DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
AD1018381
Title:
Exponential Decay of Reconstruction Error from Binary Measurements of Sparse Signals
Corporate Author:
Rice University Houston United States
Report Date:
2014-08-01
Abstract:
Binary measurements arise naturally in a variety of statistical and engineering applications. They may be inherent to the problem--e.g., in determining the relationship between genetics and the presence or absence of a disease--or they may be a result of extreme quantization. A recent influx of literature has suggested that using prior signal information can greatly improve the ability to reconstruct a signal from binary measurements. This is exemplified by one-bit compressed sensing, which takes the compressed sensing model but assumes that only the sign of each measurement is retained. It has recently been shown that the number of one-bit measurements required for signal estimation mirrors that of unquantized compressed sensing. Indeed, s-sparse signals in Rn can be estimated up to normalization from s logns one-bit measurements. Nevertheless, controlling the precise accuracy of the error estimate remains an open challenge. In this paper, we focus on optimizing the decay of the error as a function of the oversampling factor lambda ms logns, where m is the number of measurements. It is known that the error in reconstructing sparse signals from standard one-bit measurements is bounded below by 1. Without adjusting the measurement procedure, reducing this polynomial error decay rate is impossible.
Descriptive Note:
Journal Article
Supplementary Note:
arXiv , 01 Jan 0001, 01 Jan 0001,
Pages:
0027
Distribution Statement:
Approved For Public Release;
File Size:
0.52MB