Gibbs Sampling for Marginal Posterior Expectations

reportActive / Technical Report | Accession Number: ADA243212 | Open PDF

Abstract:

In earlier work Gelfand and Smith, 1990 and Gelfand et al, 1989 a sampling based approach using the Gibbs sampler was offered as a means for developing marginal posterior densities for a wide range of Bayesian problems several of which were previously inaccessible. Our purpose here is two-fold. First we flesh out the implementation of this approach for calculation of arbitrary expectations of interest. Secondly we offer comparison with perhaps the most prominent approach for calculating posterior expectations, analytic approximation involving application of the LaPlace method. Several illustrative examples are discussed as well. Clear advantages for the sampling based approach emerge.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms