Thin Film ZT Characterization using Transient Harman Technique

reportActive / Technical Report | Accession Number: ADA458516 | Open PDF

Abstract:

Thin-film thermoelectric materials offer great potential for improving the thermoelectric figure of merit ZT due to the freedom of tailoring the electron and heat transport. The characterization of these thin films is difficult because of the coexistence of the substrate, non-ideal contact, and asymmetric three-dimensional device structure. We have investigated theoretically and experimentally the transient Harman method for measuring the ZT of a thin film SiSiGe superlattices on a silicon substrate. 3D electrothermal simulations allow us to identify the contribution of the thin film and the substrate to the transient response. On the measurement side, ringing at short times and noise can be significantly improved by using high-speed packages and electrical impedance matching. The Joule heating contribution to the thermoelectric EMF is separated from the Peltier one by the bipolar measurement. The parasitic non-ideal effects of contacts and substrate can be removed by variable thickness superlattice method.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms