Cognitive Networks
Abstract:
For complex computer networks with many tunable parameters and network performance objectives, the task of selecting the ideal network operating state is difficult. To improve the performance of these kinds of networks, this research proposes the idea of the cognitive network. A cognitive network is a network composed of elements that, through learning and reasoning, dynamically adapt to varying network conditions in order to optimize end-to-end performance. In a cognitive network, decisions are made to meet the requirements of the network as a whole, rather than the individual network components. We examine the cognitive network concept by first providing a definition and then outlining the difference between it and other cognitive and cross-layer technologies. From this definition, we develop a general, three-layer cognitive network framework, based loosely on the framework used for cognitive radio. In this framework, we consider the possibility of a cognitive process consisting of one or more cognitive elements, software agents that operate somewhere between autonomy and cooperation. To understand how to design a cognitive network within this framework we identify three critical design decisions that affect the performance of the cognitive network the selfishness of the cognitive elements, their degree of ignorance, and the amount of control they have over the network. To evaluate the impact of these decisions, we created a metric called the price of a feature, defined as the ratio of the network performance with a certain design decision to the performance without the feature. To further aid in the design of cognitive networks, we identify classes of cognitive networks that are structurally similar to one another. We examined two of these classes the potential class and the quasi-concave class. Both classes of networks will converge to Nash Equilibrium under selfish behavior and in the quasi-concave class this equilibrium is both Pareto and globally optimal.