View The Document

Accession Number:

AD1209395

Title:

A Comparison of Language Representation Models on Small Text Corpora of Scientific and Technical Documents

Author(s):

Author Organization(s):

Report Date:

2023-03-01

Abstract:

Text mining for the identification of emerging technology is becoming increasingly important as the number of scientific and technical documents grows. However, algorithms for developing text mining models require a large amount of training data, which carries heavy costs associated with data annotation and model development. The need for avoiding these associated costs has in part motivated recent work in text mining, which indicate value in leveraging language representation models (LRMs) on domain-specific text corpora for domain-specific tasks. However, these results are demonstrated predominantly on large text corpora, which do not address concerns associated with the ability of LRMs to transfer to domains where training data may be scarce. Due to this, we benchmarked the performance of LRMs on identifying quantities and units of measure from text when the number of training samples is small.

Pages:

10

File Size:

1.42MB

Descriptors:

Identifiers:

SubjectCategory:

Communities of Interest:

Distribution Statement:

Approved For Public Release

View The Document