Accession Number:

ADA626556

Title:

Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

Descriptive Note:

Final technical rept. 1 Apr 2012-30 Sep 2015

Corporate Author:

TEXAS UNIV AT ARLINGTON DEPT OF MATERIALS SCIENCE AND ENGINEERING

Personal Author(s):

Report Date:

2015-12-17

Pagination or Media Count:

41.0

Abstract:

This project has investigated fundamental physics of electron energy filtering occurring at room temperature as well as its applications to practical devices such as room-temperature single-electron transistors and ultralow energy consumption transistors. We have experimentally demonstrated, for the first time, that a quantum well energy level can filter out energetic electrons that are present at the Fermi-Dirac distribution tail, thereby effectively suppress the Fenni-Dirac electron thermal excitations, producing energy-filtered cold electrons at room temperature. The effective temperature of the energy-filtered cold electrons was 45 Kelvin at room temperature. A comprehensive microscopic model has been developed to describe the underlying mechanisms of the energy filtering and numerical calculations are in excellent agreement with experimental findings. The energy filtering has been applied to single-electron transport and clear Coulomb staircases and Coulomb oscillations have been demonstrated at room temperature. A new architecture of energy-filtered cold electron transistors has been designed and fabricated using optimized materialsprocesses.

Subject Categories:

  • Electrical and Electronic Equipment
  • Electric Power Production and Distribution
  • Nuclear Physics and Elementary Particle Physics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE