Accession Number:

ADA639829

Title:

Modeling Fusion of Cellular Aggregates in Biofabrication Using Phase Field Theories (Preprint)

Descriptive Note:

Journal article preprint

Corporate Author:

SOUTH CAROLINA UNIV COLUMBIA

Report Date:

2011-01-01

Pagination or Media Count:

18.0

Abstract:

A mathematical model based on a phase field formulation is developed to study fusion of cellular aggregatesclusters. In a novel biofabrication process known as bioprinting, live multicellular aggregatesclusters are used to make tissue or organ constructs via the layer-by-layer deposition technique in compatible hydrogels rich in maturogen the bio-constructs embedded in hydrogels are then placed in bioreactors to undergo the fusion process of self-assembly, maturation and differentiation to form the desired functional tissue or organ products. We formulate the mathematical model to study the morphological development of the printed bio-constructs during fusion by exploring the chemical-mechanical interaction between cellular aggregates involved. Specifically, we treat the cellular aggregates and the surrounding hydrogels as two immiscible complex fluids and then develop an effective mean-field potential that incorporates the long-range, attractive interaction between cells as well as the short-range, repulsive interaction due to immiscibility between the cell and the hydrogel. We then implement the model using a high order spectral method to simulate the making of a set of tissuesorgans in simple geometries like a ring or a sheet of tissues and a Y- or T-shaped vascular junction by the layer-by-layer deposition of spheroidal cellular clusters in the bioprinting technology.

Subject Categories:

  • Anatomy and Physiology
  • Medicine and Medical Research
  • Operations Research

Distribution Statement:

APPROVED FOR PUBLIC RELEASE