Primary Structure of Nicotinic Acetylcholine Receptor.
Abstract:
Signals are transmitted between cells in the brain using neurotransmitters and neurotransmitter receptors. Poisons that interfere with this process stop normal brain function and often kill nerve cells. One of the neurotransmitters used in the mammalian brain is acetylcholine. We discovered that there is a large number of different nicotinic receptors for the neurotransmitter acetylcholine, each with its different properties. We used recombinant DNA technology to clone and sequence the gene transcripts that encode the subunits of these receptors. From these sequences we deduced the primary structures of the nicotinic receptor subunits. We also used the cDNA clones to determine which brain loci express the respective genes. We have expressed the clones in the Xenopus oocyte and have demonstrated that each functional combination of subunits has a unique pharmacology Unlike their homologs at the neuromuscular junction, the nicotinic acetylcholine receptors in the brain are exceptionally permeable to calcium. This property suggests that these receptors may play an important role in regulating calcium-dependent cytoplasmic processes and that they may be important contributors to use- dependent cell death.