Accession Number:



Context and Structure in Automated Full-Text Information Access

Descriptive Note:

Doctoral thesis

Corporate Author:


Personal Author(s):

Report Date:


Pagination or Media Count:



This dissertation investigates the role of contextual information in the automated retrieval and display of full-text documents, using robust natural language processing algorithms to automatically detect structure in and assign topic labels to texts. Many long texts are comprised of complex topic and subtopic structure, a fact ignored by existing information access methods. I present two algorithms which detect such structure, and two visual display paradigms which use the results of these algorithms to show the interactions of multiple main topics, multiple subtopics, and the relations between main topics and subtopics. The first algorithm, called TextTiling, recognizes the subtopic structure of texts as dictated by their content. It uses domain-independent lexical frequency and distribution information to partition texts into multi-paragraph passages. The results are found to correspond well to reader judgments of major subtopic boundaries. The second algorithm assigns multiple main topic labels to each text, where the labels are chosen from pre-defined, intuitive category sets the algorithm is trained on unlabeled text. A new iconic representation, called TileBars uses TextTiles to simultaneously and compactly display query term frequency, query term distribution and relative document length. This representation provides an informative alternative to ranking long texts according to their overall similarity to a query. TileBars display documents only in terms of words supplied in the user query. For a given retrieved text, if the query words do not correspond to its main topics, the user cannot discern in what context the query terms were used.

Subject Categories:

  • Information Science
  • Linguistics
  • Computer Programming and Software

Distribution Statement: