Accession Number:



A Report on Applying EEGnet to Discriminate Human State Effects on Task Performance

Corporate Author:

US Army Research Laboratory Aberdeen Proving Ground United States

Report Date:



In this project, we utilized optimization to discriminate brain data. Participants completed 2 cognitive tasks while ongoing brain activity was recorded from electrodes on their scalp. Our analysis examined whether we could identify what task the participant was performing from differences in the recorded brain time series. We modeled the relationship between input data brain time series and output labels task A and task B as an unknown function, and we found an optimal approximation of that function from among a family of functions. We employed stochastic gradient descent to minimize the estimation error known as the loss function. The optimal function from among our family of approximate functions, EEGNet, successfully discriminated brain data from a single participant with approximately 90 accuracy. Future research will apply EEGNet on data from more participants as well as develop approaches to adapt its architecture for the non-Euclidean domains.

Descriptive Note:

Technical Report,01 Jun 2017,30 Sep 2017



Communities Of Interest:

Modernization Areas:

Distribution Statement:

Approved For Public Release;

File Size: