DID YOU KNOW? DTIC has over 3.5 million final reports on DoD funded research, development, test, and evaluation activities available to our registered users. Click
HERE to register or log in.
Accession Number:
ADP007155
Title:
Quasi-Random Resampling for the Bootstrap,
Descriptive Note:
Corporate Author:
AUSTRALIAN NATIONAL UNIV CANBERRA
Report Date:
1992-01-01
Pagination or Media Count:
4.0
Abstract:
Quasi-random sequences are known to give efficient numerical integration rules in many Bayesian statistical problems where the posterior distribution can be transformed into periodic functions on the n-dimensional hypercube. From this idea we develop a quasi-random approach to the generation of resamples used for Monte Carlo approximations to bootstrap estimates of bias, variance and distribution functions. We demonstrate a major difference between quasi-random bootstrap resamples, which are generated by deterministic algorithms and have no true randomness, and the usual pseudorandom bootstrap resamples generated by the classical bootstrap approach. Various quasi-random approaches are considered and are shown via a simulation study to result in approximants that are competitive in terms of efficiency when compared with other bootstrap Monte Carlo procedures such as balanced and antithetic resampling.
Distribution Statement:
APPROVED FOR PUBLIC RELEASE