Chiral Plasmonic Nanostructures on Achiral Nanopillars

reportActive / Technical Report | Accession Number: ADA620131 | Open PDF

Abstract:

Chirality of plasmonic films can be strongly enhanced by threedimensional 3D out-of-plane geometries. The complexity of lithographic methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical effects, the size of substrates, and hence, further research on chiral plasmonics. Here we demonstrate 3D chiral plasmonic nanostructures CPNs with high optical activity in the visible spectral range based on initially achiral nanopillars from ZnO. We made asymmetric gold nanoshells on the nanopillars by vacuum evaporation at different inclination and rotation angles to achieve controlled symmetry breaking and obtained both left- and rightrotating isomers. The attribution of chiral optical effects to monolithic enantiomers made in this process was confirmed by theoretical calculations based on their geometry established from scanning electron microscope SEM images. The chirality of the nanoshells is retained upon the release from the substrate into a stable dispersion. Deviation of the incident angle of light from normal results in increase of polarization rotation and chiral g-factor as high as 0.3. This general approach for preparation of abiological nanoscale chiral materials can be extended to other out-of plane 3D nanostructures. The large area films made on achiral nanopillars are convenient for sensors, optical devices, and catalysis.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms