Information Capacity of Gaussian Channels

reportActive / Technical Report | Accession Number: ADA190316 | Open PDF

Abstract:

Information capacity of Gaussian channels is one of the basic problems of information theory. Shannons results for white Gaussian channels and Fanos waterfilling analysis of stationary Gaussian channnels are two of the best-known works of early information theory. Results are given here which extend to a general framework these results and others due to Gallager and to Kadota, Zakai, and Ziv. The development applies to arbitrary Gaussian channels when the channel noise has sample paths in a separable Banach space, and to a large class of Gaussian channels when the noise has sample paths in a linear topological vector space. Solutions for the capacity are given for both matched and mismatched channels. Keywords Gaussian channels Channel capacity Shannon theory Information theory.

Security Markings

DOCUMENT & CONTEXTUAL SUMMARY

Distribution:
Approved For Public Release
Distribution Statement:
Approved For Public Release; Distribution Is Unlimited.

RECORD

Collection: TR
Identifying Numbers
Subject Terms