Accession Number:

ADP012630

Title:

GaInNAs Material Properties for Long Wavelength Opto-Electronic Devices

Descriptive Note:

Symposium proceedings

Corporate Author:

STANFORD UNIV CA SOLID STATE PHOTONICSLAB

Report Date:

2002-01-01

Pagination or Media Count:

9.0

Abstract:

Dilute nitrogen GaInNAs is a new promising material as an active region for use in 1.3 and 1.55 micrometers opto-electronic devices. It has been commonly observed that increasing the nitrogen content generally reduces the optical emission intensity and increases laser threshold. However, some non radiative recombination defects are removed from the material during a post-growth anneal. One drawback to the anneal is that nitrogen out-diffuses from the quantum wells and blue-shifts optical emission. Using a modified active region structure, we have decreased nitrogen out-diffusion and reduced the luminescence blue-shift while still improving crystal quality. The growth consists of high nitrogen GaNAs barriers grown between lower nitrogen GaInNAs quantum wells. As an added benefit, the nitride barriers strain compensate for the compression in the high in content GaInNAs wells. Furthermore, in order to improve luminescence at long wavelengths, we have added Sb to GaInNAs and have observed high intensity phototuminescence PL out to 1.6 micrometers. We have grown and fabricated in-plane GaInNAs lasers that emit at 1.3 micrometers with a current threshold density of 1.2 kAsq cm and GaInNAsSb lasers with emissions at 1.46 micrometers with a current threshold of 2.8 kAsq cm.

Subject Categories:

  • Electrooptical and Optoelectronic Devices
  • Solid State Physics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE