Nanopillar Optical Antenna Avalanche Detectors

reportActive / Technical Report | Accession Number: ADA623489 | Open PDF

Abstract:

Avalanche photodetectors APDs are essential components in active imaging systems requiring both ultrafast response times to measure photon time of flight and high gains to detect low photon fluxes. APDs improve system Signal to Noise Ratio by combining photon detection and amplification eliminating the need for front end amplifiers. An emerging trend in active imaging focal plane array technologies is reducing the pixel pitch detector volume for higher resolution images. However, there is an inherent trade-off between reduced detector volume and APD figures of merit. This dissertation will focus on the design, fabrication and electro-optic characterization of a novel detector architecture 3D Nanopillar Optical Antenna Avalanche Detectors 3D-NOAADs for shrinking both the absorption and multiplication volumes using III-V nanopillars, while enhancing the optical absorption via a self aligned 3D plasmonic antenna. Wavelength tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves SPP-BWs and Localized Surface Plasmon Resonances LSPRs will be discussed. Photo-generated carrier transport from the absorption region into the multiplication region and subsequent impact ionization will also be discussed. Single pixel 3D-NOAADs exhibit substantially lower excess noise factors compared to bulk, low breakdown voltages 8 V and gain-bandwidth products 100 GHz.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms