Face Recognition Performance: Role of Demographic Information

reportActive / Technical Report | Accession Number: ADA556941 | Open PDF

Abstract:

This paper studies the influence of demographics on the performance of face recognition algorithms. The recognition accuracies of six different face recognition algorithms three commercial, two non-trainable, and one trainable are computed on a large scale gallery that is partitioned so that each partition consists entirely of specific demographic cohorts. Eight total cohorts are isolated based on gender male and female raceethnicity Black, White, and Hispanic, and age group 18 to 30, 30 to 50, and 50 to 70 years old. Experimental results demonstrate that both commercial and the non-trainable algorithms consistently have lower matching accuracies on the same cohorts females, Blacks, and age group 18 to 30. Additional experiments investigate the impact of the demographic distribution in the training set on the performance of a trainable face recognition algorithm. We show that the matching accuracy for raceethnicity and age cohorts can be improved by training exclusively on that specific cohort. Operationally, this leads to a scenario, called dynamic face matcher selection, where multiple face recognition algorithms each trained on different demographic cohorts, are available for a biometric system operator to select based on the demographic information extracted from a probe image. This procedure should lead to improved face recognition accuracy in many intelligence and law enforcement face recognition scenarios.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms