroballistic Research Department
By direction

11
1. **Introduction.** In two previous papers, hereafter denoted by MP₁ and MP₂, the author has developed a "metric theory" of ordinary differential equations with the view of studying the dependence of the solutions on the initial conditions. In Section 4 of MP₂ some indications were given as to how the theory could be applied to the equations of exterior ballistics. The purpose of this paper is to go into more details with regard to this application. The ultimate goal is to obtain results suitable for numerical analysis as well as for a clear qualitative picture of what can be expected in problems of this sort.

2. **The equations of motion of a spinning symmetric shell.** We use a moving cartesian reference frame F with origin 0 at the center of gravity of the shell and with one of its axes (namely the x₀-axis) coinciding with the shell axis and directed from 0 to the shell vertex. The other two axes (namely the x₁-axis and x₂-axis) are chosen in such a way that 0-x₁x₂x₀ form a right handed system. It is not necessary to assume that the shell is rigidly attached to this reference frame F. In fact we simplify our equations slightly if we assume, as we do from now on, that the component of the angular velocity of F in the direction Ox₀ is zero, while that of the shell is ω₀, in general ≠ 0. On the other hand the components of angular velocity of both F and the shell in the direction of the other two axes are the same and will be denoted by ω₁ and ω₂ respectively. Hence, if \(\mathbf{\Omega}_F \) is the vector angular velocity of F (relative to some fixed frame \(F₀ \)) and if \(\mathbf{\Omega}_S \) is the vector angular velocity of the shell, we have

\[
\mathbf{\Omega}_S = \omega_0 \mathbf{i} + \omega_1 \mathbf{j} + \omega_2 \mathbf{k}
\]

\[
\mathbf{\Omega}_F = \omega_0 \mathbf{i} + \omega_1 \mathbf{j} + \omega_2 \mathbf{k},
\]

where \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) are unit vectors directed along the \(x_0, x_1, x_2 \) axes respectively.

Similarly we denote the vector velocity \(V \) of the point 0 (relative to the fixed frame \(F₀ \)) in the form

\[
V = \mathbf{u}_0 \mathbf{i} + \mathbf{u}_1 \mathbf{j} + \mathbf{u}_2 \mathbf{k},
\]

while the vector \(G \) representing the acceleration of gravity and having constant components relative to the fixed frame \(F₀ \) appears in the form

\[
G = g_0 \mathbf{i} + g_1 \mathbf{j} + g_2 \mathbf{k}.
\]
Denoting the mass of the shell by \(m \), its axial moment of inertia by \(a \), and its transverse moment of inertia by \(b \), we can write the moment of momentum in the form,
\[
\mathbf{M} = a \omega_1 \mathbf{i} + b \omega_2 \mathbf{j} + b \omega_2 \mathbf{k}
\]
and the momentum appears in the form \(m \mathbf{v} \). We denote the vector aerodynamic moment by
\[
\mathbf{M} = a M_0 \mathbf{i} + b M_1 \mathbf{j} + b M_2 \mathbf{k},
\]
the factors \(a \) and \(b \) being introduced for later convenience; and we denote the vector aerodynamic force by
\[
\mathbf{F}_\mathbf{a} = a \phi_0 \mathbf{i} + a \phi_1 \mathbf{j} + m \phi_2 \mathbf{k}.
\]

We now are in a position to write down three vector differential equations. The first of these is
\[
(2.1) \quad m \mathbf{v} = \frac{d \mathbf{v}}{dt} + m \oint_F \times \mathbf{v} = m \mathbf{G} + m \mathbf{F}_\mathbf{a},
\]
which equates the rate of change of momentum (relative to the fixed frame \(F_0 \)) to the resultant of the applied forces. The second of our equations is
\[
(2.2) \quad \mathbf{M} = \frac{d \mathbf{M}}{dt} + \oint_F \times \mathbf{M} = \mathbf{M},
\]
which equates the rate of change of moment of momentum to the applied torque. Finally, the third equation
\[
(2.3) \quad \mathbf{G} = \frac{d \mathbf{G}}{dt} + \oint_F \times \mathbf{G} = 0
\]
merely expresses the fact that \(\mathbf{G} \) is a constant vector; that is, it has constant components relative to the fixed frame \(F_0 \).

Now \(\mathbf{F}_\mathbf{a} \) and \(\mathbf{M} \) are assumed to be functions of \(\sum_S \) and \(\mathbf{v} \) only. The precise nature of this dependence will be specified in detail later on. We only wish to remark now that the above three vector equations become self-contained. They are equivalent to nine scalar differential equations for the determination of nine unknown functions, namely \(\omega_0, \omega_1, \omega_2, u_0, u_1, u_2, \xi, \xi_1, \xi_2 \). Actually the order of the system can be reduced from nine to eight, because of the obvious first integral \(\mathbf{G} \cdot \mathbf{G} = \text{const.} \). When once these unknown functions have been determined by integration of (2.1), (2.2) and (2.3), the trajectory may be calculated as follows:

We introduce a moving frame \(F_0' \) with the same origin as \(F \) (namely the center of gravity of the shell) but with its axes invariably parallel to the corresponding axes of the fixed frame \(F_0 \). Eulerian angles \(\theta, \phi, \psi \) are now introduced to define the orientation of \(F \) relative to \(F_0' \) and hence also relative to \(F_0 \). We hereby assume that the axes \(O\xi, O\xi', O\gamma \) of \(F_0' \) form a right-handed system, that \(\theta \) is the angle from \(O\xi \) to \(O\xi' \),
that \(\varphi \) is an angle from \(O\xi \) to the intersection \(ON \) of the \(E\eta \)-plane with the \(x_1x_2 \)-plane (the so-called line of nodes), and that \(\psi \) is an angle from this same line of nodes \(ON \) to the \(Ox_1 \) axis. Cf. the figure.

We further assume that \(F_0 \) and hence \(F'_0 \) is chosen in such a way that one of its axes, say the \(O_\xi \)-axis, points vertically upward. Then, since gravity always acts vertically downward we see easily that,

\[
\begin{align*}
\varepsilon_0 &= -|G| \cos \theta \\
\varepsilon_1 &= -|G| \sin \theta \sin \psi \\
\varepsilon_2 &= -|G| \sin \theta \cos \psi
\end{align*}
\]

from which we find that \(\tan \psi = \varepsilon_1/\varepsilon_2 \) and \(\tan \theta = \pm \sqrt{\varepsilon_1^2 + \varepsilon_2^2}/\varepsilon_0 \).

When \(\psi \) and \(\theta \) are thus found as functions of \(t \) (since \(\varepsilon_0, \varepsilon_1, \varepsilon_2 \) are known functions of \(t \) after the integration of (2.1), (2.2), and (2.3)), we can find \(\varphi \) by the single quadrature involved in integrating the equation

\[
\frac{d\psi}{dt} + \frac{d\varphi}{dt} \cos \theta = 0.
\]

This equation expresses the fact that the frame \(F \) has zero angular velocity about \(Ox_0 \). Thus

\[
(2.4) \quad \varphi = \varphi_0 + \int_0^t \psi \sec \theta \, dt.
\]

With the Eulerian angle all determined, we can now find the nine direction cosines between the frames \(F \) and \(F'_0 \) and hence between \(F \) and \(F'_0 \). They are exhibited in the following table,
where the axes of the fixed frame \(F_0 \) are denoted by \(X, Y, Z \). This table may easily be obtained from the law of cosines in spherical trigonometry or by the matrix multiplication corresponding to the fact that \(F \) may be obtained from \(F_0' \) by rotating the latter through \(\varphi \) about the \(\zeta \) axis, then through \(\theta \) about the carried \(\zeta \) axis, and finally through \(\psi \) about the carried \(\zeta \) axis.

The components \(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \) of the shell velocity relative to \(F_0 \) are, of course, related to the components \(u_1, u_2, u_3 \) relative to \(F \) by means of the following equations:

\[
\frac{dx}{dt} = \lambda_1 u_1 + \mu_1 u_2 + \nu_1 u_3 \\
\frac{dy}{dt} = \lambda_2 u_1 + \mu_2 u_2 + \nu_2 u_3 \\
\frac{dz}{dt} = \lambda_3 u_1 + \mu_3 u_2 + \nu_3 u_3.
\]

(2.5)

Since the direction cosines denoted by the \(\lambda \)'s, \(\mu \)'s, and \(\nu \)'s are known functions of \(t \) as well as the \(u \)'s (when once equations (2.1), (2.2), (2.3), and (2.4) have been integrated), the actual trajectory may be obtained by the three obvious quadratures presented in (2.5).

Thus the key to the entire situation is the integration of the self contained system of ninth order represented by the three vector equations (2.1), (2.2), and (2.3). It is this system to which we shall apply the metric theory of our previous papers. Written out in full, these nine equations take the following form.
\[
(2.6) \quad \frac{du_0}{dt} + \omega_1 u_2 - \omega_2 u_1 = g_0 + \Phi_0
\]
\[
(2.7) \quad \frac{du_1}{dt} + \omega_1 u_0 = g_1 + \Phi_1
\]
\[
(2.8) \quad \frac{du_2}{dt} - \omega_1 u_0 = g_2 + \Phi_2
\]
\[
(2.9) \quad \frac{d\omega_0}{dt} = M
\]
\[
(2.10) \quad \frac{d\omega_1}{dt} + h \omega_2 = M_1 \quad \text{(where } h = a/b)\]
\[
(2.11) \quad \frac{d\omega_2}{dt} - h \omega_1 = M_2
\]
\[
(2.12) \quad \frac{dg_0}{dt} + \omega_1 g_2 - \omega_2 g_1 = 0
\]
\[
(2.13) \quad \frac{dg_1}{dt} + \omega_1 g_2 = 0
\]
\[
(2.14) \quad \frac{dg_2}{dt} - \omega_2 g_1 = 0.
\]

If we introduce complex quantities defined as follows, the number of our equations can be reduced from nine to six. Since three of these six equations are complex, this simplification is formal rather than actual. Still it is well worth carrying out. We set

\[\omega = \omega_1 + i \omega_2 \quad (i = \sqrt{-1})\]
\[u = u_1 + i u_2\]
\[
(2.15) \quad \Phi = \Phi_1 + i \Phi_2 \quad \text{(not to be confused with vector } \Phi)\]
\[M = M_1 + i M_2\]
\[g = g_1 + i g_2\]
Then multiplying (2.8) by \(i\) and adding to (2.7) we obtain, with the help of (2.15), the following complex equation

\[
\frac{du}{dt} = i u \omega + g + \bar{\phi}
\]

(2.16)

to be used as the equivalent of the two equations (2.7) and (2.8). In a similar manner (2.10) and (2.11) are replaced by

\[
\frac{d\omega}{dt} = i h \omega_0 \omega + M,
\]

(2.17)

while (2.13) and (2.14) are replaced by

\[
\frac{dg}{dt} = ig_0 \omega
\]

(2.18)

3. **Expressions for the aerodynamic force and torque.** The use of complex quantities also simplifies the discussion of the effect of axial symmetry on \(\bar{\phi}\) and \(M\). Thus \(M = M(\omega_0, \omega, u_0, u)\). A rotation of the frame \(F\) through an angle \(\alpha\) about \(O_0\) replaces \(M\) by \(M e^{i\alpha}\), \(\omega\) by \(\omega e^{i\alpha}\), and \(u\) by \(ue^{i\alpha}\). Hence, by axial symmetry, we must have

\[
M(\omega_0, \omega, u_0, u)e^{i\alpha} = M(\omega_0, \omega e^{i\alpha}, u_0, ue^{i\alpha})
\]

(3.1)

as a functional equation to be satisfied by \(M\) for all real values of \(\alpha\).

If we consider only terms that are linear in the relatively small quantities \(u_1, u_2, \omega_1, \) and \(\omega_2\), it is readily shown from (3.1) that the most general form for \(M\) would be

\[
M = A e^{i\omega} + B u
\]

(3.2)

where \(A\) and \(B\) are complex valued functions of the real quantities \(u_0\) and \(\omega_0\). A similar argument shows that

\[
\bar{\phi} = C e^{i\omega} + D u,
\]

(3.3)

where \(C\) and \(D\) are also complex valued functions of \(u_0\) and \(\omega_0\), and that

\[
M_0 = M_0(\omega_0, u_0)
\]

(3.4)

\[
\bar{\phi}_0 = \bar{\phi}_0(\omega_0, u_0)
\]

(3.5)

where \(M_0\) and \(\bar{\phi}_0\) are real valued functions of \(u_0\) and \(\omega_0\).
If we assume that \(A \) can be developed in powers of \(u_0 \) and \(\omega_0 \) and if we then neglect all terms of higher degree than the first, we have

\[
A = (a_1 + a_{11} \omega_0 + a_{12} u_0) + i(a_2 + a_{21} \omega_0 + a_{22} u_0).
\]

Thus there are six real "aerodynamic constants" associated with \(A \), namely \(a_1, a_2, a_{11}, a_{12}, a_{21}, a_{22} \). Similarly we write

\[
B = (b_1 + b_{11} \omega_0 + b_{12} u_0) + i(b_2 + b_{21} \omega_0 + b_{22} u_0)
\]

\[
C = (c_1 + c_{11} \omega_0 + c_{12} u_0) + i(c_2 + c_{21} \omega_0 + c_{22} u_0)
\]

\[
D = (d_1 + d_{11} \omega_0 + d_{12} u_0) + i(d_2 + d_{21} \omega_0 + d_{22} u_0)
\]

\[
M_0 = m_0 + m_{11} \omega_0 + m_{12} u_0 + m_{12} \omega_0^2 + m_{12} u_0 + m_{22} u_0^2
\]

\[
\Phi_0 = \Phi_0 + f_{11} \omega_0 + f_{12} u_0 + f_{12} \omega_0^0 + f_{12} u_0 + f_{22} u_0^2
\]

Thus we consider at the outset a total of 36 aerodynamic constants. However, it is physically clear that \(M_0 = 0 \) if \(\omega_0 = 0 \). Hence

\(m_0 = m_2 = m_{22} = 0 \). Also \(\Phi_0 = 0 \) if \(u_0 = 0 \). Hence \(f_0 = f_1 = f_{11} = 0 \).

Also \(M_0 \) is an odd function of \(\omega_0 \) while \(\Phi_0 \) is an even function of \(\omega_0 \). Hence \(m_{11} = 0 \) and \(f_{12} = 0 \). The number of constants is thus reduced at once to 28. Furthermore, it seems to be generally agreed that of these 28 constants \(a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2, m_1, \) and \(f_2 \) may be neglected.

We are thus left with 18 constants and the above equations reduce to

\[
A = (a_{11} \omega_0 + a_{12} u_0) + i(a_{21} \omega_0 + a_{22} u_0)
\]

\[
B = (b_{11} \omega_0 + b_{12} u_0) + i(b_{21} \omega_0 + b_{22} u_0)
\]

\[
C = (c_{11} \omega_0 + c_{12} u_0) + i(c_{21} \omega_0 + c_{22} u_0)
\]

\[
D = (d_{11} \omega_0 + d_{12} u_0) + i(d_{21} \omega_0 + d_{22} u_0)
\]

\[
M_0 = m_{12} \omega_0 u_0
\]

\[
\Phi_0 = f_{22} u_0^2
\]
The elimination of eight more constants can be accomplished as follows: If \(\omega_1 = u_2 = 0 \) equations (3.2) and (3.3) become

\[M = A_1 \omega_2 + B_1 \eta_1, \quad \Phi = C_1 \omega_2 + D_1 \eta_1; \]

so that, upon separating real and pure imaginary parts, we have (with the help of the above expressions for \(A, B, C, D \)) the following relations:

\[
\begin{align*}
M_1 &= -(a_{21} \omega_0 + a_{22} u_0) \omega_2 + (b_{11} \omega_0 + b_{12} u_0) u_1 \\
M_2 &= (a_{11} \omega_0 + a_{12} u_0) \omega_2 + (b_{21} \omega_0 + b_{22} u_0) u_1 \\
\Phi_1 &= -(c_{21} \omega_0 + c_{22} u_0) \omega_2 + (d_{11} \omega_0 + d_{12} u_0) u_1 \\
\Phi_2 &= (c_{11} \omega_0 + c_{12} u_0) \omega_2 + (d_{21} \omega_0 + d_{22} u_0) u_1.
\end{align*}
\]

But, with \(\omega_1 = u_2 = 0 \), the vector velocity of every point on the shell axis must be orthogonal to the \(x_2 \)-axis. Hence the component in the direction of the \(x_1 \)-axis of any element of aerodynamic force acting on the shell would not change sign if the direction of spin were reversed, but the component in the direction of the \(x_2 \)-axis would change its sign under such circumstances. In reaching this conclusion we use considerations of symmetry in the form sometimes called "the principle of sufficient reason" (cf. G. D. Birkhoff, Collected Mathematical Papers, volume 3, pp. 778-804). We thus conclude that, with \(\omega_1 = u_2 = 0, \Phi_1 \) and \(\Phi_2 \) must be even functions of \(\omega_0 \), while \(\Phi_1 \) and \(\Phi_2 \) must be odd functions of \(\omega_0 \). We thus read off from the above equations that

\[a_{22} = b_{12} = a_{11} = b_{21} = c_{21} = d_{11} = c_{12} = d_{22} = 0. \]

Hence our final formulas for \(A, B, C, D, M_0, \) and \(\Phi_0 \) are as follows:

\[
\begin{align*}
A &= a_{12} u_0 + i a_{21} \omega_0 \\
B &= b_{11} \omega_0 + i b_{22} u_0 \\
C &= c_{11} \omega_0 + i c_{22} u_0 \\
D &= d_{12} u_0 + i d_{21} \omega_0 \\
M_0 &= m_{12} \omega_0 u_0 \\
\Phi_0 &= \tau_{22} u_0^2
\end{align*}
\]
The ten remaining constants are usually expressed in terms of
dimensionless quantities which are generally denoted by the capital
letter K with various subscripts. In accordance with one well known
usage we write

\[a_{12} = - \rho d^4 K_a b^{-1} \]
\[b_{11} = - \rho d^4 K_T b^{-1} \]
\[c_{11} = \rho d^4 K_{a_T} m^{-1} \]
\[d_{12} = - \rho d^2 K_N m^{-1} \]
\[m_{12} = - \rho d^4 K_A a^{-1} \]
\[a_{21} = \rho d^5 K_{a_T} b^{-1} \]
\[b_{22} = - \rho d^3 K_M b^{-1} \]
\[c_{22} = \rho d^3 K_S m^{-1} \]
\[d_{21} = \rho d^3 K_F m^{-1} \]
\[f_{22} = - \rho d^2 K_{A} m^{-1} \]

Here \(\rho \) = density of air (= .001188 gm/cm\(^3\) for a typical value)
\(d \) = diameter of projectile (2 centimeters in a typical case)
\(m \) = mass of projectile (175 grams)
\(b \) = transverse moment of inertia (800 gm - cm\(^2\))
\(a \) = axial moment of inertia (76 gm - cm\(^2\))

According to some experimental work of Turetsky, the dimensionless
aerodynamic coefficients may be expected to have values of about the
following magnitude: \(K_H = 6 \), \(K_T = -0.1 \), \(K_M = 1 \), \(K_S = -10 \).
\(K_N = 1 \), \(K_F = 0.2 \), \(K_A = 0.005 \), \(K_{A_T} = 0.1 \). I have no information about
\(K_{a_T} \) and \(K_{A_T} \). They are probably too small to be significant.

Needless to say, the aerodynamic force system described here does
not satisfy the Nielsen-Synge requirement of invariance with respect to
shift of mass center.

4. Digression on the approximate integration of linear differential
equations. The approximate solution of the differential system
introduced above hinges on the solution of a system of linear equations
of the following form:

\[\frac{dw}{dt} = \alpha(t)w + \beta(t)u + H(t) \]
(4.1)

\[\frac{du}{dt} = \gamma(t)w + \delta(t)v + L(t) \]
where \(\nu, u, \alpha, \beta, \gamma, \delta, H, \) and \(L \) are complex valued functions of the real variable \(t \). The solution of such a system of non-homogeneous linear differential equations is well known to depend on the solution of the corresponding homogeneous system, in which \(H(t) \) and \(L(t) \) are both zero. But it is possible to write down immediately an approximate solution of the homogeneous system, at least if \(h^2 = \frac{1}{4} \left[(\alpha - \delta)^2 + 4\beta \gamma \right] \) and \(\beta \) are not zero and the derivatives of \(\alpha, \beta, \gamma, \delta \) are small enough compared to \(h \) and \(h' \). In fact the functions

\[
\begin{align*}

W &= \beta^2 h^{-1/2} \exp \left(\frac{1}{2}(\alpha + \delta) + h \right) dt \\
U &= \left[h - \frac{1}{2}(\alpha - \delta) \right] \beta^{-1/2} h^{-1/2} \exp \left(\frac{1}{2}(\alpha + \delta) + h \right) dt
\end{align*}
\]

may be verified to satisfy exactly the equations

\[
\begin{align*}
\frac{dW}{dt} &= (\alpha + \frac{1}{2} \frac{\alpha - \delta}{\beta} - \frac{1}{2} \frac{h'}{h}) W + \beta U \\
\frac{dU}{dt} &= (\gamma + \frac{1}{2} \frac{\alpha - \delta}{\beta} - \frac{1}{2} \frac{\alpha - \delta}{\beta} \cdot \frac{\alpha - \delta}{\beta} - \frac{\beta}{h} \cdot \frac{\alpha - \delta}{\beta}) W + \left(\delta + \frac{1}{2} \frac{\alpha - \delta}{\beta} - \frac{1}{2} \frac{\alpha - \delta}{\beta} \right) U,
\end{align*}
\]

which, in view of the smallness of \(h, h' \) and \(\alpha - \delta \), are only slight modifications of (4.1) when \(H(t) = L(t) = 0 \). Moreover from the definition of \(h \) as a square root of a non-vanishing quantity, it is clear that (4.2) yields two solutions, one for each determination of the sign of the square root. The verification that (4.2) satisfies (4.3) is laborious but elementary and will be left to the reader.

To obtain a solution of the non-homogeneous linear system (4.1) we need to know two particular solutions of the homogeneous system depending on a real parameter \(s \), namely \(\nu_1(t,s), u_1(t,s) \) and \(\nu_2(t,s), u_2(t,s) \), such that \(\nu_1(s,s) = 1, u_1(s,s) = 0, \nu_2(s,s) = 0, u_2(s,s) = 1 \). Then, as is well known and as is easily verified, it turns out that a particular solution of (4.1) is given by

\[
\begin{align*}
\nu &= \int_0^t \left[H(s) \nu_1(t,s) + L(s) \nu_2(t,s) \right] ds \\
u &= \int_0^t \left[H(s) u_1(t,s) + L(s) u_2(t,s) \right] ds
\end{align*}
\]
But from the approximate solution (4.2) of the homogeneous equations it is easy approximately to set up these functions \(w_1(t,s) \) and \(u_1(t,s) \). In fact, using the abbreviations

\[
P(t) = \beta^{\frac{1}{2}} h^{-\frac{1}{2}} \\
q_1(t) = (h - \frac{1}{2}(\alpha - \delta)) \beta^{\frac{1}{2}} h^{-\frac{1}{2}} \\
q_2(t) = (- h - \frac{1}{2}(\alpha - \delta)) \beta^{\frac{1}{2}} h^{-\frac{1}{2}}
\]

we write

\[
w_1(t,s) = \frac{1}{2} P(t) \left[q_1(s) \exp \int_s^t (\frac{1}{2}(\alpha + \delta) - h) d\tau - q_2(s) \exp \int_s^t (\frac{1}{2}(\alpha + \delta) + h) d\tau \right]
\]

(4.5.1)

\[
u_1(t,s) = \frac{1}{2} \left[q_2(t) q_1(s) \exp \int_s^t (\frac{1}{2}(\alpha + \delta) - h) d\tau - q_1(t) q_2(s) \exp \int_s^t (\frac{1}{2}(\alpha - \delta) h) d\tau \right]
\]

\[
w_2(t,s) = \frac{1}{2} P(t) P(s) \left[\exp \int_s^t (\frac{1}{2}(\alpha + \delta) + h) d\tau - \exp \int_s^t (\frac{1}{2}(\alpha + \delta) - h) d\tau \right]
\]

(4.5.2)

\[
u_2(t,s) = \frac{1}{2} P(t) \left[q_1(t) \exp \int_s^t (\frac{1}{2}(\alpha + \delta) + h) d\tau - q_2(t) \exp \int_s^t (\frac{1}{2}(\alpha + \delta) - h) d\tau \right]
\]

Both \(w_1(t,s) \), \(u_1(t,s) \) and \(w_2(t,s) \), \(u_2(t,s) \), as given by (4.5), satisfy (4.3) exactly, while (4.4), with these values for the \(w_2 \) and \(u_2 \) inserted, will satisfy exactly the following system:

\[
\frac{dw}{dt} = (\alpha + \frac{1}{2} \frac{\delta \cdot \delta}{\rho} - \frac{1}{2} \frac{\alpha \cdot \delta}{h}) + \beta u + H(t)
\]

(4.6)

\[
\frac{du}{dt} =
\left(\gamma + \frac{3}{4} \frac{\alpha \cdot \delta}{h} - \frac{1}{4} \frac{\alpha \cdot \delta}{h} + \frac{\alpha \cdot \delta}{h} \right) + \left(\delta + \frac{3}{4} \frac{\alpha \cdot \delta}{h} - \frac{1}{4} \frac{\alpha \cdot \delta}{h} \right)
+ L(t),
\]

which, of course, is a close approximation of (4.1). Thus the functions given by (4.4) will approximate closely the solution of (4.1) which vanishes when \(t = 0 \), and estimates of this approximation can be carried out by classical methods.
5. The integration of the equations of motion. We begin by writing down in a suitable form the equations developed in Section 2 and 3. Namely we have equations (2.6), (2.9), (2.16), (2.17), (2.16), while (2.12) is eliminated by setting \(g_0 = -\left(|\omega| + g_0 \right) \). We also substitute for \(\delta_0, \delta, M_0, \) and \(\delta \) their values in terms of the aerodynamic constants discussed in Section 3. The result is the following system of five equations:

\[
\begin{align*}
(5.1) \quad & \frac{du_0}{dt} = \omega u_1 - \omega u_2 - \left(|\omega|^2 - |\psi|^2 \right)^{1/2} + \frac{f_{22}}{2} u_0^2 \\
(5.2) \quad & \frac{d\omega}{dt} = m_{12} \omega u_0 \\
(5.3) \quad & \frac{dg}{dt} = -i\omega (|\omega|^2 - |\psi|^2)^{1/2} \\
(5.4) \quad & \frac{d\psi}{dt} = a_{12} u_0 + (a_{21} + h) \omega u_0 + (b_{11} \omega u_0 + ib_{22} u_0) \\
(5.5) \quad & \frac{du}{dt} = (c_{11} \omega + i(c_{22} + 1) u_0) + (d_{12} u_0 + id_{21} \omega u_0) + g
\end{align*}
\]

We have set \(\omega = \psi \) in order to conform to the notation of the previous section. Since the last three equations are complex equations, they are equivalent to six real equations. Hence the order of our system (considered as a real system) is eight, even though for some purposes it may be treated as of order five. The quantities \(|\gamma|, f_{22}, m_{12}, a_{12}, a_{21}, h, b_{11}, b_{22}, c_{11}, c_{22}, d_{12}, d_{21} \) are, of course, all constants, while \(u_0, \omega_0, g \) are the unknown functions of \(t \).

All five equations can be trivially satisfied by taking \(g, \omega, u \) identically zero and then by integrating the first two equations by simple quadratures. But this would correspond to shots fired either straight up or straight down and is of no practical significance.

Aside from this there is no known method of obtaining exact elementary solutions of these equations, although the classical existence theorems not only assert that solutions corresponding to arbitrary initial values of the unknowns do exist but give implicitly a means for the numerical calculation of these solutions to any desired degree of accuracy. These methods usually start with a crude approximation (which we call the zero approximation) and then proceed by successive approximations. The \(n^{th} \) approximation, namely, is obtained from the \((n-1)^{th}\) approximation, by substituting the \((n-1)^{th}\) approximation in the right hand members of (5.1) - (5.5) and then integrating under the appropriate initial conditions. It is known (under suitable precautions) that the approximations converge
uniformly to the exact solution and, in fact, they converge quite rapidly if the time interval is not unreasonably large, no matter how crude the zeroth approximation may be. We shall, however, focus attention on how to get a really refined zeroth approximation, which is sufficiently accurate so that the first approximation may be considered (at least for some purposes) as the actual solution.

We hereby limit ourselves to initial conditions in which the angle between the shell axis and the tangent to the trajectory is small. Whether this so-called "yaw-angle" remains small depends on the differential equations. For constants corresponding to a properly constructed shell it should remain small, and our zeroth approximation will in fact be obtained by taking it actually equal to zero. It is for such properly constructed shells that our system of successive approximations is to be expected to converge very rapidly. For improperly constructed shells the approximations theoretically would still converge but in a much slower and more unstable manner.

We denote by θ the angle between the tangent to the trajectory and the vertical direction (i.e. the z-axis). If the yaw angle is small then $\theta - \theta$ is small (although the converse is not necessarily true). In all cases $\theta - \theta$ is to be taken as small for $t = 0$, and in the zeroth approximation $\theta - \theta = 0$ for all t.

A more complete statement of the initial conditions for both the zeroth approximation and the actual solution is indicated in the following table:

<table>
<thead>
<tr>
<th>Variable</th>
<th>For the zeroth approximation</th>
<th>For the actual solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_0</td>
<td>> 0 (large)</td>
<td>> 0 (large)</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>complex number with small modulus</td>
</tr>
<tr>
<td>ω_0</td>
<td>> 0 (large)</td>
<td>> 0 (large)</td>
</tr>
<tr>
<td>ω</td>
<td>0</td>
<td>complex number with small modulus</td>
</tr>
<tr>
<td>θ</td>
<td>angle between 0 and π*</td>
<td>angle between 0 and π*</td>
</tr>
<tr>
<td>g_0</td>
<td>$-</td>
<td>g</td>
</tr>
<tr>
<td>g_2</td>
<td>$-</td>
<td>g</td>
</tr>
<tr>
<td>g_1</td>
<td>0</td>
<td>small real number</td>
</tr>
<tr>
<td>φ</td>
<td>0</td>
<td>small</td>
</tr>
<tr>
<td>φ</td>
<td>0</td>
<td>small</td>
</tr>
</tbody>
</table>

*holds also throughout the motion
Taking \(g_1, \phi, \) and \(\psi \) all equal to zero initially means that the shell axis is initially in the YZ (or \(\gamma \), \(\delta \)) plane. If, in addition, \(u = 0 \), the trajectory is also in this plane, at least, initially.

To get the zeroth approximation we assume that the center of gravity of the shell follows the trajectory of a particle in exterior ballistics, in which the drag is proportional to the square of the velocity, and that the yaw is zero. This amounts to replacing equations (5.1) and (5.3) by

\[
\frac{du_0}{dt} = - (|g|^2 - g_2)^{\frac{1}{2}} + \frac{f}{220} u^2
\]

and

\[
\frac{dg_2}{dt} = \frac{g_2}{u_0} (|g|^2 - g_2), \quad \frac{dg_1}{dt} = 0
\]

respectively. Here the drag coefficient is, of course, \(- f_{22}^2\). These equations are obtained from Newton's second law of motion by taking components in the tangential and normal directions; and (5.7) when expressed in terms of \(\delta \) takes the more familiar form

\[
\frac{d\delta}{dt} = - \frac{|g| \sin \delta}{u_0}
\]

(with \(\theta = \delta \), as previously explained, and \(g_2 = - |g| \sin \theta \)).

As is well known, (5.6) and (5.7) can be integrated by quadratures in terms of elementary functions. This is effected by eliminating \(t \) and using \(p = u_0 g_2 \) as a new variable. Thus we get

\[
dp/dg_2 = -f_{22}p^3/g_2^3 (|g|^2 - g_2)^{\frac{3}{2}}
\]

in which the variables are separable. Of course, the actual integration of (5.6) and (5.7) by quadratures in the indicated manner may present practical difficulties. Approximate solutions are for the present purposes quite good enough.

Having once obtained the zeroth approximation for \(u_0 \) as a function of \(t \), the zeroth approximation for \(\omega_0 \) is obtained by integrating (5.2). When this has been accomplished, so that both \(u_0 \) and \(\omega_0 \) as well as \(g \), or rather their zeroth approximations, are known functions of \(t \), we find that equations...
(5.4) and (5.5) take the form (4.1), with \(H(t) = 0 \) and \(L(t) = g \). Good zeroth approximations for \(\omega \) and \(u \) can therefore be obtained from formulas (4.4). In making this statement we use the intuitively obvious fact that both \(u_0 \) and \(\omega_0 \) have comparatively small time rates of change. In other words our zeroth approximation is best when \(du_0/dt \) and \(d\omega_0/dt \) are smallest. This will insure the smallness of the quantities \(\dot{\omega}, \dot{\rho}, \dot{\gamma}, \dot{\delta} \) of the preceding section.

6. On the most favorable metric for the ballistic equations. The sensitivity of the motion of the shell to slight variations in the initial conditions was the original subject of this research project. This is closely connected, if not identical, with the question of stability. But so far the studies of this question have been limited to systems corresponding to equations (5.4) and (5.5) in their application to the finding of approximations. In such applications, the \(u_0, \omega_0 \) and \(g \) are regarded as known. In fact it is sometimes assumed in effect that they are even constant. The condition for stability, as given by Nielsen and Synge, is then to the effect that the determinantal equation

\[
\begin{vmatrix}
\alpha - \sigma & \beta \\
\gamma & \delta - \sigma
\end{vmatrix} = 0
\]

in \(\sigma \) should be such that the real part of each root should be negative (or possibly zero). Here, in conformity with our previous notation, we define \(\alpha, \beta, \gamma, \delta \) as follows:

\[
\begin{align*}
\alpha &= a_{12}u_0 + i(a_{21} + b)\omega_0 \\
\beta &= b_{11}\omega_0 + ib_{22}u_0 \\
\gamma &= c_{11}\omega_0 + i(c_{22} + l)u_0 \\
\delta &= d_{12}u_0 + id_{21}\omega_0.
\end{align*}
\]

so that equations (5.4) and (5.5) appear as (4.1). Such a theory of stability does indeed take into account the part of the mathematical theory which one intuitively feels is the most crucial. Nevertheless it focuses exclusive attention on (5.4) and (5.5) and ignores the fact \(\alpha, \beta, \gamma, \delta, \) and \(g \) are also subject to disturbances, since the two equations in question are really just a part of the larger system consisting of equations (5.1) - (5.5).
In order to handle the complete system, the author devised a metric theory (cf. MP1 and MP2) which may be applied to any system of differential equations of the form,
\[\frac{dx_i}{dt} = x^i \left[x, t \right] \quad i = 1, \ldots, n. \]

In this theory we introduce a Riemann metric (in general varying with the time \(t \)) for the \(n \) dimensional space of the \(x \)'s. An inequality is then developed for the "distance between two solutions" at time \(t \) in terms of the distance at time \(0 \). From this inequality rigorous estimates can be read off to answer at least some questions about the way in which the solution depends on initial conditions. Results are certainly obtained no matter how the metric is chosen but, unless the choice is a fortunate one, the results may turn out to be too trivial to be of practical value.

A minimum desideratum would be to choose the metric in such a way that it would be sensitive to situations causing stability or instability with regard to the simplified system consisting of (5.4) and (5.5).

For this reason a preliminary investigation was carried out to choose a favorable metric for the study of (4.1). It may be noted in this connection that the choice is not influenced by the presence of the terms \(H(t) \) and \(L(t) \) in (4.1). This is because the difference between two solutions of the linear non-homogeneous equations always satisfies the homogeneous equations. A theory of choosing a metric for a linear system is indicated in Section 5 of MP2. When this theory is applied to (4.1), we are led to the following quadratic form for the Riemann metric of the four real dimensional space of \(\omega = \omega_1 + i \omega_2 \) and \(u = u_1 + u_2 \).

\[
\begin{align*}
&d s_1^2 = |d\omega|^2 + (2\bar{\gamma})^{-1}(\bar{\delta} - \bar{\alpha})d\bar{\omega}d\bar{u} + (2\bar{\gamma})^{-1}(\bar{\delta} - \alpha)d\omega du + \\
&(\bar{\delta} - \omega_1^2 + |(\bar{\delta} - \alpha)^2 + 4\rho \gamma|) |2\gamma|^{-2} |du|^2,
\end{align*}
\]

where \(\bar{\omega}, \bar{\omega}, \bar{\alpha}, \bar{\gamma}, \) etc., are used to indicate the conjugate imaginaries of \(\omega, u, \alpha, \gamma, \) etc. In another paper this metric was actually used to obtain inequalities for the system (4.1) and these inequalities were shown to be the best possible ones of their type. Hence we are confident that in setting up a favorable metric for the entire system \(d\omega \) and \(du \) should enter as in \(d s_1^2 \) or (what leads to the same result) \(d s_1^2 \) multiplied by an arbitrary positive function.

As already indicated, the rest of the system is not so sensitive to disturbing phenomena and hence there seems to be no particular reason for using anything other than the simplest choice of a Euclidean metric.
It may be noted in this connection that the non linear system of
Section 6 of WP is concerned with the corresponding problem of particle
exterior ballistics, in which x and y denote two components of the velocity
of the particle. Here the use of a Euclidean metric is extremely satisfactory.

Thus, for the complete system one would expect satisfaction from a
metric of the form,

$$ds^2 = |2y|^2 ds_1^2 + J ds_2^2.$$

Here ds_1^2 is multiplied by $|2y|^2$ in order to avoid fractions and J is a
positive constant to be chosen at pleasure. Considerable effort has been
spent to determine an efficient value for J. Since these efforts have
been unavailing, one may suppose that different values may be desired for
different applications.

7. The fundamental quadratic form. We turn now to the fundamental result
of WP which implies that, if $\delta(t)$ denotes the distance between solutions
at time t of the system,

$$\frac{dx_i}{dt} = x^i(x_1, \ldots, x_n), \quad i = 1, \ldots, n,$$

where "distance" is taken in the Riemannian sense with respect to a
specified metric,

$$(7.1) \quad ds^2 = \sum_{i,j} g_{ij} dx_i dx_j,$$

then

$$(7.2) \quad \delta(t) \leq \delta(t_0) e^{\beta / t - t_0},$$

where β is an upper bound for a certain quadratic form

$$(7.3) \quad Q[\lambda] = \sum_{i,j} q_{ij} \lambda_i \lambda_j,$$

under the condition $\sum_{i,j} g_{ij} \lambda_i \lambda_j = 1$. Here the coefficients of the
"fundamental" quadratic form $Q[\lambda]$ are given by the following formula

$$(7.4) \quad q_{ij} = \sum_k (\frac{dx_k}{\partial x_j} g_{ij} + g_{ik} \frac{dx_k}{\partial x_i}).$$
In this section we wish to produce a table for the coefficients of this quadratic form for the ballistic equations (5.1) - (5.5) with respect to the metric introduced in the preceding section. First, however, we indicate the change of notation to harmonize MP with the notation of the exterior ballistic problem, and then write out explicitly the differential equations and the coefficients of the chosen metric in the notation of MP.'

In our problem the of MP is equal to 8, and we choose \(x_1 = \omega_1 \), \(x_2 = \omega_2 \), \(x_3 = u_1 \), \(x_4 = u_2 \), \(x_5 = u_0 \), \(x_6 = g_1 \), \(x_7 = g_2 \), \(x_8 = \omega_0 \). Then the differential equations in the new notation are as follows:

\[
\begin{align*}
\frac{dx_1}{dt} &= x^1 = a_{12} x_1 x_5 - (a_{21} + h) x_2 x_8 + b_{11} x_3 x_8 - b_{22} x_4 x_5 \\
\frac{dx_2}{dt} &= x^2 = a_{12} x_2 x_5 + (a_{21} + h) x_1 x_8 + b_{11} x_4 x_8 + b_{22} x_3 x_5 \\
\frac{dx_3}{dt} &= x^3 = c_{11} x_1 x_8 - (c_{22} + l) x_2 x_5 + d_{12} x_3 x_5 - d_{21} x_4 x_8 + x_6 \\
\frac{dx_4}{dt} &= x^4 = c_{11} x_2 x_8 + (c_{22} + l) x_1 x_5 + d_{12} x_4 x_5 + d_{21} x_3 x_8 + x_7 \\
\frac{dx_5}{dt} &= x^5 = x_2 x_3 - x_1 x_4 - (|\alpha|^2 - x_6^2 - x_7^2)^{1/2} + f_{22} x_5^2 \\
\frac{dx_6}{dt} &= x^6 = x_2 (|\alpha|^2 - x_6^2 - x_7^2)^{1/2} \\
\frac{dx_7}{dt} &= x^7 = x_1 (|\alpha|^2 - x_6^2 - x_7^2)^{1/2} \\
\frac{dx_8}{dt} &= x^8 = m_{12} x_5 x_3
\end{align*}
\]
We similarly write down the explicit expressions for the $g_{ij} = g_{ji}$

$$g_{11} = 4(c_{11}^2 w_0^2 + (c_{22} + 1)^2 u_0^2) = 4(c_{22} + 1)^2 x_5^2 + 4c_{11} x_8^2$$

$$g_{12} = 0$$

$$g_{13} = 2 \left[c_{11}(d_{12} - a_{12}) + (c_{22} + 1)(d_{a21} - a_{21} - h) \right] x_5 x_8$$

$$g_{14} = 2(c_{22} + 1)(d_{12} - a_{12}) x_5^2 - 2c_{11}(d_{a21} - a_{21} - h) x_8^2$$

$$g_{21} = 0, \quad g_{22} = g_{11}, \quad g_{23} = -g_{14}, \quad g_{24} = g_{13}$$

$$g_{31} = g_{13}, \quad g_{32} = -g_{14}$$

$$g_{33} = (d_{12} - a_{12})^2 x_5^2 + (d_{a21} - a_{21} - h)^2 x_8^2 + \left[a_1^2 x_5^4 + (2 a_1 a_2 + a_3^2) x_5^2 x_8^2 + a_2 x_8^4 \right]^{1/2}$$

where

$$a_1 = (d_{12} - a_{12})^2 - 4b_{22}(c_{22} + 1), \quad a_2 = 4b_{11} c_{11} - (d_{a21} - a_{21} - h)^2$$

$$a_3 = 2(d_{12} - a_{12})(d_{a21} - a_{21} - h) + 4b_{22}(c_{22} + 1) + 4b_{11} c_{11}$$

$$g_{34} = 0, \quad g_{41} = g_{14}, \quad g_{42} = g_{13}, \quad g_{43} = 0, \quad g_{44} = g_{33}$$

$$g_{55} = g_{66} = g_{77} = g_{88} = J,$$

$g_{ij} = 0$ if at least one of the subscripts is > 4 and if $i \neq j$.

On account of relations, $\partial x^2/\partial x_2 = \partial x^1/\partial x_1, \partial x^3/\partial x_2 = -\partial x^4/\partial x_1, \partial x^3/\partial x_1 = \partial x^4/\partial x_2, \partial x^1/\partial x_2 = -\partial x^2/\partial x_1$, etc., which are readily verified from the formulas for the $X's$, we find with the help of (7.5) that

$q_{11} = q_{22}, \quad q_{12} = -q_{21}, \quad q_{33} = q_{44}, \quad q_{13} = q_{24}$

$q_{14} = -q_{23}, \quad q_{31} = q_{42}, \quad q_{32} = -q_{41}, \quad q_{34} = -q_{43}$.
These relations merely imply that the part of the quadratic form \(q[\lambda] \) involving only \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 \) is a Hermitian form in \(\lambda_1 + i \lambda_2 \) and \(\lambda_3 + i \lambda_4 \); and this is just what we might have expected from the pedigree of \(q[\lambda] \). It is not necessary to compute either \(q_{12} \) or \(q_{34} \), since it is only the symmetrical part of the matrix \((q_{ij}) \) which is essential. Hence, for \(i,j = 4 \), there are only six quantities to be computed, namely

\[
(7.5.1) \quad q_{11} = q_{22} = 4(c_{22} + 1)^2 \left[x_2^2 x_3 - x_1 x_4 - (|\gamma|^2 - x_6^2 - x_7^2)^{\frac{1}{2}} \right] \\
+ 2(c_{22} + 1)^2 (a_{12} + d_{12} + 2t_{22}) x_5^3 + 2c_{11}^2 (a_{12} + d_{12} + 2m_{12}) x_5 x_8^2.
\]

\[
(7.5.2) \quad q_{13} = q_{24} = (c_{11}(d_{12} - a_{12}) + (c_{22} + 1)(d_{21} - a_{21} - h)) x_5 (x_2 x_3 - x_1 x_4 - R_1) \\
+ \left[(f_{22} + 2d_{12} + m_{12})(c_{11}(d_{12} - a_{12}) + (c_{22} + 1)(d_{21} - a_{21} - h)) + \right. \\
\left. 4b_{11}(c_{22} + 1)^2 + 2a_{21}(d_{12} - a_{12})(c_{22} + 1) \right] x_5^2 x_8 \\
+ \left[4b_{11}c_{11}^2 - 2a_{11}d_{21}(d_{21} - a_{21} - h) \right] x_8^3,
\]

where we have set \(R_1 = (|\gamma|^2 - x_6^2 - x_7^2)^{\frac{1}{2}} \).

\[
(7.5.3) \quad q_{31} = q_{42} = (c_{11}(d_{12} - a_{12}) + (c_{22} + 1)(d_{21} - a_{21} - h)) (x_2 x_3 - x_1 x_4 - R_1) x_5 \\
+ \left[(f_{22} + m_{12} + 2a_{12})(c_{11}(d_{12} - a_{12}) + (c_{22} + 1)(d_{21} - a_{21} - h)) \\
- 2(c_{22} + 1)(d_{12} - a_{12})(a_{21} + h) + c_{11}(d_{12} - a_{12})^2 \right] x_5^2 x_8 \\
+ c_{11}(d_{21} - a_{21} - h)(d_{21} + a_{21} + h)x_8^3 + c_{11}R_2 x_8,
\]

where we have set \(R_2 = (2A_1^2 x_5^2 + (2A_1 A_2 - A_3^2)x_7^2 x_5^3 + A_2^2 x_8^2) \).
NAVORD Report 3651

(7.5.4) \[q_{14} = -q_{23} = 2(c_{22} + 1)(d_{12} - a_{12})(x_2 x_3 - x_1 x_4 - R_1) x_5 \]

\[+ 2(c_{22} + 1) \left[(d_{12} - a_{12})(x_2 + d_{22}) - 2b_{22}(c_{22} + 1) \right] x_5^3 \]

\[- 2 \left[(d_{21} - a_{21} + b)(c_{11} d_{12}) + (c_{22} + 1)d_{21} + c_{11} d_{12} + 2b_{22} c_{11} + c_{11} (d_{12} - a_{12}) \right] x_5^2 \]

(7.5.5) \[q_{41} = -q_{32} = 2(c_{22} + 1)(d_{12} - a_{12})(x_2 x_3 - x_1 x_4 - R_1) x_5 \]

\[+ (c_{22} + 1)(d_{12} - a_{12})(x_2 + d_{22} + a_{12} + d_{12}) x_5^3 \]

\[+ \left[2c_{11}(a_{21} + b)(d_{12} - a_{12}) - (d_{21} - a_{21} + b) (c_{11} d_{12} + 2a_{12} c_{11} - (a_{21} + d_{21} + b)(c_{22} + 1)) \right] x_5^2 \]

\[+ (c_{22} + 1)R_2 x_5. \]

(7.5.6) \[q_{33} = q_{44} = \frac{1}{2}(x_2^2 x_3 - x_1 x_4 - R_1) \left[2(a_{12} - a_{12})^2 x_5 + \frac{\partial R_2}{\partial x_5} \right] \]

\[+ \frac{1}{2} f_{22} x_5^2 \frac{\partial R_2}{\partial x_5} + \frac{1}{2} f_{12} x_5 x_8 \frac{\partial R_2}{\partial x_8} + d_{12} R_2 x_5 \]

\[+ (d_{12} - a_{12})((d_{12} + a_{22})(d_{12} - a_{12}) - 2b_{22}(c_{22} + 1)) x_5^3 \]

\[+ \left[(d_{21} - a_{21} + b)(d_{12} - a_{12}) (c_{11} d_{12}) + 2b_{11}(c_{22} + 1) + 2b_{11} c_{11} (d_{12} - a_{12}) \right] x_5^2. \]

The other \(q_{ii} \) are relatively simple to calculate from (7.5) and will be left to the reader. The complexities of formulas (7.5.1) to (7.5.6) make it seem unlikely that any simple general conclusions can be drawn.

The method gives primarily a procedure for the numerical study of individual cases.

8. A word of warning. After writing the above material, it gradually came to the author's attention that the elimination of \(g_0 \) by means of \(g_0^2 + g_1^2 + g_1^2 + g_2^2 = |g|^2 \) introduces a difficulty in the study of a trajectory near its vertex, that is, where the axis of the shell is nearly horizontal. This is because the derivative of the function \(R_1 \) with respect to \(x_2 \) or \(x_4 \) is very large when \(g_0 \) or \(R_1 \) is close to 0. Hence the method, as worked out above, is pertinent largely to antiaircraft fire or other types of trajectories where the shell axis is never horizontal in the
important part of the trajectory. If this is not the case, the theory may be modified in one of two ways. Either eliminate \(g_2 \) instead of \(g_0 \) (this has the disadvantage of making our equations more unsymmetrical) or else refrain from eliminating any of the \(g \)'s and use a system of order nine instead of one of order eight. In either event, the modifications necessary for this purpose are only slight, but it is not possible to work out the details here.
FOOTNOTES

2. The use of the so-called "spinless frame" was suggested by A. W. Wundheiler.

4. As is well known (3.2) can also be obtained from (3.1) even when the latter is known to hold for only a single value of $\alpha \equiv 0 \mod \pi$. Hence symmetry under rotations through $\alpha = \frac{2\pi}{n}$, $n > 2$, also lead to the form (3.2). Complete axial symmetry is not necessary.

Aeroballistic Research Department
External Distribution List for Applied Math.(X3)

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief, Bureau of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attn: Rea</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Rexe</td>
</tr>
<tr>
<td>3</td>
<td>Attn: Re9a</td>
</tr>
<tr>
<td>Chief, Bureau of Aeronautics</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attn: AER-TD-414</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Ordnance Test Station</td>
<td></td>
</tr>
<tr>
<td>Inyokern</td>
<td></td>
</tr>
<tr>
<td>P.O. China Lake, California</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Code 5003</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Air Missile Test Center</td>
<td></td>
</tr>
<tr>
<td>Point Mugu, California</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Monterey, California</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attn: Librarian</td>
</tr>
<tr>
<td>Commanding Officer and Director</td>
<td></td>
</tr>
<tr>
<td>David Taylor Model Basin</td>
<td></td>
</tr>
<tr>
<td>Washington 7, D. C.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attn: Hydrodynamics Laboratory</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Navy Research Section</td>
<td></td>
</tr>
<tr>
<td>Library of Congress</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Attn: Code 432</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Code 438</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Code 463</td>
</tr>
<tr>
<td>Director</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attn: Code 2021</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Code 3800</td>
</tr>
<tr>
<td>Research and Development Board</td>
<td></td>
</tr>
<tr>
<td>Library Branch</td>
<td></td>
</tr>
<tr>
<td>Pentagon, 3D1041</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Attn: Technical Library</td>
</tr>
</tbody>
</table>

<p>| | No. of Copies |
| Air Targets Division |
| Directorate of Intelligence |
| Headquarters, USAF |
| Washington 25, D. C. |
| 1 | Attn: Chief, Physical Vulnerability Br. |
| 1 | Attn: AFDRD-RE |
| Commanding General |
| Hqts, Wright Air Development Center |
| Wright-Patterson Air Force Base |
| Dayton, Ohio |
| 1 | Attn: WGSO |
| 7 | Attn: WCAPD |
| 2 | Attn: WCRR |
| Physics Branch |
| Division of Research |
| U. S. Atomic Energy Commission |
| Washington 25, D. C. |
| 1 | Attn: Air University Library |
| The Artillery School |
| Anti-aircraft and Guided Missiles Br. |
| Fort Bliss, Texas |
| 2 | Attn: Research and Analysis Sec. |
| 1 | Attn: Pres. Army Field Forces, Board #4 |
| Ballistic Research Laboratories |
| Aberdeen Proving Ground |
| Aberdeen, Maryland |
| 2 | Attn: D.S. Dederick |
| National Bureau of Standards |
| Washington 25, D. C. |
| 1 | Attn: Nat'l Applied Math. Lab. |
| 1 | Attn: W. Ramberg |
| 1 | Attn: Librarian(Ord. Dev. Div.) |
| National Bureau of Standards |
| Corona Laboratories (Ord. Dev. Div.) |
| Corona, California |
| 1 | Attn: Dr. Harold Thomas |
| University of California |
| Berkeley, 4, California |
| 1 | Attn: G. J. Maslach |
| 1 | Attn: Dr. S.A. Schaaf |
| VIA: InsMat |
| California Institute of Technology |
| Pasadena 4, California |
| 2 | Attn: Prof. M.S. Plesset |
| VIA: BuAero Rep. |</p>
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Illinois</td>
<td>Defense Research Laboratory</td>
</tr>
<tr>
<td>202 E. R. L. Urbana, Illinois</td>
<td>University of Texas</td>
</tr>
<tr>
<td>1 Attn: Prof. A.H. Taub VIA: InsMat</td>
<td>Box 1, University Station</td>
</tr>
<tr>
<td>Director</td>
<td>1 Austin, Texas</td>
</tr>
<tr>
<td>Fluid Dynamics and Applied Math.</td>
<td>Attn: InsMat</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>Eastman Kodak Company</td>
</tr>
<tr>
<td>1 College Park, Maryland VIA: InsMat</td>
<td>50 West Main Street</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>Rochester 4, New York</td>
</tr>
<tr>
<td>Engineering Research Institute</td>
<td>2 Attn: Dr. H. Trotter, Jr. VIA: NIO</td>
</tr>
<tr>
<td>Ypsilanti, Michigan</td>
<td>General Electric Company</td>
</tr>
<tr>
<td>1 Attn: J.W. Carr, III</td>
<td>Bldg. #1, Campbell Avenue Plant</td>
</tr>
<tr>
<td>Willow Run Research Center Willow Run Airport</td>
<td>Schenectady, New York</td>
</tr>
<tr>
<td>University of Michigan Ypsilanti, Michigan</td>
<td>1 Attn: Joseph C. Hoffman</td>
</tr>
<tr>
<td>1 Attn: L.R. Biasell VIA: InsMat</td>
<td>VIA: InsMach.</td>
</tr>
<tr>
<td>University of Minnesota Rosemount, Minnesota</td>
<td>The Rand Corporation</td>
</tr>
<tr>
<td>1 Attn: J. Leonard Frame VIA: Ass't InsMat</td>
<td>1500 Fourth Street</td>
</tr>
<tr>
<td>Dept. of Aero. Engr. The Ohio State University Columbus, Ohio</td>
<td>Santa Monica, California</td>
</tr>
<tr>
<td>1 Attn: G.L. Von Eschen VIA: Ass't InsMat</td>
<td>1 Attn: Librarian VIA: InsMat</td>
</tr>
<tr>
<td>Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York</td>
<td>Douglas Aircraft Company, Inc.</td>
</tr>
<tr>
<td>1 Attn: Dr. Antonio Ferri VIA: ONR</td>
<td>3000 Ocean Park Boulevard</td>
</tr>
<tr>
<td>University of Wisconsin Naval Research Laboratory 422 Farm Place Madison 6, Wisconsin</td>
<td>Santa Monica, California</td>
</tr>
<tr>
<td>1 VIA: InsMat</td>
<td>1 Attn: E.F. Burton</td>
</tr>
<tr>
<td>1 Attn: M. H. Smith</td>
<td>National Advisory Committee for Aero</td>
</tr>
<tr>
<td>Armour Research Foundation 35 West 33rd Street Chicago 16, Illinois</td>
<td>1724 P Street Northwest Washington 25, D. C.</td>
</tr>
<tr>
<td>Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland.s</td>
<td>Ames Aeronautical Laboratory Moffett Field, California</td>
</tr>
<tr>
<td>1 Attn: Arthur G. Norris VIA: NIO</td>
<td>2 Attn: Dr. A. C. Charter</td>
</tr>
<tr>
<td>Langley Aeronautical Laboratory Langley Field, Virginia</td>
<td>Attn: Theoretical Aerodynamics Div.</td>
</tr>
<tr>
<td>1 Attn: Dr. A. Busemann</td>
<td>1 Attn: J. Stack</td>
</tr>
<tr>
<td>NACA Lewis Flight Propulsion Lab. Cleveland Hopkins Airport Cleveland, 11, Ohio</td>
<td>1 Attn: Dr. John C. Evvard</td>
</tr>
<tr>
<td>Harvard University 21 Vanserg Building Cambridge 38, Massachusetts</td>
<td>Attn: Prof. G. Birkhoff</td>
</tr>
<tr>
<td>1 Johns Hopkins University Charles and 34th Streets Baltimore 18, Maryland</td>
<td>Attn: Dr. F. H. Clauser</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>1</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| New York University
45 Fourth Avenue
New York, New York | |
| California Institute of Technology
Pasadena 4, California | Attn: Dr. Hans W. Liepmann |
| University of Toronto
Institute of Aerophysics
Toronto 5, Ontario | Attn: Dr. G.N. Patterson
VIA: BuOrd (Ad8) |
| Hughes Aircraft Company
Missile Aerodynamics Department
Culver City, California | Attn: Dr. Allen E. Puckett |
| Institute for Advanced Study
Professor John von Neumann | |
| University of Michigan
Willow Run Research Center | Attn: Professor J. P. Nash
VIA: ONR |
| Digital Computer Laboratory
University of Illinois
Champaign, Illinois | |
| Mr. G. H. Johnson, Librarian
International Business Machines Corporation | |
| Naval Proving Ground
Dahlgren, Virginia | Attn: Ralph A. Neumann |
| U.S. Naval Proving Ground | |
| Dahlgren, Virginia | |
Aeroballistic Research Department
External Distribution List for Applied Math. (X3a)

No. of Copies	Office of Naval Research
8	Branch Office, Navy 100
	Fleet Post Office
	New York, New York
	Commanding General
	Aberdeen Proving Ground
	Aberdeen, Maryland
	Attn: C.L. Poor
	Attn: Dr. B.L. Hicks
	National Bureau of Standards
	Washington 25, D. C.
1	Attn: G.B. Schubauer
	Ames Aeronautical Laboratory
	Moffett Field, California
	Attn: W.G. Vincenti
	Brown University
	Providence 12, Rhode Island
1	Attn: Prof. Wm. Prager
	VIA: Ass't InsMat
	University of California
	Observatory 21
	Berkeley 4, California
1	Attn: Leland E. Cunningham
	VIA: InsMat
	Cornell University
	Ithaca, New York
1	Attn: W.R. Sears
	VIA: ONR
	Indiana University
	Bloomington, Indiana
1	Attn: T.Y. Thomas
	VIA: Ass't InsMat
	Massachusetts Institute of Technology
	77 Massachusetts Avenue
	Cambridge 39, Massachusetts
1	Attn: Prof. Eric Reissner
	VIA: InsMat
	Stanford University
	Stanford, California
1	Attn: R.J. Langle
	VIA: Ass't InsMat
	Case Institute of Technology
	Cleveland, Ohio
1	Attn: Prof. G. Kuerti
	VIA: ONR

David Taylor Model Basin
Washington 7, D. C.
1 Attn: Dr. H. Polachek

The Johns Hopkins University
Department of Mathematics
Baltimore 18, Maryland
5 Attn: Professor D. C. Lewis